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Abstract: This paper focuses on control applications over lossy data
networks. Sensor data is transmitted to an estimation-control unit over
a network, and control commands are issued to subsystems over the
same network. Sensor, control and acknowledgement packets may be
randomly lost according to a Bernoulli process. In this context, the
discrete-time Linear Quadratic Gaussian (LQG) optimal control problem
is considered. We can show how the partial loss of acknowledgements
makes the optimal control law a nonlinear function of the information
set. For the special case of complete state observation we can compute
the optimal controller and show that the stability range increases
monotonically with the arrival rate of the acknowledgement packets.
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1 Introduction

This paper is concerned with the design and analysis of control systems when
components are connected via packet based communication networks. This requires
a generalisation of classical control techniques that explicitly takes into account the
stochastic nature of the communication channel.

In particular we consider a generalised formulation of the LQG optimal
control problem where the arrival of both observations and control packets are
modelled as random processes whose parameters are related to the characteristics
of the communication channel. Accordingly, independent Bernoulli processes are
considered, with parameters γ̄ and ν̄, that govern packet losses between the sensors
and the estimation-control unit, and between the latter and the actuation points.
The key issue to the proper design of networked control systems is a clear
understanding of the information available to the controller at each time instant.
For this reason it is usual to distinguish between two information sets depending
on two classes of protocols. Such a distinction resides simply in the availability of
packet acknowledgements. Adopting the framework proposed by Imer et al. (2004),
we will refer to TCP-like protocols if packet acknowledgements are guaranteed
at each time instant and to UDP-like protocols otherwise. In many real cases,
due to the unreliability of the communication medium, such a distinction is too
simplistic. In fact often, while it is impossible to guarantee a perfectly deterministic
acknowledgement through a packet dropping channel, it is possible to provide a
stochastic one. This ‘quasi-TCP-like’ protocol will provide the controller with more
information than the UDP-like ones, and it could therefore be useful in many
applications.
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The goal of this paper is to provide some partial answers to the question
of how control loop performance is affected by communication constraints and
what are the basic system-theoretic implications of using unreliable networks for
control in the case of ‘quasi-TCP-like’ protocols. For such a reason we introduce
a third Bernoulli process (see Figure 1) of parameter, θ̄, which models the loss
of the acknowledgement packet. Previous work (see Sinopoli et al., 2005a, 2005b,
2005c) showed the existence of a critical domain of values for the parameters of
the Bernoulli arrival processes, ν̄ and γ̄, outside which a transition to instability
occurs and the optimal controller fails to stabilise the system. In particular, under
TCP-like protocols, the critical arrival probabilities for the control and observation
channels are independent of each other. It was shown that in the TCP-like case
the classic separation principle holds, and consequently the controller and estimator
can be designed independently. Moreover, the optimal controller is a linear function
of the state. A more involved situation regards UDP-like protocols. In this case
the absence of an acknowledgement structure generates a nonclassical information
pattern (Witsenhausen, 1968). A consequence of that the optimal controller is in
general a non-linear function of the state. Because of the importance of UDP
protocols for wireless sensor networks, the special case when the arrival of a sensor
packet provides complete knowledge of the state has been analysed. In this case,
despite the lack of acknowledgements, the optimal control design problem yields a
linear controller (see Sinopoli et al., 2005b) and the critical arrival probabilities for
the control and observation channels are coupled. Also the stability domain and
the performance of the optimal controller degrade considerably as compared with
TCP-like protocols as shown in Figure 2.

Figure 1 Overview of the system. Architecture of the closed loop system over a
communication network. The binary random variables νt, γt and θt indicates
whether packets are transmitted successfully (see online version for colours)

For the general UDP-like case, a sub-optimal solution was provided in Sinopoli et al.
(2006), by designing the optimal linear static regulator, with constant gains for both
the observer and the controller. This is particularly attractive for sensor networks,
where simplicity of implementation is highly desirable and complexity issues are a
primary concern.

In this paper, we drop the assumption of deterministic and instantaneous
availability of acknowledgement. We call this information set Quasi-TCP-like.
Loss of acknowledgement leads once again to a nonclassical information pattern,
and we are able to prove that in general the optimal control law is a
nonlinear function of the information set. By restricting ourselves to the complete
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observability case, we are able to solve the LQG problem. We show that
probabilistic acknowledgements increase the stability range of the system with
respect to the UDP-like case. Furthermore, we can show how such range converges
to the TCP-like one as the erasure probability for the acknowledgement channel
tends to zero. In the past few years networked embedded control systems have
drawn considerable attention in the academic world. We will now try to set our
work in the context of the existing literature. In Gupta et al. (2007) and Xu and
Hespanha (2005), an estimator, i.e., a Kalman filter, is placed at the sensor side of
the link and no assumption is made on the statistical model of the data loss process
(see Smith and Seiler, 2003) focused on designing a suboptimal yet computationally
efficient estimator for Markov Chain arrival processes. In Huang and Dey (2007)
the authors study the stability of Kalman Filter under general Markovian packet
losses. In Epstein et al. (2006), the authors present a simple estimation scheme
that is able to recover the fate of the control packet under UDP-like protocols by
constraining the control signal sent to the plant. Drew et al. (2005) analyses the
problem of designing a controller over a wireless LAN. Control design has been
investigated in the context of Cross Layer Design by Liu and Goldsmith (2006).
Finally, in Elia and Eisembeis (2004) and Elia (2005), the plant and the controller
are modelled as deterministic time invariant discrete-time systems connected to
zero-mean stochastic structured uncertainty, where the variance of the stochastic
perturbation is a function of the Bernoulli parameters. Here, the controller design
problem is posed an an optimisation problem to maximise mean-square stability of
the closed loop system. While this method allows analysis of Multiple Input Multiple
Output (MIMO) systems with many different controller and receiver compensation
schemes (see Elia and Eisembeis, 2004), it does not include process and observation
noise. The resulting controller is restricted to be time-invariant, hence sub-optimal.
Finally, within the context of UDP-like control (Epstein et al., 2006) recently
proposed to estimate not only the state of the system, but also a binary variable
which indicates whether the previous control packet has been received or not.
Such strategy improves closed loop performance at the price of a somewhat larger
computational complexity.

Figure 2 Region of stability for UDP-like and TCP-like optimal control relative to
measurement packet arrival probability γ̄, and the control packet arrival
probability ν̄ (see online version for colours)
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The remainder of this paper is organised as follows. Section 2 provides the problem
formulation. In Section 3, the Single Channel problem is studied. In particular,
estimator equations are derived and the nonlinearity of the optimal control for the
general case is proven. Finally the optimal control for the special case of complete
observability is considered. Section 4 generalises the previous section’s results to
the multi-channel case. Section 5 provides an example showing how the arrival
probability of the acknowledgement packet increases the stability region. Section 6
provides conclusions. In order to make the paper more readable most of the proofs
have been moved to the Appendix.

