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Abstract 
We present a new low-cost concurrent checking method 
for the Advanced Encryption Standard (AES) encryption 
algorithm. In this method, the parity of the 128-bit input is 
determined and modified step-by-step into the parity of 
the 128-bit output according to the processing steps of the 
AES encryption. For the parity-preserving AES steps 
Shift-Rows and Mix-Column no parity modifications are 
necessary. The modified parity is compared in any round 
with the actual parity of the outputs of the round. To 
obtain the hardware costs we implemented this method on 
a Xilinx Virtex 1000 FPGA. For this implementation, the 
hardware overhead is about 8% and the additional time 
delay is about 5%. The method detects technical faults 
and deliberately injected faults during normal operation. 

1. Introduction 
In 2001 the 128-bit Advanced Encryption Standard 
(AES) [1] replaced the 64-bit Data Encryption Standard 
(DES) as the symmetric encryption algorithm standard. 
Since then AES has become the most popular encryption 
algorithm to be implemented on smart cards and other 
devices. Because of the rapidly shrinking dimensions in 
VLSI, transient faults occur and will occur in the near 
future in increasing numbers. These transient faults affect 
the memory as well as the combinational parts of a circuit 
and can only be detected using concurrent checking. This 
is especially true for sensitive devices such as 
cryptographic chips. Hence, concurrent checking for 
cryptographic chips is growing in importance. Since 
cryptographic chips are a consumer product produced in 
large quantities, cheap solutions for concurrent checking 
are needed. Concurrent checking for cryptographic chips 
has also a great potential for detecting (deliberate) fault 
injection attacks where faults are injected into a 
cryptographic chip to break the key [2][3][4][5]. 

Until now the following concurrent checking methods for 
cryptographic algorithms are known. In [6] a Register 
Transfer Level concurrent checking approach for AES 
and other symmetric block ciphers that exploits the 
inverse relationship between the encryption and 
decryption at the algorithm level, round level and 

individual operation level was developed. This technique 
has an area overhead of 21% at the algorithm level, 
18.9% at the round level and 38.08% at operation level. 
Similarly, the time overhead is 61.15%, 26.55% and 
23.56% respectively. In [9] this inverse-relationship 
technique was extended to AES round key generation. A 
drawback of this approach is that it assumes that the 
cipher device operates in a half-duplex mode (i.e. either 
encryption or decryption but not both are simultaneously 
active). 

In [10] the first parity-based method of concurrent 
checking for the AES encryption algorithm was 
presented. This technique has relatively high hardware 
overhead. The technique adds one additional parity bit per 
byte resulting in 16 additional bits for the 128-bit data 
stream. Each of the sixteen 8-bit×8-bit AES s-boxes is 
modified into 9-bit×9-bit s-boxes more than duplicating 
the hardware for implementing the s-boxes. In addition, 
this technique adds one additional parity bit per byte to 
the outputs of the Mix-Column operation because Mix-
Column does not preserve parity of its inputs at the byte-
level. 

To reduce the necessary hardware overhead for 
concurrent checking of the AES encryption algorithm we 
propose a new approach for low-cost parity checking. 
This method is based on a general method of concurrent 
checking for Substitution Permutation Networks (SPN) 
[7][8]. In this method, the input parity of an SPN network 
is modified according to the processing steps of the SPN 
network into the output parity and compared with the 
output parity of every round. In this paper, we adapt this 
general approach to develop a low-cost method for 
concurrent checking of the 128-bit AES encryption 
algorithm. First, we determine the parity of the 128-bit 
input using a parity tree of exclusive-or gates. In AES 
encryption each of the 16 input bytes are processed by an 
8-bit×8-bit nonlinear s-box that implements a polynomial 
inversion in GF(28) and a linear affine transformation. 
For concurrent error detection, we add one additional 
binary output to each of the 16 s-boxes. This additional s-
box output computes the exclusive-or of parity of each 8-
bit input and the parity of the corresponding 8-bit output. 
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Each of the modified s-boxes are 8-bit×9-bit in size. The 
additional 1-bit output of the 16 s-boxes are used to 
modify the input parity for this nonlinear Sub-Bytes 
processing step. Since the Shift-Rows operation 
implements a permutation, it does not change the parity 
from its input to its output. This operation can be 
implemented by proper wiring in hardware. Surprisingly, 
the Mix-Column operation for every group of 32 bits does 
not change the parity from its inputs to its outputs as well. 
Finally, component-wise exclusive-or of the 128-bit 
round key needs a parity modification by a single pre-
computed parity bit of the round key. Since the output of 
a round is the input to the next round, the output parity of 
the outputs of a round can be computed using the same 
hardware which was used for computing the input parity 
of the previous round.  

