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ABSTRACT
Coping with network failures has become a major network-
ing challenge. The concept of tunable survivability provides
a quantitative measure for specifying any desired level (0%-
100%) of survivability, thus offering flexibility in the rout-
ing choice. Previous works focused on implementing this
concept on unicast transmissions. However, vital network
information is often broadcasted via spanning trees. Ac-
cordingly, in this study, we investigate the application of
tunable survivability for efficient maintenance of spanning
trees under the presence of failures. We establish efficient
algorithmic schemes for optimizing the level of survivabil-
ity under various QoS requirements. In addition, we derive
theoretical bounds on the number of required trees for max-
imum survivability. Finally, through extensive simulations,
we demonstrate the effectiveness of the tunable survivability
concept in the construction of spanning trees. Most notably,
we show that, typically, negligible reduction in the level of
survivability results in major improvement in the QoS per-
formance of the resulting spanning trees.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Reliability, availability,
and serviceability; Fault tolerance; G.2.2 [Discrete Mathe-
matics]: Graph Theory—Graph algorithms; Network prob-
lems; Trees

Keywords
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1. INTRODUCTION
Network infrastructures have been progressing very

rapidly. While about a few decades ago the 56Kbps dial-
up modem, was a widely deployed device, nowadays tech-
nologies, such as Ethernet and InfiniBand operate at rates
of 100Gbps and beyond [1]. With this extreme increase in
transmission rates, any failure in the network infrastructure
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may lead to a vast amount of data loss. Hence, failures
in the network should be recovered promptly. Accordingly,
common standards, e.g. [2] [3], introduce requirements for
recovery from a single failure within 50ms. Several studies
have focused on survivability methods for coping with net-
work failures, e.g. [4] [5] [6] [7] [8]. However, most of these
studies focus on the protection of unicast transmission be-
tween a pair of nodes.

A widely employed transmission method is to broadcast
a message to all recipients simultaneously. Indeed, several
protocols at various layers utilize broadcast functionality,
e.g. ARP [9], DHCP [10]. While the straightforward broad-
cast technique of flooding the data over every network link
ensures maximum protection from failures, this approach
incurs a heavy, at times prohibitive, toll in terms of commu-
nication overhead. Furthermore, in order to prevent unde-
sirable effects such as a ”broadcast storm” [11], the flooding
approach requires the implementation of a complex control
mechanism for terminating the transmission process.

A spanning tree, i.e. a tree composed of all network
nodes, offers an alternative approach for broadcasting mes-
sages with minimal communication overhead precluding net-
work loops. Indeed, spanning trees are often employed for
broadcasting in various networking environments, such as
the Ethernet local area network [12], in which the Spanning
Tree Protocol (STP) ensures a single transmission path be-
tween any two Ethernet local network nodes. However, the
basic implementation of this protocol suffers from lengthy
recovery period of about 30 − 50 seconds. Accordingly, the
Multiple Spanning Tree Protocol [13] has been proposed as
an extension for the STP protocol; it enables the establish-
ment of different spanning trees in a local network to accel-
erate STP recovery period [14].

Spanning trees are not limited to the Ethernet framework,
and are also employed in the context of wireless and optical
networks. In sensor [15] [16] and ad-hoc [17] networks, span-
ning trees are utilized to enable efficient energy consump-
tion. In optical networks [18], shared backup trees can be
employed to protect a group of working light paths towards
the same destination in multi-protocol lambda switching
networks. This paper presents a novel generic approach for
network failure protection when employing spanning trees.

We adopt the widely used single-link failure model that
has been the focus of most of the studies on survivability,
e.g. [19] [20] [21]. This model is selected for its simplicity
and the fact that it addresses the common requirement in
various standards of protecting against a single failure, e.g.
[2] [3]. According to this model, reliable broadcasting can



be accomplished by transmitting the data through a pair of
link-disjoint spanning trees. Algorithmic solutions for find-
ing such trees have been studied in [22] and [23]. Moreover,
some interesting properties related to the number of disjoint
spanning trees were presented in [24] and [25]. The employ-
ment of disjoint spanning trees has been considered also in
the context of specific network architectures, e.g. in [26],
where it was proposed to improve both aggregate through-
put and fault-tolerance in metropolitan area Ethernet net-
works.

However, the requirement of full link-disjointedness is of-
ten too restrictive and, in practice, demands excessive re-
dundancy. Link-disjoint spanning trees of sufficient quality
may not exist, occasionally making the requirement unfeasi-
ble. Therefore, a milder and more flexible survivability con-
cept is called for, which would relax the rigid requirement
of disjointedness by also considering trees that do contain
common links.

Previous studies [19] [27] introduced the concept of tun-
able survivability, which provides a quantitative measure for
specifying the desired level of survivability. This concept al-
lows any degree of survivability in the range of 0% to 100%,
thus transforming survivability into a quantifiable Quality
of Service (QoS) metric. Consequently, these studies showed
how to combine this new survivability metric with other QoS
guarantees, such as bottleneck QoS metrics [19] and addi-
tive QoS metrics [27]. However, these studies focused solely
on the survivability between a source-destination pair, i.e. a
unicast connection. The goal of this work is to employ the
novel concept of tunable survivability within the framework
of broadcasting through spanning trees while considering ad-
ditional QoS requirements.

Specifically, tunable survivability within this framework
enables the establishment of spanning trees that can sur-
vive network failures with any desired probability. Given a
connection that consists of several spanning trees under the
single failure model, only a failure on a link that is com-
mon to all trees can disrupt the connection. Accordingly,
we characterize the survivability level of a connection as the
probability to have all common links operational during the
connection’s lifetime. Moreover, we aim to guarantee a cer-
tain level of bandwidth requirement for this connection. The
bandwidth of a connection is a bottleneck metric, given by
the worst-case (minimal) bandwidth in any of the links of
the spanning trees in the connection.

The following example demonstrates the concept of tun-
able survivability within the framework of spanning trees,
while also considering bandwidth requirements. Consider
the network example depicted in Fig. 1, where each link
is associated with a failure probability pe and a band-
width be. Assume that we need to broadcast a reli-
able message to all nodes in the network through a span-
ning tree. The network contains several possible span-
ning trees, namely T1 = {(a, b), (a, c), (a, d), (d, e)}, T2 =
{(a, e), (b, c), (c, d), (b, e)}, T3 = {(a, b), (b, c), (c, d), (b, e)}
and T4 = {(a, c), (b, c), (c, d), (d, e)}, illustrated by the
four sub-figures bellow the network example, respectively.
Clearly, the pair of link-disjoint spanning trees T1 and T2

guarantees full protection against a single link failure. In-
deed, even if a single link fails, at least one of the trees
does not contain any faulty links. Yet, this pair sustains
just a single unit of bandwidth, since this is the minimal
bandwidth over the links of both trees. However, if we are

Network Example

T1 T2 T3 T4

Figure 1: Example of tunable survivable spanning trees

satisfied with a survivability level of 0.99 against single net-
work failures, then the pair of spanning trees T1 and T3 is
a valid solution, since the only (single) failure that can con-
currently damage both trees is in the common link (a, b).
As this link fails with a probability of 0.01, the survivabil-
ity level is 0.99 and the sustained bandwidth grows to 2.
Now, suppose that we are satisfied with a survivability level
of 0.992. Clearly, the spanning trees T1 and T4 also con-
stitute a valid solution, for which the sustained bandwidth
grows to 5. Finally, assume that we are satisfied with a
survivability level of 0.994. Now, the single spanning tree
T1 also becomes a valid solution, thus increasing the sus-
tained bandwidth to 10. We can see that there is a clear
tradeoff between the survivability level and the bandwidth
of the connection. We note that the above cases focused
on pairs of spanning trees, while in general we can con-
struct more than a pair. For example, by employing the
triplet of spanning trees that consists of the links T1 =
{(a, b), (a, c), (a, d), (d, e)}, T3 = {(a, b), (b, c), (c, d), (b, e)}
and T4 = {(a, c), (b, c), (c, d), (d, e)}, we provide a full pro-
tection against a single link failure sustaining a bandwidth of
2. Therefore, this scheme improves the survivability level of
0.99 of connection supplied by the pair of spanning trees T1

and T3. In general, employing more spanning trees increases
the survivability level but it also imposes higher manage-
ment overhead.