2 Problem and formulation

Consider the following linear stochastic system with intermittent observation and
control packets arrival:

xk+1 = Axk + Bua
k + ωk,

ua
k = Nkuk + [Im×m − Nk] ul

k, (1)

yk = Γk(Cxk + vk),

where xk ∈ Rn is the state vector, yk ∈ Rp is the output vector and vectors (x0 ∈
Rn, wk ∈ Rn, vk ∈ Rp) are Gaussian, uncorrelated, white, with mean (x̄0, 0, 0) and
covariance (P0, Q, R) respectively. The packet arrivals at time k are modelled by
means of the following diagonal matrices:

Nk =

ν1,k . . . 0
. . . . . . . . .
0 . . . νm,k

, (2)

Γk =

γ1,k . . . 0
. . . . . . . . .
0 . . . γp,k

, (3)

where (γi,k), i = 1, . . . , p and (νj,k) j = 1, . . . , m,∀k ∈ Z, are binary variables
modelling the successful transmission of the information from the ith sensor and
to the jth actuator. ua

k ∈ Rm is the effective control input applied to the actuators
while uk ∈ Rm denotes the desired control input computed by the controller. Finally
ul

k ∈ Rm is the signal locally provided to the actuators in the case Nk = 0m×m

(all packets to the actuators are lost). While it is possible to choose ul(k) in several
ways, the most common strategies are the following:

1 zero-input scheme: ul
k = 0

2 hold-input scheme: ul
k = ua

k−1.

In this paper we will provide analytical results for the zero-input scheme.
Provided that groups of sensors/actuators could send/receive their data in the

same packet, we will suppose that the information transmission is organised in p′
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sensor and m′ actuator clusters independent one of the other. This means we can
rewrite Γk and Nk as follows:

Γk = Ip×p −
p′∏

i=1

(Ip×p − γ′
i,kdiag{gi}) (4)

Nk = Im×m −
m′∏
i=1

(Im×m − ν′
i,kdiag{ηi}) (5)

where γ′
i,k and ν′

j,k are i.d.d. Bernoulli processes with probabilities of successful

transmission γ′
i = P (γ′

i,k = 1), i = 1, . . . , p′ and ν′
j = P (ν′

j,k = 1), i = 1, . . . , m′.
gi, i = 1, . . . , m′ and ηi, i = 1, . . . , p′ are vectors of length p and m respectively such
that:

• (gi)j = 1 ((ηi)j = 1) if the jth sensor (actuator) belongs to the ith cluster

• (gi)j = 0 ((ηi)j = 0) if the jth sensor (actuator) does not belong to the
ith cluster.

A key point toward the design of any control strategy is the definition of the
Information Set, i.e., the information available to the controller at each time instant.
In the literature, it is usual (see Imer et al., 2004) to refer to the following two
information sets:

Ik =

{
Fk = {Γtyt, Γt, Nt−1 | t = 0, . . . , k} TCP-like

Gk = {Γtyt, Γt | t = 0, . . . , k} UDP-like
. (6)

The difference between the two Information Sets is the acknowledgement of the
actually arrived packets to the actuators i.e., the matrix Nk−1.

While for the ‘TCP-like’ case several useful and important results (separation
principles, LQG optimal control, etc.) are known, it is well known from
networks and computer science literature that guaranteeing a deterministic ‘perfect’
acknowledgement is in general a very difficult task and, in the case where the
acknowledgement packet uses unreliable channels, a theoretically impossible one as
it can be seen as a particular case of the two-armies problem (see Tanenbaum, 1981).

On the other hand it is extremely difficult (see Sinopoli et al., 2005b) to
design optimal estimators and controllers under the information set Gk, since the
separation principle does not hold and it can be shown that the optimal control is
not linear. Even in the special case where the optimal control is linear performance
and stability regions are highly affected as shown in Figure 2, due to the fact that
no ‘real’ information on the actual input is exploited.

In many practical cases, it is reasonable to use communication channels where
acknowledgements are provided although they can be dropped with a probability
which depends on both the channel reliability and the protocol employed. This
means that, during each process, we have a non-zero probability to lose the
acknowledgement from the channel j. In order to formalise this assumption
we introduce the matrix

Θk =

θ1,k . . . 0
. . . . . . . . .
0 . . . θm,k

, (7)
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where θi,k is the acknowledgement event from the ith actuator at time k. It can be
rewritten as

Θk = Im×m −
m′∏
i=1

(Im×m − θ′
i,kdiag{ηi}) (8)

where θ′
i,k are i.i.d. Bernoulli processes with θ′

i = P (θ′
i,k = 1), i = 1, . . . , m′.

The information structure of a networked system with stochastic acknowledgements
is the following:

Ek = {Γtyt, Γt, Θkt−1, Θt−1Nt−1 | t = 0, . . . , k}. (9)

Let us now define uN−1 = {u0, u1, . . . , uN−1} as the set of all the input values
between 0 and N − 1. In this paper, we will tackle the LQG control problem, i.e.,
we will look for a control input sequence uN−1∗, function of the information set Ek,
i.e., uk = fk(Ek), that solves the following optimisation problem

J∗
N (x̄0, P0) = min

uk = fk(Ek)
k = 0, . . . , N − 1

JN (uN−1, x̄0, P0), (10)

where the cost function JN (uN−1, x̄0, P0) is defined as follows:

JN (uN−1, x̄0, P0) = E

[
xT

NWNxN +
N−1∑
k=0

xT
k Wkxk + uaT

k Ukua
k

∣∣∣∣uN−1, x̄0, P0

]
. (11)

The general multichannel formulation involves large matrix calculations. We feel
that such technicalities will affect the intuitive nature of the results while not
providing any additional insight. For this reason we will first concentrate on single
channels case, i.e., m′ = 1 and n′ = 1 and provide the major results for it. We will
then generalise the results to the multi-channel case. We will defer most of the proofs
to the Appendix.

3 Single input/output channel case

3.1 Estimator design

If m′ = 1 and n′ = 1 system (1) becomes

xk+1 = Axk + νkBuk + ωk
(12)

yk = γkCxk + vk

and Θk = θk. By the knowledge of the information set equation (9), the one-step
prediction can be written as:

x̂k+1 | k = Ax̂k | k + θkνkBuk + (1 − θk)ν̄Buk. (13)
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Using equation (13) it is possible to rewrite the predicted error as follows:

ek+1 | k = xk+1 − x̂k+1 | k

= Axk + νkBuk + ωk − Ax̂k | k + θkνkBuk − (1 − θk)ν̄Buk (14)

= Aek | k + (νk − θkνk − (1 − θk)ν̄)Buk + ωk.

We can then compute the associated error covariance one-step prediction:

Pk+1 | k = E[ek+1 | keT
k+1 | k |Ek, θk, θkνk]

= E[Aek | keT
k | kA |Ek] + E[ωkωT

k |Ek]

+ E[(νk − θkνk − (1 − θk)ν̄)2 |Ek, θk, θkνk]BukuT
k BT ,

obtaining

Pk+1 | k = APk | kAT + Q + (1 − θk)(1 − ν̄)ν̄[BukuT
k BT ]. (15)

Equations (13)–(15) represent the predictions of the Kalman Filter for the
systems (12). The correction steps, instead, are the classical ones reported in
Schenato et al. (2007):

x̂k+1 | k+1 = x̂k+1 | k + γk+1Kk+1(yk+1 − Cxk+1 | k) (16)

Pk+1 | k+1 = Pk+1 | k − γk+1Kk+1CPk+1 | k (17)

Kk+1 = Pk+1 | kCT (CPk+1 | kCT + R)−1. (18)

Remark 1: Note that:

θk = 1 ⇒ Pk+1 | k = APk | kA + Q

θk = 0 ⇒ Pk+1 | k = APk | kA + Q + ν̄(1 − ν̄)[BukuT
k BT ].

