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WEAKER CONNECTED HAUSDORFF TOPOLOGIES ON
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Abstract. We prove that a disconnected Hausdorff space X with a count-

able network has a weaker connected Hausdorff topology if and only if it is

not H-closed. This solves in a strong form both problems 3.2 and 3.3 from

[10].

1. Introduction

If a space X has a weaker topology with certain ”nice” properties, then useful
information about X can often be obtained by looking for properties common to
both the original and the weaker topology; in this sense it might be said that
the weaker topologies constitute approximations to the original one. It is natural
to look for approximating topologies that possess any of a number of classical
properties, of importance not only in topology but in other areas of mathematics
and while only a few properties might be deemed to satisfy this criterion, clearly,
compactness, metrizability and connectedness are among them.

The existence of weaker compact topologies has been a topic of study for almost
70 years. Among the most important results in this field, that we might men-
tion, are: Pytkeev’s theorem [8] that any Borel non-σ-compact set has a weaker
compact topology and Belugin’s theorem [3] that if a countable set is removed
from a dyadic compact space, then the resulting space has a weaker compact
topology. Parkhomenko [7] gave a general method of constructing examples of
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second countable spaces with no weaker compact topology; Smirnov [9] used con-
densations (that is, continuous one-to-one maps) onto compact spaces to obtain
applications in dimension theory.

The existence of a weaker metrizable topology has also been studied inten-
sively. Spaces with a weaker metrizable topology are called submetrizable and
many results concerning this class form a part of any serious handbook of general
topology. For more on this topic we refer the reader to the excellent survey of
Gruenhage [6].

The above mentioned research papers were the motivation for the authors of
[10] for studying when a topological space has a weaker connected topology. It was
shown, in particular, that any non-compact T3-space with a countable network,
as well as every countable Hausdorff space which is not H-closed, has a weaker
connected Hausdorff topology. A natural simultaneous strengthening of these
results could be the existence of a weaker connected Hausdorff topology for every
non-H-closed (Hausdorff) space with a countable network. The authors of [10]
formulated this hypothesis as an open question (see Problems 3.2 and 3.3 of [10]).

In this note we prove (Theorem 3.4) that if X is a disconnected Hausdorff space
with a countable network, then X can be condensed onto a connected Hausdorff
space if and only if X is not H-closed. This answers positively Problems 3.2 and
3.3 of the paper [10]. A number of corollaries are given and we conclude this
paper with some open questions.

2. Notation and terminology

All spaces under consideration are Hausdorff. A continuous function f : X →
Y is called a condensation if it is a bijection (we then say that f condenses X

onto Y ). A space X is H-closed if X is a T2-space and it is closed in any T2-space
containing X; the space X is said to be feebly compact if each locally finite family
of open subsets of X is finite. It is well known that each H-closed space and each
countably compact space is feebly compact and that a feebly compact (Hausdorff)
space which is Lindelöf (in particular, if it has a countable network) is H-closed.

If (X, ν) is a space and A ⊂ X, then clν(A), clX(A) (or simply cl(A) if it does
not lead to a misunderstanding) is the closure of A in (X, ν). Similarly, intν(A),
intX(A) or int(A) will denote the interior of A in the topology ν on X. An open
filter ξ on the space (X, ν) is free if

⋂

{cl(U) : U ∈ ξ} = ∅. The notation X ⊕ Y

will denote the disjoint topological union of the spaces X and Y . All other notions
are standard and can be found in [5].
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3. Weaker connected Hausdorff topologies

The purpose of this paper is to find weaker connected Hausdorff topologies on
Hausdorff spaces with countable networks. Our immediate aim is to reduce the
task to finding those for second countable spaces. For this purpose, we will use
a result of Arhangel’skǐı (see for example Lemma 3.1.18 of [5] or Problem 148
of Chapter 2 of [2]), which states that every Hausdorff space with a countable
network can be condensed onto a Hausdorff space with a countable base. For the
sequel, we need a little more.