The paper is organized as follows. In section Error! 
Reference source not found. we will briefly recapitulate 
the AES encryption. In section 0 we will describe the 
proposed low-cost method of concurrent checking. The 
error detection capability of the proposed method is 
discussed in section Error! Reference source not 
found.. To obtain the area overhead and the additional 
time delay the method was implemented on an FPGA. 
The results of this basic implementation and additional 
optimizations specific to an FPGA-implementation are 
presented in section Error! Reference source not 
found.. Conclusions are reported in section Error! 
Reference source not found.. 

2. Advanced Encryption Standard 
AES [1] is an iterative block cipher with a variable block 
length. In this paper, we will consider a block length of 
128 bits. The concurrent checking described in this paper 
is applicable to other block lengths of AES as well. The 
AES algorithm encrypts a 128-bit input plain text into a 
128-bit output cipher text using a user key using 10 
almost identical iterative rounds. The 128-bit (or 16-byte) 
input and the 128-bit (or 16-byte) intermediate results are 
organized as a 4×4 matrix of bytes called the state X.  
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The four four-byte groups (x0, x1, x2, x3), (x4, x5, x6, x7), 
(x8, x9, x10, x11) and (x12, x13, x14, x15) form the first, the 
second, the third and the fourth columns respectively of 
the state matrix A. The four four-byte groups (x0, x4, x8, 
x12), (x1, x5, x9, x13), (x2, x6, x10, x14) and (x3, x7, x11, x15) 
form the four rows of the state (matrix) X. 

 
Figure 1: AES round without concurrent checking 

One round of the AES encryption algorithm (without 
concurrent checking) is shown in Figure 1. It consists of 
the operations Sub-Bytes, Shift-Rows, Mix-Column, and 
Add-key. In the last round the Mix-Column operation is 
not used. We summarize these operations next. 

2.1 Sub-Bytes: 
All bytes are processed separately. For every byte not 
equal to 0=(0,0,0,0,0,0,0,0) first the inverse in GF(28) is 
determined. m(x)=x8+x4+x+1 is used as the modular 
polynomial for GF(28). The byte 0 is mapped to 0. Then a 
linear affine transformation is applied. Very often Sub-
Bytes is implemented using 16 copies of an 8-bit×8-bit 
ROM. The result state is represented as Y: 
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2.2 Shift-Rows: 
The rows of the state are shifted cyclically byte-wise 
using a different offset for each row. Row 0 is not shifted, 
row 1 is cyclically shifted left 1 byte, row 2 is cyclically 
shifted left by 2 bytes and row 3 is cyclically shifted left 3 
bytes. The result state is represented as Z: 
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2.3 Mix-Column: 
The elements of the columns of the state are considered as 
the coefficients of polynomials of maximal degree 3. The 
coefficients are considered as elements of GF(28). These 
polynomials are multiplied modulo the polynomial x4+1 
with a fixed polynomial c(x) = (03)x3+(01)x2+(01)x+(02). 
The coefficients of this polynomial given in hexadecimal 
representation are also elements of GF(28). Thus for 
instance the coefficient (03) in hexadecimal 
representation is in binary representation (000000011)2 or 
x+1 in polynomial representation in GF(28). The Mix-
Column operation on a column zT=[z0, z1, z2, z3]T of the 
state into the column uT=[u0, u1, u2, u3]T can be formally 
described by Equation 1 where the constant elements of 
the matrix C and of the vectors zT and uT as well as the 
multiplication and the addition are in GF(28). The 
polynomial x=x8+x4+x+1 is used as the modular 
polynomial. The elements of the matrix C are 01, 02 and 
03.  
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Multiplication of an 8-bit coefficient zi = zi,0,……,zi,7 by 
(01) does not change ai (i.e., (01)×zi= zi). Multiplication 
modulo x8+x4+x+1 by constant (02) (or by the 
polynomial x) first results in a left-shift of ai. If the MSB 
zi,7 of zi is 1 then after this left-shift the MSB is deleted 
and (00011011)2 is added which, in GF(28) corresponds 
to a bitwise exclusive-or operation. 

