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ABSTRACT

Estimation of traffic matrices, which provide critical input for net-
work capacity planning and traffic engineering, has recently been
recognized as an important research problem. Most of the previ-
ous approaches infer traffic matrix from either SNMP link loads
or sampled NetFlow records. In this work, we design novel infer-
ence techniques that, by statistically correlating SNMP link loads
and sampled NetFlow records, allow for much more accurate esti-
mation of traffic matrices than obtainable from either information
source alone, even when sampled NetFlow records are available at
only a subset of ingress. Our techniques are practically important
and useful since both SNMP and NetFlow are now widely sup-
ported by vendors and deployed in most of the operational IP net-
works. More importantly, this research leads us to a new insight
that SNMP link loads and sampled NetFlow records can serve as
“error correction codes” to each other. This insight helps us to solve
a challenging open problem in traffic matrix estimation, “How to
deal with dirty data (SNMP and NetFlow measurement errors due
to hardware/software/transmission problems)?” We design tech-
niques that, by comparing notes between the above two informa-
tion sources, identify and remove dirty data, and therefore allow
for accurate estimation of the traffic matrices with the cleaned data.

We conducted experiments on real measurement data obtained
from a large tier-1 ISP backbone network. We show that, when
full deployment of NetFlow is not available, our algorithm can im-
prove estimation accuracy significantly even with a small fraction
of NetFlow data. More importantly, we show that dirty data can
contaminate a traffic matrix, and identifying and removing them
can reduce errors in traffic matrix estimation by up to an order of
magnitude. Routing changes is another a key factor that affects es-
timation accuracy. We show that using them as the a priori, the
traffic matrices can be estimated much more accurately than those
omitting the routing change. To the best of our knowledge, this
work is the first to offer a comprehensive solution which fully takes
advantage of using multiple readily available data sources. Our re-
sults provide valuable insights on the effectiveness of combining
flow measurement and link load measurement.
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1. INTRODUCTION

A traffic matrix captures the aggregate traffic volume traversing
from every ingress point to every egress point in a network over a
given time interval. Obtaining accurate traffic matrix is essential in
a number of network management tasks in operational IP networks
such as capacity planning and traffic engineering, etc. Realtime
traffic matrix also enables online diagnosis and mitigation of net-
work events such as network device failures, routing changes, and
traffic congestion. For example, when a link fails, the network op-
erators need to determine whether such an event will cause conges-
tion based on the current traffic matrix and routing configurations,
and re-optimize OSPF link weights to alleviate the traffic conges-
tion. Also, without an accurate traffic matrix, network operators
are not able to diagnose the severity of network events and evaluate
the effectiveness of possible solutions.

Estimating traffic matrix has been recognized as a challenging
research problem. Direct precise measurement of traffic matrix
on large IP networks is not feasible due to the large number of
Origin-Destination (OD) pairs, the high volume of traffic at each
link/interface, and the lack of measurement infrastructure. Most of
the prior approaches attempted to infer traffic matrix from related
information that can be readily measured using existing network
measurement infrastructure such as SNMP link loads and sampled
NetFlow data, and periodic snapshots of network routing configu-
ration. They can be roughly classified into two categories based on
the input data they use for inference. The first type of approaches,
including [16, 2, 19, 20, 11, 15], infers traffic matrix indirectly
from observed SNMP link loads. This inference problem however
is severely underconstrained as the number of SNMP link loads
is usually far less than that of the traffic matrix elements. Conse-
quently, the accuracy of these techniques is limited to around 10%
error, which may not be good enough for certain network manage-
ment tasks such as fault diagnosis'. The second type of approaches,

"Recent work [11, 15] propose changing the Interior Gateway
Protocol (IGP) link weights to obtain more information and hence
more accurate traffic matrix estimations (i.e., around 5%). But it



including [5, 12, 22], estimate traffic matrices directly from flow
measurements data gathered on routers through (sampled) Cisco
NetFlow.

In this work, we propose and answer the following question —

If both SNMP link loads and sampled NetFlow records
are available, can we combine them to obtain more
accurate estimation of traffic matrices than those ob-
tained from any of the data sources? and how?

We extend our solution to accommodate scenarios in which Net-
Flow records are available on only a subset of ingress and egress
nodes. These techniques are practically important and useful since
both SNMP and NetFlow are now widely supported by vendors and
deployed in most of the operational IP networks. While a few prior
work such as [9, 20] briefly mentioned this problem, this work is
the first to offer a comprehensive solution which fully takes ad-
vantage of using multiple readily available data sources to achieve
better estimation accuracy”.

More importantly, our work leads to a new insight that SNMP
link counts and sampled NetFlow records can serve as “error cor-
rection codes” to each other. This insight helps us to solve another
challenging open problem in traffic measurement —

How to deal with dirty data (i.e., measurement errors
in SNMP and NetFlow due to hardware, software or
transmission problems)?

We design techniques that, by comparing notes between the above
two information sources, identify and remove dirty data. This ca-
pability of removing dirty data not only improves the accuracy of
traffic matrix estimation, but may also benefit a number of other
applications that depend on these data.

In this work, we make four important contributions. First, we
provide a comprehensive formulation and design an algorithm for
estimating traffic matrix during a given time interval by using both
SNMP link loads and sampled NetFlow data. The algorithm sim-
ply uses the traffic matrix estimated solely based on NetFlow data
as a prior and further calibrates it using the SNMP link loads in
a well-designed weighted manner. We find that under the existing
configuration of sampled NetFlow the prior from it is pretty ac-
curate already and our algorithm by combining SNMP link loads
improve the estimation accuracy slightly (5% improvement of the
weighted errors), specially when the measurement noise of SNMP
link loads is high.

Second, we enhance the above algorithm to handle the case that
the NetFlow data is not complete due to partial deployment or data
loss in transit. In this case the prior is generated by combining the
traffic matrix elements directly estimated by the existing NetFlow
data and those produced by the generalized gravity model [19].
One of the contributions we make here is to discover the proba-
bility model in the gravity model using the Equivalent Ghost Ob-
servation (EGO) method. Then it will be further calibrated using
the SNMP link loads after carefully setting up the relative weight
between NetFlow data and the generalized gravity model. The ex-
perimental results in Section 6 shows that only with a small por-
tion of NetFlow data the estimation accuracy can be significantly
improved. We also study the problem on where to turn on the Net-
Flow to collect flow measurement data in order to achieve the best
performance on estimating traffic matrices given a fixed percentage
of deployment of NetFlow.

is not clear that network operators are willing to do this because it
would introduce negative impact to users.

2The work [14] studies the similar problem but uses different ap-
proach to take advantage of the flow measurement data. It uses 24
hour NetFlow data to estimate the parameters in their model.

Third, we propose novel algorithms to identify and remove dirty
data in the traffic measurement. This will not only help in traffic
matrix estimation but also in a number of other important network
management tasks such as anomaly detection. We assume that, in
practice, there are only a small number of OD pairs/links which
produce dirty data at a given time and cause inconsistency in the
measurement data. We identify dirty data by finding the simplest
explanation of the inconsistency.

Finally, we also develop the algorithm to estimate traffic matri-
ces upon topology and routing changes such as link failure, hot
potato routing, and BGP session reset events. This is very helpful
in evaluating the impact of such network events and mitigating un-
desirable events. The routing changes can promptly be reported by
monitoring OSPF and BGP routing updates [13, 17]. Then we can
obtain the corresponding NetFlow data before and after the routing
change respectively. Using them as the apriori, the traffic matri-
ces can be estimated much more accurately than that omitting the
routing change.

