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aComputer Science Laboratory, École Polytechnique, 91120 Palaiseau, France
bDepartment of Informatics, Athens University of Economics and Business, Patision 76, 10434 Athens, Greece

Abstract

Networks (or graphs) appear as dominant structures in diverse domains, including sociology, biology, neu-

roscience and computer science. In most of the aforementioned cases graphs are directed – in the sense that

there is directionality on the edges, making the semantics of the edges non symmetric as the source node

transmits some property to the target one but not vice versa. An interesting feature that real networks

present is the clustering or community structure property, under which the graph topology is organized into

modules commonly called communities or clusters. The essence here is that nodes of the same community

are highly similar while on the contrary, nodes across communities present low similarity. Revealing the un-

derlying community structure of directed complex networks has become a crucial and interdisciplinary topic

with a plethora of relevant application domains. Therefore, naturally there is a recent wealth of research

production in the area of mining directed graphs – with clustering being the primary method sought and

the primary tool for community detection and evaluation. The goal of this paper is to offer an in-depth

comparative review of the methods presented so far for clustering directed networks along with the relevant

necessary methodological background and also related applications. The survey commences by offering a

concise review of the fundamental concepts and methodological base on which graph clustering algorithms

capitalize on. Then we present the relevant work along two orthogonal classifications. The first one is mostly

concerned with the methodological principles of the clustering algorithms, while the second one approaches

the methods from the viewpoint regarding the properties of a good cluster in a directed network. Further,

we present methods and metrics for evaluating graph clustering results, demonstrate interesting application

domains and provide promising future research directions.
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1. Introduction

Networks have become ubiquitous as data from many different disciplines can be naturally mapped to

graph structures [1]. Technological networks, including the Internet, electrical grids, telephone networks

and road networks are an important part of everyday life. Information networks, such as the hyperlink

structure of the Web and citation networks, offer an effective way to represent content and information and

navigate through it. Biological networks, including protein-protein interaction networks, neural networks,

gene regulatory networks and food webs, can be used to model the function and interaction of natural

entities. Social networks, such as collaboration networks, sexual networks and interaction networks over

online social networking applications are used to represent and model the social ties among individuals. Due

to the extent and the diversity of contexts in which graphs appear, the area of network analysis has become

both crucial and interdisciplinary, in order to understand the features, the structure and the dynamics of

these complex systems.

Real-world networks, as the ones presented above, are not classified as random networks (e.g., the Erdös-

Rényi random graph model [2]); that is, they present fascinating patterns and properties conveying that

their inherent structure is not governed by randomness. The degree distribution is skewed, following a

power-law distribution [3, 4], the average distance between nodes in the network is short (the so-called
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small-world phenomenon [5, 6, 7]), the ties between entities do not always represent reciprocal relations

forming directed networks with non symmetric links [1], while edge distribution is inhomogeneous resulting

in node groups with high internal edges’ density and low density between them [1, 8]. The last property

is referred to clustering or community structure and is of great interest in various fields and real-world

applications. Detecting clusters in graphs with directed edges among nodes, is the focus of this survey

paper.

Informally, a cluster or community can be considered as a set of entities that are closer each other,

compared to the rest of the entities in the dataset. The notion of closeness is based on a similarity measure,

which is usually defined over the set of entities. In the areas of machine learning and data mining, the task

of clustering is also referred as “unsupervised learning” where the aim is to group (cluster) together similar

objects without any prior knowledge about the clusters (e.g., see Ref. [9]).

In the case of networks, the clustering (or community detection) problem refers to grouping nodes into

clusters according to their similarity, which usually considers either topological features (e.g., features ex-

tracted from the graph), or other characteristics related to the nodes and edges of the graph (e.g., additional

information that may be associated with the nodes and edges), or both of them. In other words, the clusters

typically correspond to groups of nodes sharing common properties and characteristics. Although there are

several definitions for the graph clustering problem, the most common one states that a cluster corresponds

to a set of nodes with more edges inside the set than to the rest of the graph.

It is important to stress out here that the task of graph clustering can be distinguished into two different

problems. The first and most studied one – which is the focus of this paper – aims to group the nodes of a

single graph according to some clustering definition (e.g., density). On the other hand, the second problem

refers to the task where the goal is to cluster a set of graphs – treating them as individual objects – based

on their similarity (e.g., see Ref. [10]).

Finding clusters in directed networks is a challenging task with several important applications in a wide

range of domains. However, the problem of graph clustering has mainly been considered and studied for

the case of undirected networks. A plethora of diverse algorithms have been proposed for the undirected

settings, involving contributions from the fields of computer science, statistical physics and biology (e.g., see

Ref. [11]). Nevertheless, numerous graph data in several applications are by nature directed and thus it is

meaningful to incorporate all the available information during the clustering process (i.e., the directionality

of the edges). Some illustrative examples include (see Section 7 for a detailed list of applications related to

clustering directed networks):

• Social and information networks: Clusters in the directed hyperlink structure of the Web correspond

to sets of web pages that share some common topics. Similarly, communities in a social network

with non-symmetric links (e.g., twitter) correspond to individuals with common interests or friendship
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relationships.

• Biology: In prokaryote genome sequence data, the donor-recipient relations among genomes are mod-

eled by directed networks (called Lateral Gene Transfer networks - LGT). Applying graph clustering

methods to these directed networks enables testing hypotheses relevant to LGT patterns and mecha-

nisms operating in nature [12].

• Neuroscience: Analyzing directed brain networks produced by neuron interactions, neuroscientists are

able to comprehend the functional architecture of the brain [13].

• Clustering non-graph data: Except from the cases where the data naturally can be modeled as graphs,

graph clustering algorithms can be also applied on data with no inherent graph structure, operating

thus as general purpose algorithms. In such cases, the data (e.g., points in a d-dimensional Euclidean

space) is represented in terms of a similarity graph corresponding to topological relationships and

distance among them. Hence, the problem of clustering a set of data points is transformed to a graph

clustering problem (e.g., see tutorial by von Luxburg [14]). Depending on the way the similarity graph

is constructed, the final graph can contain directed edges (e.g., using k-nearest neighbor graphs or

based on probabilistic dependence relations between data points [15]).

It is clearly evident that the clustering problem in directed networks is particularly significant with many

important applications in several areas. Nevertheless, despite its importance, the problem has not received

significant attention from the research community. Even though a plethora of directed graph data exist, the

most common way to dealing with edge directionality during the clustering task, is simply to ignore it. In

other words, the directed network is converted into an undirected one (by assuming edge symmetry), and

then algorithms for the undirected graph clustering problem can be applied. However, in many cases, this

simplistic technique would not be satisfactory, since some of the underlying semantics are not retained (e.g.,

in a citation network between scientific publications or in the hyperlinked structure of the Web).

The goal of this survey paper is to review the methods and algorithms proposed by the wider research

community to deal with the clustering in directed networks. Some of them include extensions of approaches

that have been previously applied in undirected networks while others propose novel ways as to how edge

directionality can be utilized in the clustering task.

1.1. Challenges in Clustering Directed Networks

The problem of clustering in directed networks is considered to be a more challenging task as compared

to the undirected case. Highlighting the difficulties of the problem, in his resent work Santo Fortunato

stated that “Developing methods of community detection for directed graphs is a hard task. For instance,

a directed graph is characterized by asymmetrical matrices (adjacency matrix, Laplacian, etc.), so spectral
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analysis is much more complex. Only a few methods can be easily extended from the undirected to the directed

case. Otherwise, the problem must be formulated from scratch” [11]. This paragraph summarized the basic

challenges for the directed graph clustering problem. Moreover, the nature of relationships captured by the

edges are fundamentally different from the ones in the undirected settings [16]. To this direction, we briefly

discuss on some of the main challenges, which actually can be helpful to understand how the directed graph

clustering is differentiated from the undirected version.

It is clear that ignoring edge directionality and considering the graph as undirected is not a meaningful

way to cluster directed networks as it fails to capture the asymmetric relationships implied by the edges

of a directed network. Therefore, the main challenge is to propose meaningful ways to incorporate edge

directionality in the clustering process. However, even this is not sufficient. In the broader literature in

graph theory and graph algorithms, the main focus is on undirected graphs. Therefore, two additional points

that strengthen the challenging nature of the problem are:

(i) While several graph concepts (e.g., density) are theoretically well founded for undirected graphs, not

enough effort has been put on how to extend these concepts on directed graphs.

(ii) Similarly, extending to the directed case the available theoretical tools that have been already applied

to define and propose solutions for the undirected versions of the problem (including graph theoretic

and linear algebraic tools), is not straightforward (e.g., the tool of spectral clustering based on the

Laplacian matrix [17]).

In addition to the above points, a precise and common definition for the clustering problem in directed

networks does not yet exist. The intuition based on the intra-cluster and inter-cluster edge density cannot

be easily extended to the directed case, due to the absence of link symmetry. Moreover, the presence of

directed edges implies more sophisticated types of clusters that do not exist in undirected networks and

cannot be captured using only density and edge concentration characteristics (e.g., clusters that represent

patterns of movement or flow circulation among nodes – see Section 3). As we will see at the rest of the

paper, in the very recent literature several clustering definitions have been proposed and various algorithms

have been designed to reveal different “types” of graph clusters (e.g., [18]).

1.2. Goals of the Survey and Contributions

The main goal of this survey paper is to organize, analyze and present in a unified and comparative

manner the methods and algorithms proposed so far for the problem of clustering and community detection

in directed networks. While a large amount of research works and related surveys have been devoted to the

undirected version of the problem (see Section 1.3 for more details), our focus is on the clustering problem

in the directed settings, where very recently many diverse methods and algorithms have been proposed.

Our survey adopts the following methodology:
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(i) As a first resort, we present a broad categorization of the efforts that have been proposed so far.

This classification scheme is mostly concerned with the methodological principles and the algorithmic

approaches for the graph clustering problem in directed networks and is mostly built upon the work

for the undirected case of the problem. Hence, whenever possible we organize and review the related

work describing how existing methods for undirected networks are extended in order to deal with

edge directionality. Additionally, the related work is organized according to common methodological

features that the approaches may share. We consider that such a classification and presentation scheme

is a natural way to explore and study the relevant literature, since a large portion of the proposed

approaches constitute extensions from the undirected case of the problem.

(ii) At a second step, we present two major categories of clusters identified from the already proposed

clustering methods, and then, the related work is classified to these categories. The first category

corresponds to methods which adopt the more traditional density-based definition of clusters, while

the second one includes methods where the extracted clusters present interesting patterns, beyond

simple edge density, reflecting the existence of directed edges (e.g., flow-based patterns – Section 3).

To the best of our knowledge, this is the first comprehensive and extensive survey fully devoted to

the clustering problem in directed networks. We consider that the two aforementioned axes on which the

survey will align, can be helpful both for researchers in the area and for practitioners that are interested in

graph clustering algorithms for directed networks (e.g., see Section 7 for some important applications where

directed graph clustering methods can be applied). For the latter case, our ultimate goal is that this survey

can be used as a practitioner’s guide.

1.3. Related Surveys

There are many previous related works and surveys that refer to graph clustering and community de-

tection in undirected networks. Fortunato [11] presents a comprehensive review in the area of community

detection for undirected networks from a statistical physics perspective, while Schaeffer [19] mainly focuses

on the graph clustering problem as an unsupervised learning task. Both surveys briefly discuss the case of

directed networks, however their focus is on the undirected case of the problem. A similar but more compact

description of clustering approaches in undirected networks is presented in Refs. [20, 21, 22]. Coscia et al.

[23] present a categorization for community discovery methods according to the definition of community they

adopt (e.g., communities based on internal density or bridge detection). Our work shares some common

features with the one of Coscia et al. since part of our presentation follows a similar categorization scheme.

Parthasarathy et al. [24] present the principal methods for the undirected community discovery problem,

as well as research trends and emerging tasks in the area. One of them is community discovery in directed

networks. Aggarwal and Wang [10] elaborate on the basic principles for finding communities in undirected
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networks, presenting some well-established approaches (e.g., spectral clustering, minimum cut problem).

Moreover, a large part of their work is devoted to the problem of clustering a set of graphs, treating them

as individual objects (in contrast to the node clustering problem of a single graph which is the focus of this

paper). Finally, Papadopoulos et al. [25] discuss the topic of community detection in the context of Social

Media.

