

Low Cost Concurrent Error Detection for the Advanced Encryption Standard

Kaijie Wu Ramesh Karri Grigori Kuznetsov Michael Goessel

Electrical and Computer Engineering Dept University of Potsdam
Polytechnic University Institute of Computer Science

6 Metrotech Center Fault Tolerant Computing Group
Brooklyn, NY 11201 D-14439 Potsdam, Germany

Abstract
We present a new low-cost concurrent checking method
for the Advanced Encryption Standard (AES) encryption
algorithm. In this method, the parity of the 128-bit input is
determined and modified step-by-step into the parity of
the 128-bit output according to the processing steps of the
AES encryption. For the parity-preserving AES steps
Shift-Rows and Mix-Column no parity modifications are
necessary. The modified parity is compared in any round
with the actual parity of the outputs of the round. To
obtain the hardware costs we implemented this method on
a Xilinx Virtex 1000 FPGA. For this implementation, the
hardware overhead is about 8% and the additional time
delay is about 5%. The method detects technical faults
and deliberately injected faults during normal operation.

1. Introduction
In 2001 the 128-bit Advanced Encryption Standard
(AES) [1] replaced the 64-bit Data Encryption Standard
(DES) as the symmetric encryption algorithm standard.
Since then AES has become the most popular encryption
algorithm to be implemented on smart cards and other
devices. Because of the rapidly shrinking dimensions in
VLSI, transient faults occur and will occur in the near
future in increasing numbers. These transient faults affect
the memory as well as the combinational parts of a circuit
and can only be detected using concurrent checking. This
is especially true for sensitive devices such as
cryptographic chips. Hence, concurrent checking for
cryptographic chips is growing in importance. Since
cryptographic chips are a consumer product produced in
large quantities, cheap solutions for concurrent checking
are needed. Concurrent checking for cryptographic chips
has also a great potential for detecting (deliberate) fault
injection attacks where faults are injected into a
cryptographic chip to break the key [2][3][4][5].

Until now the following concurrent checking methods for
cryptographic algorithms are known. In [6] a Register
Transfer Level concurrent checking approach for AES
and other symmetric block ciphers that exploits the
inverse relationship between the encryption and
decryption at the algorithm level, round level and

individual operation level was developed. This technique
has an area overhead of 21% at the algorithm level,
18.9% at the round level and 38.08% at operation level.
Similarly, the time overhead is 61.15%, 26.55% and
23.56% respectively. In [9] this inverse-relationship
technique was extended to AES round key generation. A
drawback of this approach is that it assumes that the
cipher device operates in a half-duplex mode (i.e. either
encryption or decryption but not both are simultaneously
active).

In [10] the first parity-based method of concurrent
checking for the AES encryption algorithm was
presented. This technique has relatively high hardware
overhead. The technique adds one additional parity bit per
byte resulting in 16 additional bits for the 128-bit data
stream. Each of the sixteen 8-bit×8-bit AES s-boxes is
modified into 9-bit×9-bit s-boxes more than duplicating
the hardware for implementing the s-boxes. In addition,
this technique adds one additional parity bit per byte to
the outputs of the Mix-Column operation because Mix-
Column does not preserve parity of its inputs at the byte-
level.

To reduce the necessary hardware overhead for
concurrent checking of the AES encryption algorithm we
propose a new approach for low-cost parity checking.
This method is based on a general method of concurrent
checking for Substitution Permutation Networks (SPN)
[7][8]. In this method, the input parity of an SPN network
is modified according to the processing steps of the SPN
network into the output parity and compared with the
output parity of every round. In this paper, we adapt this
general approach to develop a low-cost method for
concurrent checking of the 128-bit AES encryption
algorithm. First, we determine the parity of the 128-bit
input using a parity tree of exclusive-or gates. In AES
encryption each of the 16 input bytes are processed by an
8-bit×8-bit nonlinear s-box that implements a polynomial
inversion in GF(28) and a linear affine transformation.
For concurrent error detection, we add one additional
binary output to each of the 16 s-boxes. This additional s-
box output computes the exclusive-or of parity of each 8-
bit input and the parity of the corresponding 8-bit output.

