
Abstract-A novel pilot aided channel estimation scheme is consid-
ered for wireless MIMO systems in presence of fading correlation.
Assuming a linear minimum mean squared error based channel
estimator, it is demonstrated that adequate statistical shaping of
the training sequence depending on the correlation properties of
the channel can minimize the estimation mean squared error.
The new scheme is a general concept that can also readily be
applied to smart antenna multiple-input single-output systems.
With long-term update intervals of the correlation properties of
the channel, the complexity of the concept is moderate and allows
for an implementation in FDD systems. Simulation results for var-
ious MIMO transmission systems including realistic channel esti-
mation demonstrate the effectiveness of the proposed scheme with
a significant SNR gain.

I. INTRODUCTION

The assumption of a rich scattering environment leading to
uncorrelated fading between the antenna elements of a wireless
MIMO system has to be abandoned in typical cellular scenar-
ios with an exposed antenna array at the base station and quasi-
line-of-sight propagation conditions [1][2].  If the system is not
properly designed to adapt to this situation, fading correlation
can have a catastrophic impact on performance.  This is espe-
cially true for linear spatial signal processing at the receiver
[10].

However, knowledge of the correlation properties of the
channel (e.g. in form of the correlation matrices) at the trans-
mitter can beneficially be exploited for improving transmission
quality. While on one hand this knowledge can be used to
improve data transmission (e.g. [11]), the focus of this paper is
on channel estimation aspects. Increasing array sizes require a
larger overhead for channel estimation purposes, thus limiting
the overall spectral efficiency [3]. Advanced channel estima-
tion (CE) schemes are therefore a critical part of coherently
modulated MIMO systems [4][5].

Assuming a linear minimum mean squared error (MMSE)
channel estimator [6] at the receiver and orthogonal training
sequences,  we derive the optimum linear transmit prefilter for
the training block that minimizes the mean squared error
(MSE) of the channel estimator. Alternatively, the statistical
prefiltering scheme can also be considered as optimal training
sequence design for correlated MIMO channels. Our deriva-
tions are based on a standard flat fading channel model,

whereas a generalization to arbitrary channel models is
straightforward. 

Monte-Carlo bit error rate (BER) simulations comprising CE
effects for various signal processing approaches, e.g. transmis-
sion on the maximum eigenmode of the MIMO channel, dem-
onstrate the effectiveness of the proposed scheme.

II. SIGNAL AND CHANNEL MODEL

In the remainder of the paper, bold lowercase letters denote
column vectors, bold uppercase letters describe matrices, by I
we denote an identity matrix,  [X]i,j is the element in row i and
column j of matrix X, vec(X) stacks the columns of matrix X in
a column vector, diag(x)=diag(xT) returns a diagonal matrix
with the elements of x on the diagonal, ⊗  is the Kronecker
product, X* means complex conjugate, XT means transpose,
and XH means Hermitian (conjugate transpose).

We consider the transmission of a training sequence over a
flat fading MIMO link in Fig.1 with noise whitening at the
receiver  modeled by

, (1)

where S is a MTX×Nt training sequence of length Nt. MTX is
the number of TX antennas.  We assume orthogonal training
sequences, such that S is a matrix fulfilling

. (2)

For example, a possible choice for a training sequence ful-
filling (2) could be a standard DFT matrix with elements

. (3)

F is a MTX×MTX linear matrix transmit prefilter.  We men-
tion that the product FS could also be interpreted as a new
training sequence , however, due to the invertibility of S,
both formulations are mathematically equivalent.

H is the MRX×MTX MIMO channel matrix with correlated
Rayleigh fading elements,  is the MRX×Nt noise matrix
before noise whitening,  N is the MRX×Nt noise matrix after
noise whitening, and Y is the noisy MRX×Nt receive sequence
(see Fig.1).  By MRX we denote the number of RX antennas.
Furthermore, if we decompose  into its column vectors
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, (4)

the covariance matrix of the column vectors is

. (5)

It is then obvious that the matrix N in (1) models white
Gaussian noise with identity covariance matrix.  By appropri-
ate processing of the received training sequence Y, the MIMO
receiver is capable of producing a channel estimate  in Fig.1.