Motivated by [19] and [27], we investigate how to imple-
ment the tunable survivability concept in the spanning tree
framework. To that end, in Section 2, we formulate an opti-
mization problem that considers two requirements, namely
the level of survivability and some bottleneck QoS guaran-
tee. Consequently, in Section 3, we establish some funda-



mental properties of the problem by investigating bounds
on the number of trees that is needed to obtain a maxi-
mum level of survivability. Then, in Section 4, we design
and validate an efficient algorithmic scheme for solving the
considered optimization problem. Specifically, we present a
novel polynomial-time algorithm for providing an optimal
set of any number k of spanning trees that maximizes its
survivability level while guaranteeing a required bandwidth.
Additionally, in Section 5, we study an alternative optimiza-
tion problem that considers additive, rather than bottleneck,
QoS requirements. Although this is a much more complex
class of problems, we present an algorithmic solution that
is efficient for a case of practical interest. While the upper
bound of Section 3 can be theoretically as large as the num-
ber of nodes in the network, in Section 6, through compre-
hensive simulations, we demonstrate that, in practice, this
number is usually much smaller (in the range of 2−4 trees).
Furthermore, we show that, typically, a modest relaxation
(of less than a percent) in the survivability level is enough to
provide a dramatic improvement in terms of the sustained
QoS. In Section 7, we provide some observations in order to
extend our model for coping with double failures. Finally,
Section 8 summarizes our results and discusses directions for
future research.

2. PROBLEM FORMULATION
A network is represented by an undirected graph G(V,E),

where V is the set of nodes and E is the set of links.
Each link e ∈ E is assigned with a failure probability value
pe ∈ (0, 1)1. Specifically, pe represents the probability for a
permanent fault in a specific link; we note that these proba-
bilities are often estimated out of the available failure statis-
tics of each network component [28] [29] [30] [31]. We assume
that each link e ∈ E fails independently. Each link e ∈ E is
also associated with a value be, which corresponds to some
bottleneck QoS metric, e.g. the available bandwidth in the
link.

A tree is an undirected graph in which any two vertices
are connected by exactly one simple path. Given a network
G(V,E), a spanning tree T (Ṽ , Ẽ) of G(V,E) is a tree com-
posed of all network nodes V and some of the links in E,
i.e., Ṽ = V and Ẽ ⊆ E. Furthermore, we will also use the
abbreviation T for specifying the spanning tree T (Ṽ , Ẽ) as

well as its link set Ẽ.
As mentioned, we adopt the single link failure model,

which considers handling at most one link failure in the net-
work. A link is classified as either faulty or operational : it
becomes faulty upon a failure and remains to be such un-
til it is repaired, otherwise it is operational. Likewise, we
say that a spanning tree T is operational if it has no faulty
links, i.e. for each e ∈ T , link e is operational; otherwise,
the spanning tree is faulty.

We proceed to formulate the concept of survivable span-
ning trees, through the following definitions.

Definition 2.1. Given a network G(V,E) and an integer
k > 0, a k-survivable spanning connection is a tuple of k
spanning trees (T1, T2, ..., Tk) of G(V,E).2

1For simplicity, we assume pe 6= 0, 1, however, the extension
for considering these values is trivial.
2The spanning trees are not necessarily disjoint.

Survivability is defined as the capability of the network to
maintain service continuity in the presence of failures. Ac-
cordingly, we say that a k-survivable spanning connection
(T1, T2, ..., Tk) is operational if one of its k spanning trees are
operational. Note that the spanning trees of a k-survivable
spanning connection are not necessarily disjoint and might
contain common links. Under the single link failure model,
a k-survivable spanning connection (T1, T2, ..., Tk) is opera-
tional iff the links that are common to all k spanning trees
are operational. Consequently, as the failure probabilities
are independent, we quantify the level of survivability of
survivable connections as follows.

Definition 2.2. Given a k-survivable spanning connec-
tion (T1, ..., Tk), its survivability level S((T1, ..., Tk)) is de-
fined as the probability that at least one of the spanning
trees in the connection is operational, i.e. all links that
are common to all spanning trees are operational, namely
S((T1, ..., Tk)) =

∏
e∈

⋂k
i=1 Ti

(1− pe).

The above definition formalizes the notion of tunable sur-
vivability for the single link failure model. In case that there
are no links that appear in all spanning trees T1, ..., Tk,
i.e.

⋂k
i=1 Ti = ∅, there is no single failure that can make

(T1, ..., Tk) fail; for this case, S((T1, ..., Tk)) is defined to be
1.

We proceed to quantify the bandwidth of a survivable
spanning connection.

Definition 2.3. Given a network G(V,E) and a span-
ning tree T , its bandwidth B(T ) is defined as the bandwidth
of its bottleneck link, i.e. B(T ) = mine∈T {be}.

Definition 2.4. Given a network G(V,E) and a k-
survivable spanning connection (T1, ..., Tk), its band-
width B((T1, ..., Tk)) is defined as the bandwidth of
the bottleneck spanning tree, i.e. B((T1, ..., Tk)) =
min{B(T1), ..., B(Tk)} = mine∈⋃k

i=1 Ti
{be}.

As mentioned earlier, k spanning trees that do not share
common links might not necessarily exist. Accordingly, the
survivability level that can be obtained by any k span-
ning trees might be smaller than 1. For a given network
G(V,E), there might be several survivable spanning connec-
tions, among them we would be interested in those that have
the best “quality”, giving rise to the following optimization
problems.

Definition 2.5. Constrained Bandwidth Max-
Survivability (CBMS) Problem: Given are a network
G(V,E), a specified integer k>0 of allowable spanning trees
and a bandwidth constraint B0 > 0 . Find a k-survivable
spanning connection (T1, ..., Tk) such that:

maxS((T1, ..., Tk))

s.t. B((T1, ..., Tk)) ≥ B0.

Definition 2.6. Constrained Survivability Max-
Bandwidth (CSMB) Problem: Given are a network
G(V,E), a specified integer k>0 of allowable spanning trees
and a lower bound on the survivability level S0 ∈ [0, 1]. Find
a k-survivable spanning connection (T1, ..., Tk) such that:

maxB((T1, ..., Tk))

s.t. S((T1, ..., Tk)) ≥ S0.



In the following sections, we will study the above problems
and establish efficient algorithmic solutions for them. We
begin by investigating the effect of the number k of allowable
spanning trees on the quality of the solution.

3. HOW MANY SPANNING TREES?
While, in general, employing more spanning trees in-

creases the survivability level, it also imposes higher man-
agement overhead. Moreover, it is clear that, beyond a
certain number, the utilization of additional spanning trees
would not further improve the obtained survivability level.
Thus, an interesting question is how many trees are needed
in order to obtain the maximum level of survivability. Ac-
cordingly, in this section we establish bounds on this num-
ber.