ITC INTERNATIONAL TEST CONFERENCE

0-7803-8580-2/04 $20.00 Copyright 2004 IEEE

Paper 43.3

1242

Each of the modified s-boxes are 8-bit×9-bit in size. The
additional 1-bit output of the 16 s-boxes are used to
modify the input parity for this nonlinear Sub-Bytes
processing step. Since the Shift-Rows operation
implements a permutation, it does not change the parity
from its input to its output. This operation can be
implemented by proper wiring in hardware. Surprisingly,
the Mix-Column operation for every group of 32 bits does
not change the parity from its inputs to its outputs as well.
Finally, component-wise exclusive-or of the 128-bit
round key needs a parity modification by a single pre-
computed parity bit of the round key. Since the output of
a round is the input to the next round, the output parity of
the outputs of a round can be computed using the same
hardware which was used for computing the input parity
of the previous round.

The paper is organized as follows. In section Error!
Reference source not found. we will briefly recapitulate
the AES encryption. In section 0 we will describe the
proposed low-cost method of concurrent checking. The
error detection capability of the proposed method is
discussed in section Error! Reference source not
found.. To obtain the area overhead and the additional
time delay the method was implemented on an FPGA.
The results of this basic implementation and additional
optimizations specific to an FPGA-implementation are
presented in section Error! Reference source not
found.. Conclusions are reported in section Error!
Reference source not found..

2. Advanced Encryption Standard
AES [1] is an iterative block cipher with a variable block
length. In this paper, we will consider a block length of
128 bits. The concurrent checking described in this paper
is applicable to other block lengths of AES as well. The
AES algorithm encrypts a 128-bit input plain text into a
128-bit output cipher text using a user key using 10
almost identical iterative rounds. The 128-bit (or 16-byte)
input and the 128-bit (or 16-byte) intermediate results are
organized as a 4×4 matrix of bytes called the state X.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

151173

141062

13951

12840

xxxx
xxxx
xxxx
xxxx

X

The four four-byte groups (x0, x1, x2, x3), (x4, x5, x6, x7),
(x8, x9, x10, x11) and (x12, x13, x14, x15) form the first, the
second, the third and the fourth columns respectively of
the state matrix A. The four four-byte groups (x0, x4, x8,
x12), (x1, x5, x9, x13), (x2, x6, x10, x14) and (x3, x7, x11, x15)
form the four rows of the state (matrix) X.

Figure 1: AES round without concurrent checking

One round of the AES encryption algorithm (without
concurrent checking) is shown in Figure 1. It consists of
the operations Sub-Bytes, Shift-Rows, Mix-Column, and
Add-key. In the last round the Mix-Column operation is
not used. We summarize these operations next.

2.1 Sub-Bytes:
All bytes are processed separately. For every byte not
equal to 0=(0,0,0,0,0,0,0,0) first the inverse in GF(28) is
determined. m(x)=x8+x4+x+1 is used as the modular
polynomial for GF(28). The byte 0 is mapped to 0. Then a
linear affine transformation is applied. Very often Sub-
Bytes is implemented using 16 copies of an 8-bit×8-bit
ROM. The result state is represented as Y:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

151173

141062

13951

12840

yyyy
yyyy
yyyy
yyyy

Y

2.2 Shift-Rows:
The rows of the state are shifted cyclically byte-wise
using a different offset for each row. Row 0 is not shifted,
row 1 is cyclically shifted left 1 byte, row 2 is cyclically
shifted left by 2 bytes and row 3 is cyclically shifted left 3
bytes. The result state is represented as Z:

Paper 43.3

1243

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

151173

141062

13951

12840

zzzz
zzzz
zzzz
zzzz

Z =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

117315

621410

11395

12840

yyyy
yyyy
yyyy
yyyy

2.3 Mix-Column:
The elements of the columns of the state are considered as
the coefficients of polynomials of maximal degree 3. The
coefficients are considered as elements of GF(28). These
polynomials are multiplied modulo the polynomial x4+1
with a fixed polynomial c(x) = (03)x3+(01)x2+(01)x+(02).
The coefficients of this polynomial given in hexadecimal
representation are also elements of GF(28). Thus for
instance the coefficient (03) in hexadecimal
representation is in binary representation (000000011)2 or
x+1 in polynomial representation in GF(28). The Mix-
Column operation on a column zT=[z0, z1, z2, z3]T of the
state into the column uT=[u0, u1, u2, u3]T can be formally
described by Equation 1 where the constant elements of
the matrix C and of the vectors zT and uT as well as the
multiplication and the addition are in GF(28). The
polynomial x=x8+x4+x+1 is used as the modular
polynomial. The elements of the matrix C are 01, 02 and
03.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

