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The abilities of bone to remodel, fractures to repair, and bone grafts to incorporate are all fundamental reflections of the
bone remodeling cycle. This process is characterized by the recruitment and differentiation of osteoblastic and osteo-
clastic cell populations, whose cellular activities are coordinated and regulated by an elaborate system of growth factors
and cytokines. One of the crucial biological factors responsible for reparative osseous activity is platelet-derived growth
factor (PDGF). The potent stimulatory effects of PDGF as a chemoattractant and mitogen for mesenchymal cells (including
osteogenic cells), along with its ability to promote angiogenesis, have been demonstrated in a variety of preclinical
models predicting maxillofacial, spine and appendicular skeletal, and soft-tissue applications. The biological profile of
PDGF, including its ability to recruit osteoprogenitor cells, makes it particularly suited to address the skeletal defects that
are seen with comorbid conditions such as osteoporosis, diabetes, and the effects of smoking. The clinical success and
safety that have been demonstrated with use of recombinant human PDGF (rhPDGF) in the repair of periodontal defects
have led to U.S. Food and Drug Administration (FDA) approval of rhPDGF for this indication. Ongoing pilot and pivotal trials
in the United States and internationally will continue to clarify the promising role of PDGF in the treatment of challenging
skeletal disorders.

PDGF and the Bone Remodeling Cycle

T
he skeleton has a robust, intrinsic capacity to regenerate
during homeostasis and following injury. This re-
markable regenerative process is characterized by the

remodeling cycle, in which cell populations are recruited and
differentiated for the purposes of bone resorption or bone
formation. These activities are coordinated and regulated by an
elaborate system of growth factors and cytokines, several of
which are either now available or in promising stages of de-
velopment for clinical application through recombinant tech-
nology. One of the crucial biological factors responsible for
reparative osseous activity is PDGF. PDGF works by binding to
cell-surface receptors on most cells of mesenchymal origin, and
it stimulates the reparative processes in multiple tissue types.
The potent stimulatory effects of PDGF as a chemoattractant
and a mitogen, along with its ability to promote angiogenesis,
position it as a key mediator in tissue repair. As a consequence
of the recognized importance of PDGF in wound-healing and
its orthopaedic therapeutic potential, a review on PDGF is
timely. This article will highlight the biology behind PDGF, the
preclinical history of PDGF in dentistry and orthopaedics, and

the compelling dental and clinical orthopaedic studies of PDGF
that have appeared in the literature.

Biology
PDGF Expression and Function in Bone-Healing

The family of PDGF polypeptide growth factors includes
PDGF-A, B, C, and D, encoded by four genes located on

different chromosomes. PDGF-A and PDGF-B can form both
homodimers and heterodimers, whereas PDGF-C and PDGF-
D exist as homodimers1. PDGF has a half-life of approximately
thirty minutes when circulating in the blood2-4, suggesting that
local delivery of the growth factor will be critical to achieving
clinical success.

Following injury and hemorrhage, bone repair is char-
acterized by activation of the coagulation cascade and forma-
tion of a blood clot at the site of trauma (Fig. 1). Platelets
aggregate and release their cytokine-laden granules, including
varying amounts of PDGF-AB, PDGF-AA, PDGF-BB, and
PDGF-CC, into the developing blood clot5-8. The PDGFs act
early in the wound-healing cascade by initially attracting and
activating neutrophils and macrophages9-13, which are key cell
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mediators of early tissue repair. These cells then serve as an
ongoing source of PDGFs and other growth factors that are
responsible for the formation of granulation tissue, which is
the next step in endochondral bone repair. PDGFs also exert
mitogenic and chemotactic activity on osteogenic cells derived
from calvaria14-16, periosteum of long bones17, trabecular
bone18,19, and bone-marrow stromal cells20-22.