Fig. 1: System model

Using a widely accepted simplified channel model (see e.g.
[1]), the correlated MIMO channel can be described by the
matrix product

, (6)

where Hw is a MRX×MTX matrix of complex i . i.d. Gaussian
variables of unity variance and

, (7)

where RRX and RTX is the long-term stable (normalized)
receive and transmit correlation matrix, respectively.

III. LINEAR MMSE CHANNEL ESTIMATION

In order to derive the MMSE MIMO channel estimator, we
rewrite (1) in vector form to apply standard results from esti-
mation theory

, (8)

where we have used [7]

. (9)

Denoting the covariances of h and n by Rhh and Rnn, respec-
tively, the linear MMSE estimator of h is given by  the well-
known equation [8]

. (10)

Obviously, the receiver needs to know the channel covari-
ance Rhh and X, which is also a function of Rhh (see below), in
the estimation process.  The noise vector is white Gaussian
with Rnn=I and with the channel model (6), we find via appli-
cation of (9)

(11)

the typical Kronecker correlation structure of the given
channel model. The covariance matrix of the resulting estima-
tion error vector  is then [8]

. (12)

It is already clear from (12) that the channel covariance Rhh
dominates at low SNR, while the second term dominates in the
high SNR region.  We can therefore expect that statistical pre-
filtering based on the correlation properties of the channel
given in Rhh is only effective at lower SNR.  Simulation results
will confirm this perception.

Plugging the definitions from (8) in (12) results in

, (13)

where we have used (2) and

. (14)

We deploy the overall MSE ε as a measure of the quality of
the MIMO channel estimator, namely from (13)

. (15)

Assuming that the transmitter has information on the long
term stable channel correlation properties given in RTX and
RRX, it is obvious from (15) that by appropriately designing
the linear prefilter F, the overall MSE ε of the channel estima-
tor may be minimized.  Due to the space limitation (see [12] for
extensions), we are restricting the following analysis to the
case of additive white Gaussian noise (AWGN), i.e.

, resulting in

. (16)

Now, based on (16), the optimum prefilter F may be
designed for various propagation scenarios.  After introducing
the eigenvalue decompositions (EVD) with matrices ΛRX and
ΛTX, which contain the sorted (descending) eigenvalues

, (17)

we find from (16) using (14)

. (18)

Then setting without loss of generality

(19)

with diagonal Φf (see [12] for a proof of the diagonality) and
diagonal elements φf,l we get from (18)

. (20)

We use the term long-term eigenmode transmission for the
special prefilter-design in (19), due to the fact that we essen-
tially apply beamforming for each single-dimensional training
sequence along the eigenvectors of the transmit correlation
matrix with power allocation via the matrix elements φf,l.
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H Rñ ñ= 1 i Nt≤ ≤,

Ĥ
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A. Both Receive and Transmit Correlation

Minimization of (20) via matrix filter F (Φf, respectively)
under a power constraint ρ results in the optimization problem

, (21)

where ’s. t.’ stands for ’subject to’. However, the argument
of the trace operator in (21) is diagonal, such that with

and alike definitions for the
elements of ΛTX and ΛRX we get after simple transformations
an equivalent diagonalized, i.e. scalar problem.

We emphasize that the diagonalization due to the prefilter
structure also simplifies the estimation process in the receiver
according to (10), where only diagonal matrices have to be
inverted (for further details see [12]).

Using the Lagrange method for constrained optimization
problems with Lagrange multiplier µ, we find the necessary
condition

. (22)

for all 1≤l≤MTX.  A general closed-form solution of (22)
can not be given for arbitrary choices of ΛTX and ΛRX.  In this
case, numerical optimization techniques may be deployed.