3

2

1

0

3

2

1

0

02010103
03020101
01030201
01010302

z
z
z
z

u
u
u
u

 (1)

Multiplication of an 8-bit coefficient zi = zi,0,……,zi,7 by
(01) does not change ai (i.e., (01)×zi= zi). Multiplication
modulo x8+x4+x+1 by constant (02) (or by the
polynomial x) first results in a left-shift of ai. If the MSB
zi,7 of zi is 1 then after this left-shift the MSB is deleted
and (00011011)2 is added which, in GF(28) corresponds
to a bitwise exclusive-or operation.

(02)×zi = (02)×(zi,7,zi,6,zi,5,zi,4,zi,3,zi,2,zi,1,zi,0) =
(zi,6,zi,5,zi,4,zi,3,zi,2,zi,1,zi,0,0)⊕(0,0,0,zi,7,zi,7,0,zi,7,zi,7).

Multiplication by (02) can be implemented three
exclusive-or gates. Since (03) = (02)⊕(01), (03)×zi by
can be implemented as an exclusive-or of zi and (02)×zi
(i.e., (03)×zi=zi⊕(02)×zi). Overall, the Mix-Column
operation can be implemented by a simple linear network
of exclusive-or elements.

2.4 Add-key:
Add-key operation is a bit-wise exclusive-or of the 128-
bit round key with the 128-bit state.

3. Low-Cost Concurrent Checking of
AES

Figure 2: AES round with concurrent checking

We will now describe step-by-step the parity code based
low-cost checking for AES encryption. A single round of
the AES encryption with concurrent checking is shown in
Figure 2. For concurrent checking the parity of the inputs
of a round is determined, modified according to the
processing steps of the AES encryption into the parity of
the outputs and compared with the actual parity of the
outputs of this round. We will explain the modifications
necessary to the input parity for every step of AES
encryption.

Step 1: Computing the input parity: Parity of the 128-
bit input is determined by a tree of exclusive-or gates. As
will become clear later it is useful to compute the parities
of each of the 16 bytes first and then combine these 16
parity bits using a tree of exclusive-or gates to get the
parity bit for the 128-bit input.

Step 2: Parity modification according to Sub-Bytes:
Without error detection all 16 bytes of the 128-bit input
are processed by an 8-bit input, 8-bit output nonlinear
function called s-box. An s-box implements a polynomial
inversion in GF(28) followed by a linear affine
transformation. An s-box can be either implemented by
an 8-input, 8-output ROM or, as combinational logic.

For error detection in an s-box we add an additional
binary parity output which implements exclusive-or of the
parity of all 8-bit inputs with the parity of the
corresponding 8-bit outputs. The values for this additional
output can be determined from the truth table of the

Paper 43.3

1244

original s-box. The modified s-box has an 8-bit input and
a 9-bit output. In Figure 2 this additional parity output is
shown as a thick box appended to the right hand side of
an s-box. The parity modification for the complete 128-
bit operation Sub-Bytes is determined as the exclusive-or
of the 16 additional parity outputs of the sixteen s-boxes
using a 16-input one-output tree of exclusive-or gates. To
modify the input parity according to the Sub-Bytes
processing step the output of this parity tree is exclusive-
ored with the input parity.

The modified s-boxes can be either implemented by
ROMs with 8-bit inputs and 9-bit outputs or as a
combinational logic circuit. If we implement the 8
functional outputs and the parity output of an s-box as
combinational logic, a two-level implementation is good
for error detection. In such a two-level realization every
single internal fault in the s-box is immediately detected
by an erroneous parity. The overhead for implementing
the additional parity modification bit of an s-box is
∼12.5% of the area for the basic s-box.

Step 3: No parity modification according to Shift-
Rows: Shift-Rows operation is a permutation of the bytes
of the state and obviously does not change the parity.
Therefore the parity is not modified in this step.

Step 4: No parity modification according to Mix-
Column: The Mix-Column operation is described by
equation (1). Because of the simple structure of the
coefficients in the matrix C this operation can be easily
implemented as a linear in GF(2) combinational circuit.