1.4. Structure of the Survey

The rest of the paper is organized as follows. In Section 2 we commence by providing the background and

the basic terminology used throughout this survey. In Section 3 we elaborate on the problem of clustering

in directed networks, providing the basic definitions proposed in the relevant works. These clustering

definitions-notions will later be used to classify the proposed methods based on the type of clusters they

aim to identify. Then, in Section 4 we present the first and main methodological classification based on the

algorithmic approaches they adopt to deal with edge directionality. Whenever the methods are built upon

approaches for undirected networks, an incremental description is followed with respect to the undirected

case. In Section 5 we present a second classification scheme of the clustering approaches according to the

notion-definition of clusters in directed networks, and we also present an empirical comparison of the main

methods that have been reviewed throughout this paper. In Section 6 we present the evaluation metrics for

assessing the clustering results and discuss on proposed benchmarking techniques for the graph clustering

task. Section 7 presents the main applications of directed graph clustering in different application domains,

while in Section 8 we discuss future research directions. Finally, in Section 9 we conclude the survey by

summarizing and providing remarks on the problem.

2. Basic Terminology and Background

In this section we provide the basic terminology and background that will be used throughout the paper.

We give the definitions for basic graph theoretic and linear algebraic concepts, and then we describe the

main aspects of random walks which play crucial role in the design of clustering and community detection

algorithms. Finally, we make a brief presentation of the major metrics used to quantify the quality of a

community/cluster in undirected networks. Table 1 gives a list of used symbols along with their definition.

For a general introduction to the field of complex networks, the reader may refer to Refs. [26, 1, 27].

2.1. Graph Theory

A network is usually represented by a graph (throughout the paper we use the terms network and

graph interchangeably). A graph G = (V,E) consists of a set of nodes V and a set of edges E ⊆ V × V

which connect pairs of nodes (sometimes the nodes and edges of a graph are also called vertices and links

respectively). The number of nodes in the graph is equal to n = |V | and the number of edges m = |E|.
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Symbol Definition

G Directed network
GU Undirected network
GB = (Vh, Va, Eb) Bipartite network
V, E Set of nodes and edges for network G
|V | = n, |E| = m Number of nodes and edges in the network
e = (u, v) Edge e ∈ E from node u to node v
AU , A Adjacency matrix of an undirected and directed network respectively
kinu , koutu In-degree and Out-degree of node u
Din, Dout Diagonal In- and Out- degree matrices
Aij Entry of matrix A
AT The transpose of matrix A
λi i-th largest eigenvalue of a matrix
ui Eigenvector corresponds to i-th eigenvalue
uij i-th component of j-th eigenvector

Table 1: Symbols and definitions.

2

8 4

(a) Undirected graph (b) Directed graph (c) Bipartite graph (d) Weighted graph

Figure 1: Examples of different types of graphs. In the case of directed graph (b), the arrows indicate the
directionality of each edge. In the weighted graph (d) the values associated with each edge represent the weights (a
weighted graphs can be directed or undirected).

A graph may be directed or undirected, unipartite or bipartite and the edges may contain weights or not.

Figure 1 depicts some examples of different types of graphs.

Definition 1. (Directed and Undirected Graph). In a directed graph G = (V,E), every edge (i, j) ∈ E

links node i to node j (ordered pair of nodes). An undirected graph GU = (V,E) is a directed one where if

edge (i, j) ∈ E, then edge (j, i) ∈ E as well.

Definition 2. (Bipartite Graph). A graph GB = (Vh, Va, Eb) is called bipartite if the node set V can be

partitioned into two disjoint sets Vh and Va, where V = Vh ∪ Va, such that every edge e ∈ Eb connects a

node of Vh to a node of Va, i.e., e = (i, j) ∈ E ⇒ i ∈ Vh and j ∈ Va. In other words, there are no edges

between nodes of the same partition.

Every graph G = (V,E) (directed or undirected, weighted or unweighted) can be represented by its

adjacency matrix A. Matrix A has size |V | × |V | (or n × n), where the rows and columns represent the

nodes of the graph and the entries indicate the existence of edges.
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Definition 3. (Adjacency Matrix). The adjacency matrix A of a graph G = (V,E) is an |V | × |V |

matrix, such that

Aij =

 wij , if (i, j) ∈ E, ∀ i, j ∈ 1, . . . , |V |

0, otherwise.

The above definition is rather general and is suitable both for weighted and unweighted graphs. For the

former case, each value wij represents the weight associated with the edge (i, j), while for the latter case

of unweighted graphs the weight of each edge is equal to one (i.e., wij = 1,∀(i, j) ∈ E). If the graph is

undirected, the adjacency matrix A is symmetric, i.e., A = AT , while for directed graphs the adjacency

matrix is nonsymmetric.

A basic property of the nodes in a graph is their degree. In an undirected graph GU , a node has degree k if

it has k incident edges. In the case of directed graphs, every node is associated with an in-degree and an out-

degree. The in-degree kini of node i ∈ V is equal to the number of incoming edges, i.e., kini = ‖j|(j, i) ∈ E‖,

while the out-degree kouti of node i ∈ V equals to the number of outgoing edges, i.e., kouti = ‖j|(i, j) ∈ E‖.

In undirected graphs, the in-degree is equal to the out-degree, i.e., ki = kini = kouti , ∀i ∈ V . The degree

matrix is defined as the diagonal n× n matrix D, with the degree of each node in the main diagonal (zero

entries outside main diagonal). Similarly, in directed graphs we can define the in-degree matrix Din and

out-degree matrix Dout for the in- and out- degrees respectively.

Let GU = (V,E) be an undirected graph. A path is defined as a sequence of nodes v1, v2, . . . , vk−1, vk,

with the property that every consecutive pair of nodes vi, vi+1 in the sequence is connected by an edge. Two

nodes i, j ∈ V are called connected if there is a path in GU from node i to node j. The above definitions

can be extended to directed networks, where in a directed path, a directed edge should exist from each node

of the sequence to the next node.

An undirected graph GU = (V,E) is called connected, if for every pair of nodes i, j ∈ V a path exists from

node i to node j. In the case of directed networks, three different notions of connectivity can be defined. A

directed graph is called strongly connected if for every pair of nodes i, j ∈ V , there is a directed path from

i to j and a directed path from j to i. A directed graph is connected if for every pair of nodes i, j ∈ V ,

it contains a directed path from i to j or from j to i. Lastly, a directed graph is called weakly connected

if ignoring the directionality of the edges (i.e., replacing the directed edges with undirected), a connected

graph is produced.

A connected component in an undirected graph is a maximal subgraph where every pair of nodes is

connected by a path. For directed graphs, the notions of strongly connected component and weakly connected

component can be defined. In the former case, similar to the definition of strong connectivity that we

described earlier, the edge directionality is taken into consideration, while a weakly connected component

requires the existence of a path between every pair of nodes in the maximal subgraph without considering
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edge directionality.

2.2. Linear Algebra and Spectral Graph Theory

As we discussed earlier, every graph can be represented by a matrix, the so-called adjacency matrix. The

adjacency matrix A of a graph G = (V,E) is the |V | × |V | matrix with elements Aij = 1 if there exist an

edge between nodes i, j in the graph. In the general case where the edges of the graph contain weights, the

entries of the weighted adjacency matrix correspond to edge weights. For undirected graphs, the adjacency

matrix A is symmetric (i.e., A = AT ), while for directed graphs the matrix is nonsymmetric.

Let A ∈ Rn×n be a symmetric matrix. Then, A can be written as A = UΛUT , where the orthogonal

matrix U contains as columns the eigenvectors u1, u2, . . . , un of A, correspond to real eigenvalues λ1 ≥ λ2 ≥

. . . ≥ λn and Λ = diag(λ1, λ2, . . . , λn) the diagonal matrix with the eigenvalues as entries [28, 29, 30]. The

eigenvalues of the adjacency matrix define the spectrum of a graph and have close connections with several

important graph properties. As we stated above, in the case of directed graphs the corresponding adjacency

matrix is nonsymmetric and therefore the eigenvalues can be complex. Thus, it is preferable to work with

the singular values of the matrix which can be extracted by the singular value decomposition (SVD). That is,

the SVD of a real matrix A ∈ Rm×n is defined as A = UΣVT , where U ∈ Rm×m and V ∈ Rn×n contain the

left-singular and right-singular vectors respectively and Σ = diag(σ1, σ2, . . . , σp) ∈ Rm×n, p = min{m,n},

the diagonal matrix comprised of singular values σi (note that, for symmetric matrices, the singular values

correspond to the absolute values of the eigenvalues).

Another matrix commonly used to represent a graph is the Laplacian matrix.

Definition 4. (Laplacian Matrix). In the case of undirected graphs, the Laplacian matrix is defined as

Lij =


ki, if i = j,

−1, if i and j are adjacent,

0, otherwise,

(1)

where ki is the degree of node i. In a more compact form, the Laplacian matrix can be written as L = D−A,

where A is the adjacency matrix of the graph and D = diag(k1, k2, . . . , kn) the diagonal degree matrix [31].

The normalized Laplacian matrix Ln is symmetric and defined as Ln = D−1/2LD−1/2. In other words, if

two nodes i, j are adjacent, the entry Lnij
is equal to − 1√

kikj
. The spectrum of the normalized Laplacian

matrix λ0 ≤ λ1 ≤ . . . ≤ λn−1, presents some interesting properties:

• All eigenvalues are non-negative. Moreover, 0 is an eigenvalue of Ln.

• The number of eigenvalues with value 0 corresponds to the number of connected components in the

graph.
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• The smallest non-zero eigenvalue is called spectral gap and the corresponding eigenvector is used for

the task of spectral clustering (e.g., see Ref. [14]).

A basic difference between the spectrum of the Laplacian matrix and the one of normalized Laplacian is that

in the former case the eigenvalues belong to the range 0 = λ0 ≤ λi ≤ 2kmax, where kmax is the maximum

degree in the graph, while in latter case the eigenvalues always lying in the range 0 = λ0 ≤ λi ≤ 2. For a

detailed presentation of the Laplacian matrix and its properties, one can refer to the Spectral Graph Theory

textbook by Chung [31].

Chung [17] defined the Laplacian matrix for directed graphs, showing interesting connections of its

spectrum with the mixing rate of random walks. Very recently, Li and Zhang [32, 33] proposed another

generalization of the Laplacian matrix, establishing novel perspectives and results for the case of directed

graphs. In Section 4.4.3 we discuss in detail about the definition of the Laplacian matrix in directed graphs

and how can be used to solve the clustering problem.

2.3. Random Walks on Graphs

Generally, a random walk is a mathematical concept formalizing a procedure consisting of a sequence of

random steps. In the case of graphs, given a node that corresponds to a starting point, a random walk is

defined as the sequence of nodes formed by a repeating process starting from the initial node and randomly

moving to neighborhood nodes. In other words, at each step the random walker is situated on a node of the

graph and jumps to a new node selected randomly and uniformly among its neighbors.

More precisely, let GU = (V,E) be an undirected graph and v0 be the starting node of the random walk.

Let us suppose that at the t-th step, the random walk is situated at node i. At t+ 1 step, the random walk

is moving from node i to node j (neighbor of i) with transition probability
1

ki
. This defines the transition

matrix P of the random walk as

Pij =


Aij
ki
, if (i, j) ∈ E,

0, otherwise.

(2)

In a compact form, this matrix can be written as P = D−1A, where D−1 is the inverse of the diagonal

degree matrix D. This matrix can also be considered as a degree normalized version of the adjacency matrix.

In the general case, random walks are considered to be Markov chains1, where the set of possible states

corresponds to the vertex set of the graph.

Any distribution on a graph G can be represented by a row vector π = [π1, · · · , πn]T , where the i-th

entry captures the amount of the distribution resides at node i. In the case of random walks, the probability

1Wikipedia’s lemma for Markov chain: http://en.wikipedia.org/wiki/Markov_chain.
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distribution over the graph G for each node i ∈ V at any time step, gives the probability of the random walk

of being at node i. Thus, if π is the initial distribution, then π1 = πP is the distribution after one step and

πt = πPt is the distribution after t steps. Based on the above idea, we can define a stationary distribution

πs, as the distribution where πs = πsP
t,∀t. In other words, the stationary distribution corresponds to a

distribution that does not change over time and describes the probability that the walk is being at a specific

node after a sufficiently long time. The mixing time is the time needed by the random walk to reach its

stationary distribution. The spectrum of the transition matrix P can be used to bound the mixing time of

a random walk in a graph, and specifically the second largest eigenvalue [34]. In a similar manner, random

walks can be defined over directed graphs. However, in this case, two main difficulties can occur: (i) at some

time point, the random walker can be situated in a node with no outgoing edges, and (ii) nodes with no

incoming edges will never be reached. As we will present later, the PageRank algorithm is a random walk

process on directed graphs that overcomes the above problems [35].