Chemotaxis and mitogenesis of a variety of mesenchymal-
derived cells, including fibroblasts, osteoblasts, chondrocytes,
and smooth muscle cells, are also accomplished by the local
release of PDGF into the wound-healing milieu. Additionally,
the ability of PDGF to recruit mesenchymal precursor cells,
with their subsequent differentiation into osteoblasts, is par-
ticularly noteworthy in the setting of compromised bone-
healing, such as that which occurs with diabetes mellitus. A
decrease in cellular proliferation within the fracture callus and
reduced levels of PDGF transcripts have been demonstrated in
diabetic rats23. Furthermore, platelets from diabetic patients
have been reported to contain less PDGF than those from
individuals without diabetes24. In light of the beneficial effect of
PDGF in the treatment of soft-tissue diabetic ulcers25, we ex-

pect a similar beneficial role for PDGF therapy for bone repair
in diabetic patients.

PDGF Isoforms and Signaling
The PDGF molecules signal through two cell-surface receptors,
termed PDGF-R alpha and PDGF-R beta, which are capable of
forming homodimers as well as heterodimers26. The different
isoforms of PDGF have different binding specificities to the
two receptors. PDGF-R alpha/alpha dimers bind PDGF-AA,
AB, BB, and CC; alpha/beta dimers bind PDGF-AB, BB, CC,
and DD; and beta/beta dimers bind PDGF-BB and DD. Dif-
ferent cell types will respond more or less strongly to the dif-
ferent PDGF isoforms depending on the level of expression of
the two receptors. PDGF-BB is considered the universal PDGF
isoform because of its ability to bind to all known PDGF re-
ceptor isotypes.

PDGF Cell Targets
Osteogenic progenitor cells respond to PDGF ligand-binding
by activation of Src tyrosine kinases27-29 as well as activation
of the AKT protein kinase and Grb2-mediated extracellular-

Fig. 1

Platelet-derived growth factor (PDGF): Mechanism of action and bone regeneration. As a consequence of injury, alpha granules

containing PDGF are jettisoned by platelets for the purpose of angiogenesis, chemotaxis, and mitogenesis. In addition, PDGF up-

regulates vascular endothelial growth factor (VEGF), further enhancing angiogenesis. Transforming growth factor-beta (TGF-b) also

appears to play a role in chemotaxis and cell proliferation during wound-healing. The attraction of osteoprogenitor cells (chemotaxis)

and their increase in number (mitogenesis) provide a pool of osteo-regenerative cells that will respond to the bone morphogenetic

proteins (BMPs). BMP is a differentiating factor. Consequently, BMPs and PDGF are primary and powerful co-regulatory controls

for healing and regeneration of bone. (Reprinted, with permission, from: Hollinger JO, Hart C, Gruber R, Doll B. Protein therapeutics

and bone healing. In: Lynch SE, Wisner-Lynch LA, Nevins M, Marx RE, editors. Tissue engineering: applications in oral and maxillo-

facial surgery and periodontics. 2nd ed. Chicago: Quintessence; 2008. p 5.)

49

TH E J O U R N A L O F B O N E & JO I N T SU R G E RY d J B J S . O R G

VO LU M E 90-A d SU P P L E M E N T 1 d 2008
RE C O M B I N A N T HU M A N PL AT E L E T-DE R I V E D GR OW T H FAC T O R :
BI O L O G Y A N D CL I N I C A L AP P L I C AT I O N S



regulated kinase-signaling29. As a consequence, PDGF is able to
increase the pool of osteogenic cells at the injury site, acting as
both a chemotactic agent and a mitogen. The subsequent
differentiation of these cells into osteoblasts or chondrocytes is
directed by the bone morphogenetic protein (BMP) family30,31,
hedgehog proteins32,33, and activation of the Wnt-signaling
pathway34.