The rest of the paper is organized as follows. Section 2 formally
defines the traffic matrix estimation problem. We describe our base
model for traffic matrix estimation based on both SNMP link load
data and sampled NetFlow data in Section 3 and evaluate the pro-
posed methodology using empirical data collected from a tier-1 ISP
network in Section 4. Section 5 discusses a number of factors that
affect traffic matrix estimation and proposes enhanced methods and
Section 6 evaluates the proposed enhancements. We discuss the re-
lated work in Section 7 and conclude the paper in Section 8.

2. PROBLEM STATEMENT

In this section, we state precisely our problem of estimating traf-
fic matrix from imperfect (noisy and possibly “dirty””) SNMP link
counts and NetFlow measurement data. After a brief introduction
of terminologies, we pinpoint the source of noise and dirty data
in both types of data, and formulate the problem we would like to
solve in this work.

2.1 Terminologies

The topology of an IP network can be viewed as a set of routers
and links. The routers and links that are internal to the network
are backbone routers and links, while others are edge routers and
links. The routers inside the network run Interior Gateway Protocol
(IGP) to learn how to reach each other. The two most common
IGPs are OSPF and IS-IS, which compute shortest paths based on
configurable link weights. The edge routers at the periphery of the
network learn how to reach external destinations through Border
Gateway Protocol (BGP). Both IGP and BGP together determine
how traffic flow through the network.

Traffic matrices are often computed at interface, router, or PoP
level. We use the term “node” to denote the entity at which level
the traffic matrices are computed. Given edge nodes ¢ and j, the
traffic between ¢ and j is defined as the total traffic volume that
enters the network at node ¢ and exits the network at node j. We
refer to node 4 as the ingress node and node j as the egress node.
The pair of ingress node ¢ and egress node j are referred to as an
Origin-Destination (OD) pair of the traffic flow. We refer to the
aggregated traffic of an OD pair as an OD flow. The traffic matrix
is thus the OD flows of all possible ingress and egress OD pairs. In
this paper, we represent the traffic matrix in a vector form, where
each element corresponds to the traffic volume of one OD flow. We
illustrate our schemes and experiments at router level, while they
can also be applied to interfaces and PoP levels. In the rest of the
paper, the terms “node” and “router” are equivalent.



2.2 Imperfect data sources

The following measurement capabilities are deployed in most
of commercial IP networks. Unfortunately, none of them alone is
sufficient for providing direct and highly accurate measurement of
traffic matrix. In addition, data collection is distributed among mul-
tiple network entities that are not fully synchronized, which results
in noise in the data. To make matters worse, due to factors such
as hardware and software errors, the quantities reported by SNMP
and NetFlow measurements can deviate significantly from the ac-
tual quantity, which we regard as dirty data (distinguished from
noise). The imperfectness of data, classified roughly into the fol-
lowing three categories, poses significant challenges to our goal of
estimating traffic matrix accurately.

Link load measurements: The link load measurements are read-
ily available via Simple Network Management Protocol (SNMP),
which periodically polls statistics (e.g., byte counts) of each link in
an IP network. The data is coarse-grained, the commonly adopted
sampling interval is 5 minutes in operational IP networks. These
link counts contain some noise since the measurement station can-
not complete the MIB polling for thousands of network interfaces
on hundreds of routers all at the same time at the beginning of the
S-minute intervals, making the actual polling intervals shifted as
well as being longer or shorter than 5 minutes. We will show that
this noise can be modeled as Gaussian random variables. In addi-
tion, the link counts can be lost during transit because SNMP uses
UDP as the transport protocol, and may be incorrect due to hard-
ware problem or software bugs. Such link counts are referred to as
dirty data.

Flow level measurement: The traffic flow statistics are measured
at each ingress node via NetFlow [10]. A flow is defined as an
unidirectional sequence of packets between a particular source and
destination IP address pair. For each flow, NetFlow maintains a
record in router memory containing a number of fields including
source and destination IP addresses, source and destination BGP
routing prefixes, source and destination ASes, source and destina-
tion port numbers, protocol, type of service, flow starting and fin-
ishing timestamps, number of bytes and number of packets trans-
mitted. These flow level information would be sufficient to pro-
vide direct traffic matrix measurement if complete NetFlow data
were collected for the entire network. However, due to high cost
of deploying and enabling flow level measurement via NetFlow,
sampling is a common technique to reduce the overhead of de-
tailed flow level measurement. The flow statistics are computed
after applying sampling at both packet level and flow level. Since
the sampling rates are often low, inference from the NetFlow data
(through scaling) may be noisy. Also, NetFlow is often only par-
tially deployed because products from some vendors do not support
NetFlow in a way consistent to our needs (i.e., different from Cisco
NetFlow specification) and some do not support it at all. Similar to
SNMP data, NetFlow data may also be lost in transit, resulting in
dirty data.

Topology and routing measurement: The network topology can
be computed based on the configuration data of each router in an
IP network. Both intra-domain (e.g., OSPF) and inter-domain (i.e.,
BGP) routing information are available via deployed monitors (e.g.,
[13]). Realtime access to these data allows us to compute the for-
warding table at a given time within each router and identify topol-
ogy and routing changes that affect traffic matrix.

2.3 Traffic matrix estimation

We formulate our problem of estimating traffic matrix from both
SNMP link counts and NetFlow records as follows. Assume there

denote the real OD flows to be estimated and let B = (b1, b2, - - - , bm)

denote the link loads when routing traffic demand X over the net-
work. B and X are related by a routing matrix A:

B = AX

where A is an m X n matrix whose element on the j-th row and the
i-th column, a;;, indicates the fraction of traffic from flow ¢ being
routed through link j.

Let X = (1,23, -+ ,@n)" be the estimated OD flow traf-
fic matrix obtained from sampled NetFlow data (after compensat-
ing for the sampling), where Z; is the estimator of x;. Let B =
(51, l;;, s I;;)T be the corresponding SNMP link load measure-
ment adjusted by the length of polling intervals. Ideally, we would
like to have

B =AX
in which case we will simply use this X as our estimate. However,
in practice, this is rarely true due to aforementioned noises and dirty
data in both SNMP and NetFlow measurements. The question we
are going to answer in this paper is: “What is the best estimate of

X based on imperfect measurements of X and B from NetFlow
and SNMP counts respectively?”

3. METHODOLOGY

3.1 Modeling measurement noises

As we discuss in Section 2, both NetFlow and SNMP data can
be inaccurate due to the sampling and polling processes used in the
measurement. We refer to such measurement inaccuracies as mea-
surement noises. In this section, we study the NetFlow sampling
process in flow measurement and the SNMP polling process in link
load measurement and present our models that precisely capture
the measurement noise incurred in these processes. In particular,
we define

X:)A(—&—sx
B:]§+5B

where eX and e® are the measurement noises of NetFlow data and
SNMP link loads respectively. We will show that accurately model-
ing these measurement noises enables us to derive good estimate of
the traffic matrices. In addition, it is also helpful in distinguishing
the dirty data (Section 5.2) from the measurement noises.

3.1.1 Noise=* in fow measurement

NetFlow typically uses packet sampling to reduce the processing
load and storage space. We model this packet sampling process as
Bernoulli trials.