We proceed to demonstrate, through a simple example,
the potential effect of the number of employed spanning
trees, k, on the survivability level. Fig. 2 depicts a net-
work where the link failure probability pe is shown next to
each link. The pairs of lines next to the network in Fig. 2a
represent the three possible spanning trees of this specific
network, namely T1 = {(a, c), (b, c)}, T2 = {(a, c), (a, b)}
and T3 = {(a, b), (b, c)}. In case k = 1, the highest sur-
vivability level is S((T1)) = 0.99 · 0.98 accomplished by the
1-survivable spanning connection (T1). In case k = 2, since
this network instance does not contain two fully-disjoint
spanning trees, the survivability level of any pair of span-
ning trees is lower than 1. Specifically, the 2-survivable
spanning connection (T1, T2) provides the highest surviv-
ability level of S((T1, T2)) = 0.99. However, for k = 3, the
three illustrated spanning trees, i.e. the 3-survivable span-
ning connection (T1, T2, T3), provide a survivability level of
S((T1, T2, T3)) = 1, since upon the failure of any single link,
at least one of these trees remains operational. This is be-
cause there is not any link that is common to the three trees,
i.e.

⋂k
i=1 Ti = ∅.

We note that a given bandwidth constraint B0 can be
translated to a transformed G̃(Ṽ , Ẽ) containing only the

links that accomplish the requirement B0, i.e Ẽ = {e|be >
B0}. Accordingly, the bandwidth consideration is omitted
from the following discussion. We continue with several def-
initions.

Definition 3.1. Given a network G(V,E) and an inte-
ger k > 0, the k-optimum survivability level OPT k(G) is
the maximum value of the survivability level that can be ob-
tained by any k-survivable spanning connection (T1, ..., Tk),
i.e. OPT k(G) = max(T1,...,Tk) S((T1, ..., Tk)).

Clearly, the value of the k-optimum survivability level,
OPT k(G), depends on the number of spanning trees, k.
Specifically, OPT k(G) is a non-decreasing function of k.
The minimum value of this function is accomplished by
k = 1, namely OPT 1(G), and its maximum value is con-
sidered by the following definition.

Definition 3.2. Given a network G(V,E), the maxi-
mum level of survivability OPT (G) is the maximal sur-
vivability level that can be obtained by a spanning con-
nection with any number k of spanning trees, where

(a) Three possible spanning trees
in a cycle of three nodes

(b) The complementary sets of
links for the three spanning trees

Figure 2: Three nodes cycle example

k ∈ [1,
( |E|
|V |−1

)
], 3 i.e., OPT (G) = maxk (OPT k(G)) =

maxk
(

max(T1,...,Tk) S((T1, ..., Tk))
)
.

Definition 3.3. Given an undirected network G(V,E),
its number of sufficient spanning trees φ(G) is the min-
imum number of spanning trees required to obtain the
maximum level of survivability OPT (G), i.e. φ(G) =
min({k|OPT k(G) = OPT (G)}).

Based on Def. 2.2, in order to maximize the survivability
level of a k-survivable spanning connection, we aim to find
k spanning trees such that the probability of a failure in
at least one of the links that appears in all spanning trees
is minimized. Equivalently, we can also consider the set
of complementary links, i.e., for a set of links Ẽ, we have
(Ẽc) = E \ Ẽ. For a spanning connection (T1, ..., Tk) in
a network G(V,E), its survivability level is represented by
S((T1, ..., Tk)) =

∏
e∈

⋂k
i=1 Ti

(1 − pe) =
∏
e∈(

⋃k
i=1(T

c
i ))c(1 −

pe), considering De-Morgan’s Law [33]. Informally, given a
spanning tree T , its complementary set T c represents the
links that are protected by T . Therefore, we would like to
have more links in (

⋃k
i=1(T ci )), and, specifically, by satis-

fying the property that each link appears in at least one
complement set, i.e.

⋃k
i=1(T ci ) = E, a survivability level of

1 is guaranteed.
Fig. 2b presents the complementary sets of links for the

three spanning trees from Fig. 2a. Since T c1 = {(a, b)},
T c2 = {(c, b)} and T c3 = {(a, c)} then

⋃k
i=1(T ci ) =

{(a, b), (a, c), (c, b)} = E and the survivability level of
(T1, T2, T3) satisfies S((T1, T2, T3)) = 1.

In some graphs, one or more of the links must be a part of
any spanning tree. We call such a link a bridge. If a graph
contains a bridge, assuming that pe > 0, a survivability level
of 1 cannot be achieved.

Definition 3.4. Given an undirected network G(V,E),
a bridge is a link e whose deletion increases the number of
connected components. Accordingly, we define Bridge(G) as
the set of all bridges in the network.

By the last definition, a bridge is a link that must be
a part of any spanning tree while for any other link there
exists at least one spanning tree that does not include it.
The following theorem shows the dependency of the maximal
survivability level of G on the failure probabilities of the set
of bridges Bridge(G).

3A trivial upper bound for the number of different spanning

trees is
( |E|
|V |−1

)
. An exact number is given by Kirchhoff’s

matrix tree theorem [32].



Theorem 3.1. The maximum level of survivability of
G(V,E) satisfies OPT (G) =

∏
e∈Bridge(G)(1− pe).

Proof. Let k be the number of all possible spanning trees
and let (T1, ..., Tk) be a spanning connection with these k
spanning trees. By Def. 3.4, we have that Bridge(G) =⋂k
i=1 Ti. Since OPT k(G) is a non-decreasing function of

k then OPT (G) is obtained by this specific spanning con-
nection, i.e. OPT (G) = S((T1, ..., Tk)). Then, by Def. 2.2
we have OPT (G) = S((T1, ..., Tk)) =

∏
e∈

⋂k
i=1 Ti

(1 − pe) =∏
e∈Bridge(G)(1−pe). If Bridge(G) = ∅, a survivability level

of 1 is obtained.

The next theorem provides, for a network G, a simple
upper bound on the number of sufficient spanning trees φ(G)
required to obtain OPT (G).

Theorem 3.2. For a network G(V,E), the number of suf-
ficient spanning trees satisfies φ(G) ≤ |V |.

Proof. For a network G(V,E), consider a spanning con-
nection (T1, ..., Tk) with the minimal possible number of
spanning trees k = φ(G) required to obtain OPT (G). Its
survivability level is S((T1, ..., Tk)) =

∏
e∈

⋂k
i=1 Ti

(1 − pe) =∏
e∈(

⋃k
i=1(T

c
i ))c(1− pe). Consider the first spanning tree T1.

Clearly, |T1| = |E \ T c1 | = |V | − 1 and |T c1 | = |E| − |V |+ 1.
Each of the (k−1) additional spanning trees (T2, ..., Tk) must

contribute at least one link to the union (
⋃k
i=1(T ci )) ⊆ E.

Otherwise, spanning trees can be eliminated from the span-
ning connection, contradicting its minimality. We then have
(k − 1) ≤ |E \ T c1 | = |V | − 1 and φ(G) = k ≤ |V |.

Based on the above observations, we proceed to bound the
number of sufficient spanning trees, φ(G), also from below.

Theorem 3.3. Given a network G(V,E), let Ẽ ⊆ E be

the set of links Ẽ = E \ Bridge(G). Then, the number of

sufficient spanning trees of G satisfies φ(G) ≥
⌈

|Ẽ|
|E|−|V |+1

⌉
.