This implies that, at each time k, the prediction switches between the ‘TCP-like’
predictions or the ‘UDP-like’ ones, depending on the instantaneous value of θk.

3.2 Optimal control: general case

In this section we will show that, in the presence of a stochastic acknowledgements,
the optimal control law is not a linear function of the state and that the estimation
and control design cannot be treated separately. In order to prove such a statement
it is sufficient to consider the following simple counter example.

Consider a simple scalar discrete-time Linear Time-Invariant (LTI) system
with a single sensor and a single actuator, i.e., A = B = C = WN = Wk = R = 1,
Uk = Q = 0. We can define

V (N) = E[xT
NWNxN |EN ]

= E[x2
N |EN ].
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For k = N − 1 we will have:

VN−1(xN−1) = min
uN

E[x2
N−1 + VN (xN ) |EN−1]

= min
uN

E[x2
N−1 + x2

N |EN−1] (19)

= min
uN

E[x2
N−1 + (xN−1 + νN−1uN−1)2 |EN−1],

and then finally

VN−1(xN−1) = E[2x2
N−1 | N−1 |EN−1] + min

uN

ν̄(u2
N−1 + 2x̂N−1 | N−1uN−1). (20)

If we differentiate the latter, we obtain the following optimal input:

u∗
N−1 = −x̂N−1 | N−1̂. (21)

If we substitute equation (21) in equation (19) the cost becomes:

VN−1(x) = E[2x2
N−1 |EN−1] − ν̄ x̂2

N−1 | N−1
(22)

= (2 − ν̄)E[x2
N−1 |EN−1] − ν̄PN−1 | N−1.

Let us focus now on the covariance matrix:

PN−1 | N−1 = PN−1 | N−2 − γN−1
P 2

N−1 | N−2

(PN−1 | N−2 + 1)
(23)

= PN−1 | N−2 − γN−1

(
PN−1 | N−2 − 1 +

1
(PN−1 | N−2 + 1)

)
because of

PN−1 | N−2 = PN−2 | N−2 + (1 − θN−2)(1 − ν̄)ν̄u2
N−2 (24)

then:

E[PN−1 | N−1 |EN−2] = PN−2 | N−2 + (1 − θ̄)(1 − ν̄)ν̄u2
N−2

− γ̄

(
PN−2 | N−2 + (1− θ̄)(1− ν̄)ν̄ u2

N−2 − 1+ θ̄
1

PN−2 | N−2

+ (1 − θ̄)
1

PN−2 | N−2 + (1 − ν̄)ν̄u2
N−2

)
. (25)

Finally we get

VN−2(x) = min
uN−2

E[x2
N−2 + VN−1(xN−1) |EN−2]

= (3 − ν̄)E[x2
N−1 |EN−2] + min

uN−2
PN−2 | N−2 + (1 − θ̄)(1 − ν̄)ν̄u2

N−2

− γ̄

(
PN−2 | N−2 + (1 − θ̄)(1 − ν̄)ν̄u2

N−2 − 1 + θ̄
1

PN−2 | N−2

+ (1 − θ̄)
1

PN−2 | N−2 + (1 − ν̄)ν̄u2
N−2

)
. (26)



64 E. Garone et al.

The first terms within the last parenthesis in equation (26) are convex quadratic
functions of the control input uN−2, however the last term is not. Therefore, the
optimal control law is, in general, a nonlinear function of the information set Ek.

There are only two cases where the optimal control is linear. The first case is if
θ̄ = 1 (TCP-Case). This corresponds to the TCP-like case studied in Schenato et al.
(2007). The second case is when the measurement noise covariance is zero (R = 0)
and any delivered packet contains all the state information, i.e., Rank(C) = n.
In fact this would mean that, at each time instant k, γkC is either zero or full
column-rank. If it is zero the dependence is linear. If γkC is full column-rank,
then it is equivalent to having exact measurement of the actual state (see Schenato
et al., 2007). However it is important to remark that in such a second case the
separation principle still does not hold, since the control input affects the estimator
error covariance. These results can be summarised in the following theorem.

Theorem 1: Let us consider the stochastic system defined in equation (12) with
horizon N ≥ 2. Then:

• If θ̄ < 1, the separation principle does not hold.

• The optimal control feedback uk = f∗
k (Ek) that minimises the cost functional

defined in equation (11) is, in general, a nonlinear function of information
set Ek.

• The optimal control feedback uk = f∗
k (Ek) is a linear function of the

estimated state if and only if one of the following conditions holds true:

• θ̄ = 1

• Rank(C) = n and R = 0.

In the next subsection we will focus on the case where Rank(C) = n, and R = 0.
In particular we will compute the optimal control and we will show that, in the
infinite horizon scenario, the optimal state-feedback gain is constant, i.e., L∗

k = L∗

and can be computed as the solution of a convex optimisation problem.

3.3 Optimal control: Rank(C) = n, R = 0 case

Without loss of generality we can assume C = I . Because of the hypothesis of no
measurement noise, i.e., R = 0, it is possible to simply measure the state xk when a
packet is delivered. The estimator equations then simplify in the following way:

Kk+1 = I (27)

Pk+1 | k = APk | kA + Q + (1 − θk)(1 − ν̄)ν̄[BukuT
k BT ] (28)

Pk+1 | k+1 = (1 − γk+1)Pk+1 | k (29)

= (1 − γk+1)(APk | kA + Q + (1 − θk)(1 − ν̄)ν̄[BukuT
k BT ]) (30)

E[Pk+1 | k+1 |Ek] = (1 − γ̄)(APk | kA + Q + (1 − θ̄)(1 − ν̄)ν̄[BukuT
k BT ]). (31)
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In the last equation the independence of Ek, γk+1, θk is exploited. Following the
classical dynamic programming approach to optimal control, we claim that the value
function V ∗

k (xk) can be written as follows:

Vk(xk) = x̂T
k | kSkx̂k | k + trace(TkPk | k) + trace(DkQ)

= E[xT
k | kSkxk | k] + trace(HkPk | k) + trace(DkQ) (32)

for each k = N, . . . , 0 where Hk = Tk − Sk. This is clearly true for k = N , in fact
we have:

VN (xN ) = E[xT
NWNxN |EN ]

= x̂T
N | NWN x̂N | N + trace(WNPN | N ),

and the statement is satisfied by SN = TN = WN , DN = 0. Let us suppose that
equation (32) is true for k + 1 and let us show by induction that it holds true for k:

Vk(xk) = min
uk

E[xT
k Wkxk + νkuT

k Ukuk + Vk+1(xk+1) |Ek]

= min
uk

E[xT
k Wkxk |Ek] + ν̄uT

k Ukuk + E[xT
k+1Sk+1xk+1 |Ek]

+ trace(Hk+1Pk+1 | k+1) + trace(Dk+1Q)

= min
uk

E[xT
k Wkxk |Ek] + ν̄kuT

k Ukuk + trace(Dk+1Q)

+ trace(Hk+1((1 − γ̄)(APk | kA + Q + (1 − θk)ν̄(1 − ν̄)[BukuT
k BT ])))

+ E[(Axk | k + θkνkBuk + (1 − θk)ν̄Buk)T Sk+1

(Axk | k + θkνkBuk + (1 − θk)ν̄Buk) |Ek].