(02)×zi = (02)×(zi,7,zi,6,zi,5,zi,4,zi,3,zi,2,zi,1,zi,0) =  
(zi,6,zi,5,zi,4,zi,3,zi,2,zi,1,zi,0,0)⊕(0,0,0,zi,7,zi,7,0,zi,7,zi,7). 

Multiplication by (02) can be implemented three 
exclusive-or gates. Since (03) = (02)⊕(01), (03)×zi by  
can be implemented as an exclusive-or of zi and (02)×zi 
(i.e., (03)×zi=zi⊕(02)×zi). Overall, the Mix-Column 
operation can be implemented by a simple linear network 
of exclusive-or elements.  

2.4 Add-key: 
Add-key operation is a bit-wise exclusive-or of the 128-
bit round key with the 128-bit state. 

3. Low-Cost Concurrent Checking of 
AES 

 

Figure 2: AES round with concurrent checking 

We will now describe step-by-step the parity code based 
low-cost checking for AES encryption. A single round of 
the AES encryption with concurrent checking is shown in 
Figure 2. For concurrent checking the parity of the inputs 
of a round is determined, modified according to the 
processing steps of the AES encryption into the parity of 
the outputs and compared with the actual parity of the 
outputs of this round. We will explain the modifications 
necessary to the input parity for every step of AES 
encryption.  

Step 1: Computing the input parity: Parity of the 128-
bit input is determined by a tree of exclusive-or gates. As 
will become clear later it is useful to compute the parities 
of each of the 16 bytes first and then combine these 16 
parity bits using a tree of exclusive-or gates to get the 
parity bit for the 128-bit input.  

Step 2: Parity modification according to Sub-Bytes: 
Without error detection all 16 bytes of the 128-bit input 
are processed by an 8-bit input, 8-bit output nonlinear 
function called s-box. An s-box implements a polynomial 
inversion in GF(28) followed by a linear affine 
transformation. An s-box can be either implemented by 
an 8-input, 8-output ROM or, as combinational logic.  

For error detection in an s-box we add an additional 
binary parity output which implements exclusive-or of the 
parity of all 8-bit inputs with the parity of the 
corresponding 8-bit outputs. The values for this additional 
output can be determined from the truth table of the 
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original s-box. The modified s-box has an 8-bit input and 
a 9-bit output. In Figure 2 this additional parity output is 
shown as a thick box appended to the right hand side of 
an s-box. The parity modification for the complete 128-
bit operation Sub-Bytes is determined as the exclusive-or 
of the 16 additional parity outputs of the sixteen s-boxes 
using a 16-input one-output tree of exclusive-or gates. To 
modify the input parity according to the Sub-Bytes 
processing step the output of this parity tree is exclusive-
ored with the input parity.  