The theoretical tool of random walks is closely related to the problem of clustering and community

detection in graphs (e.g., Ref. [36]). For example, it is known that matrix P has always the largest eigenvalue

equal to one. In the case of networks with very clear community structure, matrix P will also have c − 1

eigenvalues close to one, where c is the number of well-defined modules (clusters) in the network; the rest

of the eigenvalues will be relatively away from one. The eigenvectors correspond to the first eigenvalues can

be used to extract the clustering structure: for nodes that belong on the same clusters, their components

in the eigenvectors will have similar values, following a step-wise form. The number of steps, corresponds

to the number of clusters c. In Section 4.3.3 we provide more details on this issue and we present random

walk based techniques for the case of directed networks. For a more detailed discussion on various aspects

of random walks, the reader can refer to Refs. [37, 31].

2.4. Quality Measures

As we have already mentioned, a cluster or community in a network is typically considered as a group

of nodes with better connectivity (and/or stronger interactions) among its members than with the nodes

of different communities. Usually, the process of detecting communities in networks follows a two step

approach:

(i) First, a quality measure (or objective function) needs to be specified, that captures the notion of

community structure as groups of nodes with better internal connectivity than external (or more

generally, an objective criterion which quantifies the desired properties of a community).

(ii) Then, using algorithmic techniques, the nodes of the network are assigned to specific communities,

optimizing the objective function. Since the optimization process of the objective functions typically
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leads to computational difficult problems (e.g., see Ref. [19]), a common approach is to employ

heuristics or other approximation techniques.

In the literature several measures have been proposed for quantifying the quality of communities in networks

(most of them have been introduced for the case of undirected networks, but some of them have been also

extended to directed ones; in Section 4.3 we describe some of these measures in detail and we also present their

extensions to directed networks). Typically, some of the quality measures focus on both the intra-cluster and

inter-cluster edge density (multi-criterion scores), such as normalized cuts [38], conductance and expansion.

Other measures focus only in one of them (single-criterion scores) and a well-known representative of this

category is modularity (e.g., see Refs. [11, 19] and Ref. [39] for a recent comparative study of quality

measures in undirected large scale networks).

Modularity [40, 41] is one of the most popular and widely used metrics to evaluate the quality of network’s

partition into communities. Considering a specific partition of the network into clusters, modularity measures

the number of edges that lie within a cluster compared to the expected number of edges of a null graph

(or configuration model), i.e., a random graph with the same degree distribution. In other words, the

measure of modularity is built upon the idea that random graphs are not expected to present inherent

community structure; thus, comparing the observed density of a subgraph with the expected density of

the same subgraph in case where edges are placed randomly, leads to a method for identifying clusters.

More precisely, the modularity value Qu of a specific partition of an undirected network into communities

is defined as follows

Qu =
1

2m

∑
i,j

[
Aij −

kikj
2m

]
δ(ci, cj), (3)

where A is the adjacency matrix, ci,∀i ∈ V is the community membership of node i and δ(ci, cj) = 1 if ci = cj

(i.e., if nodes i, j belong to the same community) and 0 otherwise. The modularity value can be either positive

or negative. Higher positive values indicate better community structure properties and therefore, finding

the partition that maximizes the modularity provides a method for extracting the underlying community

structure. More details on modularity as well as its extension to directed networks are presented in Section

4.3.1.

Optimizing the modularity function is a computational difficult task [42]; however several heuristics and

approximation techniques have been proposed. Newman [43] proposed a greedy search algorithm for the

problem of modularity maximization. Initially, every node of the graph belongs on its own community;

then, iteratively, pairs of communities are joined on the same group if they achieve the highest increase of

the modularity value. Thus, the algorithm can be considered as an agglomerative hierarchical clustering

method (e.g., see Ref. [9]) and the whole procedure can be represented by a dendrogram. Clauset et al. [44]
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presented a faster greedy algorithm (almost linear time in sparse graphs), based again on an hierarchical

clustering approach. Other well known methods for modularity optimization are the ones rely on spectral

techniques. For example, Newman [41] showed that the measure of modularity can be expressed in terms of

the spectrum of a specific matrix associated to the network (called modularity matrix ), and therefore spectral

techniques can be applied in the optimization process. In Section 4.3.1 we present a similar approach for the

case of directed networks. Other methods apply simulated annealing techniques [45] (e.g., Refs. [46, 47])

and extremal optimization [48]. For a more detailed presentation of modularity optimization techniques, the

reader can refer to the survey paper of Fortunato [11]. Similar optimization approaches can be also applied

to directed networks.

However, as noted by Fortunato and Barthélemy [49], modularity suffers from the so-called resolution

limit. That is, modularity optimization may fail to detect communities with size smaller than a scale which

mainly depends on the size of the network. This point is particularly significant since typically real world

networks contain communities of various sizes.

3. Clusters in Directed Networks – Intuition and Discussion

In this section we introduce the notion of clusters or communities in directed networks and we discuss

about their structural properties. We provide different intuitive definitions regarding the properties of

clusters, that will enable the reader to better comprehend the notion of clustering in directed networks and

subsequently to classify the clustering methods according to the definition given. It is important to stress

out here that there is no well defined definition for the graph clustering problem, both in the directed and

undirected cases. Actually the formulation depends either on the application domain or generally on the

type of clusters we are interesting in. Nevertheless, regardless of the problem definition, the ultimate goal of

the clustering task remains the same: the graph nodes should be assigned to clusters, with “similar” nodes

belonging to the same cluster.

Let us now present a high level definition of a cluster or community in networks which can be considered

as a generic definition for the clustering task. Later, we capitalize on this to capture and describe different

possible clustering structures for directed networks, as they have been proposed in the literature.

Definition 5 (High Level Definition of a Cluster). A cluster or community in a network can be

considered as a set of nodes that share common or similar features (characteristics).

In this generic definition, there are two things that need to be specified: (a) the notion of similarity among

the nodes of a directed network and (b) the features/characteristics we are interesting in. We consider that

specifying these two elements, we are able to capture and describe all possible clustering notions in directed

networks. In order to become more precise, let us consider as example the traditional definition of clusters

as modules with dense connections between the nodes of the same cluster but sparser connections between
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different clusters [41, 50]. According to the above definition, the features correspond to graph’s edges, while

the number of edges between a set of nodes (density) can be considered as a similarity node indicator in the

graph.

Having defined the desired properties of the clustering structure, then the process of detecting commu-

nities is a two step approach: first, we should specify an objective function that captures the notion of

clustering structure, according to the chosen definition. Then, using algorithmic techniques, the nodes of

the network are assigned to specific clusters, optimizing the objective function. In Section 2, we gave a brief

introduction about objective functions for undirected networks. Later at this paper, we will describe such

objective criteria for directed networks, as well as approaches for detecting the community structure.

Next, we present the two main notions-definitions (or categories) for clusters in directed networks:

(a) Density-based clusters, i.e., groups of nodes that follow the traditional clustering definition based on

edge density characteristics.

(b) Pattern-based clusters, i.e., groups of nodes that go beyond edge density patterns. As we will describe

shortly, an example of this category is the case of flow circulation, where a pattern of movement

induced within the nodes of the cluster.

This classification can also be extended to undirected networks, as some research works propose [23, 51, 52]).

Then the question rising is: which clustering definition for directed networks should one adopt? The answer

highly depends on the application domain and on the features of the network dataset under consideration.

Such features may include the nature of interactions among graph’s nodes (as captured by the edges) and

prior knowledge of the underlying structure. In Section 7 we present a list with real applications of directed

graph clustering, along with the most suitable clustering definition.

3.1. Density-based Clusters

We consider density-based clusters, that can be regarded as the more traditional definition of commu-

nities/clusters in both directed and undirected networks, and also the most well studied in the research

community (e.g., Refs. [40, 8, 41, 50]). The notion of density-based clusters is entirely based on the distri-

bution and topology of the edges inside the network. As we mentioned earlier, according to this definition,

a cluster in directed networks is defined as a group of nodes with more intra-cluster than inter-cluster edges.

Figure 2 (a) depicts an example of a directed network which contains three well defined density-based clus-

ters. It is clear that the edge density within each cluster (shadowed regions) is much larger than the density

between different clusters. On the other hand, Fig. 2 (b) presents a homogeneous directed network with

uniform edge distribution among nodes. The network lacks a modular organization and thus there is no ob-

vious density-based community structure. Based on this definition, the goal of a graph clustering algorithm

is to assign the nodes into clusters, maximizing the number of edges within clusters, while minimizing the
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(a) Graph with density-based clusters (b) Graph with uniform structure

Figure 2: Two directed graph examples. The left one (a) consists of three density-based clusters, while the right
one shows a homogeneous link density with the absence of obvious community structure.

inter-cluster edges. As we will see later, there are several popular density-based graph clustering techniques,

that either trying to maximize the internal cluster density, either minimize the number of extra-cluster edges

or both of them.

The above notion of clustering in directed networks can be considered as a natural extension from the

graph clustering problem in undirected networks (e.g., Refs. [40, 11, 19, 23]). In the next sections of the

paper we will see that some techniques, initially introduced for undirected networks, form the basis for

dealing with the directed graph clustering problem.

Moreover, for the undirected case, the density-based definition has close connections with the well-

known graph partitioning problem in the field of computer science (e.g., Ref. [53]). However, there are two

main differences between them: (a) in the graph partitioning problem, the desired number of partitions

(or clusters) k is a parameter of the problem and needs to be specified a priori, while in the case of

graph clustering and community detection problems this is not always prerequisite, and (b) the goal of the

partitioning problem is to equally assign nodes in the different partitions, where the size of each cluster will

be approximately equal to
n

k
[11]. On the other hand, in the clustering problem, the distribution of the

clusters’ sizes may not be uniform.

It is important to note here that extending the notion of density-based clusters to directed networks

is not always a trivial procedure. While some of the proposed objective measures for the undirected case

can be easily extended to directed graphs by considering in a meaningful way the directionality of the

edges (e.g., the criterion of modularity [50]), due to the existence of directed edges, some of the desired

cluster properties may not hold. Even worse, some graph-theoretic measures and concepts that help us to

evaluate the quality of density-based clusters cannot be easily extended and defined in the directed case.

For example, as pointed out by Schaeffer [19], each cluster in a graph should be connected (i.e., there should
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be at least one path between every pair of nodes in the graph). As mentioned in Section 2, in directed

graphs, the connectivity property can be expressed in three forms: weak connectivity, connectivity and

strong connectivity. Depending on the required cluster properties, any of the above criteria can be adopted

in the definition of density-based clusters for directed networks. This is just an indication where simple

graph concepts, such as connectivity, become complex when edge directionality is taken into consideration.

3.2. Pattern-based Clusters

Previously we presented the notion of density-based clusters that constitute the major type of cluster-

ing structure in directed networks. Although this represents the most common and well-studied clustering

definition in both directed and undirected networks, it cannot capture more sophisticated clustering struc-

tures, than the classical well-cohesive groups, where edge density may not represent the major clustering

criterion. More precisely, the nodes of a directed network can be naturally clustered together according to

similar connectivity patterns that may exist and are not captured completely applying only density crite-

ria. Actually, in some cases, two or more nodes can belong to the same cluster even though they are not

directly connected by common edges. We refer to this category of clusters as pattern-based clusters, since

they represent structures with interesting connectivity properties in directed networks2.

Examples of patterns that are interesting for clustering directed graphs are the cases of co-citation and

flow. Co-citation implies that a set of nodes A links to a set of nodes B and this structure implies a similarity

among the members of each group – i.e., the members of A are similar among them as they all point to the

same nodes, group B. Another interesting pattern has to do with the network flow at the cluster level, i.e.,

the linking structure within a cluster forces that the flow through the links predominantly stays within the

cluster instead of pouring out of it.