PDGFs exert indirect effects on bone regeneration by
increasing the expression of angiogenic molecules such as
vascular endothelial growth factor (VEGF)35, which is an im-
portant molecule in bone regeneration36, and hepatocyte growth
factor37 as well as the proinflammatory cytokine interleukin-
638. PDGF-BB, locally applied, will destabilize blood vessels,
purportedly due to pericytes or vascular smooth muscle cells
following the PDGF chemotactic gradient39. As a consequence,
blood vessels contiguous to the healing wound are able to
‘‘sprout,’’ and a filamentous web of neovasculature homes into
the granulation tissue. When PDGF-BB is coadministered with
VEGF and basic fibroblast growth factor, corneal and ischemic
limb revascularization is observed40,41. The mechanism involves
the upregulation of PDGF receptors alpha and beta by basic
fibroblast growth factor, leading to improved survival of en-
dothelial cells, increased proliferation of smooth muscle cells,
and subsequent stabilization of newly formed capillaries41.
Moreover, PDGF-BB can increase VEGF expression in mural
cells, which in turn target endothelial cells and induce a potent
angiogenic response42,43.

PDGFs can modulate the responsiveness of osteogenic
cells to BMPs by increasing the expression of the BMP in-
hibitory protein gremlin (but not noggin)44,45 and enhancing
insulin-like growth factor (IGF) signaling46. The responsive-
ness of osteogenic cells to PDGFs can also be regulated by the
inflammatory cytokine interleukin-1, which inhibits PDGF-R
alpha expression in MG-63 cells47-49 and human osteoblastic
cells50.

Preclinical Studies
Periodontal Models

In human periodontal lesions, homodimers of PDGF-AA
and PDGF-BB have been detected in the epithelium and in

fibrin clots during wound-healing51. Data indicate that gingival
epithelium may be a rich source of PDGF-AA and PDGF-BB
for periodontal repair, while expression of PDGF receptors is
increased in areas of tissue damage as a consequence of tissue
injury51. Analysis of protein extracts from human gingival bi-
opsies demonstrated that the concentration of PDGF-AB was
approximately three times higher than normal in extracts
isolated from inflamed sites52. As a consequence of this human
data, a rat model of periodontitis (including diabetic and
nondiabetic cohorts) was exploited53. Data indicated increased
levels of PDGF-BB in normal rats but not in diabetic rats,
suggesting that the PDGF-BB-driven repair process is sup-
pressed under diabetic conditions53. The mitogenic respon-
siveness of periodontal cells to local application of PDGF-BB
was confirmed in a dog model54. In fenestration defects in
alveolar bone, recombinant human PDGF-BB (rhPDGF-BB)

applied to root surfaces increased proliferation of the peri-
odontal ligament, cementoblasts, osteoblasts, perivascular cells,
and endothelial cells54.

Several types of delivery systems have been investigated
for PDGF in periodontal models. A gel, in which rhPDGF-BB
and IGF-I were combined, has been used to apply the com-
bination of the two growth factors to root surfaces in a dog
model4,55. The outcome with this formulation was an increase
in bone and cementum4,55-57. Similar findings were observed in
nonhuman primates58. Furthermore, use of an rhPDGF-BB
and IGF-I combination increased osseointegration of dental
implants3,56 and bone regeneration of peri-implant buccal de-
hiscence defects, again in canine models57.

PDGF-BB has promoted regeneration of periodontium
(alveolar bone, periodontal ligaments, and cementum) in
cynomolgus monkeys58. In horizontal class-III furcation de-
fects in teeth in beagle dogs, the combination of rhPDGF-BB
and guided bone-regeneration therapy led to bone fill of 80%
at eight weeks and 87% at eleven weeks, compared with 14%
and 60%, respectively, with guided bone-regeneration therapy
alone59. Additionally, rhPDGF-BB treatment increased peri-
odontal ligament formation from 5% to 20% with no evidence
of fibrosis59.

In a dog study, the combination of rhPDGF-BB and a
bovine cancellous block was evaluated in a chronic alveolar
ridge-defect model60. The bovine bone block, treated with ei-
ther rhPDGF-BB or buffer, was held in place by the use of
titanium implants. Four months following the surgical pro-
cedure, the rhPDGF-BB treatment led to repair of the defect
and replacement of the implanted bovine tissue with host
bone, while the buffer-treated bovine bone block had minimal
impact on tissue repair.