Proof. Consider a spanning connection (T1, ..., Tk) with
k = φ(G) spanning trees that satisfies S((T1, ..., Tk)) =
OPT (G). We showed earlier that S((T1, ..., Tk)) =∏
e∈(

⋃k
i=1(T

c
i ))c(1 − pe) and by Theorem 3.1 we have

OPT (G) =
∏
e∈Bridge(G)(1 − pe). Then necessarily Ẽ ⊆⋃k

i=1(T ci ), i.e. any non-bridge link must be a member of
one of the set complements T c1 , ..., T

c
k . The number of links

in each spanning tree is fixed and for i ∈ [1, k] |Ti| =

(|V | − 1), |T ci | = |E| − |V | + 1. Then, |Ẽ| ≤ |
⋃k
i=1(T ci )| ≤∑k

i=1(|T ci |) = k · (|E| − |V |+ 1) = φ(G) · (|E| − |V |+ 1). In
addition, by definition φ(G) is an integer. The result then
follows.

We proceed to demonstrate the tightness of both previous
presented bounds through two network examples. First, we
provide a tight upper bound example considering the special
case of a cycle, i.e. an undirected connected networkG(V,E)
where every node has exactly two links incident with it.

Theorem 3.4. Let G(V,E) be a cycle of |V | nodes.
Then:

1. Its maximum level of survivability satisfies OPT (G) =
1.

(a) A cycle demonstrating an up-
per bound tight example

(b) A clique demonstrating a
lower bound tight example

Figure 3: Tightness examples

2. Its number of sufficient spanning trees satisfies φ(G) =
|V |.

Proof. Clearly, for a cycle G(V,E), we have |E| = |V |
and Bridge(G) = ∅. Then, by Theorem 3.1, we have
OPT (G) =

∏
e∈Bridge(G)(1− pe) = 1. In addition, by The-

orem 3.2. φ(G) ≤ |V |. Likewise, by Theorem 3.3, for Ẽ =

E \Bridge(G) = E, we have φ(G) ≥ |Ẽ|
|E|−|V |+1

= |E| = |V |
and the result follows.

Next, we demonstrate the tightness of the presented lower
bound of Theorem 3.3 on the number of sufficient span-
ning trees by considering a clique with |V | ≥ 4 nodes, i.e.
an undirected connected network G(V,E) where every two
nodes are connected by a link.

Theorem 3.5. Let G(V,E) be a clique of |V | ≥ 4 nodes.
Then:

1. Its maximum level of survivability satisfies OPT (G) =
1.

2. The value of the lower bound is
⌈

|Ẽ|
|E|−|V |+1

⌉
= 2.

3. Its number of sufficient spanning trees satisfies φ(G) =

2 =
⌈

|Ẽ|
|E|−|V |+1

⌉
.

Proof. We start by showing that |Ẽ|
|E|−|V |+1

> 1 and that
|Ẽ|

|E|−|V |+1
≤ 2. For a clique G with |V | ≥ 4 nodes, there are

no bridges and Bridge(G) = ∅, Ẽ = E and by Theorem 3.1
OPT (G) = 1. Likewise, |E| = 1

2
· |V |(|V | − 1). For |V | ≥ 4,

we have |V | > 1 and |E| > |E| − |V | + 1 > 0 so the lower
bound follows. For |V | ≥ 4, we also have 2 · (|V | − 1) ≤
1
2
· |V |(|V | − 1) = |E|. Thus |E| ≤ 2 · (|E| − |V |+ 1) and the

upper bound follows as well and
⌈

|Ẽ|
|E|−|V |+1

⌉
= 2.

We would now like to show that in such a clique with
|V | ≥ 4 nodes, the number of sufficient spanning trees is
indeed φ(G) = 2. We show that by presenting two link-
disjoint spanning trees. Consider four distinct arbitrary
nodes a, b, c, d. We define the trees T1 = {(a, x)|x ∈ V \
{a, d}}

⋃
{(b, d)} and T2 = {(d, x)|x ∈ V \ {b, d}}

⋃
{(b, c)}.

Both spanning trees are obtained by replacing one link by
another in the simple spanning trees that include only all the
links connected to the nodes a and d, respectively. These
spanning trees have no links in common.



Fig. 3 demonstrates a particular instance of the networks
presented in Theorems 3.4 and 3.5. Specifically, Fig. 3a
depicts a tight upper bound consisting of a cycle of 5 nodes,
where its maximum level of survivability of OPT (G) = 1 is
achieved by the 5 dashed lined spanning trees. Contrarily,
the clique of 5 nodes illustrated in Fig. 3b represents a tight
lower bound, where its maximum level of survivability of
OPT (G) = 1 is accomplished by the 2 dashed lined spanning
trees.

According to theorem 3.2, for a network G(V,E) we might
need to employ up to |V | spanning trees in order to obtain
a maximum survivability level. In practice, due to the over-
head incurred by managing a large number of trees, one typ-
ically seeks solutions with a much smaller number of span-
ning trees. Fortunately, as shall be demonstrated at Sec-
tion 6, the number of required trees for achieving the max-
imum survivability level is, in practice, much smaller than
the bound |V |, namely, it is typically 2 and rarely above 3.

4. ESTABLISHING SURVIVABLE SPAN-
NING CONNECTIONS

In this section, we show how to construct a k-survivable
spanning connection that solves the CBMS and CSMB op-
timization problems that have been defined in section 2.

4.1 Establishing k-survivable spanning con-
nections for the CBMS Problem

We proceed to present an efficient polynomial algorith-
mic scheme, termed the CBMS Algorithm, for solving the
CBMS Problem. The algorithm applies, as a building block,
the Minimum-Cost Edge Disjoint Spanning Tree Algorithm
(EDSTA) [22] [23], which finds k link disjoint spanning trees
in a graph with minimum real cost, on a constructed auxil-
iary graph. Indeed, EDSTA algorithm is based on the well-
known matroid theory [34] [35]. Specifically, the links of a
network G(V,E) form a matroid by defining a set of edges
F ⊂ E to be independent iff F can be partitioned into k
forests. Thus, the matroid greedy algorithm can be em-
ployed to solve the problem in polynomial time. The CBMS
Algorithm, specified in Fig. 5, consists of four stages.

The first stage comprises of the construction of an aux-
iliary network G̃(Ṽ , Ẽ), such that Ṽ = {ũ|u ∈ V }, Ẽ =
{ẽ1, . . . , ẽk|e ∈ E, be ≥ B0}. That is, each link in the origi-
nal network that accommodates the bandwidth requirement
B0 is duplicated k times, constituting a set defined as fol-
lows.

Definition 4.1. Given a link e ∈ E of a network
G(V,E), a k-Duplicate Link set is the set of k-duplicated

links at G̃(Ṽ , Ẽ) representing a single link e ∈ E. Accord-
ingly, we denote the k-Duplicate Link set of link e ∈ E as
DLke .

The weight of one link in the k-Duplicate Link set is de-
termined to be wẽ1 = −ln(1 − pe), thus transforming the
multiplicative (survivability) metric into an additive one.
Note that pe 6= 0, 1 by definition of Section 2, therefore
wẽ1 ∈ (0,∞). However, this trivial case can be treated at
the same manner for pe = 0 and by discarding the links e
that pe = 1. Additionally, the weights of the other (k − 1)
links are set to be wẽ2 = · · · = wẽk = 0. Consequently, each
k-Duplicate Link set contains exactly one link with a posi-
tive weight, i.e. wẽ1 > 0. This transformation is depicted in
Fig. 4.

(a) For each link with a bandwidth be < B0

(b) For each link with a bandwidth be ≥ B0

Figure 4: CBMS Algorithm Link Transformation

Input:
G(V,E)-network, pe-link failure probability, B0-bandwidth
constraint, k-the number of allowable spanning trees.
Variables:
G̃(Ṽ , Ẽ)-transformed network, DLke -a k-Duplicate Link set

of link e, wẽ1 , . . . , wẽk -success cost, (T̃1, ..., T̃k)-auxiliary
network solution, (T1, ..., Tk)-the survivable spanning
connection solution.