Figure 3 depicts three cases of graphs that contain different types of pattern-based clusters (as shown

in the shadowed regions). The first graph (a) forms two clusters – we will refer on them as citation-based

clusters. The most interesting point in this case is that the nodes of the graph that are clustered together do

not have an edge between them. Their similarity emanates from the co citation event – i.e., the nodes of the

leftmost cluster point to the nodes of the right cluster. Respectively the two nodes of the right cluster are

pointed by the same group of nodes. This is actually a bipartite graph where the partitions represent two

different communities. For example, let us consider the case of a citation network where nodes correspond

to scientific papers and a directed edge from paper 1 to paper 2 implies that the first paper cites the latter.

Although papers 1 and 3 do not share an edge, they form a natural cluster since they both cite papers 2

and 4 and it is probable that they belong on the same scientific topic.

2In the case of undirected networks, similar terms and definitions have been proposed for characterizing clusters with
interesting connectedness patterns (e.g., Refs. [51, 52, 23]). Here, we extend this notion by considering clustering types that
inherently arise in several real-world directed networks due to the existence of non-reciprocal relationships.
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1 2

3 4

(a) Citation-based cluster (b) Citation-based cluster (c) Flow-based cluster

Figure 3: Different examples of pattern-based clusters in directed networks. The leftmost network (a) and the one
in the center (b) represent citation-based clusters. The graph on the right (c) depicts a graph with four flow-based
clusters. Figures redesigned from Refs. [54, 18].

A similar example of pattern-based clusters, appears in Fig. 3 (b). In this case the two nodes in the

shadowed region form a cluster, since they have out-links to the same nodes, while at the same time having

in-links from the same group of nodes. This structure constitutes a common situation in the context of

directed graphs. For example, these two nodes may correspond to the websites of two competing companies

of the same market sector; they both link and are linked by a common group of webpages, but actually they

do not have links among them due to competition [54]. According to our high level definition of clusters in

directed networks (Definition 5), in this case the clustering features correspond to the common neighbors in

the graph and thus the nodes are clustered together if the share common neighbors.

A different case of pattern-based clusters is the one presented in Fig. 3 (c). The main characteristic of

this network is that the edges form patterns of flow among nodes. In other words, the local interactions

in the network combined with the edge directionality, induce a flow of information among the entities and

therefore the clustering structure depends on how information flows (see Ref. [18] by Rosvall and Bergstrom).

Then, a cluster or community in the network corresponds to a group of nodes where the flow is larger (more

persistent) as compared to the flow outside the group. Assuming a user that conducts random walk on the

graph, a flow-based community is a group of nodes where a random surfer is more likely to be trapped inside

instead of moving out of the group [55, 56].

Remark. We should note here that both types of clusters – co-citation and flow based ones – may co-exist

in a directed network. For example, as we can see from the related literature, most of the techniques

that adopt the citation-based clustering rule, are also able to identify density-based clusters. However, the

novelty of these techniques resides exactly on this point; through appropriate transformations, a density-

based technique can be enhanced with pattern-based clustering features.
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4. Dealing with Edge Directionality: Approaches for Identifying Clusters-Communities in

Directed Networks

There have been different directed network clustering approaches depending on the way directed edges

are treated. In this section we review the clustering methods based on the methodological principles and

algorithmic approaches followed. To the best of our knowledge this is the first proposal for a classification

scheme of graph clustering methods for directed networks.

Since a large amount of work for the graph clustering problem in directed networks is built upon clustering

approaches for undirected ones, whenever necessary we review the basic concepts to make our presentation

self contained. We also consider that giving meaningful connections to the undirected case will be helpful

to the reader. For a detailed description of the undirected graph clustering methods, the reader may refer

to previous interesting surveys in the field (see Section 1.3).

The proposed classification follows:

• Naive graph transformation approach: in this class we classify algorithms that ignore edge directionality

and treat graph as undirected. Thus, clustering algorithms that have been proposed for undirected

networks can be also applied to reveal the underlying community structure of directed ones (e.g., see

Section 1.3). However, due to naive graph conversion, the underlying graph semantics are not retained

and useful information is not taken into consideration during the clustering task. For instance, consider

a citation network, where papers are represented by nodes and edges are the citations. Then assume

a paper i cites paper j but not vice versa. Using the naive graph transformation each directed edge

is replaced by an undirected one; thus a reciprocal relationship is introduced among papers i and j

which misses to represent the endorsement of paper i to paper j.

• Transformations maintaining directionality: In this class we have methods where the directed graph

is converted into an undirected one, either unipartite or bipartite, and edge direction is meaningfully

maintained in the produced network. For example, in some approaches the directed network is con-

verted into an undirected and weighted one, where information about directionality is introduced via

weights on the edges of the graph (e.g., Ref. [54]). Then, algorithms and tools for clustering undirected

weighted graphs can be applied. In other approaches, the directed network is converted into a bipartite

one and then appropriate clustering algorithms are applied to the bipartite graph (e.g., Ref. [57]).

• Extending clustering objective functions and methodologies to directed networks: this category includes

approaches that constitute extensions of methodologies from the undirected case. Thus objective

criteria are extended to meet the requirements of the problem. The graph clustering problem is

typically expressed as an optimization problem, where an objective criterion, capturing the desired

cluster properties, is optimized by re-assigning nodes into clusters. The algorithm iterates usually
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until a local min/max value is reached. Since most of the research literature has focused on the

undirected version of problem, a large bulk of interesting approaches regarding the properties and

functionality of the (undirected) objective criteria have been presented (e.g., modularity [40, 41] and

normalized cut [38]). Hence, a natural way to deal with the directed version of the graph clustering

problem is to extend these measures for directed networks, where edge directionality is considered as

an inherent network characteristic. Some prominent representatives of this category are the directed

versions of modularity [50, 55, 58] and the objective function of weighted cuts in directed graphs [59].

Similarly, another well established approach in this direction is the extension of algorithmic tools that

have been introduced for undirected graphs. One of the most well-known such approaches is the case

of spectral graph clustering based on the Laplacian matrix [14, 60]. While Laplacian based spectral

clustering methods initially applied on undirected networks, recent advances in the field make them

also applicable to directed ones (e.g., Refs. [17, 61]).

• Alternative approaches: this category includes approaches that follow diverse methodologies, mainly

different from the ones described in the previous three categories. We identify three major types of

methods, namely (i) information-theoretic, (ii) methods based on probabilistic models and statistical

inference, and (iii) stochastic blockmodeling methods. Even though the last two methodologies are

closely related and both refer to probabilistic models, we review them independently since they rely on

different statistical inference concepts. Furthermore, in this category we also review several additional

approaches that mostly concern some variations of the community detection problem in directed net-

works. Some of these pose interesting features and may constitute interesting extensions for future

research work in the field (e.g., community detection in dynamic directed networks).

Next we will elaborate on each of the above categories with more details, presenting their basic points

and classifying the related works. This is the main proposed classification scheme for the clustering problem

in directed networks. Figure 4 depicts schematically the proposed taxonomy of the different approaches

for the problem. A large amount of research work has been devoted to methods that belong on the third

category (extending methodologies to directed networks). We also note here that, some of the approaches

share diverse methodological features (e.g., methods that transform the graph to undirected but at the same

time propose extensions for the modularity objective criterion that is in accordance with their framework).

Then, we do not assign them crisply in only one category; whenever necessary, we follow an overlapping

classification trying to capture and present the features of each approach from all possible viewpoints. Lastly,

we will shortly discuss why the naive approach is not appropriate for dealing with directed networks.
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Figure 4: The proposed taxonomy of clustering/community detection approaches in directed networks.
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(a) Directed network (b) Undirected network after transformation

Figure 5: Example of a naive graph transformation. The directed network (a) contains two communities, since
the two leftmost nodes are connected to the rest of the network but only in one direction. After a naive graph
transformation (b) it is difficult to identify any community structure.

4.1. Naive Graph Transformation Approach

The first and simplest approach for the clustering problem in directed networks, is to discard edge

directionality and treat graphs as undirected. After this simple transformation step, a large bulk of methods

that have been proposed for undirected networks can be applied to extract the community structure (e.g.,

see Section 1.3 for details). Even though this is a common way in the related literature to deal with

directed networks, this approach has several drawbacks that mainly derive from the fact that the information

represented by edges’ direction is ignored and not utilized during the clustering process. In other words,

directed edges typically indicate the existence of non reciprocal relationships between entities represented by

the nodes of the graph, and thus a naive transformation to an undirected graph with symmetric relationships

does not retain the underlying semantics. The two main drawbacks of this approach can be summarized as

follows:

(a) Data ambiguities: the naive graph transformation introduce ambiguities and to some degree incorrect

information in the network. For example, let us consider the case of a citation network where a directed

edge (i, j) represents a citation from paper i to j. Converting this edge into an undirected one implies a

mutual relation, i.e. an edge (j, i) that does not exist in the graph. But more generally, even if someone

argue that the new undirected edge represents similarity among papers i and j (since the first one cites

the second), this does not always hold for both directions (i.e., paper j may be an important paper,

but in a different area; thus mutual relationship and similarity may not exist). Similar concerns could

be used to justify possible ambiguities introduced by this transformation approach in other domains.

(b) Deviations in clustering results: even if one could ignore the ambiguities introduced in the data by

the naive graph transformation approach, these may have impact to the final outcome of a clustering

algorithm. Discarding edge directionality, valuable information is not utilized at the clustering process,

which at the end leads to deviations at the results. In other words, clusters that exist in the initial

directed network may not be identified at the transformed one, due to the naive graph conversion pro-

cess. This mainly occurs because the existence of directed edges forms interesting structural patterns
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and clusters (e.g., the flow-based clusters that we described in Section 3.2) that cannot be found in

undirected networks. Of course, this is something closely related to the definition/notion of a cluster;

nevertheless, even for the same clustering definition, the approach may lead to different results at the

end. Figure 5 depicts an example of a directed graph, where a naive transformation could distort the

clustering results.

It becomes clear that this approach is not effective and could possibly lead to incorrect inference about

the underlying community structure. In the following section, we will describe more meaningful graph

transformation approaches, where information about edge directionality is incorporated in the final network

and utilized properly during the clustering process.

4.2. Transformations Maintaining Directionality

In this section we will review the second category of approaches for the clustering problem in directed

networks. More precisely, we will present methods that perform “meaningful” transformations of the directed

network into an undirected one, where the term meaningful is used to denote the difference to the previously

described naive transformation method. According to this approach, the basic components of the clustering

task in directed networks can be summarized as follows:

1. Transform the directed network to undirected.

2. Edges’ direction information should be retained as much as possible (e.g., by introducing weights on

the edges of the transformed network).

3. Apply already proposed clustering algorithms designed for undirected networks.

4. The extracted communities will also correspond to the communities of the initial directed network.

More precisely, the initial graph is transformed into an undirected one, while information and semantics

about the direction of the edges is meaningfully incorporated in the resulting graph. For example, this can be

done by adding weights on the edges of the transformed network (or applying a reweighting scheme in case of

already weighted networks). The resulting network can be either unipartite or bipartite. Then, algorithms

that work on undirected networks can be applied to detect the community structure; such approaches can

benefit from the plethora of diverse algorithms that have been proposed for the community detection task

in undirected networks. Schematically, a high level description of this approach is depicted in Fig. 6.

4.2.1. Transformation to Unipartite Weighted Network

In a commonly used transformation approach in the related literature, the directed network is converted

into an undirected unipartite one, where information about directionality is incorporated via weights on

the edges of the transformed network. Satuluri and Parthasarathy [54], investigate how the problem of

clustering directed graphs can benefit using such symmetrization approaches. The basic insight on their
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Figure 6: Schematic representation of transformations that maintain directionality: the directed network is trans-
formed to undirected (weighted or unweighted, unipartite or bipartite) based on specific methodologies. Then, any
clustering algorithm for undirected networks can be applied. The extracted clusters correspond to the clusters of the
initial directed network.

approach is that, in directed networks, a meaningful cluster can be a group of nodes that share similar

incoming and outgoing edges. In other words, a clustering approach should not based solely on density

criteria, but also the in-link and out-link node similarity should be taken into consideration. Therefore,

their approach is able to detect groups of nodes with homogeneous in-link and out-link structure (e.g.,

citation-based clusters), that do not necessarily share edges among them (e.g., similar to the clusters in

Fig. 3 (b)). More precisely, the authors propose a two-stage framework which is in accordance with the

above discussion: (a) transformation to undirected graph applying symmetrization methods to the adjacency

matrix and (b) clustering the symmetrized graph using existing algorithms. Let G be the initial directed

graph with adjacency matrix A. The authors discuss and propose various ways to symmetrize a directed

network:

• A + AT symmetrization: in this approach, the produced undirected network GU will have the sym-

metric adjacency matrix AU = A + AT . The network retains the same number of edges (i.e., every

directed edge is replaced by an undirected), but in the case of directed edges in both directions, the

weight of the new edge is the sum of the weights in the initial directed edges. However, this simple way

to symmetrize a directed network cannot capture the notion of node similarity based on incoming and

outgoing edges; although the two central nodes of Fig. 3 (b) exhibit structural similarity according to

their in-links and out-links, they continue to remain unconnected at the resulting graph, and therefore,

it is very difficult to be clustered together.