LetF = (fi, f2, -, fn)T be the observed byte counts of OD
flows from NetFlow data (before compensation for sampling) and

R = (71,72, ,75)" be the sampling rates of OD flows. We can
compute X, which is an unbiased estimator of X, as follows:
S ~ A ~ 1 J2
X = ($17$27"' 7$7L) = f—7f—7... 7&)T
Ty T2 Tn

The Mean Square Error (MSE) of estimator Z;, 1 <14 < n, is
(i)

w; My

MSE(z,) = » NS (1)

where w; is the number of flows in the i-th OD flow, mg) is the
number of packets in the k-th flow of the i-th OD flow, and s; 1 ;

are n OD flows and m links in an IP network. Let X = (21, z2,- -, xn)Tis the size of the j-th packet in the k-th flow of the i-th OD flow.



The above expression for MSE is a function of the size of each
packet in the OD flow, which is undesirably expensive to compute
in practice. Therefore, we adapt the following approximate (and
upper bound) MSE derived by Duffield et al in [4]:

MSE(@) ~ (1 - TiT)'fi57rLa:c
where smaqz is the largest packet size. In our paper, we use Smaz =
1, 500 bytes.

However, for a large operational ISP, storing and transmitting
the data collected by the packet-sampled NetFlow are often still
prohibitive due to its large volume. To make the data size manage-
able, [4] proposed a new IP flow measurement infrastructure which
performs an additional flow-level sampling process, namely smart
sampling, on the data collected by packet-sampled NetFlow. Con-
ceptually, smart sampling selects a flow of x bytes with probability
min(1, z/z), where z is a predefined threshold. In other words,
flows of size greater than the threshold z are always collected, while
smaller flows are selected with a probability proportional to their
sizes.

As given in [4], the combined sample process (with both packet-
level NetFlow sampling and flow-level smart sampling) has the fol-
lowing properties:

T = Z max(z, Clk) 2
k=1 T
MSE(Z)) ~ 7; <7(1 - ’;)S’“ + z> 3)

where w} is the number of flows in the i-th OD flow after smart
sampling, and ¢;  is the observed size (by NetFlow) of the k-th
flow of the i-th OD flow.

Finally, we approximate the measurement noise introduced by
NetFlow sampling and smart sampling (if applicable) as Gaussian
noises:

ei ~ N(0,07)

where o7 = MSE(%;).

A careful observation on the above will find that this model is not
rigorous under one condition: when all flows of an OD flow have
been missed from the sampling, the estimated traffic volume of the
OD flow becomes zero according to the unbiased estimator, and so
does the MSE of this estimate. In this case, the corresponding &;*
is not well defined. We now address this problem.

What we are interested in is the conditional distribution of the
OD flow size given it is not sampled by either NetFlow or smart
sampling. Consider the simple case where all packets for the OD
flow have equal size, s. Let Lo, L1 and Lo denote the size (in
number of packets) of an OD flow originally, after NetFlow packet
sampling, and after smart sampling respectively. We can derive
the conditional probability of Pr[Lo = {|L2 = 0] below. The
derivation of (4) can be found in [21].

min{l,r;z/s} I ) 92— 2j/
_ S J+lq _ o \l=d__ TiZ/S
Pr[Lo =1L =0]= > <;> T (1=rs) refs 41

=0

From (4), we can compute the mean square error (MSE) when the
observed OD flow is zero as

MSEq = sE[L3|L2 = 0]
and our definition of o becomes

2 _ | MSE(%;) if we observe OD flow i in the sampled data
7 =\ MSE, otherwise

change of SNMP link load in 5 minutes

SNMP link load

Figure 1: Traffic rate over 5-minute intervals (both = and y axis
are in logscale)

3.1.2 Noise<? inlink load measurement

The primary source of errors in SNMP link load measurement
is due to the disalignment of polling intervals. Consider a target
measurement for byte counts, b;, over a link ¢, during interval [¢, ¢+
[]. The actual measurement, derived from two consecutive SNMP
pollings for link 7, however is on interval [t + Ay, (¢t + A1) + (1 +
Ag)]. We denote the result from this measurement as m;. Note
that the magnitude of A; and A are typically much smaller than
l (ie., |A1],|A2] < I): Ay and As is typically in the order of
several tens of seconds and [ is in the order of several minutes. If
we assume that the traffic rate over link 4 in a short period of time
(e.g., [t — I,t + 2I]) can be described as a Wiener process with
parameter 67

bi(t) — bi(s) ~ N(0,67(t — s))
then
A, _ mil
t 1+ Ao

is an unbiased estimator for b;. The mean square error is approxi-
mately

MSE(b;) ~ | A, 167

To quantify 02, we measure the difference in the average traffic
rate of two consecutive polling intervals. Figure 1 shows the scat-
ter plot of the difference in the average traffic rate of two consecu-
tive S-minutes intervals versus the traffic rate in the first 5-minute
interval for a few thousands links in a large tier-1 ISP backbone
network. We observe the trend of a linear relationship between the
difference, which is proportional to #7, and the average traffic rate,

. . m; b .
which is oA =T Therefore, we can further approximate the

mean square error as
MSE(b;) ~ | A1 |\b;

where ) is a constant that can be derived by fitting the scatter plot.
For the completeness of the model, we also define a small constant
as the MSE in case a link load measurement is zero. However, we
do not encounter this situation in the data we explored.

Similarly to e¥, we then model the measurement noises of link
load introduced in SNMP polling as Gaussian random variables:

ef ~ N(0, 1)

where 7 = MSE(Z/);).



3.2 Estimating traffic matrix

Let us now revisit our problem formulation by combining the
above model we derived.

X =X+e* )
B=AX+cB (5)

where both ¢* and B are zero-mean Gaussian random variables.
Put into matrix representation, our system can hence be described
as

Y=HX+N (6)

where H = (I; A) is an (m + n) X n matrix which vertically
concatenates an identity matrix I and the routing matrix A, Y is
the concatenated vector of X and B and N is the concatenated
vector of X and £B. What we are looking for is a good estimator
of the traffic matrix X from the observable Y.

Our system in (6) fits well in the framework of the well-known
Gauss—Markov theorem [7], which states that in a linear model in
which the errors are uncorrelated and have expectation zero, the
best linear unbiased estimators (BLUE) of the coefficients are the
least-squares (LS) estimators. That is, among all unbiased estima-
tors for X, the one that minimizes the normalized residual errors
(defined below), yields the smallest variance. Note that for Gauss—
Markov theorem to hold, the errors need not to be normally dis-
tributed. We model the SNMP and NetFlow measurement noises
as Gaussian only for the purpose of defining dirty data and dis-
tinguishing them from measurement noises, as we will discuss in
Section 5.2.

The weighted LS estimator of X in (6) is found by the pseudo-
inverse solution of the normalized equivalent of (6) in which the
errors are homoscedastic:

X=MH'K'H 'H'K'Y 7)

Here K is the covariance matrix of N (K = E[NN7]), which is a
diagonal matrix as we assume all measurement errors are uncorre-
lated. To relate back to our models in Section 3.1.1 and 3.1.2, we
denote 22 = (557037 e 7U'r2l)T and F2 = (N%?N; e 7/1'37L)T'
The above LS estimator X solves the quadratic optimization prob-
lem that aims at minimizing the total weighted squared-error in the
observations, i.e.,

o X=X AX - B
minimize || > [l2 + | T [|2 ®)

Note that the division in (8) is an element-by-element division where
the numerator and denominator are vectors of same length. To com-
pute X, we use the the Singular-Value Decomposition (SVD) rou-
tine in Matlab to solve for the pseudo-inverse, and similar to [19],
we adopt Iterative Proportional Fitting (IPF) to avoid negative val-
ues of the traffic matrix, which are without any physical meaning.
The size of H could be very large in a large network, which
makes the computational complexity (7) high. For example, in our
experiment with a large tier-1 ISP backbone network, it can take as
much as tens of minutes to obtain a solution on a 900 MHz proces-
sor. This may hurt the applicability of the above method to some
applications such as online diagnosis and failure detection, which
require faster response time. To satisfy the requirement of these
applications we design the following technique which reduces the
computational complexity significantly while retaining a high accu-
racy of the derived traffic matrix. The idea is straightforward. We
first sort the OD flows by their sizes in X. Then we divide them into
two sets by comparing them to a threshold value 7" (e.g., 0.01% of

the total volume). Let Xy, be the subvector of X in which the cor-
responding OD flow has ; > T, and let Xg be the subvector of the
remaining X such that £; < T'. To speed up the computation, we
hence focus only on obtaining a good estimate of Xy, while treat-
ing Xg as known, which take values equal to their corresponding
Z;. Our problem in (4) and (5) becomes

i]_, =X + EXL
f’) — Asis = ALXL + EB

where A, and Ags are the submatrices (columns) of the routing
matrix A that corresponds to Xy, and Xg respectively. We apply
the same solution technique in solving the above reduced system.