Stage 1- Transformed network G̃(Ṽ , Ẽ) construction.

- Ṽ ← {ũ|u ∈ V }.
foreach e : (u, v) ∈ E do

if be ≥ B0 then
- Construct k links ẽ1, ..., ẽk between ũ and ṽ
- Assign wẽ1 to be −ln(1− pe)
- Assign wẽ2 , ..., wẽk to be 0

- DLke = (ẽ1, ..., ẽk)

end

end
Stage 2- Connectivity Test.

if G̃(Ṽ , Ẽ) is not connected then
return Fail

end
Stage 3- Minimum Edge Disjoint Spanning Tree
Calculation.

- Execute the Minimum-Cost Edge Disjoint Spanning
Tree Algorithm [22] for the instance < G̃(Ṽ , Ẽ), wẽ, k >.

- Let (T̃1, ..., T̃k) represent the solution of the
Algorithm.

Stage 4- Survivable Spanning Connection Construction.
for i = 1 to k do

Ti = {e|(∃l̃ ∈ T̃i) ∧ l̃ ∈ DLke}
end
return (T1, ..., Tk)

Figure 5: CBMS Algorithm

In the second stage, the algorithm executes a connectiv-
ity test on the auxiliary network G̃(Ṽ , Ẽ), using some stan-
dard connectivity test procedure, e.g. Depth First Search
(DFS) [34]. If G̃(Ṽ , Ẽ) is found to be disconnected, the al-
gorithm stops with a failure indication.

Otherwise, the third stage finds out k link disjoint span-
ning trees of minimum cost in the auxiliary network G̃(Ṽ , Ẽ)
by applying the EDSTA algorithm from [22] or [23]. We

note that the auxiliary network G̃(Ṽ , Ẽ) necessarily contains
k link disjoint spanning trees (see Lemma 4.1). Moreover,
since the EDSTA algorithm aims to find minimum cost span-



ning trees, the positive weighted link at each k-Duplicate
Link set will be chosen only if all the other alternative (zero-
weight) links are selected.

Accordingly, in the fourth stage, we construct the sought
k-survivable spanning connection according to the k link-
disjoint spanning trees solution identified above. Specifi-
cally, each tree Ti in the k-survivable spanning connection
in G(V,E) is deduced from a tree T̃i out of k link-disjoint

spanning trees solution in G̃(Ṽ , Ẽ) by choosing the links
e ∈ E associated with the k-Duplicate Link set DLke con-
taining the links {ẽ1, . . . , ẽk} in T̃i. Then, the algorithm
outputs them as the optimal spanning connection solution
(T1, ..., Tk).

We proceed to prove the correctness of the CBMS Algo-
rithm (Fig. 5).

Lemma 4.1. If the auxiliary network G̃(Ṽ , Ẽ) is con-
nected then there are k link-disjoint spanning trees.

Proof. We will prove the lemma by construction. Since
G̃(Ṽ , Ẽ) is connected, there is necessarily a tree spanning

the network, denoted as T̃ . Let us construct another k − 1
spanning trees, each containing a different link of the k-
Duplicated Links sets containing the links of T̃ . We thus
have k disjoint spanning trees.

The following theorem establishes the correctness of the
CBMS Algorithm.

Theorem 4.1. Given are a network G(V,E), a require-
ment k > 0 on the number of the spanning trees and a band-
width requirement B0 > 0. If there exists a k-survivable
spanning connection (T1, ..., Tk) with a bandwidth of at least
B0, then the CBMS Algorithm returns a k-survivable span-
ning connection that is a solution to the CBMS Problem
(Def. 2.5); otherwise, the algorithm fails.

Proof. The auxiliary network G̃(Ṽ , Ẽ) constructed at
Stage 1 excludes all links with a bandwidth smaller than B0,
thus guaranteeing that the bandwidth of the k-survivable
spanning connection (T1, ..., Tk) would be at least B0.
Lemma 4.1 establishes that the algorithm fails if and only
if the auxiliary network G̃(Ṽ , Ẽ) is not connected (Stage
2). Therefore, at Stage 3, the EDSTA algorithm [22] out-

puts a feasible solution (T̃1, ..., T̃k). We note that at each
k-Duplicate Link set exactly one link has a positive weight
wẽ1 > 0 and the rest are of zero weight wẽ2 = · · · = wẽk = 0.
Therefore, since the EDSTA algorithm aims to find min-
imum cost spanning trees, only the k-Duplicate Link sets
that are fully selected by all spanning trees T̃1, ..., T̃k affect
the weight of the optimal solution (T̃1, ..., T̃k). By applying
the indicator function I(·), which takes the value of 1 if the
condition that it receives as a parameter is satisfied, and
0 otherwise, the weight of the optimal solution (T̃1, ..., T̃k)
minimizes

∑
T̃i∈(T̃1,...,T̃k)

∑
ẽj∈T̃i

wẽj =

∑
e∈E

∑
T̃i∈(T̃1,...,T̃k)

∑
j∈[1,k]

I(ẽj ∈ T̃i) · wẽj =

∑
e∈E

− ln(1− pe) · I((∀i ∈ [1, k])(∃j ∈ [1, k])ẽj ∈ T̃i) =

∑
e∈E

− ln(1− pe) · I((∀i ∈ [1, k])e ∈ Ti) = − ln
∏

e∈
⋂k
i=1 Ti

(1− pe).

Input: G(V,E)-network, pe-link failure probability,
S0-survivability level constraint, k-the number of
allowable spanning trees.

Variables: Q-set of available bandwidth values,
(T1, ..., Tk)-the survivable spanning connection
solution.

- Create a sorted set Q = {be|e ∈ E}.
- Perform a Binary Search over the set Q in order to find
the largest B0 ∈ Q by executing the CBMS Algorithm with
bandwidth constraint of B0, as follows.

- Denote (T1, ..., Tk) the solution of CBMS Algorithm.
if S((T1, ..., Tk)) ≥ S0 then

increase the value of B0 according to the binary
search.

end
else

reduce the value of B0 according to the binary
search.

end
return (T1, ..., Tk)

Figure 6: CSMB Algorithm

Equivalently, it maximizes
∏
e∈

⋂k
i=1 Ti

(1−pe), which is the

optimal solution value of the CBMS Problem. Accordingly,
the fourth stage outputs the optimal solution.

We proceed to analyze the running time of the CBMS
Algorithm.

Theorem 4.2. The time complexity of the CBMS Algo-
rithm is O(k · |E| · log(k · |E|) + k2 · |V |2).

Proof. We note that, at Stage 1, the construction of the
transformed network G̃(Ṽ , Ẽ) contains at most k · |E| links.
Moreover, the connectivity test performed at Stage 2 can be
performed in O(k · |E|+ |V |) [34]. According to [22] and con-
sidering the number of links in the new transformed network,
the Minimum-Cost Edge Disjoint Spanning Tree Algorithm
executed at Stage 3 incurs O(k · |E| · log(k · |E|) + k2 · |V |2).
Clearly, the time complexity of the CBMS Algorithm is
solely affected by the running time of Stage 3.