Lemma 3.1. If (X, τ) has a countable network and is not feebly compact then it
can be condensed onto a second countable space (X, µ) which is not feebly compact.

Proof. Suppose U = {Un : n ∈ ω} is a locally finite family of open sets in X. Let
σ be any second countable topology on X weaker than τ (such a topology exists
by the above-mentioned result of Arhangel’skǐı). For each x ∈ X, let Vx ∈ τ be a
neighbourhood of x which meets only finitely many elements of U . Since (X, τ)
is Lindelöf (see 3.8.12 of [5]), the open cover {Vx : x ∈ X} of X has a countable
subcover {Vxn : n ∈ ω}. Let µ be the topology on X generated by the family

σ ∪ {Vxn : n ∈ ω} ∪ {Un : n ∈ ω}.
It is clear that µ is second countable, µ ⊂ τ , and the family {Un : n ∈ ω}

is a µ-locally finite family of µ-open sets, indicating that the space (X, µ) is not
feebly compact. £

Given open filters {Fn : n ∈ ω} of a topological space X, we say that they
have mutually disjoint bases {Bn : n ∈ ω} if for every n ∈ ω the family Bn is a
base of the filter Fn such that (

⋃

Bn) ∩ (
⋃

Bm) = ∅ for any m 6= n.

Proposition 3.2. Suppose that U = {Un : n ∈ ω} is a locally finite disjoint family
of non-empty open subsets of a space X. Then there is a family {Fn : n ∈ ω}
of open filters in X with mutually disjoint bases {Bn : n ∈ ω} such that the set
⋃

{
⋃

Bn : n ∈ ω} does not meet
⋃

W for some infinite W ⊂ U .

Proof. Consider a partition
⋃

{An : n ∈ ω} of ω in which each set An is infinite
and Am ∩ An = ∅ if m 6= n. For each n ∈ ω let Cn be the cofinite filter on An+1

and let Fn be the open filter on X defined by
G ∈ Fn if and only if G ⊃

⋃

{Uk : k ∈ F} for some F ∈ Cn.
It is routine to check that for each n ∈ ω, the family Fn is a free open filter and

Bn = {
⋃

{Uk : k ∈ F} : F ∈ Cn} is a base of Fn. It follows from An∩Am = ∅ that
(
⋃

Bn) ∩ (
⋃

Bm) = ∅ whenever n 6= m. Finally, (
⋃

{
⋃

Bn : n ∈ ω}) ∩ (
⋃

W) = ∅,
where W = {Un : n ∈ A0} is an infinite locally finite subfamily of U . £
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Lemma 3.3. If (X, τ) is a second countable Hausdorff space which is not H-
closed, then there is a second countable dense-in-itself Hausdorff topology σ ⊂ τ

such that either (X, σ) is connected or it is not H-closed.

Proof. Let D denote the set of isolated points of (X, τ); clearly, D is countable.
There are two cases to consider.
1) If cl(D) is not H-closed, then it is not feebly compact, and hence there is an
infinite locally finite family of non-empty open sets contained in D, which in its
turn implies that there is a closed (in X) infinite subset E ⊂ D which we identify
with ω. Thus X is homeomorphic to X∗ ⊕ ω, where X∗ = X \ E. Let ρ be any
connected second countable Hausdorff topology on ω. Clearly X condenses onto
X∗ ⊕ (ω, ρ). Since (ω, ρ) has no isolated points, it follows from Fact 2.6 of [10],
that it is not H-closed and hence not feebly compact. Thus, by Proposition 3.2
there is a family {Fn : n ∈ ω} of free open filters on (ω, ρ) with mutually disjoint
bases. Choose a dense subset S = {sn : n ∈ ω} of X∗ and construct a topology µ

on the set Y = X∗ ⊕ ω as follows:
µ = {U : U ∩X∗ ∈ τ, U ∩ ω ∈ ρ and for any n ∈ ω

if sn ∈ U , then F ⊂ U for some F ∈ Fn}.
It is now routine to verify that (Y, µ) is a Hausdorff space which is connected