Here the threshold 7" should determine the desirable tradeoff be-
tween the computational complexity and the estimation accuracy.
Fortunately, the OD flows in operational networks are often highly
skewed [1]: a small number of OD pairs have very large traffic vol-
ume, while the majority of OD pairs have substantially low traffic
between them. This is a very favorable property for our scheme.
In our experiments, we can reduce the running time of the traf-
fic matrix computation (for the same backbone network and on the
same processor as above) to a few seconds by setting an appropriate
threshold, meanwhile not comprising the overall accuracy by much
(shown in Section 4).

We should note that the prior estimate of NetFlow measurement
may significantly underestimate the volume of an OD flow due to
unexpected errors. In this case, it is possible that an OD flow in
XL be mistakenly placed in Xg, which contaminates the rest of
the computation. We rely on dirty data detection (Section 5.2) to
correct such problems.

4. EVALUATION
4.1 Data gathering methodology

We evaluate our techniques based on real network measurement
data gathered from a large tier-1 ISP backbone network which con-
sists of tens of Point of Presence (PoPs), hundreds of routers, and
thousands of links, and carries over one petabyte of data traffic per
day. Ideally, we would like to use both the real physical and logi-
cal (routing) network topology, and the true traffic matrix and link
load information in our experiments. The former are readily avail-
able through the methods introduced in [13]. The latter, however,
cannot be easily measured from the network, and is in fact the ob-
jective of this paper.

To construct a traffic matrix that is as close to reality as possi-
ble, we use the data collected from our deployed IP flow measure-
ment collection infrastructure [4] which applies the sampled Net-
Flow with sampling rate 1/500 and the smart sampling with thresh-
old 20MB. The data were collected over one month period from
8/15/2005 to 9/18/2005. In fact, our measurement infrastructure
has very good coverage on the periphery of the network — the ag-
gregated traffic volume computed from the collected data accounts
for over 90% of the total volume observed by SNMP. We aggre-
gate flows into a set of hourly traffic matrices [5]. Due to sampling
(sampled NetFlow + smart sampling), some of the elements in the
traffic matrix are zero (i.e., the traffic between the corresponding
OD pair during the hour is completely missed by sampling). We
fill in each zero-valued element a small number drawn randomly
according to the model described in Section 3.1.1, unless the traf-
fic matrix element is prohibited by routing (e.g., the traffic from
one peering link to another peering link), in which case we keep its
value as zero. We then simulate OSPF routing to derive a routing
matrix A, and project the above traffic matrices on A to derive the
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Figure 2: The weighted cumulative distribution of relative er-
rors of estimated traffic matrices elements for our schemes and
tomogravity method.

corresponding link load information. In this way, we obtain a set
of “actual” traffic matrices, an accurate routing matrix, and a set of
“actual” link load data that are all consistent with each other.

Once the “actual” traffic matrices and the link load data are avail-
able, we can simulate the measurement noises and obtain a set of
NetFlow and SNMP measurement data. We introduce noises on an
element-by-element basis, following the models described in Sec-
tions 3.1.1 and 3.1.2. Such “contaminated” data best capture the
quality of the network measurement data in reality, and thus will be
used as input data in evaluating our algorithms.

4.2 Experimental results

We first compare our approach in Section 3.2 and the tomograv-
ity method introduced by Zhang et al. [19]. Figure 2 shows the
weighted cumulative distribution (CDF) of relative errors of the es-
timated traffic matrix elements for these two methods, where the
weight is the traffic volume of the OD flow. We observe a much
better performance for our scheme: more than 90% of the traffic
has negligible relative errors and almost all the traffic (i.e., 100%)
has error less than 10% while the corresponding fractions for the
tomogravity method are 20% and 50%, respectively. It demon-
strates the advantage by making use of the NetFlow data in traf-
fic estimation. Figure 2 also shows the cumulative distribution of
relative errors when the complexity reduction scheme is in place.
We set the threshold 7" to be 0.0005 times the volume of the the
largest OD flow reported by NetFlow. The result is encouraging.
The curve for complexity reduction scheme has no discernible dif-
ference compared to that without complexity reduction. This is
because majority of OD flows are relatively small. However, the
running time of traffic matrix computation is shortened from tens
of minutes to several seconds. This suggests that we can focus only
on the large flows in order to tradeoff for fast computation while
not compromising the overall accuracy of the derived traffic matri-
ces much.

Figure 2 provides us a view on the error distribution of all traffic
matrix elements. To measure the overall accuracy of the derived
traffic matrices, we adopt the Mean Relative Error (MRE) metric,
which is introduced in [6] and is defined as follows:

1
MRE = +— Z

T iy >T

Ti — T

Xq

where N is the number of matrix elements that are greater than
a threshold value 7', i.e., Ny = [{xi|lz; > T,i =1,2,--- ,N}|.
Consistent with [6], we choose the value of T" so that the OD flows
under consideration carries approximately 90% of the total traffic.
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Figure 3: MRE as a function of different levels of noise in Net-
Flow and SNMP measurements.

We now evaluate the impact of different levels of noise in Net-
Flow and SNMP measurements on the traffic matrix inference. In
particular, we tune the noise level according to the model presented
in Section 3. Figure 3(a) compares MREs of the estimated traffic
matrix using our scheme (with and without complexity reduction)
with that of the traffic matrix directly obtained from the raw Net-
Flow data (i.e., the prior of our scheme) under different levels of
noise in NetFlow measurement. Here the standard deviation of the
noise of SNMP link loads is set to 0.01 times of the actual link
loads which is a typical value in operational networks. We vary
the scaling factor of NetFlow noise. Scaling factor 0 corresponds
to perfect NetFlow measurement with no sampling conducted and
scaling factor 1 corresponds to the existing measurement setup in
the tier-1 ISP network from which our data is collected, i.e., sam-
pled NetFlow with 1/500 sampling rate and smart sampling with
20MB threshold. A scaling factor of k corresponds to having a
standard deviation k times of that from the existing setup, as the
result of changing sampling rate or smart sampling threshold. We
observe that MREs of both approaches increase as the scaling fac-
tor increases. Our scheme only improves to a very limited extend
the estimation accuracy from the raw NetFlow data when the scal-
ing factors are small. This can be explained as follows: NetFlow,
although suffering from sampling errors, still provides good es-
timation of the traffic matrix when noise is small (i.e., sampling
rate is high). Using a set of SNMP measurement, especially with
poor quality, as part of the linear constraints does not provide a
force that is strong enough to correct the sampling errors in Net-
Flow measurement, or on the other contrary, it may even make the
result a little worse. However, when the accuracy from NetFlow
degrades (scaling factor becomes large), the noisy SNMP measure-
ment would guide the estimation closer to the actual values. This
is manifested by the more pronounced improvement when the scal-



ing factor becomes large (e.g., when the sampling rate becomes
low). Note that we also compute the traffic matrices using tomo-
gravity under the same settings. The MRE is 0.18 (not shown in
Figure 3(a)), which is significantly higher than our scheme.