Further manipulation yields:

Vk(xk) = min
uk

E[xT
k Wkxk + ν̄kuT

k Ukuk + (xT
k | kAT Sk+1Axk | k)

+ (θkνkuT
k BT Buk) + ((1 − θk)ν̄uT

k BT BuT
k ) + 2θkνkxT

k | kAT Sk+1Buk

+ 2(1 − θk)ν̄xT
k | kAT Sk+1Buk |Ek] + trace(Dk+1Q)

+ trace(Hk+1((1 − γ̄)(APk | kA + Q + (1 − θ̄)ν̄(1 − ν̄)[BukuT
k BT ])))

= E[xT
k | k(Wk + AT Sk+1A)xk | k] + (1 − γ̄)trace(Hk+1((APk | kA + Q)))

+ min
uk

ν̄(uT
k (Uk + BT (Sk+1 + (1 − θ̄)(1 − ν̄)ν̄Hk+1)B)uT

k )

+ 2ν̄(xT
k | kAT Sk+1Buk) + trace(Dk+1Q).

Since Vk(xk) is a convex quadratic function w.r.t. uk, the minimiser is the solution
of ∂Vk(xk)/∂uk = 0, given by:

u∗
k = −(Uk + BT (Sk+1 + ᾱHk+1)B)−1(BT Sk+1Axk | k) = Lkxk | k, (33)
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where ᾱ = (1 − γ̄)(1 − θ̄)(1 − ν̄)ν̄. The optimal control is a linear function of the
estimated state xk | k. Substituting back equation (33) into the value function we get:

Vk(xk) = trace((1 − γ̄)Hk+1((APk | kA))) + trace(((1 − γ̄)Tk+1 + Dk+1)Q)

+ E[xT
k | k(Wk + AT Sk+1A)xk | k] − ν̄xT

k | k(AT Sk+1BLk)xk | k,

which becomes

Vk(xk) = trace((1 − γ̄)Hk+1((APk | kA)))

+ E[xT
k | k(Wk + AT Sk+1A)xk | k + (ν̄(xT

k | kAT Sk+1B)Lkxk | k)]

+ trace((Dk+1 + (1 − γ̄)Tk+1)Q) − trace((ν̄AT Sk+1BLkPk | k)).

Then finally we obtain

Vk(xk) = trace((Dk+1 + (1 − γ̄)Hk+1)Q)

+ E[xT
k | k(Wk + AT Sk+1A)xk | k + (ν̄(xT

k | kAT Sk+1B)Lkxk | k)]

+ trace((((1 − γ̄)AT Hk+1A − ν̄AT Sk+1BLk)Pk | k)).

From the last equation we see that the value function can be written as in
equation (32) if and only if the following equations are satisfied:

Sk = Wk + AT Sk+1A + ν̄(AT Sk+1B)Lk (34)

Tk = (1 − γ̄)AT Tk+1A + Wk + γ̄AT Sk+1A (35)

Dk = Dk+1 + (1 − γ̄)Tk+1 + γ̄Sk+1. (36)

Remark 2: Notice that, if θ̄ → 0, control design system soon regresses to the
UDP-like.

The optimal minimal cost for the finite horizon, J∗
N = V0(x0) is then given by:

J∗
N = x̄T

0 S0x0 + trace(S0P0) + trace(D0Q).

For the infinite horizon optimal controller, necessary and sufficient conditions for
the average minimal cost J∗

∞ = limN→∞ 1
N J∗

N to be finite, are that the coupled
iterative equations (35) and (34) should converge to a finite value S∞ and T∞ as
N → ∞.

Theorem 2: Consider the system (12) and consider the problem of minimising the
cost function (11) within the class of admissible policies uk = f(Ek). Assume also
that R = 0 and rankC = n. Then:
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1 The optimal estimator gain is constant and in particular Kk = I if C = I.

2 The infinite horizon optimal control exists if and only if there exist positive
definite matrices S∞, T∞ > 0 such that S∞ = ΦS(S∞, T∞) and
T∞ = ΦT (S∞, T∞), where ΦS and ΦT are:

ΦS(Sk, Wk) = Wk + AT SkA − ν̄(AT SkB)

(Uk + BT ((1 − ᾱ)Sk+1 + ᾱTk+1)B)−1(BT Sk+1A) (37)

ΦT (Sk, Tk) = (1 − γ̄)AT Tk+1A + Wk + γ̄AT Sk+1A. (38)

3 The infinite horizon optimal controller gain is constant: limk→∞ Lk = L∞

L∞ = −(U + BT ((1 − ᾱ)S∞ + ᾱT∞)B)−1(BT S∞A). (39)

4 A necessary condition for existence of S∞, T∞ > 0 is

1 − |A|2
(

1 − ν̄

(1 − ᾱ) + ᾱ γ̄|A|2
1−(1−γ̄)|A|2

)
≥ 0

(40)

γ̄ > 1 − 1
|A|2

where |A| = maxi |λi(A)| is the largest eigenvalue of the matrix A.
This condition is also sufficient if B is square and invertible.

5 The expected minimum cost for the infinite horizon scenario converges to:

J∗
∞ = lim

k→∞
1
N

J∗
N = trace(((1 − γ̄)Tk + γ̄Sk)Q). (41)

Proof: (1) This fact follows from equation (27). Statements (2), (3) and (5)
follow from Lemma 2 (see Appendix) and equations (34) and (35). Statement (4)
corresponds to Lemmas 3 and 4 (see Appendix). �

4 Generalisation to the multichannel case

Following the same reasoning as in the single channel case, i.e., m′ = n′ = 1, it is
possible to generalise the results above to the multichannel case. Due to space
constraint, here we will just summarise the principal differences with the single
channel case. Proofs are reported in Appendix.

4.1 Optimal observer

The prediction step of the Kalman filter shown in equations (13)–(15) for the single
input case, becomes

x̂k+1 | k = Ax̂k | k + BΘkNkuk + B(1 − Θk)N̄uk (42)

ek+1 | k = Aek | k + B(I − Θk)(Nk − N)uk + ωk. (43)

Pk+1 | k = APk | kAT + Q + B(1 − Θk)(Ψ(uk, N))(1 − Θk)BT (44)
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where the following quantities are introduced to improve clarity:

N = E[Nk] = Im×m −
m′∏
i=1

(Im×m − ν̄′
idiag{ηi}), (45)

NI = Im×m −
∏

i∈I∪{0}
(Im×m − diag{ηi}), (46)

Ψ(uk, N) =
∑
I∈2�

(( ∏
i∈I

ν̄′
i

∏
i/∈I

(1 − ν̄′
i)

)
[(NI − N)ukuT

k (NI − N)]
)

, (47)

where I ⊆ � ≡ {1, . . . , m′} is a set of indices and η0 = 0m. The correction step
remains the classical one as shown in Garone et al. (2007):

x̂k+1 | k+1 = x̂k+1 | k + Kk+1Γm
k+1(yk+1 − Cxk+1 | k) (48)

Pk+1 | k+1 = Pk+1 | k − Kk+1Γm
k+1CPk+1 | k (49)

Kk+1 = Pk+1 | kCT ΓmT
k+1(Γ

m
k+1CPk+1 | kCT ΓmT

k+1 + Γm
k+1RΓmT

k+1)
−1 (50)

where Γm
k is the matrix of the nonzero rows of Γk.