(and hence dense-in-itself) since (ω, ρ) is connected and dense in (Y, µ). Further-
more, since (X, τ) is second countable and condenses onto (Y, µ), it follows that
µ has a countable network and hence (Y, µ) can in its turn be condensed onto a
second countable Hausdorff space (Y, σ) which is necessarily connected.
2) If cl(D) is H-closed, then enumerate D as {dn : n ∈ ω}. Since X is not
H-closed, there is an infinite locally finite family of non-empty open subsets of
X. Only finitely many of them can meet the set cl(D) which is feebly compact.
Thus, there is an infinite locally finite family of open sets U = {Un : n ∈ ω}, such
that Un∩ cl(D) = ∅ and hence each of the sets Un is dense-in-itself. By Lemma
2.1 of [11], we may assume the sets Un to be disjoint. By Proposition 3.2, there
are open filters {Fn : n ∈ ω} with mutually disjoint bases {Bn : n ∈ ω} such that
the set

⋃

{
⋃

Bn : n ∈ ω} does not meet
⋃

W for some infinite W ⊂ U .
Define a topology µ as follows:

µ = {U ∈ τ : for any n ∈ ω if dn ∈ U then F ⊂ U for some F ∈ Fn}.
For each n ∈ ω, a µ-neighbourhood of dn contains an element of Fn and

hence (X, µ) is dense-in-itself. Suppose that V, W are disjoint τ -open sets and
let P = {n ∈ ω : dn ∈ V } and Q = {n ∈ ω : dn ∈ W}. It is easy to see that
for each n ∈ P ∪Q, we can choose Wn ∈ Fn in such a way that the µ-open sets
V ′ = V ∪

⋃

{Wn : n ∈ P} and W ′ = W ∪
⋃

{Wn : n ∈ Q} are disjoint (note that
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one or both of the sets P, Q may be empty). To prove that (X, µ) is Hausdorff,
suppose x, y ∈ X are distinct. There are disjoint V, W ∈ τ with x ∈ V and
y ∈ W and then V ′, W ′ constructed above are disjoint µ-neighbourhoods of x

and y respectively.
Although the space (X, µ) may fail to be second countable, the proof can be

concluded as follows: observe that the family W consists of µ-open sets and is
locally finite in µ, whence (X, µ) is not feebly compact. Since µ ⊂ τ , the space
(X, µ) has a countable network. Apply Lemma 3.1 to conclude that (X, µ) can be
condensed onto a second countable non-H-closed space (X, σ). Finally, observe
that (X, σ) is dense-in-itself because so is (X, µ). £

Lemmas 3.1 and 3.3 show that in the quest for condensations of Hausdorff
spaces with countable networks onto connected Hausdorff spaces, we can restrict
attention to those second countable Hausdorff topologies which are dense-in-
themselves.

Recall that an open set U is regular open if int(cl(U)) = U .

Theorem 3.4. A disconnected second countable dense-in-itself Hausdorff space
(X, τ) can be condensed onto a second countable connected Hausdorff space if and
only if it is not H-closed.

Proof. For the necessity, we note that if (X, τ) is disconnected then there is a
non-empty proper clopen set U ⊂ X. If X is H-closed then it is easy to see that
U will be clopen in any Hausdorff topology σ ⊂ τ . Hence (X, σ) is disconnected.

Suppose now that (X, τ) is not H-closed and hence not feebly compact. There
is some infinite locally finite family U = {Un : n ∈ ω} of open sets in X which we
may assume to be disjoint and regular open. By adding the (regular) open set
X\cl({Un : n ∈ ω}) to U if necessary, we may further assume thatD = ∪{Un : n ∈
ω} is dense in X. Let En be a countable dense subset of Un; since En is a countable
second countable Hausdorff space, it follows from Theorem 2.1 of [1] that En has
a dense regular subspace, which we denote by Qn. As Qn is a countable, first
countable, dense-in-itself, regular space, it must be homeomorphic to the rationals
Q with the usual metric topology ν. Denote by hn some homeomorphism from
Qn onto Q. Let ρ be a connected second countable Hausdorff topology on ω.
Given T ∈ ν and W ∈ ρ, we define

O(T, W ) = ∪{intτ (clτ (h−1
n [T ])) : n ∈ W}.