Next we study the impact of noise of SNMP measurement on
the traffic matrix computation given a fixed noise level of Net-
Flow measurement (sampled NetFlow with 1/500 sampling rate
and smart sampling with 20MB threshold). Figure 3(b) shows
MREs of the traffic matrix under different levels of noise in SNMP
link load measurement. A noise level at « implies the standard de-
viation of the introduced Gaussian noise is « times of the true link
load. We observe that the improvement from combining SNMP
information to NetFlow measurement diminishes gradually as the
noise in SNMP measurement increases. This is manifested by the
reducing gap between the two curves, demonstrating the reduced
power of recalibrating the NetFlow estimate by the noisy SNMP
link loads. On the other hand, we find that once the SNMP mea-
surement is not extremely distorted (e.g., o < 0.05), our scheme
always has an observable improvement in comparison to raw Net-
Flow traffic matrix (the horizontal line in Figure 3(b)). This is re-
assuring, since it suggests that our scheme by combining multi-
ple data sources can be safely applied and it will not underperform
methods that only use single data source (e.g., sampled NetFlow).

We also plot in Figure 3 the result when we apply our complex-
ity reduction technique. Similar to Figure 2, the results indicate
that our proposed complexity reduction technique introduces little
inaccuracy in traffic matrix computation.

Our evaluation thus far has found that our scheme improves, but
to a very limited extend, the accuracy of the raw NetFlow traffic
matrix. This is due to the ideal setting of the measurement environ-
ment under evaluation. Next, we discuss more practical problems
presented in operational networks, where the advantage of using
multiple data sources becomes evident.

5. EXISTING CHALLENGESINPRACTICE

Our inference techniques in Section 3 are based on the assump-
tion that our observation of the SNMP data and NetFlow data are
ideal. There are three aspects of this assumption. First, the SNMP
data is considered perfect in the sense that there is no measure-
ment error other than the small Gaussian noise. Second, the Net-
Flow data is considered perfect in the sense that all ingress points
have NetFlow enabled and the gathering and accounting of Net-
Flow records is lossless and error-free (other than the sampling er-
ror). Third, there is a subtle assumption that network routing does
not change during a measurement interval, since otherwise the rout-
ing matrix in (8) cannot be treated as a constant matrix. In practice,
however, none of these three aspects will hold. In the following
sections we will show how to enhance our previous scheme to han-
dle the situation when the above assumption does not hold.

5.1 Partial NetFlow coverage

As discussed before, instrumenting a reliable IP flow measure-
ment collection infrastructure (e.g., NetFlow) across the whole net-
work is a difficult task for a large ISP. According to our experience
it would take long time to obtain reasonably good coverage over the
network periphery due to various operational issues (e.g., vendor
implementation problems). Even when the measurement infras-
tructure is present, ensuring reliable data feed and timely process-
ing is nontrivial. It is well expected to have NetFlow data missing
for some OD flows. Therefore the model we setup in Section 3.1.1
cannot always be completely populated. In this section we describe
our solution in resolving this challenge.

The basic idea is to fill in the traffic matrix elements, which

are not covered by NetFlow, with our best estimate. So what is
the next best thing when direct flow measurement is unavailable?
The answer is the generalized gravity model. As shown in previ-
ous work [19, 20], generalized gravity model provides a reason-
ably good prior estimate of traffic demand. A simple gravity model
works as follows. Let the total traffic volume going to an ingress
router ¢ be T; .. Then the traffic matrix element’ T;,; is believed
to be proportional to 75, - T% ;. This belief uniquely determines
a traffic matrix vector T(9), where “(g)” stands for gravity. How-
ever, T may not be consistent with the link count observations.
Therefore, the tomogravity solution is to find a T that is closest to
T(9) in a weighted fashion (i.e., “minimizing ||(T — T9))/W]||5”
where W is a weight vector*) among all traffic matrix vectors that
are consistent with the link count observations (i.e., “subject to
||AX — BJ||2 being minimized”). It is determined empirically that
setting weights w; proportional to the square root of the estimation
of x; (Ti(g ) in this case) results in the best estimation accuracy. The
generalized gravity model enhances the simple gravity model by
explicitly considering some routing policies, such as no transit for
peers and hot-potato routing. It distinguishes edge links that con-
nect to a customer (referred to as access links) and that connect to
a peer (referred to as peering links), and then applies gravity as-
sumption separately on traffic among the access links and between
the access links and peering links. These enhancements enable the
generalized gravity model to achieve good accuracy in the derived
traffic matrices (around 30% relative error in a similar sized net-
work [19]).

Itis however very hard to blend the gravity model (simple as well
as generalized) with the model derived from the NetFlow observa-
tions because the the gravity model is vaguely specified as “the
probability model under which the above optimization procedure
will produce a good estimator”. The implicit probability model in
this gravity model has never been made explicit in [19] and the later
works. One of the contributions we made here is to make it explicit
using our Equivalent Ghost Observation (EGO) method. Let zf,
@b, ..., ", be the terms of the aforementioned T9) (in the matrix
form) written into the vector form. 3 We can prove, again using
the Gauss—Markov theorem, that if we take out all the beliefs of the
gravity model (i.e., T3,; o< T; . - Tk ;) and replace it with “ghost
observations” x; where the error z; — x; is Gaussian with distri-
bution N (0, v) where v; is proportional to the square root of z,
then the LS estimator of (x1,x2, ..., 2, )" is exactly the result of
the optimization specified by the gravity model (with the beliefs).
We refer to these nonexistent observations x5, i = 1,2, ...,n, as
EGO, as they are statistically equivalent to the beliefs in the gravity
model.

Now blending our model with the gravity model becomes straight-
forward. For x; terms that we have real (but noisy) observation
from NetFlow, we use the probability model introduced in Sec.
3.1.1, that is, z; = Z; 4+ €7 and €7 ~ N(0, o7). For z; terms that
we do not have real observation, we use the aforementioned EGO
x}, but model the estimation error as having distribution N (0, Ao3).
Then applying the Gauss—Markov theorem to this blended model
results in an estimator that is found to be fairly accurate. Note

*Different from previous column vector notation, here T ; denotes
the volume of the traffic from ingress point i to egress point j.
“Here the division over W is an element-by-element division
where the numerator and denominator are vectors of same length.
>We have also explored the scheme in which  is determined by a
“conditional” generalized gravity model, i.e., removing the traffic
observed by NetFlow before applying gravity model. However, we
find little performance difference using this variation in our exper-
iments.



this estimator is no longer LS and BLUE since the gravity model
(equivalently the EGO’s) is only a belief that is not backed up by
actual observations. Here ) is a normalization factor introduced to
capture the relative credibility of EGO in comparison to the Net-
Flow observations. We will study the impact of different choices of
A in Section 6.1, where we find the overall result insensitive to the
choice of A in a fairly large “good range”.