The modified s-boxes can be either implemented by 
ROMs with 8-bit inputs and 9-bit outputs or as a 
combinational logic circuit. If we implement the 8 
functional outputs and the parity output of an s-box as 
combinational logic, a two-level implementation is good 
for error detection. In such a two-level realization every 
single internal fault in the s-box is immediately detected 
by an erroneous parity. The overhead for implementing 
the additional parity modification bit of an s-box is 
∼12.5% of the area for the basic s-box.  

Step 3: No parity modification according to Shift-
Rows: Shift-Rows operation is a permutation of the bytes 
of the state and obviously does not change the parity. 
Therefore the parity is not modified in this step.  

Step 4: No parity modification according to Mix-
Column: The Mix-Column operation is described by 
equation (1). Because of the simple structure of the 
coefficients in the matrix C this operation can be easily 
implemented as a linear in GF(2) combinational circuit.  

Surprisingly, the Mix-Column operation does not alter the 
parity from its input to its outputs when the 32-bit 
columns of the state are considered. Therefore if we add a 
single parity bit for every column (of 32 bits) of the state 
or a single parity bit for the entire 128-bit state, these 
parity bits are not modified by the Mix-Column 
operation.  

To prove this statement, consider the first column of the 
input to Mix-Column operation Z (z0, z1, z2, z3) and the 
first column of the output of Mix-Column operation U 
(u0, u1, u2, u3). Let P(zi) and P(ui) are parities of the bytes. 
Since Mix-Column operation is defined by equation 1, we 
have:  

u0 = (02)z0 + (03)z1 + (01)z2 + (01)z3

u1 = (01)z0 + (02)z1 + (03)z2 + (01)z3

u2 = (01)z0 + (01)z1 + (02)z2 + (03)z3

u3 = (03)z0 + (01)z1 + (01)z2 + (02)z3

The parity of the 32-bit output column generated by Mix-
Column is 

P(u0)⊕P(u1)⊕P(u2)⊕P(u3) = P(u0+u1+u2+u3)  

 = 
P[(02)z0+(03)z1+(01)z2+(01)z3+(01)z0+(02)z1+(03)z2+(01
)z3+ 

      
(01)z0+(01)z1+(02)z2+(03)z3+(03)z0+(01)z1+(01)z2+(02)z
3].  

Substituting (01)zi+(02)zi+(03)zi=0 and (03)zi+(03)zi =0 
for i = 0, 1, 2, 3,  

P(u0)⊕P(u1)⊕P(u2)⊕P(u3) = P(z0)⊕P(z1)⊕P(z2)⊕P(z3). 

This proves that the parity of a column consisting of four 
bytes of the state is not changed by the Mix-Column 
operation. In Figure 2 we use a single parity bit for all 
128-bits for concurrent checking; since this is not 
modified by the Mix-Column operation it does not entail 
CED area overhead.  

In [10] a parity bit is used for every byte of the state. 
However, since the Mix-Column operation alters the 
parity of every byte of the state, the input parity of the 
input bytes to the Mix-Column has to be modified 
resulting in an area overhead.  

Step 5: Parity modification according to Add-Key: 
Since a 128-bit round key is component-wise exclusive-
ored with the 128-bit state output of Mix-Column 
operation, the input parity has to be modified by the 
parity P(k) = k0⊕k1⊕…⊕k127  of the round key as shown 
in Figure 2. This parity for all round keys is pre-computed 
during round key generation. This parity modification 
step requires a 1-bit exclusive or gate. 

Step 6: Output parity checking: The parity of the actual 
outputs of the round has to be compared with the 
modified input parity of the round. For this purpose, the 
modified input parity is stored in a 1-bit register. Since 
the outputs of a round are connected to the inputs of the 
round, the input parity of a round (computed using 
exclusive-or tree at the inputs of the round in step 1) is 
also the output parity of the previous round. Comparing 
this parity with the modified input parity of the previous 
round stored in the 1-bit register detects a possible error.  