For each T ∈ ν and W ∈ ρ, it is immediate that O(T, W ) ∈ τ . We define a
topology σ on X as follows:

σ = {U ∈ τ : for all x ∈ U ∩D there exist T ∈ ν
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and W ∈ ρ such that x ∈ O(T, W ) ⊂ U}.
Obviously, σ ⊂ τ and we leave to the reader the straightforward verification

that σ is indeed a topology. We proceed to prove that (X, σ) is a Hausdorff space.
To this end, suppose x, y are distinct elements of X.
1) x, y ∈ D. If x ∈ Un and y ∈ Um, where m 6= n, then there are mutually disjoint
W1, W2 ∈ ρ such that n ∈ W1 and m ∈ W2. The sets O(Q, W1) and O(Q, W2)
are σ-open disjoint neighbourhoods of x and y respectively. On the other hand,
if x, y ∈ Un for some n ∈ ω, then there are disjoint τ -open neighbourhoods
U, V ⊂ Un of x, y respectively. If we define T1 = hn[U ∩Qn] and T2 = hn[V ∩Qn],
then x ∈ O(T1, ω) ∈ σ, y ∈ O(T2, ω) ∈ σ and O(T1, ω) ∩O(T2, ω) = ∅.
2) x ∈ D, say x ∈ Un and y ∈ X\D. There exist disjoint τ -open sets U, V with the
following properties: x ∈ U ⊂ Un, y ∈ V and the set M = {m ∈ ω : V ∩ Un 6= ∅}
is finite, say M = {m1, . . . , mk}. Since (ω, ρ) is Hausdorff, there are disjoint sets
W1, . . . , Wk ∈ ρ such that mi ∈ Wi for each i ∈ 1, . . . , k.

If n ∈ M , say n = mj then the sets G = O(hn[U ∩ Qn], Wj) and H =
V ∪

⋃

{O(Ti, Wi) : 1 ≤ i ≤ k} where Ti = Q if i 6= j and Tj = hn[V ∩ Qn] have
the property that H, G ∈ σ, H ∩G = ∅ and x ∈ G, y ∈ H.

If, on the other hand, n 6∈ M , then we choose disjoint sets W0, W1, . . . , Wk ∈ ρ

such that n ∈ W0 and mi ∈ Wi for i = 1, . . . , k. The sets G = O(Q, W0) and
H = V ∪

⋃

{O(Q, Wi) : 1 ≤ i ≤ k} are disjoint σ-open neighbourhoods of x and
y respectively.
3) If x, y ∈ X\D, then choose disjoint τ -open sets U and V such that x ∈ U , y ∈ V

and the sets A = {n ∈ ω : U ∩ Un 6= ∅} and B = {n ∈ ω : V ∩ Un 6= ∅} are both
finite. For each n ∈ A ∪B, choose a ρ-open set Wn in such a way that if m 6= n,
then Wm ∩ Wn = ∅. The sets G = U ∪

⋃

{O(hm[U ∩ Qm], Wm) : m ∈ A} and
H = V ∪

⋃

{O(hm[V ∩ Qm], Wm) : m ∈ B} are disjoint τ -open neighbourhoods
of x and y respectively.

For each q ∈ Q, consider the set Yq = {h−1
n [q] : n ∈ ω}. It is clear that

(Yq, σ|Yq) is homeomorphic to (ω, ρ) and hence is connected. The set Y = ∪{Yq :
q ∈ Q} is τ -dense and hence σ-dense in X. Since the space (ω, ρ) is countable,
connected and Hausdorff, it is not H-closed (see, for example, Lemma 3.3 of [11]);
being second countable it is not feebly compact. Thus there is an infinite locally
finite family W = {Wn : n ∈ ω}, of open subsets of (ω, ρ), which we may assume
to be disjoint. We claim that the infinite family of mutually disjoint σ-open sets
V = {O(Q, Wn) : n ∈ ω} is locally finite.