Orthopaedic Models
In a tibial fracture repair model, rhPDGF-BB in 20 mM so-
dium acetate buffer or acetate buffer alone was combined with
a beta-tricalcium phosphate-collagen matrix and delivered to
the injury site in eighty ovariectomized female rats at eighteen
months of age, thus mimicking an osteoporotic and geriatric
condition61. Measurement of the torsional strength of fractured
tibiae at five weeks following injury showed that the vehicle-
treated bones were significantly weaker (p £ 0.05) than the
contralateral nonfractured tibiae within each animal. In con-
trast, rhPDGF-BB-treated tibiae were equivalent in strength to
the nonfractured controls, demonstrating the benefit of
rhPDGF-BB treatment to accelerate fracture repair in a model
of compromised healing.

In another orthopaedic study, ovariectomy-induced os-
teoporotic rats were treated with either rhPDGF-BB or vehicle
alone by tail vein injection, three times per week for six weeks,
in the presence or absence of alendronate therapy62. At the end
of the treatment period, bone mineral density of the spine was
decreased by 5% in the ovariectomized vehicle-treated rats but
was increased by 9% in animals treated with either rhPDGF-
BB alone or alendronate alone. In contrast, the rhPDGF-BB
and alendronate combination increased bone mineral density

50

TH E J O U R N A L O F B O N E & JO I N T SU R G E RY d J B J S . O R G

VO LU M E 90-A d SU P P L E M E N T 1 d 2008
RE C O M B I N A N T HU M A N PL AT E L E T-DE R I V E D GR OW T H FAC T O R :
BI O L O G Y A N D CL I N I C A L AP P L I C AT I O N S



of the spine by 18%. Furthermore, quantitative computerized
tomography of axial and appendicular bones indicated sig-
nificant enhancement in bone mass (p £ 0.05). Histologically,
the rhPDGF-BB-treated rats had a substantial increase in overall
osteoblast numbers and lining osteoblasts, without a change in
osteoclast number when compared with untreated animals.
Biomechanically, rats treated with rhPDGF-BB had signifi-
cantly enhanced vertebral-body compressive strength and
femoral shaft torsional stiffness (p £ 0.05). The combination of
alendronate with PDGF further increased these indices.

RhPDGF-BB delivered in a collagen gel was adminis-
tered to rabbits to treat tibial osteotomies63. The authors re-
ported an increase in callus density and volume, as measured
radiographically, about the rhPDGF-BB-treated osteotomies
compared with that seen about the osteotomies that were
treated with collagen gel only. Tibiae treated with collagen
alone were significantly weaker biomechanically than non-
osteotomized tibiae (p £ 0.05). In contrast, rhPDGF-BB-
treated tibiae demonstrated increased strength and were not
significantly different from the nonoperatively treated con-
tralateral tibiae. Histologically, rhPDGF-BB produced more
robust and advanced osteogenesis, on both the endosteal and
periosteal surfaces, than the collagen gel alone. The investi-
gators concluded, from the radiographic, biomechanical, and
histological data, that locally administered rhPDGF-BB deliv-
ered with an injectable collagen gel to tibial osteotomies en-
hanced functional fracture repair and stimulated osteogenesis
significantly (p £ 0.05).

Clinical Studies
Periodontal Indications

Periodontium is composed of a series of tissues, including
gingival epithelium and its underlying connective tissue,

cementum that lines the tooth root, alveolar bone, and the
periodontal ligament (the narrow band of dense, fibrous con-
nective tissue that connects the tooth root to the alveolar bone).
Chronic inflammation is the main cause of catabolic processes
in the periodontium, and these processes lead to periodontal
disease. If chronic inflammation remains untreated, there will
be loss of periodontal structures, a condition that occurs in
87% of adults over seventy years of age64. Approximately 2.1
million periodontal surgical procedures are performed annu-
ally in the United States for the treatment of this disorder.
Recombinant human PDGF-BB has been demonstrated to be
effective and safe for use in regenerating periodontal tissues
and is approved by the FDA for this indication (GEM 21S;
BioMimetic Therapeutics, Franklin, Tennessee).