However, we mention that the optimization problem can be
solved in the low and high SNR region, which is outlined in
[12]. Summarizing the results, for high SNR the optimum pre-
filter turns out to be a (scaled) identity matrix, i.e. there is
essentially no prefilter at high SNR. This agrees with the state-
ment above on the MSE in (12). On the other hand, at lower
SNR the optimum prefilter pours all available power on the
strongest long-term eigenmode of the channel, such that stan-
dard training sequences are clearly suboptimum in this SNR
region.

B. Transmit Correlation only

We further specialize the problem by assuming a semi-corre-
lated channel with transmit correlation only.  This is a typical
downlink scenario with an exposed base station transmit
antenna array and a mobile station surrounded by a huge num-
ber of scatterers.  Now ΛRX=I and (22) reads

. (23)

Solving for φf,l and rewriting in matrix notation leads to

, (24)

where we implicitly have eliminated the Lagrange multiplier
via the power constraint.  The ’+’ sign  in (24) indicates that all
φf,l have to be greater or equal to 0. This can be assured in an
iterative procedure, where the weakest eigenmodes are consec-
utively switched off by setting the corresponding φf,l to 0. The
switching points are studied in [12].

C. Receive Correlation only

On the other hand, if the fading at the transmit antenna array
is completely uncorrelated, i.e. ΛTX=I, and there is only corre-
lation present at the receiver, (22) reads again for all 1≤l≤MTX

. (25)

This can only be fulfilled if all φf,l agree in size, i.e. for this

special case we find in matrix notation Φf=ρ/MTX·I, implying
that the training sequence is left unchanged.  This result agrees
with intuition.  When there is no transmit correlation present,
there are no prominent directions and the transmitter equally
distributes power.

IV. CHANNEL ESTIMATION MEAN SQUARED ERROR

We study the effects of statistically shaping the training
sequence according to the correlation properties of the channel
with a prefilter F designed according to (19) and matrix Φf
according to (24), i.e. we are focusing on the case of TX corre-
lation only.  To this end, we investigate the overall MSE of the
channel estimator given in (18) or (20), respectively.

In the simulations of this paper, a new random channel
matrix is determined via (6) for each training sequence and
subsequent data transmission, with the long-term stable corre-
lation matrices RTX and RRX=I held constant for the the total
link level simulation.  Again, we emphasize that they are both
assumed to be known to RX as well as TX.  The transmission
of the training sequence is then modelled with (1).  Via (10) the
channel is estimated, whereas we assume that the channel is
constant during the transmission of the training sequence.
Both RX and TX arrays have an antenna element spacing of
0.5 wavelengths, assuming a uniform linear array (ULA) for
both.

In the presence of fading correlation, we assume at the trans-
mit side a mean direction of departure (DOD) of 20 degrees
with respect to the array perpendicular and a root mean square
angular spread (AS) characterized by a Laplacian power distri-
bution.  RTX is chosen according to these assumptions.

We study an AWGN (i.e. no colored interference) scenario
with the SNR given by

, (26)
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where Eb is the energy per information bit.  Throughout our
simulations we normalize the total transmitted energy per
channel use to ρ=MTX and assume QPSK modulation.

In Fig.2 we have plotted the resulting MSE of the channel
estimator for a 4×4 system with TX correlation according to an
AS of 2 degrees (strong correlation in order to highlight the
effects) with and without prefiltering of a DFT training
sequence, whereas the resulting transmit correlation matrix
reads for the given propagation parameters

. (27)

With a length Nt=8 training sequence one can observe a sig-
nificant reduction of the MSE with prefiltering over a wide
SNR range with a maximum in the range of -10 to 0 dB.  As
expected, a shorter training sequence leads to a shift to the
right.

Fig. 2: MSE with TX AS 2°, MTX=4, MRX=4

If the channel is less correlated with an AS of 10 degrees at
the TX in Fig.3, as expected, the SNR range with improved
channel estimator MSE is reduced.  Moreover, the improve-
ment is less pronounced.