4.2 Optimal control

In this subsection we generalise the theorem statements for the multi-channel case.
In particular, we can extend conditions that make the optimal control linear as
follows:

Theorem 3: Let us consider the stochastic system defined in equation (12) with
horizon N ≥ 2. Then:

• if θi < 1∀i, the separation principle does not hold

• the optimal control feedback uk = f∗
k (Ek) that minimises the cost functional

defined in equation (11) is, in general, a nonlinear function of information
set Ek

• the optimal control feedback uk = f∗
k (Ek) is a linear function of the

estimated state if and only if one of the following conditions holds true:

• θi = 1,∀i

• Rank(diag{gi}C) = n, i = 1, . . . , p′ and R = 0.

It is worth to notice that the conditions Rank(diag{gi}C) = n and R = 0 are
equivalent to the case where any sensor data packet contains the actual value of the
whole state. System (1) is then equivalent to

xk+1 = Axk + Bua
k + ωk,

ua
k = Nkuk + [Im×m − Nk] ul

k, (51)

y(k) = γkxk,
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where

γk = 1 −
p′∏

i=1

(1 − γ′
i,k).

This means that the optimal control is linear only when the sensing apparatus is
able to perfectly measure and deliver the full state. For such a case it is possible to
extend the results previously derived in the following manner:

Theorem 4: Consider the system (1) and consider the problem of minimising the
cost function (11) within the class of admissible policies uk = f(Ek). Assume also
that R = 0 and C is square and invertible. Then:

(a) The optimal estimator gain is constant and in particular Kk = I if C = I.

(b) The optimal control is linear and is

u∗
k = −[ΩN̄Θ̄(Sk+1, Hk)]−1(N)BT Sk+1Axk | k = Lkxk | k (52)

where

ΩN̄Θ̄(Sk+1, Hk) =
∑
I∈2�

Iθ∈2�


 ∏

i∈I
j∈IΘ

ν̄′
iθ̄

′
j

∏
i/∈I

j /∈IΘ

(1 − θ̄′
j)(1 − ν̄′

i)


(
NIUkNI + NIΘIΘBT Sk+1BΘIΘNI

+ (NI − N)(I − ΘIΘ)BT Hk+1B(I − ΘIΘ)(NI − N)

+ 2uT
k N(I − ΘIΘ)BT Sk+1BΘIΘNIu

+ N(I − ΘIΘ)BT Sk+1(I − ΘIΘ)NB
)

and ΘI = NI . Matrices Tk,Sk,Dk remain the same defined in equations (34)–(36)
and Hk = Tk − Sk.

5 Example

This section is devoted to show how the probability to receive an acknowledgement
from the actuators affects the stability regions of the LQG controller. In order
to exploit necessary and sufficient conditions arising from equation (40), we will
consider a very simple system with an invertible and square B:

x(t + 1) = 3x(t) + u(t) + w(t)
(53)

y(t) = x(t)

with Q = 1. Figure 3 shows the different stability regions with respect to ν̄ and γ̄,
parameterised by the acknowledgement probability θ̄. In particular it is possible
to show that, as θ̄ → 1 the stability region converges to the one computed for the
TCP-like case.
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Figure 3 Region of stability relative to measurement packet arrival probability γ̄, and the
control packet arrival probability ν̄, parameterised into the acknowledgement
packet arrival probability θ̄ (see online version for colours)

6 Conclusions

In this paper we analysed a generalised version of the LQG control problem
in the case where both observation and control packets may be lost during
transmission over a communication channel. This situation arises frequently in
distributed systems where sensors, controllers and actuators reside in different
physical locations and have to rely on data networks to exchange information.
In this context controller design heavily depends on the communication protocol
used. In fact, in TCP-like protocols, acknowledgements of successful transmissions
of control packets are provided to the controller, while in UDP-like protocols,
no such feedback is provided. In the first case, the separation principle holds and the
optimal control is a linear function of the state. As a consequence, controller and
estimator design problems are decoupled. UDP-like protocols present a much more
complex problem. We have shown that the even partial lack of acknowledgement
of control packets results in the failure of the separation principle. Estimation
and control are now intimately coupled. We have shown that the LQG optimal
control is, in general, nonlinear in the estimated state. In the particular case,
where we have access to full state information, the optimal controller is linear
in the state. In this particular case we could show how the partial presence of
acknowledgement increases the stability range of the overall system. The stability
range for the Quasi-TCP-like case converges to the TCP-like one with deterministic
acknowledgements as the arrival rate for the acknowledgement packets tends to one,
as shown in the illustrative example.
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Appendix: Proofs

6.1 Infinite horizon

Lemma 1: Let S, T ∈ M = {M ∈ R
n×n |M ≥ 0}. Consider the operators ΦS(S, T ),

and ΦT (S, T ) as defined in equations (34) and (35), and consider the sequences
Sk+1 = ΦS(Sk, Tk) and Tk+1 = ΦT (Sk, Tk). Consider L∗

S,T = −(U + B′((1 − ᾱ)S +
ᾱT )B)−1B′SA and the operator:

Υ(S, T, L) =
(
1 − ν̄

1 − ᾱ

)
A′SA + W +

ν̄

1 − ᾱ
(A + (1 − ᾱ)BL)′S(A + (1 − ᾱ)BL)

+ ν̄L′UL + ν̄ᾱL′B′TBL.

Then the following facts are true:

• ΦS(S, T ) = minL Υ(S, T, L).

• 0 ≤ Υ(S, T, L∗
S,T ) = ΦS(S, T ) ≤ Υ(S, T, L) ∀L.

• If Sk+1 > Sk and Tk+1 > Tk, then Sk+2 > Sk+1 and Tk+2 > Tk+1.

• If the pair (A, W 1/2) is observable and S = ΦS(S, T ) and T = ΦT (S, T ),
then S > 0 and T > 0.

Proof:

(a) If U is invertible then it is easy to verify by direct substitution that

Υ(S, T, L) = ΦS(S, T ) + ν̄(L − L∗
S,T )′(U + B′((1 − ᾱ)S + ᾱT )B)(L − L∗

S,T )

≥ ΦS(S, T ).

(b) The nonnegativeness follows from the observation that Υ(S, T, L) is a sum
of positive semi-definite matrices. In fact

(
1 − ν̄

1−ᾱ

) ≥ 0 and 0 ≤ ᾱ ≤ 1.
The equality Υ(S, T, L∗

S,T ) = ΦS(S, T ) can be verified by direct substitution.
The last inequality follows directly from Fact (b).
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(c) Sk+2 = ΦS(Sk+1, Tk+1) = Υ(Sk+1, Tk+1, L
∗
Sk+1,Tk+1

)

≥ Υ(Sk, Tk, L∗
Sk+1,Tk+1

) ≥ Υ(Sk, Tk, L∗
Sk,Tk

)
(54)

= ΦS(Sk, Tk) = Sk+1

Tk+2 = ΦT (Sk+1, Tk+1) ≥ ΦT (Sk, Tk) = Tk+1.