4.2 Establishing k-survivable spanning con-
nections for the CSMB Problem

We proceed to establish an efficient algorithmic scheme for
the second optimization problem, namely the CSMB Prob-
lem (as defined in Def. 2.6). This is achieved by employing
the previously presented CBMS Algorithm (Fig. 5), as fol-
lows. Given are a network G(V,E), a specified number k
of allowable spanning trees and a survivability level con-
straint S0. Accordingly, we aim to find the largest value
of B0 such that the survivability level of the most surviv-
able k-survivable spanning connection with a bandwidth of
at least B0, which is a solution to the CBMS Problem, is
at least S0. Clearly, the efficiency of this strategy depends
on the number of times that the CBMS Algorithm needs
to be executed. We proceed to show that it is sufficient to
consider just O(log |E|) such executions.

First, we observe that the bandwidth of a k-survivable
spanning connection B((T1, ..., Tk)), per Def. 2.4, is a bot-
tleneck metric. Therefore, for every given network G(V,E)



of |E| links, the maximum bandwidth of a k-survivable span-
ning connection belongs to a set of at most |E| values, i.e.
Q = {be|e ∈ E}. According to Lemma 4.2, it is enough to
perform a binary search over the set Q executing the CBMS
Algorithm. Each time the CBMS Algorithm provides a so-
lution that accomplishes the survivability constraint S0, the
bandwidth constraint B0 that serves as input to the CBMS
Algorithm is increased. Otherwise, the B0 input is reduced.
Accordingly, Fig. 6 depicts a formal specification of this
algorithmic scheme, namely the CSMB Algorithm.

We proceed to prove the correctness of the CSMB Al-
gorithm. Denote the survivability level value of the solu-
tion of the CBMS Problem 2.5 with a constraint of B0 as
CBMSMAX(B0).

Lemma 4.2. The function CBMSMAX(B0) is a non-
increasing monotonic function in the parameter B0 ∈ Q =
{be|e ∈ E}, i.e for each B01 , B02 ∈ Q such that B01 < B02

then CBMSMAX(B01) ≥ CBMSMAX(B02).

Proof. Given are B01 , B02 ∈ Q such that B01 < B02

and the associated solutions T01 , T02 to the CBMS Prob-
lem, respectively. Clearly, T02 is also a feasible solution for
the CBMS problem with a bandwidth constraint of B01 ,
since B(T02) ≥ B02 > B01 . Therefore, CBMSMAX(B01) ≥
CBMSMAX(B02), otherwise it contradicts its maximal-
ity.

The following theorem establishes the correctness of the
CSMB Algorithm.

Theorem 4.3. Given are a network G(V,E), a require-
ment k > 0 on the number of the spanning trees and a
survivability level constraint S0 ∈ [0, 1]. If there exists a
k-survivable spanning connection (T1, ..., Tk) with a surviv-
ability level of at least S0, then the CSMB Algorithm returns
a k-survivable spanning connection that is a solution to a
CSMB Problem 2.5; otherwise, the algorithm fails.

Proof. Lemma 4.2 establishes that the execution of the
CBMS Algorithm for incrementing values of B0 results in
solutions with non-increasing survivability levels. Moreover,
the set Q = {be|e ∈ E} of available bandwidth values con-
tains at most |E| values. Therefore, in order to solve the
CSMB Problem, it is enough to perform a binary search
over the solution of the CBMS Algorithm for different val-
ues of B0 ∈ Q.

We consider now the complexity incurred by the CSMB
Algorithm. To that end, we denote by T (k, |V |, |E|) the
running time of the CBMS Algorithm. Since the CSMB
Algorithm consists of a binary search over a set of size |E|,
performing the CBMS Algorithm at each step, its time com-
plexity is O(T (k, |V |, |E|) · log |E|).

5. ADDITIVE METRICS
We proceed to consider a variant of the model presented in

Section 2, which addresses an additive QoS metric instead of
the bandwidth (bottleneck) metric. Accordingly, each link
e ∈ E is associated with an additive metric value we, which
corresponds to an additive QoS target, such as delay or cost.
We proceed to quantify the weight of a survivable spanning
connection.

Definition 5.1. Given a network G(V,E) and a span-
ning tree T , its weight W (T ) is defined as the sum of

(a) For each common link

(b) For the rest of the links

Figure 7: MSSC Algorithm Link Transformation

Input:
G(V,E)-network, we-link weights, l-maximal number of
common links.
Variables:
G̃(Ṽ , Ẽ)-auxiliary network, Esub-a subset of E, DL

(k−1)
e -a

(k − 1)-Duplicate Link set of link e, P≤l(E)-the power set
of E with cardinality of at most l, (T1, ..., Tk)-the
survivable spanning connection solution, Wmin-weight of
the survivable spanning connection solution (initialized to

∞), (T̃1, ..., T̃k)-auxiliary network solution, W̃min-weight of
the candidate solution.

foreach Esub ∈ P≤l(E) do

- Construct G̃(Ṽ , Ẽ) as follows:

- Ṽ ← {ũ|u ∈ V }.
foreach e : (u, v) ∈ Esub do

- Concatenate the nodes ũ, ṽ to a single node in
Ṽ .

end
foreach e : (u, v) ∈ E\Esub do

- Construct (k − 1) links ẽ1, ..., ẽk−1 between ũ
and ṽ.
- Assign wẽ1 , ..., wẽk−1 to be we.

- DL
(k−1)
e = (ẽ1, ..., ẽk−1).

end
- Execute the Minimum-Cost Edge Disjoint Spanning
Tree Algorithm [22] for the instance < G̃(Ṽ , Ẽ), wẽ, k >.

- Let (T̃1, ..., T̃k) represent the solution of the Algorithm

and W̃min its weight.

if Wmin > W̃min + k · Σe∈Esubwe then

- Wmin = W̃min + k · Σe∈Esubwe
- ∀i = 1, ..., k,

Ti = {e|(∃l̃ ∈ T̃i) ∧ l̃ ∈ DL(k−1)
e } ∪ Esub

end

end
- return (T1, ..., Tk)

Figure 8: MSSC Algorithm

the weights of its links, namely
∑
e∈T we. Likewise, for

a k-survivable spanning connection (T1, ..., Tk), its weight
W ((T1, ..., Tk)) is defined as the sum of the weights of

its k trees, namely W ((T1, ..., Tk)) =
∑k
i=1W (Ti) =∑k

i=1

∑
e∈Ti

we.

We note that the problem of finding a spanning tree in a
graph with two additive costs, namely minimizing one cost
under a restriction on the other cost, is NP-Hard [36]. Ac-



cordingly, we consider the following simpler version of the
optimization problem. We assume that all links have the
same failure probability. In this case, by Def. 2.2 a lower
bound on the survivability level is translated into an up-
per bound on the number of common links. We denote this
number by l.

Definition 5.2. Minimal Survivable Spanning
Connection (MSSC) Problem: Given are a network
G(V,E), a requirement k > 0 on the number of the spanning
trees and a restriction l on the maximal number of common
links. Find a k-survivable spanning connection (T1, ..., Tk)
with at most l common links and of minimum weight.

The MSSC Algorithm, specified in Fig. 8, solves the
MSSC optimization problem 5.2. As will be shown, its time
complexity is exponential in the allowable number of com-
mon links, l. However, in many practical instances, the re-
quired level of survivability is high, and hence, the number
of overlapped links needs to be small (thus inducing a small
value of l), which in turn makes the algorithm computa-
tionally permissible. The algorithm considers all possible
combinations of at most l common links out of the set E.
Specifically, we construct an auxiliary network G̃(Ṽ , Ẽ) for
each set of common links Esub in the power set of E with
cardinality of at most l, i.e. the set of all subsets of E whose
size is at most l. The auxiliary network G̃(Ṽ , Ẽ) consists
of a link transformation, depicted in Fig. 7. Initially, each
link (u, v) ∈ Esub is excluded by concatenating the nodes u
and v to a single node. Moreover, the rest of the links are
duplicated k − 1 times and their weights are set to be we.
Consequently, given the new constructed network G̃(Ṽ , Ẽ),
the algorithm identifies a k link-disjoint spanning tree with
minimum cost, by employing the Minimum-Cost Edge Dis-
joint Spanning Tree Algorithm (EDSTA) [22] [23]. Then,
we construct the sought survivable spanning connection out
of the links in the link-disjoint spanning tree solution. Fi-
nally, the optimal survivable spanning connection solution
(T1, ..., Tk) is the smallest survivable spanning connection
discovered out of all constructed auxiliary networks (one for
each possible combination of at most l common links).