Surprisingly, the Mix-Column operation does not alter the
parity from its input to its outputs when the 32-bit
columns of the state are considered. Therefore if we add a
single parity bit for every column (of 32 bits) of the state
or a single parity bit for the entire 128-bit state, these
parity bits are not modified by the Mix-Column
operation.

To prove this statement, consider the first column of the
input to Mix-Column operation Z (z0, z1, z2, z3) and the
first column of the output of Mix-Column operation U
(u0, u1, u2, u3). Let P(zi) and P(ui) are parities of the bytes.
Since Mix-Column operation is defined by equation 1, we
have:

u0 = (02)z0 + (03)z1 + (01)z2 + (01)z3

u1 = (01)z0 + (02)z1 + (03)z2 + (01)z3

u2 = (01)z0 + (01)z1 + (02)z2 + (03)z3

u3 = (03)z0 + (01)z1 + (01)z2 + (02)z3

The parity of the 32-bit output column generated by Mix-
Column is

P(u0)⊕P(u1)⊕P(u2)⊕P(u3) = P(u0+u1+u2+u3)

 =
P[(02)z0+(03)z1+(01)z2+(01)z3+(01)z0+(02)z1+(03)z2+(01
)z3+

(01)z0+(01)z1+(02)z2+(03)z3+(03)z0+(01)z1+(01)z2+(02)z
3].

Substituting (01)zi+(02)zi+(03)zi=0 and (03)zi+(03)zi =0
for i = 0, 1, 2, 3,

P(u0)⊕P(u1)⊕P(u2)⊕P(u3) = P(z0)⊕P(z1)⊕P(z2)⊕P(z3).

This proves that the parity of a column consisting of four
bytes of the state is not changed by the Mix-Column
operation. In Figure 2 we use a single parity bit for all
128-bits for concurrent checking; since this is not
modified by the Mix-Column operation it does not entail
CED area overhead.

In [10] a parity bit is used for every byte of the state.
However, since the Mix-Column operation alters the
parity of every byte of the state, the input parity of the
input bytes to the Mix-Column has to be modified
resulting in an area overhead.

Step 5: Parity modification according to Add-Key:
Since a 128-bit round key is component-wise exclusive-
ored with the 128-bit state output of Mix-Column
operation, the input parity has to be modified by the
parity P(k) = k0⊕k1⊕…⊕k127 of the round key as shown
in Figure 2. This parity for all round keys is pre-computed
during round key generation. This parity modification
step requires a 1-bit exclusive or gate.

Step 6: Output parity checking: The parity of the actual
outputs of the round has to be compared with the
modified input parity of the round. For this purpose, the
modified input parity is stored in a 1-bit register. Since
the outputs of a round are connected to the inputs of the
round, the input parity of a round (computed using
exclusive-or tree at the inputs of the round in step 1) is
also the output parity of the previous round. Comparing
this parity with the modified input parity of the previous
round stored in the 1-bit register detects a possible error.

Overall, for concurrent checking of AES encryption the
input parity is determined and this input parity is
modified only for Sub-Bytes operation by additional
outputs of the 16 s-boxes and by 1-bit pre-computed
parity of the round key.

4. CED Capability
In AES and other encryption algorithms a single error bit
in one location spreads within a few rounds to a large
number of (even or odd) erroneous bits [11]. This is
confirmed by simulation experiments in [10]. Because of
this property traditional parity prediction for encryption

Paper 43.3

1245

algorithms is not easy. For the proposed parity
modification the situation is different. Using the proposed
method of step-by-step parity modification a local fault
within a processing step which is in principle detectable
by parity checking at the outputs of this processing step
will also be detected by comparing the modified parity
with the actual parity of the outputs of the round.

Theorem: If a fault in a processing step in a round (Sub-
Bytes, Shift-Rows, Mix-Column, Add-Key) is locally
detectable by parity at the outputs of this processing step
then the fault will be detected by comparing the modified
input parity with the actual output parity of the round.

Proof: Let us refer to Figure 3. Let x be the correct input
to the considered round and let y, z, u, and v be the
correct outputs of the processing steps Sub-Bytes, Shift-
Rows, Mix-Column and Add-Key respectively. Input
parity P(x) is modified by ∆=P(x)⊕P(y) into P(y) (∆⊕
P(x)) according to the Sub-Bytes operation. Since Shift-
Rows and Mix-Column do not alter parity, P(y) = P(z) =
P(u). Finally, P(v)=P(u) ⊕ P(k) and the modified parity
PM, is equal to the parity P(v) of the outputs v of the
Add-Key operation.