Overall, for concurrent checking of AES encryption the 
input parity is determined and this input parity is 
modified only for Sub-Bytes operation by additional 
outputs of the 16 s-boxes and by 1-bit pre-computed 
parity of the round key. 

4. CED Capability 
In AES and other encryption algorithms a single error bit 
in one location spreads within a few rounds to a large 
number of (even or odd) erroneous bits [11]. This is 
confirmed by simulation experiments in [10]. Because of 
this property traditional parity prediction for encryption 
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algorithms is not easy. For the proposed parity 
modification the situation is different. Using the proposed 
method of step-by-step parity modification a local fault 
within a processing step which is in principle detectable 
by parity checking at the outputs of this processing step 
will also be detected by comparing the modified parity 
with the actual parity of the outputs of the round. 

Theorem: If a fault in a processing step in a round (Sub-
Bytes, Shift-Rows, Mix-Column, Add-Key) is locally 
detectable by parity at the outputs of this processing step 
then the fault will be detected by comparing the modified 
input parity with the actual output parity of the round.  

Proof: Let us refer to Figure 3. Let x be the correct input 
to the considered round and let y, z, u, and v be the 
correct outputs of the processing steps Sub-Bytes, Shift-
Rows, Mix-Column and Add-Key respectively. Input 
parity P(x) is modified by ∆=P(x)⊕P(y) into P(y) (∆⊕ 
P(x)) according to the Sub-Bytes operation. Since Shift-
Rows and Mix-Column do not alter parity, P(y) = P(z) = 
P(u). Finally, P(v)=P(u) ⊕ P(k) and the modified parity 
PM, is equal to the parity P(v) of the outputs v of the  
Add-Key operation. 

Let us see how a stuck-at fault at the inputs of Sub-Bytes 
operation can be detected. Let us replace the correct input 
x by an erroneous value x’, x≠x’. If Sub-Bytes is 
implemented using ROMs the considered error 
corresponds to an address error of the ROM. If Sub-Bytes 
is implemented as combinational logic the considered 
error corresponds to a stuck-at fault at an input-line of a 
gate of the first level of the implementation. For this case 
the outputs of Sub-Bytes, Shift-Rows, Mix-Column and 
Add-Key in Figure 3 are denoted by y’, z’, u’ and v’ 
respectively. The input parity P(x) is now modified by ∆ 
= P(x’) ⊕ P(y’) into P(x) ⊕ P(x’) ⊕ P(y’) and the 
modified parity PM is P(x) ⊕ P(x’) ⊕ P(y’) ⊕ P(k). For 
the parity P(v’) of the outputs of this round we have P(v’) 
= P(u’) ⊕ P(k) = P(z’) ⊕ P(k) = P(y’) ⊕ P(k) and P(v’) ≠ 
PM if P(x’) ≠ P(x).  

Thus the input error (e.g. an address error of a ROM) is 
detected by comparing the modified parity and the actual 
parity of the outputs of the round if P(x’) ≠ P(x).  

As a second example, let us consider a technical fault f1 
within the processing step Sub-Bytes. Let y1, z1, u1, v1 be 
the outputs of the processing steps Sub-Bytes, Shift-
Rows, Mix-Column and Add-Key respectively due to this 
technical fault as shown in Figure 3. In this case we have 
PM = P(x) ⊕ P(x) ⊕ P(y) ⊕ P(k) = P(y) ⊕ P(k) and P(v1) 
= P(u1) ⊕ P(k) = P(z1) ⊕ P(k) = P(y1) ⊕ P(k) ≠ PM and 
the fault is detected for P(y) ≠ P(y1).  

 

 
Figure 3: CED capability of AES with concurrent 
checking 

In a similar way faults in the processing steps Shift-Rows, 
Mix-Column and Add-Key are detected. If we consider 
single stuck-at faults as the technical faults in the 
processing steps or injected single bit faults then the 
number of erroneous bits at the outputs of these 
processing steps depends on the concrete implementation. 
According to [12] in random logic the probability of 1-
bit, 2-bit, 3-bit and 4-bit errors before (after) optimization 
is 88.8(77.9)%, 7.7(12.8)%, 1.9(4.7)% and 1.1(2.4)% 
respectively. For the different AES processing steps 
special designs with good error detection properties are 
possible.  