Success with GEM 21S in periodontics reflects the che-
motactic and mitogenic action of rhPDGF-BB on cell types
involved in periodontal repair that respond directly to the
rhPDGF-BB, including mesenchymal stem cells, gingival fi-
broblasts, osteoblasts, periodontal ligament cells, cemento-
blasts, and vascular smooth muscle cells5,9-13.

Additionally, rhPDGF-BB is pro-angiogenic in that it
acts in synergy with endogenous VEGF to stimulate neovas-
cularization at the defect site35,42,43. As a result, rhPDGF-BB will

stimulate multiple wound-healing actions critical for the repair
of periodontal defects.

In a preliminary clinical study65, thirty-eight human sub-
jects with bilateral osseous periodontal lesions were treated with
rhPDGF-BB combined with IGF-I in a gel delivery system. At
nine months after treatment with the rhPDGF-BB and IGF-I
combination, alveolar bone formation increased by 2.08 mm
(p < 0.05) in vertical bone height with a corresponding 42.3%
filling of the defect site by new bone. In contrast, control-treated
subjects had an increase of 0.75 mm in bone height and only an
18.5% filling of the defect with new bone. Neither local nor
systemic safety issues were reported with rhPDGF-BB treatment66.

Administration of rhPDGF-BB in combination with al-
lograft demonstrated significant healing effects (p £ 0.05) for
the treatment of intraosseous defects in nine patients with ad-
vanced periodontal disease67,68. PDGF-BB/allograft treatment
reduced pocket depth by 6.4 mm while stimulating a gain of 2.1
mm in overall bone height. The significance of this outcome was
the regeneration of the periodontal complex, which includes
alveolar bone, ligament, and gingiva. Moreover, treatment of
furcation defects with a combination of PDGF-BB and allo-
graft similarly improved clinical outcome, with pocket-depth
reduction of 3.4 mm and a gain in clinical attachment of 4.0
mm. Histological analysis of intra-osseous and furcation defect
sites indicated regeneration of cementum, periodontal liga-
ment, alveolar bone, and blood vessels, with no root resorp-
tion, ankylosis, inflammation, or adverse tissue responses67,68.
The clinical benefit of the combination treatment of PDGF-BB
and allograft was a regenerative outcome of complex functional
tissues. Importantly, there were no resorptive or lytic sequelae.

A prospective, blinded, and randomized controlled
clinical trial assessed the safety and effectiveness of rhPDGF-
BB (300 mg/mL) combined with beta-tricalcium phosphate for
the treatment of advanced periodontal osseous defects69.
Eleven clinical centers enrolled 180 subjects, each requiring
surgical treatment of a 4-mm or greater intraosseous peri-
odontal defect. Treatment with recombinant human PDGF-BB/
beta-tricalcium phosphate caused a significant gain of clinical
attachment level over beta-tricalcium phosphate treatment
alone after three months (3.8 mm versus 3.3 mm; p £ 0.05).
The rhPDGF-BB-treated sites also had significantly greater
linear bone gain (2.6 mm versus 0.9 mm) and percent defect
fill (57% versus 18%) at six months than did the sites that
received the beta-tricalcium phosphate with buffer (p £ 0.05).
No significant device-related adverse events were observed
with the rhPDGF-BB treatment. The compelling treatment
outcome from the clinical trial was the regeneration of peri-
odontal tissues in response to treatment with rhPDGF-BB/
beta-tricalcium phosphate. The percent defect fill of 57% and
the linear bone gain validated the regenerative benefits that
were achieved during the six-month study period.

Orthopaedic Indications
Autogenous bone graft is recognized as the gold standard for
use in a wide variety of surgical procedures for the treatment
of fractures and nonunions and in securing osseous fusion
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when a graft material is deemed necessary as an adjunct to the
bone-healing process70. However, the time, cost, and morbidity
involved in obtaining autogenous bone graft are well docu-
mented71,72. Recombinant human PDGF-BB combined with a
beta-tricalcium phosphate matrix avoids the problems asso-
ciated with the use of bone autograft. Because of its biology,
preclinical performance, and early clinical success, it is under
evaluation for use as an alternative to autogenous bone graft in
several orthopaedic indications.