• Symmetrization based on random walks: according to this approach, the normalized cut (Ref. [38])

of a group of nodes in the produced undirected network GU will be preserved with respect to the

initial directed one. In other words, the directed normalized cut of a group of nodes will be equal

to the normalized cut of the same group in the symmetrized undirected network. More precisely, the

transformed graph will be described by the following adjacency matrix
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AU =
ΠP + PTΠ

2
, (4)

where P is the transition matrix of the random walk and Π = diag(π1, π2, . . . , πn) is the diagonal

matrix with the probabilities of staying at each node in the stationary state (stationary distribution).

As noted by the authors (Ref. [54]), this approach makes easier the extraction of clusters that satisfy

the criterion of low normalized cuts, since this property is preserved during the symmetrization process

(compared to approaches that will be presented later at this papers and rely on expensive spectral

clustering based on the directed Laplacian matrix (see Section 4.4.3)). However, the symmetrization

method follows the density-based clustering notion due to the dependence to the normalized cut

criterion, and therefore other types of meaningful structures like the case of pattern-based clusters of

Fig. 3 (b) with low normalized cut, cannot be easily identified.

• Bibliometric symmetrization: both previous approaches maintain intact the edge set of the directed

network (discarding directions); they only reweight them according the selected symmetrization scheme.

However, a natural requirement that a symmetrization approach should meet is that at the final graph,

edges should appear between similar nodes even though in the original network this does not happen.

The prime example for this argument is the network of Fig. 3 (b), where there exist nodes that do not

share common edges, but both of them point to the same group of nodes (and pointed by the same

group of nodes). Therefore, these nodes share an intuitive notion of similarity and thus a clustering

algorithm should be able to group them together.

The authors of Ref. [54] propose a symmetrization approach based on a combination of the bibli-

ographic coupling matrix B = AAT and the co-citation strength matrix C = ATA. Both these

matrices are symmetric. The former captures common outgoing edges between each pair of nodes

(i.e., the number of common nodes that both nodes point to), while the latter common incoming edges

(i.e., the number of nodes that commonly point to these nodes). These matrices were first introduced

in the field of bibliometrics, but later have been used in several applications and domains where sym-

metric matrices are required (e.g., information retrieval [62] and network analysis [63]). Since both

incoming and outgoing edges should be of the same importance for a clustering algorithm, the authors

propose to use the sum of these matrices as a symmetrization scheme:

AU = AAT + ATA. (5)

• Degree-discounted symmetrization: one of the main properties of real-world networks is that they follow

a power-law degree distribution (e.g., Ref. [4]). The property states that, inside the network, there

exist a few nodes with very high degree compared to the majority of the nodes. This observation has
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direct implications to the previously described symmetrizations, since nodes with high degree would

be shared a lot of common edges with other nodes (and thus higher similarity). To this direction, the

authors propose a symmetrization approach where the contribution of each node to the similarity score

will be normalized according to its degree (in-degree and out-degree respectively). More precisely, their

approach is based on two intuitive observations:

Case 1: Suppose that two nodes i, j both point to a node z, which has high in-degree kinz .

Case 2: Suppose that two nodes i, j both point to a node z, with low in-degree kinz (i.e., it has

incoming edges from only a few nodes other than i, j).

Based on these two points, the authors suggest that case 2 should contribute more to the similarity

between nodes i, j since it is a less frequent event and thus more informative. Hence, when two nodes

i, j both point to a third one z, the similarity between them should be inversely proportional to the

in-degree kinz of node z. Similarly, the number of outgoing links of the nodes should be taken into

consideration. Thus, the out-link similarity between i, j should be inversely related to the out-degrees

of nodes i and j. Then, both the bibliographic coupling and co-citations matrices (matrices B and C

respectively) are redefined according to the degree-discounted idea as follows:

B = D−αout A D−βin AT D−αout and C = D−βin AT D−αout A D−βin , (6)

where α, β are the discounting parameters. Finally, the produced similarity matrix (and thus the

adjacency matrix of the symmetrized undirected network) will be the sum of these two matrices,

AU = B+C. The authors report that they have empirically observed that setting α = β = 0.5 results

into intuitive and meaningful clusterings. Having now symmetrized the directed network, algorithms

designed to work on undirected graphs can be applied to extract the underlying community structure.

In a similar spirit, Lai et al. [56] proposed a symmetrization method based on network embeddings, that

indirectly can be considered as a transformation to an undirected weighted network. More precisely, the

basic idea is to embed the initial directed network into a vector space, preserving as much as possible from

its local topological characteristics. According to this approach, every node in the directed network can be

treated as a point in the Euclidean space, as schematically shown in Fig. 7.

This can be considered as an equivalent representation scheme for a network, since in the general case,

the adjacency matrix can be treated equivalently as a representation in a Euclidean vector space and more

precisely in the space defined by the nodes of the network, that is Rn. Essentially the authors rely on a

specific type of network embedding and in particular on the Laplacian embedding for directed networks. As

we described in Section 2, the Laplacian matrix is an alternative matrix representation for a network with
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Figure 7: Visual representation of the network embedding method by Lai et al. [56]. Each node in the directed
network is treated as a point in the Euclidean space (or similarly as a vector). The local topological characteristics
of each node should be preserved by the embedding. Figure redesigned from Ref. [56]. ©2010 Elsevier.

several interesting characteristics. Similar to the adjacency matrix, the Laplacian can be considered as a

network representation in the Euclidean space, where the similarities among node pairs are preserved. The

authors are based on the extension of Laplacian matrix for directed networks proposed by Chung [17] (see

4.4.3 for more details on the Laplacian matrix)

L = Π− ΠP + PTΠ

2
, (7)

where P is the transition matrix of the random walk and Π = diag(π1, π2, . . . , πn) the diagonal matrix with

the probability of staying on each node in the stationary state.

The idea is similar to the random walk symmetrization presented earlier as again the same concept is

utilized in order to define the Laplacian matrix (in this case, the PageRank random walk). However, the

authors observed that the directed version of the Laplacian matrix in Eq. (7) can be expressed as L = Π−W,

where W =
ΠP + PTΠ

2
. Matrix W is symmetric, while Π can be considered as the degree matrix of the

network. Hence, W can be interpreted as the adjacency matrix of a new undirected network3, and for

this reason the method is considered to perform a graph transformation. Furthermore, the authors prove

that in the produced undirected network, information about edge directionality is effectively incorporated

as weights on the edges (entries of the matrix W). Moreover, a new definition of modularity is presented

according to this approach, which is considered as a generalization of the one defined on undirected networks

(e.g., see Section 2). The method is able to identify pattern-based clusters and more precisely, clusters that

represent patterns of movement among the nodes of the network (flow-based clusters, Fig. 3 (c)). The

authors stress out that the their method has broad applicability, since it can be used for several types of

well-known directed networks (e.g., social and biological networks), as well as for networks where the edges

3This is similar to the definition of Laplacian for undirected networks LU = DU − AU , where DU is the diagonal degree
matrix and AU the adjacency matrix of the undirected network. See also Section 2.
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represent patterns of movement among nodes that share common properties (e.g., the web graph, citation

networks).

Later, the same authors presented a more extended approach [64], where edge directionality is extracted

using a PageRank random walk (e.g., Ref. [35]), and introduced via weights on the edges of the transformed

undirected network. The approach is more general regarding the types of cluster that are identified and

introduces some interesting features. In contrast to the previous method which was based on the assumption

that edges in the network capture only similarity between nodes, here the information about edges’ direction

is utilized in order to decide whether an edge lies inside a community (i.e., intra-community edge, connects

two nodes that belong on the same community), or between communities (i.e., inter-community edge).

Hence, the edges of the network are distinguished between inter-community and intra-community edges,

very close to approaches presented for undirected networks. In other words, the information about the

directionality of the edges, and thus the weights on the network, operate as an indicator of how likely

the associated edges will belong on the same community; while the topological structure of the network is

modified, the connectivity among nodes is preserved and the underlying community structure becomes more

clear compared to the original network.

As we mentioned earlier, the method rely on the usage of random walks for directed networks in order to

determine the structure of the network and to extract weights from edge directionality. The basic idea is the

following: assume two nodes A and B connected with an edge, and respective random walks starting from

these two nodes. If both A and B are visited mutually during these random walks then the edge among

those nodes is more likely to be an intra-community edge.

That is, according to the random walk, nodes that belong to the same community could interact more

often among each other, and thus intra-community edges will receive higher weights than inter-community

edges. The authors define the so-called nodes’ behavior vector, where each entry represents the expected

frequency with which the specific node will be visited by the random walk in t steps4. Then, the similarity

between two such vectors (i.e., how similar are the trajectories of the random walks starting from these

connected nodes) will be an indicator if these nodes belong on the same community. The authors suggest

to apply two well-known similarity measures, namely the exponential and the cosine similarity. Having

extracted the edge weights, the network can be treated as undirected and thus algorithms designed for

undirected networks can be applied (the authors choose Newman’s modularity optimization algorithm [40]).

Finally, the proposed framework can identify flow-based clusters independently of the chosen clustering

algorithm.

4As the authors state, the length of the random walk should not be chosen too large (i.e., no greater than logn), even if it
is not very crucial for the method’s performance.
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4.2.2. Transformation to Bipartite Network

A somewhat different transformation approach than the ones presented earlier, assumes that the directed

network is transformed into a bipartite undirected one and then community detection algorithms are applied

on the latter. As we described in Section 2, bipartite networks form a special class of networks with interesting

properties. Treating a directed network as bipartite is not something new, but it has been used in the past

for other tasks in network analysis (e.g., Ref. [65]).

In the context of community detection for directed networks, the authors of Refs. [66, 57] utilize a

transformation scheme where a bipartite graph GB = (Vh, Va, Eb) is constructed from the original directed

network G = (V,E), according to the following process:

• Vh = {ih|i ∈ V and kouti > 0}

• Va = {ia|i ∈ V and kini > 0}

• Each directed edge (i, j) ∈ E between two nodes of the directed network G, will be represented by an

edge (ih, ja) ∈ Eb between nodes ih and ja of the produced bipartite network GB .

This implies that in the general case, the nodes of the directed network are doubled and each one is

represented by a node at each of the two partitions. However, since some nodes may not have outgoing or

incoming links (and thus they will be isolated in the resulting bipartite network), every node is placed in

the two sets Vh, Va according to its out- and in- degree respectively. Figure 8 shows a construction of the

bipartite network for a given directed one.

1 2 3

45

1 2

2

4

5

3

4

5

Vh Va

(a) Directed network (b) Transformed bipartite network

Figure 8: Example of transformation to bipartite graph. Each node of the directed network (a) is treated as a
hub/authority or both, according to its out-degree / in-degree.

The above representation scheme is inspired by Kleinberg’s hub and authority web model [62], where

the web pages are distinguished in two sets: authoritative pages and hub pages. The first category includes

web pages relevant to a specific topic, while the second one web pages that point to authorities of a relevant

topic. Moreover, a web page can simultaneously belong to both sets.
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In Ref. [66], the authors construct a bipartite network from the original directed one (adding all nodes

to both sets of the bipartite graph), trying to identify clusters of nodes with similar outgoing links as well as

similar incoming links. They distinguish the two partitions of the graph into the actor partition and team

partition (Vh and Va in our description). The ultimate goal is to identify groups of actors that are closely

connected to each other through co-participation in many teams. To this end, their approach is based on the

idea of modularity optimization. More precisely, they define a modularity function for bipartite networks,

modifying Newman’s modularity measure [40], and then apply an optimization technique based on simulated

annealing for detecting the underlying community structure.