At the gate level different implementations of the S-boxes 
are considered. If all the bits of the S-boxes and also the 
parity bits are separately implemented the necessary area 
is 79% of the not optimized circuit. 100% of the errors 
are detected. If the bits of the s-boxes are jointly 
optimized and if the parity bit is separately implemented 
the area is only 35% of the area of the not optimized 
circuit. But in this case many two-bit errors are generated 
within the S-boxes by single stuck-at faults and only 48-
53% of the errors due to these single stuck-at faults in the 
s-boxes are immediately detected. The situation for the 
detection of the single stuck-at faults is quite different. 
98.7% of the single stuck-at faults are detected at least 
with some latency. All the other parts of the 
implementation remain unchanged 

Then all possible faults are detectable by parity checking 
and all faults are detected by comparing the modified 
parity with the actual parity of the outputs of the round. 
The operation Shift-Rows is a byte-wise permutation and 
this operation can be implemented by proper wiring in 
hardware. All single faults will result in single errors. The 
Mix-Column operation (composed of exclusive-or 
operations) can be implemented in which all single stuck-
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at faults and all injected single faults result in an odd 
number of erroneous bits at its outputs which are 
detectable by parity checking. This is also confirmed by 
the simulation experiments of [10]. Add-Key is a 
component-wise exclusive-or of 128 bits. All single 
stuck-at faults and all single injected faults will result in 
one-bit errors which are once again detectable by parity 
checking. Stuck-at faults at the outputs of the parity trees 
are detected possibly with a small latency. As in the 
FPGA-based implementation a separate parity line for 
every block of 32 bits can be used to increase the fault 
coverage for multiple stuck-at faults. 

5. FPGA Implementation 
We used a Xilinx Virtex 1000 FPGA device to prototype 
the described CED method. We used Synplify Pro for 
synthesis and Xilinx ISE for place and route steps. In this 
design, we implemented the sixteen s-boxes using sixteen 
identical 8-bit×9-bit ROMs. Each ROM contains 256 
bytes of s-box data and 256 bits for the corresponding 
parities. The additional parity column translates into an 
overhead of sixteen 256x1 ROMs. The input and output 
parities are generated using a 128-bit parity tree using 46 
Look Up Tables (LUT). Each LUT in the target FPGA 
can implement a 4-input-1-output logic.   

Table 1: Area and time overhead for AES with CED 

 Non-CED CED Overhead 

# of LUT 3629 3899 7.4% 

# of register bits 823  830 1% 

Clock period (ns) 17.742 18.88
3 

6.4% 

Table 1 summarizes the area and time numbers for the 
basic AES and AES with CED. The number of LUTs 
reports the combinational logic used in our 
implementation while the number of register bits 
(excluding register I/O) reports the sequential logic. The 
clock period is reported after place and route and includes 
LUT cell delays and routing delays. According to this 
table we have less than 8% hardware and less than 7% 
time overhead. 

Xilinx Virtex FPGAs have a large amount of block 
RAMs. Efficient implementations for the AES without 
error detection using block RAMS Xilinx FPGAs are 
described in [13][14].  A block RAM can be configured 
as a dual-port ROM with two 8-bit input ports and two 9-
bit output ports. Such a dual-port ROM functions as two 
independent single-port ROMs which share identical 
ROM contents. The area of a dual-port ROM is the same 
as the area of a single-input-output ROM. Since the 
sixteen AES s-boxes are identical to each other, we 
propose to use eight dual-port ROMs yielding a fifty 

percent reduction compared to the basic CED 
implementations. In turn, the dual-port ROM based 
implementation will reduce the number of columns used 
to compute the parity term from 16 to 8.  