A twenty-patient randomized, controlled pilot study,
recently conducted at three U.S. sites, evaluated the effective-
ness of rhPDGF-BB in a beta-tricalcium phosphate matrix
(GEM OS1, BioMimetic Therapeutics) as a bone-graft material
in hindfoot and ankle fusions in comparison to the effectiveness
of an autogenous bone graft control73. At both the six-week and
twelve-week time-points following surgery, an independent
radiographic evaluation of osseous bridging, based on com-
puted tomography scans, demonstrated that the bridging ob-
tained with GEM OS1 was at least equivalent to that obtained
with autogenous bone graft. Functional (American Ortho-
paedic Foot and Ankle Society Score) and pain (visual analog
scale) scores were also equivalent at both of these time-points
between the two groups, with a >85% fusion rate for both
groups at twenty-four weeks73. These data, collected as part of
an FDA-approved Investigational Device Exemption (IDE)
study, have allowed for expansion of this approach into an
FDA-approved pivotal trial study, which will include approx-
imately 400 patients at twenty-eight sites in the United States.
Accrual for this study began in mid-2007.

Another foot-and-ankle fusion study, involving sixty
patients, is ongoing at three centers in Canada73 for the pur-
pose of evaluating the performance of rhPDGF-BB plus beta-
tricalcium phosphate (GEM OS1) with use of standardized
radiographic and clinical assessments74. In reporting the pre-
liminary results, the authors found the GEM OS1 bone-graft
substitute to be at least as effective as autogenous bone graft,
despite a challenging patient population. Of the patients re-
ported, 33% were undergoing revision of a failed prior surgical
treatment, a risk factor normally associated with slow and/or
poor bone-healing. Additional risk factors that were associated
with poor outcomes in the treated population included smok-
ing, diabetes, and obesity. Preliminary results from the GEM
OS1-treated patients demonstrated computed tomographically
measured fusion rates (i.e., osseous bridging) of 42% at six
weeks and 70% at twelve weeks after surgery73. These outcomes
are similar to those reported for autogenous bone graft in foot
and ankle fusions75.

A single-investigator study in Sweden evaluated
rhPDGF-BB in a beta-tricalcium phosphate matrix as an ad-
junct to the standard technique of open reduction and external
fixation of distal radial fractures in elderly patients (average
age, sixty-five years)76. Early results obtained with the use of
computed tomography scans showed more rapid bone filling
of the resultant defect at both three-week (44% versus 11%
bone fill of more than 50%) and six-week (100% versus 56%
bone fill of more than 50%) time-points for the group treated
with rhPDGF-BB as compared with the group treated with
open reduction and external fixation only. Function and grip-
strength scores were judged to be equivalent at these early
time-points. No serious device-related adverse events were
reported in these studies.

Summary

RhPDGF-BB, as a consequence of its biological properties,
is being considered as a therapy for an increasing number

of musculoskeletal indications. RhPDGF-BB is a key regulatory
molecule in bone homeostasis, repair, and regeneration. It is
chemotactic and mitogenic for osteoblasts and undifferenti-
ated osteoprogenitor cells, and it upregulates cytokines that are
crucial to osseous and soft-tissue healing and regeneration. On
the basis of compelling evidence from preclinical studies and a
growing number of clinical investigations, rhPDGF-BB ap-
pears to be safe and effective in enhancing the repair of mus-
culoskeletal and maxillofacial disorders. It is noteworthy that
the safety profile of PDGF-BB has been well established, as
demonstrated by the FDA approval of both GEM 21S, for use
in the repair of periodontal bone defects, and Regranex
(Johnson and Johnson Wound Management-Ethicon, Som-
erville, New Jersey), an rhPDGF-BB-containing formulation
for repeat topical application to treat nonhealing lower-
extremity diabetic ulcers. Moreover, the biology of PDGF is
such that this molecule may prove to have profound muscu-
loskeletal clinical advantages for patients with compromised
wound-healing, such as those with diabetes mellitus, who should
benefit greatly from the recruitment and proliferation of os-
teoprogenitor and other reparative cell types. n
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