In a similar spirit, the authors of Ref. [67] propose an approach for revealing the community structure

of bipartite and directed networks. They rely on the network transformation scheme presented above and

suggest that every unipartite or directed network can be transformed to a bipartite one, while the modularity

is preserved5. Then, an adaptive genetic algorithm called MAGA is presented, which according to the authors

is capable to effectively optimize the objective function for the community structure detection problem (the

authors select to apply the bipartite modularity function).

A different approach that based on the construction of a bipartite network is the one presented in Ref.

[57]. The authors describe a framework for semi-supervised learning on directed networks, which can also be

applied for the task of graph clustering. The framework was introduced for the problem of node classification

in directed networks, where some nodes in the graph bear labels (positive or negative) and the goal is to

classify unlabeled nodes. However, in case of absence of labeled node instances, the framework can be used

as a graph clustering tool for both directed and bipartite networks. The main idea behind the approach is

the so-called category similarity of co-linked nodes in directed networks; the existence of nodes with common

parents (sibling structures) and nodes with common children (co-parent structures) should be taken into

consideration at the clustering task since they can operate as indicators regarding node similarity (the

general idea is similar with the one presented by Satuluri and Parthasarathy in Ref. [54]). The construction

of a bipartite network from the original directed one is also inspired by Kleinberg’s hub and authority web

model, where co-linked node structures are highlighted.

4.3. Extending Objective Functions and Methodologies to Directed Networks

In the previous section, we presented methods where the graph clustering and community detection

problem is not treated on the original directed network, but on a new undirected network that is produced

applying meaningful transformation methods. The main advantage of these approaches is that they can

benefit from the large bulk of techniques for the undirected case of the problem. However, the basic

question behind such approaches remains the same: to what extend the information about the directionality

5Some comments on the performance of the method have been proposed from other researchers [68].
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of the edges is retained? To this direction, several methodologies have been proposed trying to deal with

the problem without changing the structure of the original network. That is, instead of transforming the

directed network to undirected, a different approach would be to transform or extend existing methods

making them capable to work with directed networks.

Usually, two things need to be specified for the problem of clustering and community detection in

networks. The first one has to do with the quality assessment of the produced clustering results, while

the other is more general and is related to the algorithmic framework that will be applied to extract the

community structure (according to how a “good” clustering should looks like). In fact, these two things

compose the basic steps of each clustering and community detection algorithm: (i) an objective function

that quantifies the quality of a cluster and (ii) an algorithmic technique for optimizing this function. Both

these aspects-questions have been treated for the case of undirected networks (or generally, several solutions

have been proposed). In other words, there exist several objective measures for quantifying the quality of

a clustering result, as well as algorithmic frameworks that are trying to optimize those objective criteria

in order to identify and extract the underlying clustering structure of undirected networks (e.g., see Refs.

[11, 19]). Thus, a natural question would be if these quality measures and general methodologies can be

extended to the case of directed networks and how this could be done.

In this section we present approaches for detecting clusters and communities in directed networks that

constitute extensions of the undirected case. Note that, this category contains the most well-studied ap-

proaches for the clustering problem in directed networks. First, we will discuss well-known objective criteria

that have been extended to take into consideration the directionality of the edges (e.g., modularity, cut-

based measures). Then, we describe more general algorithmic frameworks that were initially introduced for

clustering undirected networks and how they can be extended to the directed case. Such methodological

frameworks include spectral clustering approaches based on the Laplacian matrix, as well as PageRank based

and random-walk based methods. We must note here that some of these approaches are not independent.

For example, several modularity-based methods apply spectral clustering in order to identify the best clus-

ters. Whenever necessary, we briefly review the problem for the undirected case, trying to make this survey

paper as self-contained as possible (see Section 2 for more details about the background, as well as other

survey papers that focus on undirected networks).

4.3.1. Modularity for Directed Networks

One of the basic objective criteria about the quality of a particular division into clusters for a network,

is the so-called modularity function. Modularity was initially introduced by Newman and Girvan [40] for

the case of undirected networks, as a measure for assessing the strength of the partitions produced by an

hierarchical clustering algorithm (an thus indicating which partition should be kept). The measure is based

on the idea that networks with inherent community structure usually deviate from random graphs. That is,
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since random graphs are not expected to have community structure, measuring the deviation between the

concentration of edges in the original network from that someone expect in the case of random distributed

edges, would be an indicator of the presence (or lack thereof) of community structure. Informally, the

modularity score Q of each possible partition will be [40]:

Q = (fraction of edges within communities)− (expected fraction of edges). (8)

Larger positive values of modularity indicate better community structure, since there are more edges within

communities than one would expect if edges were placed in random (the maximum value of modularity can

be 1). The expected fraction of edges among a group of nodes is usually based on the chosen configuration

model, i.e., a random graph with the same degree sequence of the original network. In this model, the

probability of an edge between two nodes i, j with degree ki and kj is kikj/2m, where m = 1
2

∑
i∈V ki is

the total number of (undirected) edges in the network. Then, the modularity for undirected networks can

be expressed as

Qu =
1

2m

∑
i,j

[
Aij −

kikj
2m

]
δ(ci, cj), (9)

where Aij is the entry of the adjacency matrix which represents the existence or not of edge between nodes

i and j, δ(ci, cj) = 1 if ci = cj (i.e., if nodes i, j belong on the same community) and 0 otherwise.

Generally, modularity can be used both as quality measure for a specific network partition, as well as

the basic ingredient of a framework for extracting the community structure. The latter procedure, usually

called modularity optimization, is one of the dominant approaches for extracting the community structure

in undirected networks (e.g., Ref. [41]).

In the case of directed networks, several extensions have been proposed for the measure of modularity.

Arenas et al. [58] proposed a generalization for directed networks, where their ultimate goal was to reduce

the size of the initial network (directed or undirected), while preserving the modularity value (this is a very

crucial point since optimizing the modularity is a hard task). Their extension is based on the observation

that the existence of a directed edge (i, j) between nodes i and j, depends on the out-degree and in-degree

of nodes i and j respectively. Let us consider that node i has high out-degree but low in-degree, while node

j has high in-degree and low out-degree. Then, it is more probable to observe the directed edge (i, j) from

node i to node j, instead of observing edge (j, i). Putting these insights together, the configuration model

can be extended to the directed case, where an edge (i, j) from node i to node j will exist with probability

kouti kinj /m. Then, the modularity function for directed networks can be expressed as

Qd =
1

m

∑
i,j

[
Aij −

kouti kinj
m

]
δ(ci, cj), (10)
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where the notation is similar to the one of Eq. (9). Also, observe that there is no factor of 2 in the

denominator (the sum of out-degrees (similarly in-degrees) is equal to m). Moreover, Arenas et al. [58] gave

the relationship between directed and undirected modularity:

Qd = Qu +
1

4m2

∑
i,j

(kouti − kini )(koutj − kinj )δ(ci, cj). (11)

Leicht and Newman [50] were based on the above definition of modularity to propose an algorithm for

detecting communities in directed networks. Their approach constitutes a generalization of the modularity

optimization method, presented by Newman and Girvan in Ref. [40], where modularity can be expressed

in terms of the spectrum (eigenvalues and eigenvectors) of a special matrix called modularity matrix. More

precisely, let us suppose that our goal is to assign the nodes of the network into two communities, namely A

and B. Let si,∀i ∈ V be an indicator variable taking value +1 if vertex i is assigned to community A and

−1 if is assigned to community B and s be the vector whose elements are the si values. Then, modularity

can be written as

Qd =
1

m

∑
i,j

[
Aij −

kouti kinj
m

]
δ(ci, cj)

=
1

2m

∑
i,j

[
Aij −

kouti kinj
m

]
(sisj + 1)

=
1

2m

∑
i,j

Bijsisj

=
1

2m
sTBs, (12)

where Bij = Aij −
kouti kinj
m

is the modularity matrix. In the general case matrix B is not symmetric and

thus we are not able to apply a spectral approach. However, transposing Eq. (12), Qd can be expressed as

Qd = (2m)−1sTBT s. Finally, taking the average of this quantity with the one in Eq. (12) gives

Qd =
1

4m
sT (B + BT )s. (13)

Matrix B + BT is now symmetric. Thus, applying well-known approaches in optimization theory, a simple

clustering algorithm can be derived from the spectrum of this matrix: compute the eigenvector that corre-

sponds to the largest positive eigenvalue of the matrix B + BT and assign the nodes to communities A or

B according to the signs in the components of the eigenvector (generally, node i is associated with the i-th

component of the eigenvector).

Additionally, other optimization tools can be applied (e.g., see Section 2 and Ref. [11]). The above
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method can be extended to assign the nodes is more than two communities. This can be achieved by an

iterative procedure which subdivides the produced communities until the modularity value is not increased.

The algorithm has been tested on both synthetic and real datasets and the results show that, considering edge

directionality in the modularity optimization process, meaningful communities can be identified (whereas

ignoring the direction of the edges this cannot be achieved).

However, Kim at al. [55] observed that the directed version of modularity in Eq. (10) exhibits two

limitations:

(i) It cannot properly distinguish the directionality of the edges.

(ii) It cannot be used to detect pattern-based clusters representing patterns of movement among nodes.

Figure 9 presents an example where the directed modularity as introduced in Ref. [58] and used in the

algorithm of Ref. [50], is not able to distinguish the two different cases. According to the modularity

definition, nodes A and B are more likely to belong in the same community than nodes A′ and B′, since the

edge from B to A is more informative than the one from A′ to B′ (because of the fact that node B has small

out-degree and node A small in-degree; thus the edge from B to A should contribute more to the modularity

since it is a statistically surprising configuration). However, both edges have the same contribution to the

directed modularity.

A B

A′ B′

Figure 9: The modularity function introduced in Ref. [58] does not distinguish the directionality of the edges.
Nodes A and A′ as well as B and B′ have the same in- and out- degree respectively. However, in the top figure there
is a precise directed flow, while in the bottom no. Modularity cannot distinguish these different situations (Kim et
al. [55]). Figure redesigned from Ref. [55]. ©2010 American Physical Society.

Based on the above observations, in Ref. [55] the authors proposed a somewhat different formulation of

modularity for directed networks. Their approach, called LinkRank, is related to random walks and more

specifically to Google’s PageRank algorithm [69, 35]. More precisely, LinkRank indicates the importance of

links (edges) in the network (instead of nodes) as the probability that a random surfer will follow this link
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in the stationary state (similar to the definition of PageRank but now for the edges). That is, the LinkRank

value of a particular edge (i, j) can be defined as

Lij = πiGi,j , (14)

where πi is the i-th element of PageRank vector and Gij is the element of Google matrix G6 [69]. Then, a

generalized version of modularity can be defined using random walk concepts as follows:

Qlinkrank = (fraction of time spent by random surfer while walking within communities)

− (expected value of this fraction). (15)

According to this modularity definition (which holds for both directed and undirected networks), a commu-

nity is not just a group of nodes with more than expected number of edges, but a group of nodes where a

random surfer is more likely to stay. Therefore, the directed modularity can be expressed as

Qlinkrank =
∑
i,j

[
Lij − πiπj

]
δ(ci, cj), (16)

where πiπj = E(Lij) is the expected probability (in the configuration model) that a random surfer is

moving from node i to j (and thus the expected value E(Lij) of Lij). Furthermore, the authors show that

the proposed modularity measure Qlinkrank is consistent with the original modularity Qu of Eq. (9) for

undirected networks. In other words, for undirected networks, the proposed definition of a community as

a group of nodes where a random surfer is more likely to be trapped in is consistent with the traditional

one, where a community represents a group of, more than expected, densely connected nodes. One other

important feature is that the proposed LinkRank-based modularity function can be optimized using already

existing methods [11], leading to a community discovery algorithm for directed networks. The authors claim

that their method is able to detect mainly communities in directed networks where edges can be considered

to represent citation/reference relationships (e.g., pattern-based clusters).

The same definition of modularity for directed networks was also presented in Ref. [56] (the method was

also described in Section 4.2.1 since the original directed network is transformed into an undirected one).

The method applies PageRank random walk to define the Laplacian matrix for the directed network, which

at the end can be considered as a network embedding. Additionally, the authors provide an alternative

definition of communities as nodes sharing common properties; nodes of the same group are more similar

to each other compared to nodes outside the group. This can be also considered as a high level clustering

6Similar to the transition matrix P but guaranteeing the existence of a stationary vector [69].
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definition, and is in agreement with the one we presented in Section 3.