To prove our claim, suppose x ∈ X. If x ∈ D, say x ∈ Un, then since W
is locally finite, there is some open ρ-neighbourhood V of n which meets only
finitely many elements of W. Now O(Q, V ) is a σ-neighbourhood of x which
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meets only finitely many elements of V. If, on the other hand, x ∈ X \ D,
then x has a τ -neighbourhood V which meets only finitely many elements of U ,
say {Un1 , . . . , Unk

}. Since W is locally finite there are disjoint ρ-neighbourhoods
{Vn1 , . . . , Vnk

} of n1, . . . , nk respectively each meeting only a finite number of
elements of W. Now V ∪

⋃

{O(Q, Vnj ) : 1 ≤ j ≤ k} is a σ-neighbourhood of x

meeting only finitely many elements of V, and our claim is proved.
Let F be the σ-open filter generated by the family of sets

{{O(Q, Wn) : n ≥ k} : k ∈ ω};
then F is a free open filter on (X, σ). Choose an x ∈ X and define a new topology
µ = {U ∈ σ : x /∈ U or U ∈ F}.

Clearly, µ ⊂ σ and it is straightforward to check that (X, µ) is a Hausdorff
space. The filter F converges to x in the topology µ and for any q ∈ Q any
element of F meets Yq. Therefore x ∈ clµ(Yq) for all q ∈ Q. As a consequence,
the subspace {x}

⋃

{Yq : q ∈ Q} is connected and dense in (X, µ), whence (X, µ)
is connected. Since µ ⊂ τ , the space (X, µ) has a countable network. If λ ⊂ µ is
any Hausdorff second countable topology, then (X, τ) condenses onto the space
(X, λ) which is Hausdorff, second countable and connected. £

Combining the results of Lemmas 3.1 and 3.3 and Theorem 3.4, we obtain:

Corollary 3.5. A disconnected Hausdorff space X with a countable network can
be condensed onto a connected (second countable) Hausdorff space if and only if
it is not H-closed.

Recall that, given a Tychonoff space X, a point y ∈ βX \X is called remote
if for any nowhere dense subset D of the space X we have y /∈ clβX(D). In the
paper [4], van Douwen proved, among other things, that there are remote points
in βR \ R.

Example 3.6. There exists a Tychonoff non-compact (and hence non-H-closed)
space X of countable π-weight, which does not have a weaker Hausdorff connected
topology.

Proof. Let p ∈ βR \ R be a remote point of βR. Take any points a, b 6∈ βR
and let X = (βR \ {p}) ⊕ {a} ⊕ {b}. It is clear that X is not compact and has
countable π-weight. We will show that every weaker Hausdorff topology on X

has an isolated point. To this end, suppose that τ is such a topology on X. By
Corollary 4.3 of [11], βR \ {p} has only one free open ultrafilter, which we denote
by F . If neither a nor b are isolated points of (X, τ), then it follows that the
traces on βR \ {p} of the τ -open neighbourhood filters of a and of b, are free
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open filter bases on βR \ {p} which we denote by Va and Vb respectively. Both
Va and Vb are contained in free open ultrafilters on βR \ {p} and since F is the
unique one, we must have Va,Vb ⊂ F . Thus each τ -neighbourhood of a meets
each τ -neighbourhood of b, a contradiction, and so one of the points a or b is
isolated in (X, τ). £

Corollary 3.7. Any non-compact metric space (X, τ) of weight ≤ c has a weaker
second countable connected Hausdorff topology.

Proof. Since X is not compact, there is a continuous unbounded function f :
X → R. Let U = {f−1((p, q)) : p, q ∈ Q}. Then U is a countable family of open
subsets of X such that for any topology µ on X, if U ⊂ µ then the function f is
µ-continuous.