Let us see how a stuck-at fault at the inputs of Sub-Bytes
operation can be detected. Let us replace the correct input
x by an erroneous value x’, x≠x’. If Sub-Bytes is
implemented using ROMs the considered error
corresponds to an address error of the ROM. If Sub-Bytes
is implemented as combinational logic the considered
error corresponds to a stuck-at fault at an input-line of a
gate of the first level of the implementation. For this case
the outputs of Sub-Bytes, Shift-Rows, Mix-Column and
Add-Key in Figure 3 are denoted by y’, z’, u’ and v’
respectively. The input parity P(x) is now modified by ∆
= P(x’) ⊕ P(y’) into P(x) ⊕ P(x’) ⊕ P(y’) and the
modified parity PM is P(x) ⊕ P(x’) ⊕ P(y’) ⊕ P(k). For
the parity P(v’) of the outputs of this round we have P(v’)
= P(u’) ⊕ P(k) = P(z’) ⊕ P(k) = P(y’) ⊕ P(k) and P(v’) ≠
PM if P(x’) ≠ P(x).

Thus the input error (e.g. an address error of a ROM) is
detected by comparing the modified parity and the actual
parity of the outputs of the round if P(x’) ≠ P(x).

As a second example, let us consider a technical fault f1
within the processing step Sub-Bytes. Let y1, z1, u1, v1 be
the outputs of the processing steps Sub-Bytes, Shift-
Rows, Mix-Column and Add-Key respectively due to this
technical fault as shown in Figure 3. In this case we have
PM = P(x) ⊕ P(x) ⊕ P(y) ⊕ P(k) = P(y) ⊕ P(k) and P(v1)
= P(u1) ⊕ P(k) = P(z1) ⊕ P(k) = P(y1) ⊕ P(k) ≠ PM and
the fault is detected for P(y) ≠ P(y1).

Figure 3: CED capability of AES with concurrent
checking

In a similar way faults in the processing steps Shift-Rows,
Mix-Column and Add-Key are detected. If we consider
single stuck-at faults as the technical faults in the
processing steps or injected single bit faults then the
number of erroneous bits at the outputs of these
processing steps depends on the concrete implementation.
According to [12] in random logic the probability of 1-
bit, 2-bit, 3-bit and 4-bit errors before (after) optimization
is 88.8(77.9)%, 7.7(12.8)%, 1.9(4.7)% and 1.1(2.4)%
respectively. For the different AES processing steps
special designs with good error detection properties are
possible.

At the gate level different implementations of the S-boxes
are considered. If all the bits of the S-boxes and also the
parity bits are separately implemented the necessary area
is 79% of the not optimized circuit. 100% of the errors
are detected. If the bits of the s-boxes are jointly
optimized and if the parity bit is separately implemented
the area is only 35% of the area of the not optimized
circuit. But in this case many two-bit errors are generated
within the S-boxes by single stuck-at faults and only 48-
53% of the errors due to these single stuck-at faults in the
s-boxes are immediately detected. The situation for the
detection of the single stuck-at faults is quite different.
98.7% of the single stuck-at faults are detected at least
with some latency. All the other parts of the
implementation remain unchanged

Then all possible faults are detectable by parity checking
and all faults are detected by comparing the modified
parity with the actual parity of the outputs of the round.
The operation Shift-Rows is a byte-wise permutation and
this operation can be implemented by proper wiring in
hardware. All single faults will result in single errors. The
Mix-Column operation (composed of exclusive-or
operations) can be implemented in which all single stuck-

Paper 43.3

1246

at faults and all injected single faults result in an odd
number of erroneous bits at its outputs which are
detectable by parity checking. This is also confirmed by
the simulation experiments of [10]. Add-Key is a
component-wise exclusive-or of 128 bits. All single
stuck-at faults and all single injected faults will result in
one-bit errors which are once again detectable by parity
checking. Stuck-at faults at the outputs of the parity trees
are detected possibly with a small latency. As in the
FPGA-based implementation a separate parity line for
every block of 32 bits can be used to increase the fault
coverage for multiple stuck-at faults.