In Refs. [70] and [71], Chang et al. present an alternative formulation of modularity (compared to Qd of

Eq. (10)), that relies on a different configuration model. As we described earlier, the configuration model

used in Qd ([58, 50]) assumes that the existence of a directed edge from node i to node j is proportional to

kouti kinj /m. The authors present a different configuration model that rely on the idea of conditional expected

network (a similar approach has been presented for undirected networks [72]). That is, the configuration

model can be formed by conditioning on the degrees (both in- and out-) of nodes in the original network as

E(Aij |kin1 , kin2 , . . . , kinn , kout1 , kout2 , . . . , koutn ) = E(Aij |kin,kout). (17)

The solution of the above conditional expected model suggested by the authors is considered for the case

where the edges are distributed according to a Gaussian distribution and the final configuration model is

the directed Gaussian random network (DGRN). A benefit of this model stands from the point that one can

introduce prior information to the model in the form of the mean and covariance of the Gaussian distribution.

Then, measuring the deviation from the configuration model, the modularity can be expressed as

QdM =
1

m

∑
i,j

[
Aij − E(Mij |kin,kout)

]
δ(ci, cj). (18)

Furthermore, using spectral techniques similar to the ones of Ref. [8] (or generally other modularity maxi-

mization algorithms), the modularity can be optimized obtaining a clustering assignment.

Modularity for Overlapping Communities

In the discussion until now, we have reviewed approaches for the clustering and community detection

problem, where each node is assigned into just one community with no overlaps among communities. How-

ever, a different version of the problem is to allow nodes to be assigned in more than one communities,

leading to the concept of overlapping communities. The intuition behind overlapping clustering is based on

the fact that real complex networks usually are not divided into sharp sub-networks, but typically nodes may

naturally belong to more than one communities. For instance, in a social relationship network, individuals

usually belong to several different communities at the same time (family’s community, friendship’s commu-

nity, profession’s community, etc). Thus, being able to identify the overlapping communities of directed

networks, could offer fruitful insights about network structure.

To this direction, Nicosia et al. [73] extended the measure of modularity to the more general case

of directed networks with overlapping communities. The main point of their approach is to extend the

configuration model that is used in the definition of modularity [50], allowing nodes to belong to several

communities at the same time. Typically, nodes belong to each community with a certain strength and each

node i ∈ V is associated with a coefficient αi,c that indicates how strongly this node belongs to community c
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(i.e., each node i is associated with a vector [αi,1, αi,2, . . . , αi,|c|]
T , where |c| the total number of communities).

Then, a similar coefficient can be defined for the participation of edges to communities; for each directed

edge e = (i, j) the belonging factor to community c can be represented by a function of the corresponding

coefficients of nodes i, j, i.e., βe,c = F(αi,c, αj,c). Then, the δ(ci, cj) function can be substituted by two

different coefficients rijc and sijc, regarding the contribution of edge (i, j) to the modularity of the network

and the configuration model respectively. Finally, the modularity can be expressed as

Qov =
1

m

∑
∀c

∑
i,j

[
rijcAij − sijc

kouti kinj
m

]
. (19)

One can observe that if there is no overlap between communities, then rijc = sijc = δ(ci, cj), where the edge

(i, j) contributes to modularity only if ci = cj . The value rijc can be thought of as the contribution of edge

e = (i, j) to the modularity of community c and according to the above discussion, rijc = βe,c = F(αi,c, αj,c).

For the factor sijc that is related to the configuration model, assuming that the belonging of a node to

a community is independent from the belonging of every other node on the same community (i.e., the

probability that a node i belongs to community c with strength αi,c is not related to the probability that

any other node j belongs to the same community with strength αj,c), the modularity can be defined as

Qov =
1

m

∑
∀c

∑
i,j

[
rijcAij − sijc

βoute,c k
out
i βine,ck

in
j

m

]
, (20)

where

βoute,c =

∑
j∈V F(αi,c, αj, c)

|V |
and βine,c =

∑
j∈V F(αi,c, αj, c)

|V |
(21)

are the expected belonging coefficients of any edge e = (i, j), where node i belong to community c (i.e., the

average membership for all edges). One more thing needs to be specified for defining the modularity measure

for directed networks with overlapping communities and it concerns the selection of function F(αi,c, αj,c)

which specifies the belonging of an edge (i, j) in a community c according to the belonging coefficients of the

end nodes i, j. The authors suggest that the selection of the F(·) function should lead to a valid modularity

measure: (i) Qov should equals to zero when no community structure can be identified and all nodes belong

to the same community and (ii) higher value of Qov indicates better community structure. Every potential

function that preserves these properties can be applied to modularity. Finally, the authors present a genetic

algorithm for optimizing the proposed modularity criterion, and therefore it can be used to identify the

underlying overlapping community structure in directed networks.
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Local Definition of Modularity

The definitions for the directed version of modularity that we have presented so far, assume that in the

configuration model (the random graph model competitor), each node could be equally connected to any

other node in the network. That is, the probability of an edge between every pair of nodes is the same,

independent of the relative position of the nodes in the graph. In Ref. [74], Muff et al. propose a local

definition of modularity for directed networks, where the expected number of edges within each community

c is computed with respect to the subgraph consisting of the community c and its neighbor communities

(and not based on the full network). That is, a local function of modularity can be expressed as

Qlocal =
∑
∀c∈C

[
Lc
LcN

− koutc kinc
L2
cN

]
, (22)

where Lc is the number of edges within community c, LcN the number of edges contained in c’s neighbor

communities and koutc (kinc ) the total external (internal) degree of community c. The authors provide

experimental results where the maximization of Qlocal provides more cohesive partitions in a school network

dataset (interactions among students and their classmates) as well as in the metabolic network of E. coli.

Discussion

As discussed in Section 2, the modularity function suffers from the so-called resolution limit [49], i.e.,

modularity optimization may fail to identify communities smaller than a specific size that depends on the

scale of the network. This limitation was initially found in the undirected version of modularity (Qu in Eq.

(9)), but a similar behavior is expected for the extension in directed networks (as we mentioned earlier, there

is a close connection between Qu and Qd [58]). Thus, the produced partition that maximizes modularity

may correspond either to single communities or to a merging of smaller weakly connected communities. In

the literature, some possible meta-algorithmic approaches have been proposed, that can help to overcome

the resolution limit [11].

4.3.2. Spectral Clustering and Cut-based Measures for Directed Networks

In this section, we will review methodologies for the clustering problem in directed networks that are

based on the concept of spectral clustering and graph cuts, and we will present the close relationship between

them; these methods mainly constitute extensions of popular clustering approaches from the undirected case.

The algorithmic framework of spectral clustering was initially considered for the case of undirected

networks, and includes methods that partition the nodes of a graph into clusters using information related

to the spectrum of a matrix representation of the dataset (e.g., Laplacian or adjacency matrix). Spectral

methods can be applied not only in networks (graph structures), but generally in every set of N objects

where a pairwise similarity function between them can be defined. For a nice tutorial about spectral graph

39



clustering, one can refer to the survey paper of von-Luxburg [14]. Here we will present extensions to directed

networks and more precise, we will examine the generalization of the Laplacian matrix for directed graphs.

Furthermore, spectral clustering methods can also be applied in a slightly different way for solving the

graph clustering problem. This can be achieved through their close connection with the cut-based graph

clustering method. Broadly speaking, in the graph clustering problem the goal is to partition the nodes of

a network, in such a way that the edges between different groups should have low weight (or in the case of

unweighted networks, the number of edges should be small), while the edges within a group should have high

weight (note that the total weight of every cluster is considered aggregating the weights of edges). In other

words, there are two criteria of interest when quantifying how good a community or a cluster is. The first

one considers the number of edges between the nodes of the cluster, while the second the number of edges

between nodes of the candidate community with the rest of network. As noted in Section 2, the objective

functions for the clustering problem can be formed according to one of these criteria (single-criterion scores)

or based on a combination of them (multi-criterion scores) [39].

However, the optimization of these objective cut-based criteria typically lead to computational difficult

problems, but relaxed versions of them can be turned into spectral clustering problems. The optimization

measures can be expressed in a matrix form and then the spectrum (eigenvectors) of this matrix can be

used to obtain the final clusters. We remind here that something similar was presented in Section 4.3.1 for

the optimization of modularity. In that case, the modularity was expressed in a matrix form and applying

spectral techniques the partition that maximizes modularity was detected. Thus, it is clear that spectral

methods have a dual use: either as clustering framework itself or as an optimization framework for objective

functions. For the latter case, first we will present how cut-based measures can be extended to directed

networks and then how spectral methods can be applied on them as an optimization process. In the next

section, we will discuss about the connections between cuts, spectral clustering and random walks on graphs.

Laplacian Matrix for Directed Networks

The Laplacian matrix of an undirected graph [31] is one of the main tools for spectral clustering. As

we discussed in Section 2, the eigenvector that corresponds to the second smallest non-zero eigenvalue of

the Laplacian matrix (the so-called Fiedler vector) can be used to obtain a bi-partition of the nodes of the

graph into two sets S, S̄ = V − S with relatively small number of edges connecting the two sets (this can

be achieved through the well-known Cheeger inequality). That is, the eigenvectors of the Laplacian matrix

provide a solution to the normalized cut objective function, which captures the clustering notion of a subset

S as (see also Ref. [38] by Shi and Malik):

NCut(S, S̄) = Cut(S, S̄)

(
1

Vol(S)
+

1

Vol(S̄)

)
, (23)
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where Cut(S, S̄) = |{(i, j)} : i ∈ S, j ∈ S̄| =
∑
i∈S,j∈S̄ Aij and Vol(S) =

∑
j∈S,t∈V Ajt is the total number

of edges starting from nodes in S. Then, the optimal bi-partition of the graph is the one that minimizes the

normalized cut value and this can be approximated by the spectrum of the Laplacian matrix.

In the case of directed graphs, how the above property is generalized? The answer was initially provided

by Chung [17], who proposed a version of the Laplacian matrix for directed networks, based on a random

walk process. That is, for a directed network G the Laplacian matrix can be defined as

Ld = I− Π1/2PΠ−1/2 + Π−1/2PTΠ1/2

2
, (24)

where P is the transition matrix, i.e., Pij =
Aij
kouti

and Π = diag(π1, . . . , πn) the diagonal matrix with

the probability of finding the random walk on each vertex (the stationary distribution of the random walk).

(One can observe that the matrix is the same with the one used by Ref. [56] in Eq. (7)). Moreover, the most

important point is that the Laplacian matrix of Eq. (24) satisfies the so-called Cheeger inequality, making

it a useful tool for the graph clustering problem. In other words, the eigenvector of the second smallest

non-zero eigenvalue of Ld can be used to approximate a good cut in the network. Another version of the

Laplacian matrix for directed networks (called Diplacian) with similar interesting properties, was recently

presented by Li and Zhang in Refs. [32, 33].

Based on Chung’s extension of the Laplacian matrix for directed networks, Gleich [75] proposed an

hierarchical spectral graph clustering algorithm for directed networks. The idea utilizes Cheeger inequality

that holds for the new directed Laplacian matrix and by recursively using the eigenvector u1 that corresponds

to the second smallest non-zero eigenvalue λ1, a partition of the graph into two clusters can be achieved.

The author suggests that this recursive process can terminate when the resulting subgraph contains less

than p nodes. Moreover, a possible extension of the algorithm to higher eigenvectors is discussed, where

each higher eigenvector (other that u1) offers the next best solution for the normalized cut. That is, the

spectrum of the directed Laplacian matrix (k smallest eigenpairs) can be used to partition the network into

c clusters.

A similar solution to the problem was proposed by Zhou et al. [61], who considered a normalized

analogous of the directed Laplacian matrix. More precisely, the authors define the matrix

Θ = (Π1/2PΠ−1/2 + Π−1/2PTΠ1/2)/2, (25)

where Ld = I −Θ. According to this relation between Ld and Θ, the best normalized cut will correspond

to the eigenvector of the second largest eigenvalue of Θ (instead of second smallest in the case of Ld).

Algorithm 1 describes the pseudocode of the clustering algorithm for directed networks based on the above

discussion, where the graph is partitioned into two parts (the algorithm is similar to the one presented by
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Gleich in Ref. [75]).

Algorithm 1 Directed Spectral Clustering

Input: Directed graph G = (V,E)
Output: A partition of the vertex set V into two parts, minimizing the normalized cut

1: Define a random walk over G with transition matrix P.