(d) First observe that S = ΦS(S, T ) ≥ 0 and T = ΦT (S, T ) ≥ 0. Thus, to prove
that S, T > 0, we only need to establish that S, T are nonsingular. Suppose
they are singular, then there exist vectors 0 �= vs ∈ N (S) and 0 �= vt ∈ N (T ),
i.e., Svs = 0 and Tvt = 0, where N (·) indicates the null space. Then

0 = v′
sSvs = v′

sΦ
S(S, T )vs = v′

sΥ(S, T, L∗
S,T )vs

(55)

=
(

1 − ν̄

1 − ᾱ

)
v′

sA
′SAvs + v′

sWvs + 	

where 	 indicates other terms. Since all the terms are positive semi-definite
matrices, this implies that they must be zero:

v′
sA

′SAvs = 0 =⇒ SAvs = 0 =⇒ Avs ∈ N (S)
(56)

v′
sWvs = 0 =⇒ W 1/2vs = 0.

As a result, the null space N (S) is A-invariant. Therefore, N (S) contains an
eigenvector of A, i.e., there exists u �= 0 such that Su = 0 and Au = σu. As before,
we conclude that Wu = 0. This implies (using the PBH test) that the pair (A, W 1/2)
is not observable, contradicting the hypothesis. Thus, N (S) is empty, proving that
S > 0. The same argument can be used to prove that also T > 0. �

Lemma 2: Consider the following operator:

Υ(S, T, L) = A′SA + W + 2ν̄A′SBL + ν̄L′(U + B′((1 − ᾱ)S + ᾱT )B)L. (57)

Assume that the pairs (A, W 1/2) and (A, B) are observable and controllable,
respectively. Then the following statements are equivalent:

• There exist a matrix L̃ and positive definite matrices S̃ and T̃ such that:

S̃ > 0, T̃ > 0, S̃ = Υ(S̃, T̃ , L̃), T̃ = ΦT (S̃, T̃ ).

• Consider the sequences:

Sk+1 = ΦS(Sk, Tk), Tk+1 = ΦT (Sk, Tk)

where the operators ΦS(·), ΦT (·) are defined in equations (34) and (35).
For any initial condition S0, T0 ≥ 0, we have

lim
k→∞

Sk = S∞, lim
k→∞

Tk = T∞



74 E. Garone et al.

and S∞, T∞ > 0 are the unique positive definite solution of the following
equations

S∞ = ΦS(S∞, T∞), T∞ = ΦT (S∞, T∞)

Proof: See Schenato et al. (2007). �

Lemma 3: Let us consider the fixed points of equations (34) and (35), i.e.,
S = ΦS(S, T ), T = ΦT (S, T ) where S, T ≥ 0. Let A be unstable. A necessary
condition for the existence of a solution is

1 − |A|2
1 − ν̄

(1 − ᾱ) + ᾱ γ̄|A|2
1−(1−γ̄)|A|2

 ≥ 0

(58)

γ̄ > 1 − 1
|A|2

where |A| ∆= maxi |λi(A)| is the largest eigenvalue of the matrix A.

Proof: To prove the necessity condition it is sufficient to show that there exist some
initial conditions S0, T0 ≥ 0 for which the sequences Sk+1 = ΦS(Sk, Tk), Tk+1 =
ΦT (Sk, Tk) are unbounded, i.e., limk→∞ Sk = limk→∞ Tk = ∞. To do so, suppose
that at some time-step k we have Sk ≥ skvv′ and Tk ≥ tkvv′, where sk, tk > 0, and
v is the eigenvector corresponding to the largest eigenvalue of A′, i.e., A′v = λmaxv
and |λmax| = |A′| = |A|. Then, we have:

Sk+1 = ΦS(Sk, Tk) ≥ ΦS(skvv′, tkvv′)

= min
L

Υ(skvv′, tkvv′, L)

= min
L

(skA′vv′A + W + 2skν̄A′vv′BL

+ ν̄L′(U + B′((1 − ᾱ)skvv′ + ᾱtkvv′)B)L)

≥ min
L

(sk|A|2vv′ + 2skν̄λmaxvv′BL + ν̄L′B′((1 − ᾱ)skvv′ + ᾱtkvv′)BL)

= min
L

(
sk|A|2vv′ − |A|2ν̄s2

k

ξk
vv′

+ ν̄ξk

(
λmaxs

2
kI +

1
ξk

BL

)′
vv′

(
λmaxs

2
kI +

1
ξk

BL

))
≥ sk|A|2vv′ − |A|2ν̄s2

k

(1 − ᾱ)sk + ᾱtk
vv′

= |A|2sk

(
1 − ν̄sk

(1 − ᾱ)sk + ᾱtk

)
vv′

= sk+1vv′,
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where I is the identity matrix and ξk = (1 − ᾱ)sk + ᾱtk. Similarly, we have:

Tk+1 = ΦT (Sk, Tk) ≥ ΦT (skvv′, tkvv′)

= (1 − γ̄)tkA′vv′A + γ̄skA′vv′A + W

≥ (1 − γ̄)tk|A2|vv′ + γ̄sk|A|2vv′

= |A|2((1 − γ̄)tk + γ̄sk)vv′

= tk+1vv′.

We can summarise the previous results as follows:

(Sk ≥ skvv′, Tk ≥ tkvv′) ⇒ (Sk+1 ≥ sk+1vv′, Tk+1 ≥ tk+1vv′)

sk+1 = φs(sk, tk) = |A|2sk

(
1 − ν̄sk

(1 − ᾱ)sk + ᾱtk

)
,

tk+1 = φt(sk, tk) = |A|2((1 − γ̄)tk + γ̄sk).

Let us define the following sequences:

Sk+1 = ΦS(Sk, Tk), Tk+1 = ΦT (Sk, Tk), S0 = T0 = vv′

sk+1 = φs(sk, tk), tk+1 = φt(sk, tk), s0 = t0 = 1

S̃k = skvv′, T̃k = tkvv′.

From the previous derivations we have that Sk ≥ S̃k, Tk ≥ T̃k for all time instants k.
Therefore, in order to establish necessary conditions, we need to study the
divergence of the scalar sequences sk, tk. It should be evident that also the operators
φs(s, t), φt(s, t) are monotonic in their arguments and that the only fixed points
of s = φs(s, t), t = φt(s, t) are s = t = 0. Therefore we need to establish when the
origin is an unstable equilibrium point, since in this case limk→∞ sk, tk = ∞. Notice
that t = φt(s, t) can be written as:

t = Φt(s, t) = (1 − γ̄)|A|2t + γ̄|A|2s

= ψ(s) =
γ̄|A|2s

1 − (1 − γ̄)|A|2

with the additional constraint 1 − (1 − γ̄)A2 > 0. A necessary condition for the
stability of the origin is that the origin of restricted map zk+1 = φ(zk, ψ(zk)) is also
stable. The restricted map is given by:

zk+1 = |A|2zk

1 − ν̄
zk

(1 − ᾱ)zk + ᾱ γ̄|A|2
1−(1−γ̄)A2 zk


= |A|2

1 − ν̄

(1 − ᾱ) + ᾱ γ̄|A|2
1−(1−γ̄)A2

 zk.
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This is a linear map and it is stable if and only if the term inside the parenthesis is
smaller than unity, i.e.,

1 − |A|2
1 − ν̄

(1 − ᾱ) + ᾱ γ̄|A|2
1−(1−γ̄)|A|2

 > 0 (59)

which concludes the lemma. �

Lemma 4: Let us consider the fixed points of equations (34) and (35), i.e.,
S = ΦS(S, T ), T = ΦT (S, T ) where S, T ≥ 0. Let A be unstable, (A, W 1/2)
observable and B square and invertible. Then a sufficient condition for the
existence of a solution is

1 − |A|2
1 − ν̄

(1 − ᾱ) + ᾱ γ̄|A|2
1−(1−γ̄)|A|2

 > 0

(60)

γ̄ > 1 − 1
|A|2

where |A| ∆= maxi |λi(A)| is the largest eigenvalue of the matrix A.