5.2 Removal of dirty data

The SNMP and NetFlow measurement, as the outcome of large
scale complex measurement systems, inevitably suffer from a so-
called dirty data problem. Unlike the data inaccuracy (Gaussian
noise) discussed in Section 3, dirty data are result of unexpected
hardware, software or transmission problems that cannot be mod-
eled as measurement noises. For example, a reset of a network in-
terface card during a collection interval may mess up the SNMP
counters, thus producing completely bogus measurement result.
More frequently than we would want, dirty data has caused many
problems in network management including false alarms in anomaly
detection, inaccurate traffic report and billing statement, and erro-
neous outcome from network analysis tools. In this section, we
describe our algorithms to removing dirty measurement data by
taking advantage of the multiple data sources that are available.

Since we define dirty data as measurement errors that cannot be
captured by our noise model, it is natural to devise an iterative dirty
data removal process as follows:

@) let X be the result of solving (8); compute B =AX;

(il) compute measurement noise X =X-XandZ® = B-B;
all £ /o; and £2 /p; should be Gaussian N(0, 1) by our
noise model, where 1 <7 <mand1 < j <m.

(iii) if the biggest element in |&)|/o; and |£P|/u; is above a
threshold (e.g., 3.09), we mark it as dirty and set Z; = Z;
(or bj = bJ)

(iv) repeats (i)-(iii) until no dirty data can be found.

The above approach, although intuitive, does not find good result.
A possible reason to its poor performance is that the pseudo-inverse
solution distributes the energy of dirty data to all possible explana-
tions. In consequence, dirty data do not stand out.

Now we describe our approaches in identifying dirty data from
contaminated measurement X and B. Our methodology is to de-
tect dirty data by applying Occam’s Razor principle, which aims at
finding a simplest explanation for the observed phenomena. The
intuition is as follows. If an OD flow from NetFlow is dirty, it may
cause inconsistency with all SNMP link measurement on the path
the OD flow traverses. On the other hand, if an SNMP link load is
dirty, it is inconsistent with the total traffic of all OD flows routed
through the link. Since dirty data are rare, the simplest explanation
of the inconsistency identifies the source of dirty data.

Let £X and £7 be the dirty data component in the measurement.
We have

X=X+eX4¢¥

B=B+:®+¢P

Since a non-zero |¢;* | should be much larger than o; (otherwise, it
can be faithfully modeled by measurement noise), we expect such
|€X| > |eX|. Similarly, a non-zero £ in SNMP data should have
|€7] > |eP|. We thus let dirty data component include both the
measure noise and dirty data itself and distinguish them afterwards
by comparing with 3 and I". Let £ be the concatenated vector of

X + &% and B + ¢P. The problem becomes

minimize ||£|lo  subjectto D = C¢ )

where ||£]|o is the Lo norm of vector £, D = AX — Biis the resid-
ual vector describing the inconsistency of NetFlow measurement
and SNMP measurement, and C = (I, —A) is an m X (m + n)
matrix that horizontally concatenates an identity matrix I and the
negation of routing matrix A. It can be easily verified that D = C¢
is equivalent to B = AX.

The Lo norm is not convex and is notoriously difficult to mini-
mize. Therefore in practice one needs to either approximate the Lg
norm with a convex function or use some heuristics, for example
the greedy algorithms proposed in [8, 18]. Here we propose two
schemes: one is a greedy heuristic algorithm for Lo norm mini-
mization and the other is doing L1 norm minimization which is a
common approach to approximate Lo norm minimization.

Greedy algorithm

The algorithm starts with an empty set Z of dirty data and then
iteratively adds new dirty data to it. During each iteration, for each
element p ¢ Z, the algorithm tests how much it can reduce the
residual D — C¢ by including p as a dirty data and chooses the
element which can reduce the most Lo norm of the residual, i.e.,
minimizing ||D — C£||2. The algorithm stops whenever either the
residual energy falls below some tolerance factor or the number of
dirty data exceeds some pre-defined threshold.

L1 norm minimization

As shown in [3, 18], L1 norm minimization results in the sparsest
solution for many large under-determined linear systems and there-
fore is a common approach to approximate and convexify Lo norm
minimization. Here, we apply the same principle. That is,

minimize ||¢||1 subjectto D = C¢

We can further transform the above into an unconstrained optimiza-
tion problem by moving the constraints into the objective function
in the form of a penalty term, i.e.,

minimize 60||¢||x + ||D — C¢||x

where 6 € [0, 1] is a weight parameter that controls the degree to
which the constraints D = C¢ are satisfied. We find the optimiza-
tion result not very sensitive to the choice of 6. Thus, we set it to
0.01 in the rest of the paper.

We can cast the above problem into the following equivalent Lin-
ear Programming (LP) problem, for which solutions are available
even when C is very large, owing to modern interior point linear
programming methods.

minimize 92 ui—|—2 v
i J

subjectto D =C¢+d
qu?“Z_g
v>d,v>-—-d

5.3 Handling routing changes

Changes to the routing tables can happen anytime and generally
do not align with the beginning of SNMP measurement intervals. If
a route change happens within a polling interval, the corresponding
measurement would reflect the total traffic volume of both before
and after the route change. This creates problem for our problem
formulation of AX = B, since the routing matrix A is no longer
constant. Moreover, change of internal routing structure may have
impact on the ingress and egress point of traffic demand, resulting



in changes in the traffic matrix to be estimated. For example, traffic
destinated to a peer may shift its egress point from one peering link
to another due to hot-potato routing. To address this problem, we
propose the following solution.

Assume the routing only changes once during that measurement
epoch (the solution can be easily adapted to the case where there
are more than one routing changes happening.). Let A; and A2
be the routing matrix before and after the change. Let X1 and X2
denote the corresponding traffic matrices to be estimated. We have

A1X;: +A2X2 =B

Since we can obtain the exact time of routing change from monitor-
ing tools [13] and the flow records from NetFlow are timestamped,
we can easily compute )A(1 and Xz if the flow measurement covers
all OD flows. In the case where flow measurement is not complete,
we have to rely on the generalized gravity model to populate the a
priori estimate. However, since SNMP measurement is indivisible
within a polling interval, we can only prorate the traffic volume for
the duration when A, or Ag prevails and so do their MSE vec-
tors. Obviously, this introduces additional risk of inaccuracies of
the estimated traffic of the OD flow, which we can compensate by
increasing the value of A in Section 5.1.

Similar to (6) the problem here also can be described by the fol-
lowing linear system.

Y =HX+N (10)

Here X is the concatenated vector of X1 and X2, N is the con-
catenated vector of e*1, £*2 and ¢, H = (I; (A1, A2)) is an
(m 4+ 2n) X 2n matrix which vertically concatenates an identity
matrix I and the horizontal concatenation of the two routing matri-
ces A1 and Az, and Y is the concatenated vector of X, X5 and
B.

The exact same solving procedure as in Section 3.2 can be fol-
lowed to obtain the LS estimators of X; and X>. Notice that the
size of H here is even larger than that in Section 3.2 and therefore
leads to a higher computational complexity. The situation is worse
when more routing changes occur during the estimation interval as
the size of H increases with the number of routing changes: H is
an (m + n x i) X (n X i) matrix for ¢ routing changes. There-
fore the complexity reduction technique in Section 3.2 becomes
increasingly important here. We will show in Section 6.3 that we
can achieve very desirable accuracy within tens of seconds with the
complexity reduction technique for a reasonably sized network.

6. EVALUATION OF ENHANCEMENTS

In this section, we present the evaluation results on the impact
of the aforementioned three aspects of practical challenges on the
accuracy of traffic matrix estimation, and correspondingly the per-
formance of our proposed techniques to these challenges.