Dual-port ROMs based implementation will compromise 
the error detection capability of the 1-bit parity based 
concurrent checking. When a fault is introduced into a 
dual-port ROM, this faulty content may appear twice in 
the output if the values on the two input ports are the 
same. The two faulty outputs cancel each other and do not 
change the parity of the 128-bit output. To detect such 
faults, we need to use at least two parity bits (one parity 
bit for 64 bits). We propose to use four parity bits with 
one parity bit for every 32 bits. In order to detect all faults 
in the dual-port ROMs, we need to carefully identify the 
32-bit input whose parity is computed, modified step-by-
step and compared with the corresponding 32-bit output.  

In Figure 1, X is the input to the AES round and Y, Z, U, 
V, are the outputs of Sub-Bytes, Shift-Row, Mix-Column, 
and Add-Key operations respectively. Let us start with 
the AES round output V. The parity of the 32-bit first 
column (v0, v1, v2, v3) of V is determined by the parity of 
the 32-bit first column (u0, u1, u2, u3) of U. This in turn is 
determined by the parity of the first column (z0, z1, z2, z3) 
of Z. Since the Shift-Row operation shifts the positions of 
the bytes in a column from its inputs to its outputs, the 
parity of the first column of Z (z0, z1, z2, z3) is determined 
by the parity of the 32 bits (y0, y5, y10, y15). In turn this 
parity is determined by the parity of the 32 bits (x0, x5, 
x10, x15). Overall, the parity of the first column of the AES 
round output V should be compared to the parity of the 
32-bit input (x0, x5, x10, x15) modified by the parities of 
the four participating s-boxes and the corresponding 32-
bits of the round key. Table 2 summarizes the four pairs 
of 32-bit inputs and the corresponding 32-bit outputs 
whose parities have to be compared.  

Table 2: 32-bit AES round inputs, outputs whose parities 
should be compared. xi and yi are the input and output 
bytes. Shift row operation shuffles the bytes and hence 
the input and output bytes do not have identical indices. 

Modify the parity of 
the 32-bit input 

and compare it with actual 
parity of the 32-bit output 

(x0, x5, x10, x15) (v0, v1, v2, v3) 

(x4, x9, x14, x3) (v4, v5, v6, v7) 

(x8, x13, x2, x7) (v8, v9, v10, v11) 

(x12, x1, x6, x11) (v12, v13, v14, v15) 

From Table 2, we can see that input bytes x0, x5, x10, and 
x15 cannot be mapped to the same dual-port ROM. 
Similarly, bytes x4, x9, x14 and x3 cannot be mapped to the 
same dual-port ROM and so on.  In our implementation, 
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the byte pairs (x0, x1), (x2, x3), (x4, x5), (x6, x7), (x8, x9), 
(x10, x11), (x12, x13), (x14, x15) share a dual-port ROM. 
Since the sixteen s-boxes are implemented using 8 block 
RAMs, this optimized FPGA implementation uses only 
1606 LUTs and a clock period of 16.649 ns. 

6. Conclusions 
In this paper we presented a new low-cost method for 
concurrent checking for the AES encryption by using 
parity checking. This technique is applicable to AES 
decryption as well. The step-by-step modification of the 
input parity into output parity yields <8% area overhead 
since the Shift-Rows and Mix Column steps are parity 
preserving. Also, a single parity tree is used to compute 
the input and the output parities. We showed how this 
basic technique can be optimized to exploit the dual-port 
RAMs on a Xilinx Virtex FPGA. We showed that in such 
a dual-port RAM-based implementation, the sixteen AES 
s-boxes should be carefully mapped so as not to 
compromise the error detection capability. The method 
can detect technical faults during normal operation and 
deliberately injected faults. On detecting a fault(s), the 
stored key may be refreshed to prevent the attacker from 
uncovering the key. 
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