Proof: The proof is constructive. In fact we find a control feedback gain L̃ that
satisfies the conditions stated in Theorem 2(a). Let L̃ = −ηB−1A where η > 0 is a
positive scalar that is to be determined. Also consider S = sI , T = tI , where I is the
identity matrix and s, t > 0 are positive scalars. Then, we have

Υ(sI, tI, L̃) = A′sA + W − 2ν̄ηA′sA + ν̄A′B−′
UB−1A + ν̄η2A′((1 − ᾱ)s + ᾱt)A

≤ |A|2(s − 2ν̄sη + ν̄((1 − ᾱ)s + ᾱt)η2)I + wI

= ϕs(s, t, η)I (61)

ΦT (sI, tI) = γ̄A′sA + (1 − γ̄)A′tA + W

≤ (γ̄|A|2s + (1 − γ̄)|A|2t)I + wI

≤ ϕt(s, t)I (62)

where w = |W + ν̄A′B−′
UB−1A| > 0 and I is the identity matrix. Let us consider

the following scalar operators and sequences:

ϕs(s, t, η) = |A|2(1 − 2ν̄η + ν̄(1 − ᾱ)η2)s + ν̄ᾱη2t + w

ϕt(s, t) = γ̄|A|2s + (1 − γ̄)|A|2t + w

sk+1 = ϕs(sk, tk, η), tk+1 = ϕt(sk, tk), s0 = t0 = 0.

The operators are clearly monotonically increasing in s, t, and since s1 =
ϕs(s0, t0, η) = w ≥ s0 and t1 = ϕt(s0, t0) = w ≥ t0, it follows that the sequences
sk, tk are monotonically increasing. If these sequences are bounded, then they must



LQG control over lossy TCP-like networks 77

converge to s̃, t̃. Therefore sk, tk are bounded if and only if there exist s̃, t̃ > 0 such
that s̃ = ϕs(s̃, t̃, η) and t̃ = ϕt(s̃, t̃). Let us find the fixed points:

t̃ = ϕt(s̃, t̃) ⇒

t̃ =
γ̄|A|2

1 − (1 − γ̄)|A|2 s̃ + wt

where wt
∆= w

1−(1−γ̄)|A|2 > 0, and we must have 1 − (1 − γ̄)|A|2 > 0 to guarantee

that t̃ > 0. Substituting back into the operator ϕs, we have:

s̃ = |A|2(1 − 2ν̄η + ν̄(1 − ᾱ)η2)s̃ + ν̄ᾱη2 γ̄|A|2
1 − (1 − γ̄)|A|2 s̃ + ν̄ᾱη2wt + w

= |A|2
(

1 − 2ν̄η + ν̄

(
(1 − ᾱ) +

γ̄ᾱ|A|2
1 − (1 − γ̄)|A|2

)
η2

)
s̃ + w(η)

= a(η)s̃ + w(η),

where w(η) ∆= ν̄ᾱη2wt + w > 0. For a positive solution s̃ to exist, we must have
a(η) < 1. Since a(η) is a quadratic function of the free parameter η, we can try to
increase the range of existence of solutions by choosing η∗ = argminηa(η), which
can be found by solving da

dη (η∗) = 0 and is given by:

η∗ =
1

(1 − α) + γα|A2|
1−(1−γ)A2

. (63)

Therefore a sufficient condition for the existence of solutions is given by:

a(η∗) < 1

|A|2
1 − ν(

(1 − α) + γα|A|2
1−(1−γ)A2

)
 < 1

which is the same bound encountered in the computation of the necessary condition
of convergence in Lemma 3.

If this condition is satisfied then limk→∞ sk = s̃ and limk→∞ tk = t̃. Let us
consider now the sequences S̄k = skI , T̄k = tkI , Sk+1 = Υ(Sk, Tk, L̃) and Tk+1 =
ΦT (Sk, Tk), where L̃ = −η∗B−1A, S0 = T0 = 0, and sk, tk defined above.

These sequences are all monotonically increasing. From equations (61) and (62)
it follows that (Sk ≤ skI, Tk ≤ tkI) ⇒ (Sk+1 =≤ sk+1I, Tk+1 ≤ tkI). Since this is
verified for k = 0 we can claim that Sk < s̃I and Tk < t̃I for all k. Since Sk, Tk

are monotonically increasing and bounded, then they must converge to positive
semidefinite matrices S̃, T̃ ≥ 0, solutions of the equations S̃ = Υ(S̃, T̃ , L̃) and T̃ =
ΦT (S̃, T̃ ). Since by hypothesis the pair (A, W 1/2) is observable, using similar
arguments as in Lemma 1(d), it is possible to show that S̃, T̃ > 0. Therefore
S̃, T̃ , L̃ satisfy the conditions of Theorem 2(a), from which statement (b) follows.
This implies that the sufficient conditions derived here guarantee the claim of the
lemma. �
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6.2 Multichannel optimal estimator

Lemma 5: Given a system in form (1), the associated error covariance one step
prediction is equation (44).

Proof: By using equation (43), we can compute the associated error covariance
one-step prediction in the following way:

Pk+1 | k = E[ek+1 | keT
k+1 | k |Ek, Θk, ΘkNk]

= E[(Aek | k + B(1 − Θk)(Nk − N)uk + ωk)

(Aek | k + B(1 − Θk)(Nk − N)uk + ωk)T ]

= APk | kAT + Q + E[B(1 − Θk)(Nk − N)ukuT
k (Nk − N)(1 − Θk)BT ].

Then:

Pk+1 | k = APk | kAT + Q + B(1 − Θk)(E[(Nk − N)ukuT
k (Nk − N)])(1 − Θk)BT

= APk | kAT + Q + B(1 − Θk)(Ψ(uk, N))(1 − Θk)BT .
�

6.3 Theorem 4 Proof

If rank(giC) = n, i = 1, . . . , m′ and R = 0, then at each time instant k two situations
are possible

• ΓkC = 0 and no correction is possible, i.e., Pk+1|k+1 = Pk+1|k.

• Rank(Γm
k C) = n. Since R = 0, in this case we can select n measurement

corresponding to n independent lines of ΓkC. Simple algebraic manipulations
shows that this is equivalent to saying that, any time a packet arrives, the state
xk is known and ΓkC = I .

The above condition is equivalent to having the following system:

xk+1 = Axk + Bua
k + ωk,

ua
k = Nkuk + [Im×m − Nk] ul

k, (64)

y(k) = γk(xk),

where

γk = 1 −
p′∏

i=1

(1 − γ′
i).