5. FPGA Implementation
We used a Xilinx Virtex 1000 FPGA device to prototype
the described CED method. We used Synplify Pro for
synthesis and Xilinx ISE for place and route steps. In this
design, we implemented the sixteen s-boxes using sixteen
identical 8-bit×9-bit ROMs. Each ROM contains 256
bytes of s-box data and 256 bits for the corresponding
parities. The additional parity column translates into an
overhead of sixteen 256x1 ROMs. The input and output
parities are generated using a 128-bit parity tree using 46
Look Up Tables (LUT). Each LUT in the target FPGA
can implement a 4-input-1-output logic.

Table 1: Area and time overhead for AES with CED

 Non-CED CED Overhead

of LUT 3629 3899 7.4%

of register bits 823 830 1%

Clock period (ns) 17.742 18.88
3

6.4%

Table 1 summarizes the area and time numbers for the
basic AES and AES with CED. The number of LUTs
reports the combinational logic used in our
implementation while the number of register bits
(excluding register I/O) reports the sequential logic. The
clock period is reported after place and route and includes
LUT cell delays and routing delays. According to this
table we have less than 8% hardware and less than 7%
time overhead.

Xilinx Virtex FPGAs have a large amount of block
RAMs. Efficient implementations for the AES without
error detection using block RAMS Xilinx FPGAs are
described in [13][14]. A block RAM can be configured
as a dual-port ROM with two 8-bit input ports and two 9-
bit output ports. Such a dual-port ROM functions as two
independent single-port ROMs which share identical
ROM contents. The area of a dual-port ROM is the same
as the area of a single-input-output ROM. Since the
sixteen AES s-boxes are identical to each other, we
propose to use eight dual-port ROMs yielding a fifty

percent reduction compared to the basic CED
implementations. In turn, the dual-port ROM based
implementation will reduce the number of columns used
to compute the parity term from 16 to 8.

Dual-port ROMs based implementation will compromise
the error detection capability of the 1-bit parity based
concurrent checking. When a fault is introduced into a
dual-port ROM, this faulty content may appear twice in
the output if the values on the two input ports are the
same. The two faulty outputs cancel each other and do not
change the parity of the 128-bit output. To detect such
faults, we need to use at least two parity bits (one parity
bit for 64 bits). We propose to use four parity bits with
one parity bit for every 32 bits. In order to detect all faults
in the dual-port ROMs, we need to carefully identify the
32-bit input whose parity is computed, modified step-by-
step and compared with the corresponding 32-bit output.

In Figure 1, X is the input to the AES round and Y, Z, U,
V, are the outputs of Sub-Bytes, Shift-Row, Mix-Column,
and Add-Key operations respectively. Let us start with
the AES round output V. The parity of the 32-bit first
column (v0, v1, v2, v3) of V is determined by the parity of
the 32-bit first column (u0, u1, u2, u3) of U. This in turn is
determined by the parity of the first column (z0, z1, z2, z3)
of Z. Since the Shift-Row operation shifts the positions of
the bytes in a column from its inputs to its outputs, the
parity of the first column of Z (z0, z1, z2, z3) is determined
by the parity of the 32 bits (y0, y5, y10, y15). In turn this
parity is determined by the parity of the 32 bits (x0, x5,
x10, x15). Overall, the parity of the first column of the AES
round output V should be compared to the parity of the
32-bit input (x0, x5, x10, x15) modified by the parities of
the four participating s-boxes and the corresponding 32-
bits of the round key. Table 2 summarizes the four pairs
of 32-bit inputs and the corresponding 32-bit outputs
whose parities have to be compared.

Table 2: 32-bit AES round inputs, outputs whose parities
should be compared. xi and yi are the input and output
bytes. Shift row operation shuffles the bytes and hence
the input and output bytes do not have identical indices.

Modify the parity of
the 32-bit input

and compare it with actual
parity of the 32-bit output

(x0, x5, x10, x15) (v0, v1, v2, v3)

(x4, x9, x14, x3) (v4, v5, v6, v7)

(x8, x13, x2, x7) (v8, v9, v10, v11)

(x12, x1, x6, x11) (v12, v13, v14, v15)

From Table 2, we can see that input bytes x0, x5, x10, and
x15 cannot be mapped to the same dual-port ROM.
Similarly, bytes x4, x9, x14 and x3 cannot be mapped to the
same dual-port ROM and so on. In our implementation,

Paper 43.3

1247

the byte pairs (x0, x1), (x2, x3), (x4, x5), (x6, x7), (x8, x9),
(x10, x11), (x12, x13), (x14, x15) share a dual-port ROM.
Since the sixteen s-boxes are implemented using 8 block
RAMs, this optimized FPGA implementation uses only
1606 LUTs and a clock period of 16.649 ns.