Any metrizable space of weight ≤ c embeds into the countable power of the
hedgehog with c spines. It is clear that such a hedgehog condenses onto a subset
of the plane R2 with the natural topology. Thus, X condenses onto a second
countable space (Y, σ). The topology σ might be compact but the following
modification helps us get round this obstacle.

Take a countable base B for σ and let µ be the topology generated by the
family U ∪ B as a subbase. Having a countable subbase, µ has a countable base.
Clearly, µ ⊂ τ and µ is Hausdorff being stronger than the Hausdorff topology σ.
Moreover, the function f is unbounded and µ-continuous, whence (X, µ) is not
H-closed. The result now follows from Corollary 3.5. £

Corollary 3.8. If either
(1) X is a non-compact regular Lindelöf space with a Gδ-diagonal, or
(2) X is a non-H-closed Hausdorff space with a Gδ-diagonal and X × X is

Lindelöf,
then X condenses onto a connected Hausdorff space.

Proof. It is well-known that a regular Lindelöf space with a Gδ-diagonal con-
denses onto a regular second countable space (see 210, Chapter V of [2]). However,
the result of the condensation might be compact. We will show that under either
hypothesis (1) or (2) the space X condenses onto a non-H-closed second count-
able space. Note that, in both cases X is not feebly compact and therefore there
exists a locally finite family γ = {Un : n ∈ ω} of non-empty open subsets of X.

Let U be a countable open cover of X such that each U ∈ U intersects only
finitely many elements of γ.
(1) By 210, Chapter V of [2], X condenses onto a regular second countable space
(Y, σ). Take a countable base B for σ and let µ be the topology generated by the
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family γ ∪ U ∪ B as a subbase. Having a countable subbase, µ has a countable
base. Clearly, µ ⊂ τ and µ is Hausdorff being stronger than the regular topology
σ. Moreover, the family γ is locally finite in µ whence (X, µ) is not H-closed.
Apply Corollary 3.5 to finish the proof of (1).
(2) Let ∆ = {(x, x) : x ∈ X} be the diagonal of X. Since X × X is Lindelöf
and (X ×X) \∆ is a countable union of closed subsets of X ×X, it is Lindelöf.
For any distinct x, y ∈ X fix U(x,y), V(x,y) ∈ τ with x ∈ U(x,y), y ∈ V(x,y) and
U(x,y) ∩ V(x,y) = ∅. Let C = {U(x,y) × V(x,y) : (x, y) ∈ (X ×X) \∆}. Clearly, C
is an open cover of (X ×X) \∆; let C′ be a countable subcover of C. Take any
countable family W ⊂ τ such that C′ ⊂ {U × V : U, V ∈ W}.

Let σ be the topology generated by the family W. Observe that it is second
countable; to show that it is Hausdorff take distinct x, y ∈ X. There exist U, V ∈
W such that U × V ∈ C′ and (x, y) ∈ U × V . Then x ∈ U ∈ σ, y ∈ V ∈ σ and
U ∩V = ∅ because (U ×V )∩∆ = ∅. Now let µ be the topology generated by the
family γ∪U∪W as a subbase. Having a countable subbase, µ has a countable base.
Clearly, µ ⊂ τ and µ is Hausdorff being stronger than the Hausdorff topology σ.
Moreover, the family γ is locally finite in µ, whence (X, µ) is not H-closed. Now
Corollary 3.5 concludes the proof of (2). £

We end with some open questions:

Problem 3.9. Let X be a non-H-closed Hausdorff space with a σ-locally finite
base. Does X have a weaker connected Hausdorff topology?

The authors and G. Gruenhage proved recently that for metrizable spaces the
answer is positive. Note however, that Corollary 3.7 gives more for metrizable
spaces of weight ≤ c, because the weaker topology in this case can be chosen to
be second countable.

Problem 3.10. Suppose that X is a non-compact regular Lindelöf space. Does
X have a weaker connected Hausdorff topology? What if X is first countable?

Problem 3.11. Suppose that X is a non-H-closed Lindelöf Hausdorff space.
Does X have a weaker connected Hausdorff topology? What if X is first countable
or has a Gδ-diagonal?
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