For such a system, the estimator equations simplify as follows:

Kk+1 = I

Pk+1 | k = APk | kAT + Q + B(1 − Θk)(Ψ(uk, N))(1 − Θk)BT
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Pk+1 | k+1 = (1 − γk+1)Pk+1 | k

= (1 − γ)(APk | kAT + Q + B(1 − Θk)(Ψ(uk, N))(1 − Θk)BT )

E[Pk+1 | k+1 |Ek] = (1 − γ̄)(APk | kAT + Q)

+ (1 − γ̄)E[B(1 − Θk)(Ψ(uk, N))(1 − Θk)BT ], (65)

where in the last equation the independence of Ek, Γk+1, Nk, Qk is exploited. Let us
define:

ΦN̄Θ̄(ukuT
k ) � E[(1 − Θk)(Ψ(uk, N))(1 − Θk)]

=
∑
I∈2�

∑
Iθ∈2�

 ∏
j∈IΘ

θ′
j

∏
j /∈IΘ

(1 − θ′
j)

∏
i∈I

νi

∏
i/∈I

(1 − νi)


((1 − ΘIΘ)(NI − N)ukuT

k (NI − N)(1 − ΘIΘ))

]
, (66)

where IΘ ⊆ � and ΘI ≡ Ni. Equation (65) becomes

E[Pk+1 | k+1 |Ek] = (1 − γ̄)(APk | kAT + Q + BΦN̄Θ̄BT ). (67)

Following the classical dynamic programming approach to optimal control,
we claim that the value function V ∗

k (xk) can be written as follows:

Vk(xk) = x̂T
k | kSkx̂k | k + trace(TkPk | k) + trace(DkQ)

= E[xT
k | kSkxk | k] + trace(HkPk | k) + trace(DkQ) (68)

for each k = N, . . . , 0, with Hk
∆= Tk − Sk.

This is clearly true for k = N , in fact we have:

VN (xN ) = E[xT
NWNxN |EN ]

= x̂T
N | NWN x̂N | N + trace(WNPN | N ).

The statement is satisfied by setting SN = TN = WN , DN = 0. Let us suppose that
equation (68) is true for k + 1 and let us show by induction it holds true for k:

Vk(xk) = min
uk

E[xT
k Wkxk + uT

k NkUkNkuk + Vk+1(xk+1) |Ek]

= min
uk

E[xT
k Wkxk + uT

k NkUkNkuk |Ek]

+ E[xT
k+1Sk+1xk+1 + trace(Hk+1Pk+1 | k+1) |Ek] + trace(Dk+1Q)

= min
uk

E[xT
k Wkxk |Ek] + E[uT

k NkUkNkuk] + trace(Dk+1Q)

+ trace(Hk+1((1 − γ̄)(APk | kAT + Q + BΦN̄Θ̄(ukuT
k )BT )))

+ E[(Axk + BΘkNkuk + (I − Θk)NBuk)T Sk+1

(Axk + BΘkNkuk + (I − Θk)NBuk)|Ek].
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Let us focus on the term:

trace(Hk+1((BΦN̄Θ̄(ukuT
k )BT )))

= trace

 ∑
I∈2�

Iθ∈2�


 ∏

i∈I
j∈IΘ

ν̄′
iθ̄

′
j

∏
i/∈I

j /∈IΘ

(1 − θ̄′
j)(1 − ν̄′

i)

 (Hk+1B(1 − ΘIΘ)

(NI − N)ukuT
k (NI − N)(1 − ΘIΘ)BT )


 = uT

k (ΞN̄Θ̄(Hk+1))uk.

Then

Vk(xk) = min
uk

E[xT
k (Wk)xk |Ek] + E[uT

k (NkUkNk + (1 − γ̄)ΞN̄Θ̄(Hk+1))uk]

+ trace(Hk+1((1 − γ̄)(APk | kAT + Q))) + trace(Dk+1Q),

+ E[(Axk + BΘkNkuk + (I − Θk)NBuk)T Sk+1

(Axk + BΘkNkuk + (I − Θk)NBuk)Ek]

which becomes

Vk(xk) = min
uk

E[xT
k Wkxk + xT

k AT Sk+1Axk |Ek] + trace(Dk+1Q)

+ trace(Hk+1(1 − Γ)(APk | kAT + Q)) + E[uT
k (NkUkNk

+ NkΘkBT Sk+1BΘkNk + 2uT
k N(I − Θk)BT Sk+1BΘkNku)

+ (ΞN̄Θ̄(Hk+1) + N(I − Θk)BT Sk+1(I − Θk)NB)uk]

+ 2uT
k (NkΘk + N(I − Θk))BT Sk+1Axk | k.

Let us introduce another operator

ΩN̄Θ̄(Sk+1, Hk) =
∑
I∈2�

Iθ∈2�


 ∏

i∈I
j∈IΘ

ν̄′
iθ̄

′
j

∏
i/∈I

j /∈IΘ

(1 − θ̄′
j)(1 − ν̄′

i)


(NIUkNI + NIΘIΘBT Sk+1BΘIΘNI + ΞN̄Θ̄(Hk+1)

+ 2uT
k N(I − ΘIΘ)BT Sk+1BΘIΘNIu

+N(I − ΘIΘ)BT Sk+1(I − ΘIΘ)NB)

.
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We can write

Vk(xk) = min
uk

E[xT
k Wkxk + xT

k AT Sk+1Ax
|
kEk]

+ 2uT
k (N Θ + N(I − Θ))BT Sk+1Axk | k + trace(Dk+1Q) + trace(Sk+1Q)

+ trace(Hk+1(1 − γ̄)(APk | kAT + Q)) + uT
k ΩN̄Θ̄(Sk+1, Hk)uk.

Since Vk(xk) is a convex quadratic function w.r.t. uk, the minimiser is the solution
of ∂Vk(xk)/∂uk = 0 which is given by:

u∗
k = −[ΩN̄Θ̄(Sk+1, Hk)]−1(N)BT Sk+1Axk | k = Lkxk | k (69)

which is linear function of the estimated state xk | k. Substituting back into the value
function we get:

Vk(xk) = min
uk

E[xT
k Wkxk + xT

k AT Sk+1Axk |Ek] + xT
k | k(AT Sk+1BNLk)xk | k

+ trace(Hk+1(1 − γ̄)(APk | kAT + Q)) + trace(Dk+1Q),

i.e.,

Vk(xk) = min
uk

xT
k (Wk + AT Sk+1A + AT Sk+1BNLk)xk | k

+ trace(Hk+1(1 − γ̄)(APk | kAT + Q)) + trace(Dk+1Q)

+ trace((Wk + AT Sk+1A)Pk | k). (70)

From the last equation and from that fact that Hk = Tk − Sk we can write the value
function as in equation (68) if and only if the following equations are satisfied:

Sk = Wk + AT Sk+1A + (AT Sk+1B)NLk (71)

Tk = (1 − γ̄)AT Tk+1A + Wk + γ̄AT Sk+1A (72)

Dk = Dk+1 + (1 − γ̄)Tk+1 + γ̄Sk+1. (73)

Note that, if θ̄ → 0, the result reverts to the UDP-like special case presented in
Sinopoli et al. (2006).