Fig. 3: MSE with TX AS 10°, MTX=4, MRX=4,  Nt=4

The insights gained from the MSE simulations above are the
key for effectively deploying the proposed CE scheme. Obvi-
ously, it can only improve the system performance, if the oper-
ating point of the system agrees with the range of MSE
improvements (depicted for special cases in Fig.2 and Fig.3).

V. BER SIMULATIONS

We consider the application of the proposed CE scheme to
various uncoded MIMO systems. As was mentioned above, the
channel is assumed to be perfectly interleaved, i.e. it has no
memory and consecutive instantiations are independent. We
mention that in this case, CE can not be improved by appropri-
ate filtering in time.

A. Maximum Eigenmode Transmission

With a low mobility mobile station and time division duplex
(TDD) transmission, we can approximately assume reciprocity
of the wireless channel.  In this case, receiver as well as trans-
mitter are aware of the instantaneous channel state.  Under
those conditions, we can deploy maximum eigenmode trans-
mission in the MIMO system, which is especially suited for
strongly correlated channels. Omitting details, transmitter as
well as receiver essentially apply the eigenvector correspond-
ing to the maximum eigenvalue of the equivalent channel
(resulting from the combination of channel, noise whitening
and matched filtering) as beamforming vectors for the trans-
mission of a single data stream. Maximum eigenmode trans-
mission can thus exploit the full beamforming gain of both
transmit and receive antenna array.

In order to separate the effects of CE at RX and TX, we pre-
sume ideal CE at the TX, while RX CE is based on the novel
CE scheme.  In Fig.4 we have plotted BER simulation results
for a 4×4 system with QPSK modulation.  The performance
improvement due to enhanced CE is obvious in this strongly
semi-correlated scenario with an AS of 2 degrees at the TX.  A
gain of 1.0 to 1.7 dB in SNR can be observed in the given
range for Nt=8, for Nt=16 the gain is 0.7 to 1 dB.

Fig. 4: BER of maximum eigenmode transmission
with TX angular spread 2°, MTX=4, MRX=4
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B. Maximum Likelihood Receiver

We apply the novel scheme to another system with non-
adaptive transmitter and maximum likelihood (ML) receiver
[13].  In general it can be stated that the ML receiver is very
robust with respect to CE errors.  However, one can still
observe an improvement when deploying the novel concept
(Fig.5).  With a training sequence of minimum length Nt=4 the
gain is in the range of 0.4 to 0.8 dB.  A longer training
sequence Nt=8 reduces the gain to 0.1 to 0.4 dB for the given
SNR span. 

Fig. 5: BER of ML detection with TX angular spread 2°, MTX=4, MRX=4

C. Alamouti Scheme

In case of the Alamouti scheme [9], the full diversity of the
MIMO channel can be exploited without the need for TX chan-
nel state information.  For CE at the RX, we deploy the new
scheme.  Simulation results for a 2×2 system are given in Fig.6,
again for a semi-correlated channel with an AS of 2 degrees at
the TX.

Fig. 6: BER of Alamouti scheme with TX AS 2°, MTX=2, MRX=2

While the Alamouti scheme is again very robust in the pres-
ence of CE errors, a small gain of 0.4 to 0.8 dB with Nt=2 and
0.1 to 0.4 dB with Nt=4, respectively, can be seen.  Note that

the curves for Nt=2 with prefiltering and Nt=4 without prefil-
tering coincide and can not be differentiated in the figure.

VI. CONCLUSION

We have introduced an optimized channel estimation con-
cept for correlated MIMO channels that adapts the training
sequence to the prevailing correlation properties of the chan-
nel.  Its application was demonstrated with standard MIMO
signal processing algorithms, exhibiting a significant gain
compared to standard MMSE channel estimation. Particularly,
the improvements emerge at lower SNR, where channel esti-
mation is a critical system aspect. The adaptive transmit pro-
cessing of the training sequence is based on long-term stable
statistical channel state information only. Therefore, the con-
cept can readily be applied to frequency division duplex sys-
tems.

The investigation of system aspects and estimation of chan-
nels with frequency selective fading as well as memory are
topics of future study.
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