The following theorem establishes the correctness of the
MSSC Algorithm.

Theorem 5.1. Given are a network G(V,E), a require-
ment k > 0 on the number of the spanning trees and a
restriction l on the number of common links. If there ex-
ists a k-survivable spanning connection (T1, ..., Tk) with at
most l common links, then the MSSC Algorithm returns a k-
survivable spanning connection that is a solution to a MSSC
Problem 5.2; otherwise, the algorithm fails.

Proof. We will prove that at each iteration of the first
“foreach”loop, the MSSC Algorithm finds a minimum weight
solution which its common links are Esub. Since this loop
examines all possible cases (over the P≤l(E)), the algorithm
outputs the optimal solution.

In order to prove the above, we will show that at the
auxiliary network G̃(Ṽ , Ẽ) a minimum cost k-edge disjoint

spanning tree (T̃1, ..., T̃k) with a weight W̃min has an equiv-
alent minimal k-survivable spanning connection solution
(T1, ..., Tk) in G(V,E) whose weight is W̃min+k ·Σe∈Esubwe

and Ti = {e|(∃l̃ ∈ T̃i) ∧ l̃ ∈ DL(k−1)
e } ∪ Esub. By applying

the indicator function I(·), which takes the value of 1 if the
condition that it receives as a parameter is satisfied, and

0 otherwise, the weight of the optimal solution (T̃1, ..., T̃k)
minimizes

∑
T̃i∈(T̃1,...,T̃k)

∑
ẽj∈T̃i

wẽj + k · Σe∈Esubwe =

∑
e∈E

∑
T̃i∈(T̃1,...,T̃k)

∑
j∈[1,k−1]

I(ẽj ∈ T̃i) · we + k · Σe∈Esubwe =

∑
e∈E

∑
i∈[1,k]

I(e ∈ Ti) · we =

k∑
i=1

∑
e∈Ti

we = W ((T1, ..., Tk))

Accordingly, the spanning connection obtained from the
solution of the Minimum-Cost Edge Disjoint Spanning Tree
Algorithm at the auxiliary network G̃(Ṽ , Ẽ) minimizes
the weight of a k-survivable spanning connection solution
(T1, ..., Tk) in G(V,E) where its common links are the set
Esub. Therefore, the algorithm outputs the optimal solu-
tion.

The MSSC Algorithm time complexity is O(
∑l
i=1

(|E|
i

)
·

((k · |E|) · log(k · |E|) + k2 · |V |2)), i.e., exponential in l but
polynomial in all other values. As noted, the value of l
would be typically small, in which case the algorithm offers
a time-efficient optimal solution.

6. SIMULATION STUDY
In this section, we demonstrate the advantages of employ-

ing tunable survivable spanning connections over the tradi-
tional full protection schemes on common network topolo-
gies. First, we examine the effect of the number of differ-
ent spanning trees k in a survivable spanning connection on
the accomplished survivability level. Specifically, we demon-
strate that the number of required spanning trees is much
smaller than the theoretical upper bound described in The-
orem 3.2 and, in practice, two spanning trees are sufficient
for getting extremely (namely, in the order of four-nines4)
close to the maximum survivability level. Motivated by this
finding, we focus on k = 2 and compare between the perfor-
mance (in terms of bandwidth and feasibility) of an optimal
2-survivable spanning connection with a survivability level
of at least S0, where S0 ∈ [0.95, 1], and the performance of
a pair of fully disjoint spanning trees (i.e., S0 = 1). Most
notably, we show that, by slightly relaxing the traditional re-
quirement of 100% protection, major improvements in terms
of bandwidth and feasibility are accomplished.

6.1 Setup
We generated two classes of well-known random network

topologies, namely Power-Law topology [37] and Waxman
topology [38]. First, we consider the Power-Law topology,
which is widely employed for modeling typical network in-
terconnections, in particular in the context of the Internet
[37]. We then extend our findings to other classes of network
topologies by analyzing the Waxman topology.

For both classes, we generated 10,000 random networks,
each containing 200 nodes. In all simulation instances, we
assumed a uniform distribution of the link bandwidth, in the
range of [5, 150] MB/s. Additionally, the failure probability
of each link was distributed normally with a mean of 0.01
and a standard deviation of 0.003 assuming a non-negative
value.

For each of the above generated random networks, we em-
ployed the CBMS Algorithm (Fig. 5) with several band-

4i.e. 0.9999.



(a) Maximum survivability level ratio OPTk(G)/OPT (G) versus the
number of spanning trees k

(b) Maximum survivability level ratio OPTkB0
(G)/OPTB0

(G) versus

the number of spanning trees k for different bandwidth requirements
B0 in Waxman Topology

Figure 9: Maximum survivability as a function of the number of spanning trees

(a) Feasibility ratio N(S0)/N(1) versus the survivability level re-
quirement S0

(b) Bandwidth ratio B(S0)/B(1) versus the survivability level re-
quirement S0

Figure 10: Performance as a function of the survivability level requirement

width constraint values, namely B0 = 0, 30, 50, 60, and with
various values of the number of allowable spanning trees,
namely k = 1, 2, 3, 4. For each bandwidth constraint B0, we
measured the network’s maximum level of survivability de-
noted as OPTB0(G) and the maximum survivability of the
k-survivable spanning connection OPT kB0

(G). Then, we de-

rived the survivability ratio, defined as σB0(k) ,
OPTk

B0
(G)

OPTB0
(G)

and, accordingly, calculated the average value over the sim-
ulated networks, denoted as σB0(k).

Next, we consider the case of 2-survivable spanning con-
nection through the following simulations. For each gen-
erated network and survivability level constraint S0 in the
range of [0.95, 1], we employed the CSMB Algorithm (Fig.
6) and conducted the following measurements. First, we
measured the number of networks that admit a 2-survivable
spanning connection with a survivability level of at least
S0 (without any bandwidth requirement) among the 10,000
random networks, denoted as N(S0). Note that N(1) rep-
resents the number of networks that admit fully disjoint
spanning trees since pe > 0. Accordingly, we derived the

feasibility ratio defined as ρ(S0) , N(S0)
N(1)

. Then, for each

of the N(1), we measured the maximum bandwidth of a
2-survivable spanning connection with a survivability level
of at least S0, denoted as B(S0). Note that B(1) is the
maximum bandwidth of a fully disjoint spanning connec-
tion. Thus, we derived the bandwidth ratio, defined as

β(S0) , B(S0)
B(1)

and, accordingly, calculated the average value

over the corresponding N(1) networks, denoted as β(S0).
We proceed to further specify the generation of the ran-

dom topologies. For Power-Law topologies, following [37],
we randomly assigned a certain number of out-degree cred-
its to each node, using the Power-Law distribution β · x−α,
where x is a random number out of the number of network
nodes, α = 0.61 and β = 100. We connected the nodes so
that every node obtained the assigned out-degree. Specifi-
cally, we randomly picked pairs of nodes u and v, such that
u still had some remaining out-degree credits, and then as-
signed a link (u, v) between them in case that such a link had
not been assigned yet. Upon assigning such a new link, we
decreased the out-degree credit of node u. Each simulated
Power-Law networks consists of 200 nodes, and, in average,
900 links.