Unless specified otherwise, we use the following default parame-
ters in this section: the noise level of SNMP link counts is 0.01; the
scaling factor for the NetFlow noise is 1; the threshold for complex-
ity reduction 7" is set such that around 1000 OD flows are selected
in XL.

6.1 Incomplete NetFlow data

As we mentioned before, partial deployment of NetFlow and in-
complete NetFlow measurement data are very common in opera-
tional networks. In this section, we evaluate our scheme towards
estimating traffic matrices based on incomplete NetFlow data. Our
evaluation also provides us insight on the effectiveness of various
deployment strategies of the NetFlow measurement infrastructure
for traffic matrix computation.
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Figure 4: MRE under different values of A (z axis is in logscale)

Recall that we have incorporated a parameter A in our scheme in
the presence of incomplete NetFlow measurement. A\ captures the
relative quality between the NetFlow measurement and the prior
from the generalized gravity model. A larger value of A corre-
sponds to a more accurate NetFlow measurement in comparison to
the generalized gravity model. Figure 4 evaluates the performance
of our scheme with different values of \.

In Figure 4, we study the estimation error (measured by MRE)
with varying A when the NetFlow measurement is only available at
the top 20% edge routers (ranked by its total ingress traffic volume)
assuming two different scaling factors, 1 or 4, of the NetFlow noise.
We observe that, in both cases, there exists an optimal value for
A that achieves the minimum MRE. This value of X\ best reflects
the relative accuracy of sampled NetFlow and generalized gravity
model defined in our solution framework. The optimal value of A
is found at around 40 when the scaling factor is 1 and at around 10
when the scaling factor is 4. This matches well with our expectation
since the relative accuracy of sampled NetFlow is low when the
NetFlow noise level is high (scaling factor 4), resulting in a reduced
optimal penalty weight for generalized gravity model. The ratio in
their optimal penalty weight (40/10) matches well with the inverse
of their noise scaling factor of NetFlow (4/1). Furthermore, we
observe that the performance of our approach is robust to the choice
of X at higher values (note that the x-axis is in logscale). In other
words, the performance degradation due to using a A value higher
than the optimal is not dramatic. It suggests that when applying our
approach in operation, one does not need to put too much effort in
tuning the parameter A to get a good performance. In the rest of the
evaluation, we set A = 40 (matching the scaling factor 1).

Now we evaluate the accuracy of our proposed scheme with Net-
Flow coverage on the ingress points ranking in top 20% by traf-
fic volume (we will study other strategies later) and compare it
with those from the generalized gravity model, tomogravity so-
lution and the NetFlow measurement amended by EGO. Figure 5
plots the CDFs of the relative errors of the estimated volume of
OD flows obtained by those approaches. We observe that our ap-
proach, which makes use of the NetFlow measurement at 20% of
the ingress points, already achieves a significantly better accuracy
than that of the tomogravity solution, which only depends on the
SNMP measurement. This improvement is mostly due to the bet-
ter prior estimate from the EGO-amended NetFlow than from the
generalized gravity model, as indicated by the gap between the
corresponding two curves. Finally, our optimization method fur-
ther improves the prior estimate from the EGO-amended NetFlow
to achieve an even higher accuracy. We have also plotted in Fig-
ure 5 the result when we apply our complexity reduction technique.
The curve overlaps with that of the estimated traffic matrix without
complexity reduction, indicating little inaccuracy has been intro-
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Figure 6: Impact of partial deployment of NetFlow on traffic
matrix estimation.

duced because of the approximation in the complexity reduction.

We next study the NetFlow deployment problem: given a fixed
number (e.g., 20% ingress points) of ingress points that can deploy
NetFlow, how to choose ingress points where the NetFlow mea-
surement data yield the most accurate traffic matrix estimation?
This problem is briefly studied in [9] and [20]. Here we revisit this
problem with more comprehensive evaluation. In particular, we
evaluate the following three different types of strategy that (i) ran-
domly select x fraction of ingress points; (ii) select top z fraction
of ingress points ranked by traffic volume generated from actual
value, generalized gravity model and our scheme, respectively; and
(iii) select top x fraction of ingress points ranked by the difference
of traffic volume between the actual value and result of the gener-
alized gravity model and between the result of our scheme and that
of the generalized gravity model, respectively. Figure 6 shows the
accuracy of traffic matrix estimation for various value of x. It is not
surprising that random selection performs the worst. The strategies
in (ii) (i.e., ranking ingress points by traffic volume) yield the best
overall performance. In addition, we observe that the curves for
strategies in (ii) and (iii) become flat after = is approaching 0.6.
This indicates that deploying NetFlow measurement on more than
60% of ingress points only has marginal gain under careful deploy-
ment decision.

Instrumenting NetFlow measurement infrastructure on a set of
ingress points to facilitate traffic matrix computation is an arduous
engineering task, which involves careful testing, certification and
performance tuning, etc.. We would like the set of ingress points
for NetFlow deployment, which is based on most up-to-date traffic
volume information, to be stable over a long time. In our evalua-
tion, we define a stability function f = |a N 3|/|8|, where « and
[ are two sets of ingress points that are selected base on traffic in-
formation at time ¢, and tg, respectively. An f value closer to 1
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Figure 7: The stability of the NetFlow deployment decision.

indicates that the two sets share a large number of overlapping el-
ements. Figure 7 shows the change of value of f during one week
period (August 15-21, 2005). In this case, tg is set to 0:00 AM
on August 15, 2005 and ¢, varies from 0:00 AM on August 15 to
23:00 PM on August 21. Two sets of ingress points are selected:
the ingress points ranking at top 10% and 30% in traffic volume, re-
spectively. We observe that values of f for both sets are fairly high
(always above 0.8). This implies that network administrators can
make their deployment decision based on traffic volume without
the risk of major re-deployment in short term.

6.2 Dirty data

In order to evaluate our scheme in identifying and removing dirty
data, we synthetically inject some dirty data into both the SNMP
link loads and the sampled NetFlow measurement. In particular,
we introduce two types of dirty data in SNMP link loads. In the
first type, we scale up an SNMP measurement by a factor of 5 on
a link chosen at random among the top 20% links (ranked by the
traffic volume). In the second type, we scale down an SNMP mea-
surement also by a factor of 5 on a link chosen randomly among the
top 2% links. We introduce three types of dirty data into NetFlow
measurements. In the first two types, we scale down a NetFlow
measurement by a factor of 5 on an OD flow chosen at random
among the top 0.2% and the top 2% OD flows respectively. In the
third type, we scale up a NetFlow data by a factor of 10 on an OD
flow chosen randomly among the top 20% of OD pairs. In the eval-
uation that we show next, the results are obtained when we inject
one dirty data of each type into the measurement.

We plot the MREs of our estimation with and without dirty data
in Figure 8 to illustrate the negative impact of the small number of
dirty data. Figure 8(a) shows the results in which Netflow has com-
plete coverage at the network periphery, while Figure 8(b) presents
the case where NetFlow measurement is available at the top 20%
edge routers (ranked by the total ingress traffic volume). We repeat
our experiment with different choice of dirty data and present the
average result in the graphs. We first look at the left three columns
of these graphs. The first column represents the MRE of the esti-
mated traffic matrix when there is no synthetically introduced dirty
data; the second column represents the MRE of the Netflow or the
EGO-amended gravity prior after we inject one dirty data of each
type; and the third one corresponds to the MRE of the our least
square estimate of the traffic matrix with those dirty data. We ob-
serve that the small number of dirty data have a strong disturbing
effect to our quadratic optimization in (7): the optimization result
with a handful of dirty data (the third column) is 3 times (in Fig-
ure 8(a)) or 6 times (in Figure 8(b)) worse than the result when
dirty data is not present (the first column). It is interesting to ob-
serve that the contaminated Netflow or the EGO-amended gravity
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Figure 8: Impact of dirty data on traffic matrix estimation.

prior in the second column has a better accuracy than the third col-
umn. This suggests that dirty data in the SNMP measurement, as
part of the optimization constraints, may steer the optimization re-
sult away from the actual traffic matrix, causing significant inac-
curacy in traffic matrix estimation. In fact, dirty data phenomena
has caused many problems in various applications in network man-
agement besides the traffic matrix estimation, and becomes quite a
headache to network operators.