6. Conclusions
In this paper we presented a new low-cost method for
concurrent checking for the AES encryption by using
parity checking. This technique is applicable to AES
decryption as well. The step-by-step modification of the
input parity into output parity yields <8% area overhead
since the Shift-Rows and Mix Column steps are parity
preserving. Also, a single parity tree is used to compute
the input and the output parities. We showed how this
basic technique can be optimized to exploit the dual-port
RAMs on a Xilinx Virtex FPGA. We showed that in such
a dual-port RAM-based implementation, the sixteen AES
s-boxes should be carefully mapped so as not to
compromise the error detection capability. The method
can detect technical faults during normal operation and
deliberately injected faults. On detecting a fault(s), the
stored key may be refreshed to prevent the attacker from
uncovering the key.

7. References
[1] J. Daemen and V. Rijmen, “AES proposal:

Rijndael”, csrc.nist.gov/CryptoToolkit/aes/rijndael/
[2] D. Boneh, R. DeMillo and R. Lipton, “On the

importance of checking cryptographic protocols for
faults”, Proceedings of Eurocrypt, Lecture Notes in
Computer Science vol 1233, Springer-Verlag, pp.
37-51, 1997.

[3] E. Biham and A. Shamir, “Differential Fault
Analysis of Secret Key Cryptosystems”,
Proceedings of Crypto, Aug 1997.

[4] J. Bloemer and J.-P. Seifert, “Fault based
cryptanalysis of the Advanced Encryption
Standard,” www.iacr.org/ eprint/2002/075.pdf.

[5] C. Giraud, “Differential Fault Analysis on AES”,
eprint.iacr.org /2003/008.ps

[6] R Karri, K. Wu, P. Mishra and Y. Kim, “Concurrent
Error Detection of Fault Based Side-Channel

Cryptanalysis of 128-Bit Symmetric Block Ciphers,”
IEEE Transactions on CAD, Dec 2002.

[7] R. Karri, G. Kuznetsov and M. Goessel, “Parity-
based Concurrent Error Detection of Substitution-
Permutation Network Block Ciphers,” Proceedings
of Workshop on Cryptographic Hardware and
Embedded Systems, Springer Verlag LNCS 2779,
Sep 2003.

[8] R. Karri, M. Goessel, and G. Kousnezow, “Method
for error detection in kryptographic substitution
permutation networks,” patent application pending.

[9] G. Bertoni, L. Breveglieri, I. Koren and V. Piuri,
“On the propagation of faults and their detection in a
hardware implementation of the advanced
encryption standard,” Proceedings of ASAP’02, pp.
303-312, 2002.

[10] G. Bertoni, L. Breveglieri, I. Koren, and V. Piuri,
“Error Analysis and Detection Procedures for a
Hardware Implementation of the Advanced
Encryption Standard,” IEEE Transactions on
Computers, vol. 52, No. 4, pp. 492-505, Apr 2003.

[11] H. Heys and S. E. Tavares, “Avalanche
characteristics of substitution permutation
encryption networks,” IEEE Transactions on
Computers, vol. 44, no. 9, pp. 1131-1139, Sep 1995.

[12] Vl. Moshanin, V. Otscheretnij and A. Dmitriev,
“The Impact of Logic Optimization on Concurrent
Error Detection,” Proceedings of the 4th IEEE
International On-Line Testing Workshop, pp. 81-84,
Jul 1998.

[13] P. Chodowiec and K. Gaj, “Very Compact FPGA
Implementation of the AES Algorithm,”
Proceedings of Workshop on Cryptographic
Hardware and Embedded Systems, Springer Verlag
LNCS 2779, pp. 319-333, Sep 2003

[14] F. Standaert, G. Rouvroy, J. Quisquater and J. Legat,
“Efficient Implementation of Rijndael Encryption in
Reconfigurable Hardware: Improvements and
Design Trade-offs,” Proceedings of Workshop on
Cryptographic Hardware and Embedded Systems,
Springer Verlag LNCS 2779, pp. 343-350, Sep
2003.

Paper 43.3

1248

	ITC04
	Table of Contents
	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