We turn to specify the generation of the Waxman topolo-
gies, following [38]. Initially, we located the source and the
destination at the diagonally opposite corners of a square
of unit dimension. Then, we randomly spread 198 addi-
tional nodes over the square. Finally, for each pair of nodes
u, v we introduced a link (u, v) with the following prob-
ability, where δ(u, v) is the distance between the nodes:

prob(u, v) = α ·exp −δ(u,v)
β·
√
2

considering α = 1 and β = 0.058.

Each simulated Waxman network consists of 200 nodes, and,
in average, 1200 links.



6.2 Results
The simulation results are illustrated in Fig. 9 and Fig.

10. First, the graph depicted in Fig. 9a presents the average
survivability ratio σB0(k) without a bandwidth restriction,
i.e. B0 = 0, as a function of the allowable different span-
ning trees k ∈ [1, 4], for each of the two network topology
classes, i.e. Power-Law and Waxman. For both classes, we
observe a substantial improvement (resulting in a survivabil-
ity level of almost OPT (G)) by utilizing two spanning trees
rather than one. Furthermore, the employment of k > 2
spanning trees has a very marginal effect on the survivabil-
ity level. Accordingly, Fig. 9b exhibits a zoomed view of
the above Waxman-class results for a range of values close
to the optimal solution, i.e. σB0(k) ∈ [0.993, 1], and, ad-
ditionally, considers other bandwidth restrictions, namely
B0 = 0, 30, 50, 60. The graph shows that, for all bandwidth
restrictions, 4 spanning trees are sufficient for the maximum
level of survivability and 3 spanning trees achieves a surviv-
ability ratio of 1 for the three softer bandwidth restrictions
B0 = 0, 30, 50. However, a 2-survivable spanning connection
provides a solution that is just one percentile away from op-
timum. Furthermore, by alleviating the restriction B0 on
the bandwidth, there is an improvement in the efficiency
of a 2-survivable spanning connection. Specifically, while
for B0 = 60 its survivability ratio is σ60(2) = 0.9935, for a
non-restricted network B0 = 0, a 2-survivable spanning con-
nection’s survivability level is in the order of four-nines from
the optimum. Thus, we can conclude that, in practice, two
spanning trees are enough for providing a close-to-optimal
survivability level.

The graphs depicted in Fig. 10 demonstrate the advan-
tages of employing a 2-survivable spanning connection, with
not-necessarily-disjoint trees, over the traditional approach
of employing fully disjoint spanning trees. Specifically, the
graph depicted in Fig. 10a presents the feasibility ratio
ρ(S0) as a function of the survivability level requirement
S0 ∈ [0.95, 1], for Power-Law and Waxman classes. We ob-
serve that, with a relaxation of just 1% in the survivability
level, the feasibility ratio increases by a factor of 24% for
Waxman networks and 17% for Power-Law networks. Next,
the graph illustrated in Fig. 10b presents the average band-
width ratio β(S0) as a function of the survivability level
requirement S0 ∈ [0.95, 1] out of the networks that admit
the establishment of a pair of fully disjoint spanning trees,
i.e. accomplish a survivability level of S0 = 1. We note that
the number of such networks was in the range of 8,000 to
9,000 (out of 10,000), hence the samples were always signif-
icant. Overall, we observe that a minor relaxation, of a few
percentiles, in the survivability level, is enough to provide
dramatic improvement in terms of the sustained bandwidth.
Specifically, a relaxation of about 0.5% in the survivability
level provides an improvement of a factor of 12 for Waxman
networks and a factor of 8 for Power-Law networks.

7. TWO FAILURES PROTECTION
We proceed to briefly discuss a generalization of the model

in order to handle failures in up to two links. As in the single
link failure model, we again define the survivability level of
a spanning connection as the probability that at least one of
the spanning trees in the connection is operational, i.e. at
least one of the spanning trees does not contain any faulty
links.

In order to have a survivability level of 1, we need to guar-
antee that we have a spanning tree that does not include any
of the (up to two) faulty links. To do so, we require that, for
any pair of links, there is at least one spanning tree that does
not include both of the links in the faulty pair. Consider a
network G(V,E) with a spanning connection (T1, ..., Tk). As
in the single link failure model, the spanning tree Ti(V,Ei)
guarantees the existence of an operational spanning tree in
any single failure in one of the links T ci = E \ Ei. Further-
more, this spanning tree remains operational if both links in
a pair of links in T ci × T ci fail. Accordingly, if the spanning
connection satisfies the property

⋃k
i=1(T ci × T ci ) = E ×E, a

survivability level of 1 is guaranteed.
We saw that, in the single link failure model, a spanning

connection with two link-disjoint spanning trees results in a
survivability level of 1. The next theorem shows that this is
not the case in the generalized model.

Theorem 7.1. Let G = (V,E) be a network for which
the link failure probabilities satisfy ∀e ∈ E, pe > 0. In the
two links failure model, any spanning connection with k = 2
spanning trees (T1(V,E1), T2(V,E2)) has a survivability level
smaller than 1.

Proof. Consider a pair of links (e1, e2) ∈ E1×E2. Since
pe1 , pe2 > 0, there is a positive probability that both links
would fail. In this case, both spanning trees are faulty and
there is not any operational spanning tree.

On the other hand, it is easy to see that a spanning con-
nection with three link-disjoint spanning trees results in a
survivability level of 1.

Theorem 7.2. In the two links failure model, a span-
ning connection with k = 3 link-disjoint spanning trees
(T1(V,E1), T2(V,E2), T3(V,E3)) has a survivability level of
1.

Proof. Consider the worst-case in which there are two
faulty links e1, e2. Since E1

⋂
E2 = E1

⋂
E3 = E2

⋂
E3 =

∅, we must have each of the faulty links e1, e2 appear in
at most one of the three spanning trees. Thus, one of the
three spanning trees does not include any faulty links and is
operational.

8. CONCLUSIONS
Tunable survivability is a novel quantitative approach for

coping with network failures, which can be tuned to accom-
modate any desired level (0%-100%) of survivability, yet till
now it has been studied only in the context of unicast con-
nections [19] [27]. This study extended the tunable sur-
vivability concept for handling broadcast through spanning
trees. Specifically, we established a novel polynomial-time
algorithm for providing an optimal set of (any) k spanning
trees that maximizes its survivability level while ensuring
a guaranteed bandwidth. Additionally, we provided tight
bounds on the number of spanning trees that may be needed
in order to achieve a maximum level of survivability. Finally,
through comprehensive simulations, we showed that the
maximum level of survivability can be well-approximated
(namely, within order of four-nines) by establishing just two
spanning trees. Moreover, the simulations clearly demon-
strated the advantages of tunable survivability over tradi-
tional survivability schemes.



Motivated by [39], we are currently investigating the prac-
tical aspects of our findings by implementing tunable surviv-
ability schemes in Ethernet architectures, through an exten-
sion to the Multiple Spanning Tree Protocol [13] (as has been
proposed in [26] for the link-disjoint case). Moreover, simi-
larly to [40] and [41], we consider the extension of our model
beyond the traditional single failure in order to cope with
multiple failures extending the preliminary results presented
in Section 7.

While there is still much to be done towards the actual de-
ployment of the tunable survivability approach, we believe
that this study provides evidence for the benefits of employ-
ing this concept in the scope of spanning trees and broadcast
connections. Furthermore, it establishes a substantial mile-
stone towards the construction of a comprehensive method-
ology.
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