‘We now apply our techniques in Section 5.2 to remove dirty mea-
surement data. We use a threshold of 3.09, which corresponds to
99.9 percentile of a standard Gaussian, as the cut off between dirty
data and the normal measurement noise. Since for most of the ap-
plications of traffic matrix estimation, only the dirty data of sig-
nificant size is of interest, we further filter the identified dirty data
such that only those correspond to a data rate higher than 10Mbps
are reported. When the sampled NetFlow covers the whole net-
work, with the above configuration our scheme using the greedy
algorithm identifies all of the five injected dirty data with 3 false
positive on the average, and our scheme using L; norm minimiza-
tion identifies all five injected dirty data with 22 false positives on
the average (with repeated experiments with different base traffic
matrices and random choices of dirty data). When NetFlow mea-
surement only covers the top 20% edge routers ranked by the total
ingress traffic volume, we find that our greedy algorithm can typi-
cally produce no false negatives and a small number (< 5) of false
positives, while the L1 norm minimization has a slightly worse per-
formance, producing occasionally one false negative and a small
number (< 35) of false positives.

After we identify the dirty data, we correct the corresponding
elements (by subtracting the dirty components) in our problem for-
mulation and then derive an estimate of the traffic matrix. The re-
sult is shown in Figure 8(a) and (b), where the fourth columns are
the result when we use the greedy algorithms in identifying the
dirty data and the fifth columns are the result when we apply L1
minimization in identifying the dirty data. We find that both algo-
rithms achieve comparable accuracy than that when dirty data are
not present. Comparing the two methods, our greedy algorithm has
a slightly better performance than the L, minimization.

6.3 Routing changes

In this section, we evaluate the impact of routing changes dur-
ing a measurement period and the effectiveness of our proposed
solution to this issue. Our experiment scenario is constructed as
follows. We assume the measurement interval is of one hour length
and a routing change occurs at the end of the 10" minute. This
routing change is a result of the failure of an internal link, which is
chosen at random. We simulate the routing of the network before
and after the failure to compute the corresponding routing matri-
ces, A1 and A». To obtain the traffic demand both before and after
the failure, we pick the actual traffic matrices from two consecutive
hours and prorate the traffic to populate the traffic matrix in the first
10 minutes and the last 50 minutes respectively. Finally, we com-
pute the link load measurement over the hour, B, by summing up
the total traffic of both the first 10 minutes and the last 50 minutes
on each link. The result is fed into our algorithm in Section 5.3 for
traffic matrix estimation. We use the proposed complexity reduc-
tion technique (i.e., targeting at top 1, 000 elements in X1 and X2
respectively) to speed up the computation. In order to form the base
for our comparison, we also consider the case in which there is no
routing change during the hour. This can be constructed by sim-
ply using the traffic matrix and routing matrix from the first hour
of the two consecutive ones. We next present the result of one ex-
ample constructed using the above settings. Results of other cases
based on different traffic matrices and choices of link failures are
quantitatively similar.

Figure 9 shows the CDF of the relative error of the estimated
volume of the OD flows. The two solid lines are the result de-
rived solely based on SNMP link load, i.e., the traffic matrix being
estimated entirely from the EGO of the prorated generalized grav-
ity model, with and without routing change. We observe that the
accuracy of the derived traffic matrix degrades significantly when
routing change occurs during the measurement interval. This is
because SNMP link load measurement does not contain sufficient
information to distinguish the traffic before and after the routing
change. The two dotted lines in Figure 9, however, show the result
of our approach when NetFlow data is available at the top 30% edge
routers. We make two observations here. First, we find that the
estimation accuracy is significantly improved with the additional
information from NetFlow. This echoes our observation in Section
6.1. Second, we observe that the performance degradation due to
the routing change, shown as the difference between the case with
routing change and the case without routing change (gap between
the two dotted lines), is much less than that of the SNMP only sce-
nario (gap between the two solid lines). Again, this demonstrates
the effectiveness of our solution approaches, and more importantly
the power of combining multiple data sources in deriving a good
estimate of traffic matrix.

7. RELATED WORK

The problem of estimating traffic matrix attracts the effort of re-
searchers since the late 1990s. The first a few techniques, proposed
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Figure 9: CDFs of the relative errors of the estimated TM ele-
ments with and without routing changes during a measurement
interval

in [16, 2], adopt some simple statistical models for traffic matrix
elements such as Poisson and Gaussian distribution. These tech-
niques are highly sensitive to the apriori estimate of traffic matri-
ces. The later work mostly focused on statistically inferring traffic
matrices by combining more side information besides the backbone
link loads. For example, Zhang et al. [19, 20] used SNMP data not
only from backbone links but also from access and peering links
in order to populate the generalized gravity model. Also in [11],
the routing changes and link loads shift are intentionally induced
to gather additional SNMP data. All of the above techniques are
entirely based on the link loads from SNMP data. Their accuracies,
usually around 10%, are not good enough for certain management
tasks such as diagnosis of network fault. Some other techniques
such as [5, 12, 22] are also designed to directly measure and esti-
mate traffic matrices instead of statistically inferring based on link
loads from SNMP data. They compress the information of the traf-
fic going through a network using Cisco NetFlow or data streaming
devices and estimate the corresponding traffic matrices based on the
resulting compressed data set. So a natural thinking is whether we
can combine SNMP data and flow measurements together to pro-
duce better results, which was raised briefly in previous work [9,
20] and studied comprehensively in this work. The work [14] also
explores this problem but uses a different approach to adopt flow
measurement data.

8. CONCLUSION

In this paper we present several novel inference techniques for
robust traffic matrix estimation with both imperfect SNMP link
counts and sampled NetFlow measurement. In contrast to previ-
ous work, our schemes take advantage of both NetFlow and SNMP
link loads data to obtain better estimation. We find that under the
existing configuration of sampled NetFlow the result from NetFlow
is quite accurate and combining SNMP link loads with it only im-
proves the estimation accuracy slightly if NetFlow is fully deployed
in the network. However, when full deployment of NetFlow is not
available — a common case in operational networks, our algorithm
can improve estimation accuracy significantly even with a small
fraction of NetFlow data.

More importantly, we show that dirty data can contaminate a
traffic matrix. We design two novel algorithms to identify and re-
move dirty data in sampled NetFlow and SNMP data. This would
benefit a number of important network management applications
including the traffic matrix estimation. We show that by using our
algorithms, the errors in traffic matrix estimation can be reduced
by more than an order of magnitude. Finally, we observe that rout-

ing and topology change is also key factor that affects traffic matrix
estimation. We develop a novel algorithm for estimating more ac-
curate traffic matrices upon topology and routing changes.

To the best of our knowledge, this work is the first to offer a com-
prehensive solution which fully takes advantage of using multiple
readily available but imperfect data sources. The experimental re-
sults based on real data obtained from a large tier-1 ISP backbone
network provide valuable insight on the effectiveness of combining
multiple data sources to estimate traffic matrices.
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