2: Form the matrix Θ = (Π1/2PΠ−1/2 +Π−1/2PTΠ1/2)/2, where Π is the diagonal matrix with elements
being the stationary distribution of the random walk.

3: Compute the eigenvector u2 of Θ that corresponds to the second largest eigenvalue; then partition the
vertex set V into two parts S = {i ∈ V |u2(i) ≥ 0} and S′ = {i ∈ V |u2(i) < 0}.

The above algorithm can be extended in the case of a k-partition (instead of a bi-partition), considering

the eigenvectors that correspond to the k largest eigenvalues of Θ. Furthermore, in the case of labeled

data (where each node is associated with a label), the above methodology can be used as a general learning

(classification) framework for directed networks. Later, the framework was extended to the case of graphs

with multiple views, where data is associated with multiple representations [76]. For example, in the case

of the web graph, each web page can be represented either as a node in a directed network based on the

hyperlink structure, or using the vector-space model based on occurrences of words in a web page. These

two different views can be combined as a directed hyperlink network, weighted according to the similarity

of the web pages. In the general case, each different view can be represented as a directed network with the

same set of nodes V and the idea is to combine these different views to improve the accuracy of the learning

framework (e.g., the graph clustering task).

Cut-based Measures for Directed Networks

A basic point of the Laplacian-based spectral clustering algorithm that we presented above, is that it

provides a solution to the normalized cut problem. The objective criterion that is optimized while using

the eivenvectors of the Laplacian matrix (of a directed or undirected network), is a generalized version of

the normalized cut. Additionally, other possible cut-based objective criteria can also be applied to the

clustering problem in directed networks, as the one of weighted cuts proposed by Meilă and Pentney [59].

More precisely, the authors introduced the generalized weighted cut criterion, defined as follows

WCut(S, S̄) =

∑
i∈S,j∈S̄ T

′
iAij∑

i∈S Ti
+

∑
j∈S̄,i∈S T

′
jAji∑

j∈S̄ Tj
. (26)

One can observe that this criterion is similar to the one of normalized cut (Eq. (23)), but it is parametrized

by the vectors T and T ′. That is, the objective is to form node clusters of balanced size, where clusters’

size is parametrized by vector T , while vector T ′ plays the role of a normalization factor for the adjacency
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matrix A. An important point is that different normalized cut-based measures can be recovered from the

definition of WCut, by properly setting the parameter vectors T and T ′. This point makes the new criterion

more flexible. The authors show that the optimization of the WCut function can be relaxed on an analogous

symmetric problem, where many existing spectral clustering algorithms and theoretical results can be applied

for extracting the final clusters. The experimental results show that the symmetrized version of the spectral

clustering problem produced by the weighted cut objective function, gives better results compared to the

cases where the matrix is symmetrized using simple linear algebraic transformations (e.g., some of those

presented in Section 4.2.1).

In the context of image processing and analysis, the authors of Ref. [77] present an approach for clustering

directed networks, generalizing the normalized cuts criterion. At a first point, a new representation scheme

is proposed, in which all possible pairwise relationships are characterized according to two types of node

correlations, namely attraction and repulsion. According to these relationships, the general compatibility

between two pixels in the image can be captured by two different directed networks that correspond to

each of these two relationships. The general idea behind the approach is that at the clustering process,

the attraction of nodes that belong on the same group should be as large as possible, while the repulsion

between two different groups should be minimized. Then, information about these two graphs is introduced

in a “dual” clustering criterion that extends the notion of normalized cuts. Finally, the optimization of

the produced objective functions leads to an eigendecomposition problem of a Hermitian matrix, where the

imaginary part encodes directed relationships, while the real part encodes undirected relationships with

positive numbers for attraction and negative numbers for repulsion.

4.3.3. PageRank and Random Walk based Methods

The PageRank and generally random walks over graphs are closely related to spectral clustering. That

is, cut-based measures in networks (e.g., normalized cuts) and their optimization process, can be expressed

in terms of random walks [78]. Broadly speaking, the minimization of the number of edges that crossing a

cut in a network can be described as a similar process where the random surfer is forced to stay more time

within a cluster. In other words, the normalized cut objective criterion presented in Eq. (23), corresponds to

the probability of the random walk transitioning from the vertex set S to set S̄ in one step if it is currently

in S and the random walk is started in the stationary distribution (or vice-versa):

NCut(S, S̄) =
Pr(S → S̄)

Pr(S)
+

Pr(S̄ → S)

Pr(S̄)
. (27)

That is, if π represents the stationary distribution of the random walk, then the probability Pr(S) with

which the random surfer can be found in a node in S can be defined as Pr(S) =
∑
i∈S πi (similarly for Pr(S̄)

and also Pr(S) + Pr(Ā) = 1). Then, the probability that the random walk will move from S to S̄ can be
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defined as Pr(S → S̄) =
∑
i∈S,j∈S̄ πiPij , where P = [Pij ]i,j∈V is the transition matrix.

Equation (27) considers the general case of graphs with the existence of directed edges and thus can be

naturally applied in directed networks (in the case of undirected networks Pr(S → S̄) = Pr(S̄ → S), since

the probability of transition from S to S̄ is equal to the one from S̄ to S). As we described in Section 4.4.3,

this criterion can be approximated by the eigenvalues of the Laplacian matrix for directed networks [61].

It also holds for undirected networks that relying only on the first top k eigenvectors of the transition

matrix P which is related to the random walk, one is able to identify the underlying clusters [79]. A similar

result was presented for directed networks, which states that a clustering can be achieved by looking for

piecewise constant eigenvectors in the transition matrix P [80]. However, as noted by Capocci et al. [81], one

can rely on the eigenvectors of matrix P, if the network has a clear modular structure. However, in practice,

this is something that occurs rarely; typically, real large networks have no clear community structure, and

the eigenvector components do not show a clear step-wise form. To deal with this issue, Capocci et al.

[81] presented an approach where the underlying community structure is revealed by correlations between

the same components of different eigenvectors. That is, the eigenvector components that correspond to

nodes of the same cluster, will show high correlation among each other. In the case of directed networks,

the adjacency matrix of the network is replaced by matrix AAT and a similar methodology is applied

(therefore the method first transforms the directed network to undirected by a transformation approach

which introduces edges between nodes with common neighbors).

In the context of community detection in the directed Web graph, Huang et al. [82] proposed to extend

the random-walk based approach, using some variations of random walks that are able to identify latent Web

communities. That is, instead of only satisfying a normalized cut criterion where two web pages (nodes)

are assumed to be related if they are directly connected, the authors also consider the case of pattern-

based clusters where co-citation and co-reference information is taken into consideration. In other words,

the random walk should ensure that Web pages that share a common topic or interest should be grouped

together, even if they are not directly connected (the case of pattern-based clusters that we described in

Section 3.2). More precisely, their first approach involves two versions of the PageRank random walk (or

teleporting random walk) [35], one following the forward hyperlinks while the other the backward ones.

The first one can be considered as an authority-based ranking of nodes while the second as hub-based (e.g.,

see Ref. [62]). Moreover, PageRank guarantees the convergence to a stationary distribution through the

adoption of a damping factor (in case of absence of in/out edges for a node). In their second approach,

the authors consider a two-step random walk, in order to reveal latent communities that imposed by the

existence of co-citation and co-reference edges. That is, starting from a node u, the random surfer first jumps

one hop backward to a hub node h with probability P−uh = Ahu/k
in
u , and then she moves one step forward

to a node v (adjacent to h) with probability P+
hv = Ahv/k

out
h . Then, the two-step transition probability

between authorities u, v is defined as
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PAuv =
∑
h

P−uh P
+
hv, (28)

where nodes are treated as authorities. Similarly, forcing the random surfer to move firstly one step forward

and then one step backward, the nodes are treated as hubs, and the transition probability matrix PH can

be similarly defined. Moreover, since both these two-step random walks require that each node should have

incoming and outgoing edges, again a teleporting probability (damping factor) is introduced. Finally, the

above two types of random walks can be combined through a convex combination, in order to consider

both co-citation and co-reference node similarity. In this case, the transition matrix can be expressed as

P = βPA + (1 − β)PH , where parameter β controls the co-citation and co-reference effects. Since the

modified transition matrix P has been defined, it can be applied to the Laplacian matrix of Eq. (25), and

spectral methods can be used to extract the clusters.

A similar PageRank-based approach for clustering hypertext document collections that are represented

by directed networks, was introduced in Ref. [83]. The proposed algorithm (called PRC) is composed by

two parts. In a first step, a set of centroid nodes are selected (according to a node ranking criterion such

as PageRank or Hits), and after that, the nodes are assigned to clusters using a Personalized PageRank

method7 (also called topic-specific or local PageRank) [84], combined with similar spectral optimization

tools like those presented earlier.

In Ref. [85] the authors combined random walks with the concept of affinity propagation [86] and

proposed a message passing algorithm for community detection in both directed and undirected networks.

Affinity propagation is a mechanism that has been previously used in the task of clustering data points,

where each group is associated with a representative point. Broadly speaking, the method of community

detection via affinity propagation can be likened to an election process, in which nodes represent voters and

the group leaders are the representative nodes. Through message passing along the edges of the network,

the nodes are able to identify the community that they belong to; this is determined by its community

leader, examining the similarity with their neighbors. The similarity between two nodes is computed using

random walks and a variant of the transition matrix; each node is finally represented as a vector in Rn and

well-known similarity metrics are applied (e.g., cosine similarity).

A somewhat different version of the problem is the one of local graph partitioning, where instead of

clustering the whole graph, the goal is to find a “good” local clustering structure near a specified seed

node, by examining only a small portion of the input graph. As we will discuss later at this paper, this

is a very interesting variant of the community detection problem. In Ref. [87], Andersen et al. propose

a local clustering algorithm for directed networks (extending a similar method for undirected networks),

7This is a variant of the PageRank algorithm where a set of nodes is favored by the random walk. That is, the probability
that the random surfer will jump to a node in a teleport step is not uniform for all nodes (as in the PagerRank algorithm). In
the extreme case, only one node is favored.
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Figure 10: Illustration of the Clique Percolation Method for undirected networks [88]. Initially, a template k-clique
(k = 4) is placed on nodes A-B-C-D. The template is gradually rolled to adjacent k-cliques and the final module
consists of nodes A-B-C-D-E-F. The figure is courtesy of Palla et al. [88]. ©2007 IOP Publishing.

combining information from both the Personalized PageRank score of a node v and the global one (i.e.,

the classical version of PageRank). That is, for a specific seed node, the authors compute the Personalized

PageRank score with a single starting node (the seed node), as well as a global PageRank score with a

uniform starting distribution over all nodes. Then, it is proved that taking the ratio of the entries in the

Personalized PageRank and global PageRank vectors and sorting the nodes of the graph according to this

ratio, one is able to identify a local set of nodes (cluster) with good clustering properties. The quality of

the obtained cluster is determined by the measure of conductance (e.g., see Ref. [39]) which is generalized

for directed networks.

4.3.4. Other Extensions

In this section we describe a few other diverse approaches for detecting communities in directed networks,

that mainly extend concepts from the undirected case of the problem.

Clique Percolation Method for Overlapping Community Detection

Palla et al. [88] presented a technique which extends the clique percolation method initially proposed for

undirected networks. The goal of the method is to detect network modules (i.e., dense connected groups

of nodes), following a local search approach based on edge density. Moreover, the produced modules may

overlap with each other (i.e., a node may belong to more than one communities). In the case of undirected

networks, the clique percolation method considers that the definition of modules is based on adjacent k-

cliques. A k-clique is a complete subgraph with k nodes, while two k-cliques are adjacent if they share k− 1

nodes. A module is defined to be the union of k-cliques that can be reached from each other traversing

the edges of adjacent k-cliques. In other words, considering a k-clique as a template, the modules can be

identified by rolling the template to an adjacent k-clique (retaining all but one node fixed) as shown in Fig.

10.

The method is extended in directed networks, defining the concept of directed k-cliques as complete
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subgraphs of size k, where the nodes can be ordered such that between any pair of nodes there is a directed

edge from a higher order node to a lower one. The ordering is obtained according to the restricted out-degree

of a node in the k-clique (the number of out-neighbors in the clique). Then, the directed k-clique modules

are defined in a similar way as in the undirected case, by considering the union of adjacent directed k-cliques.

The authors discuss that the proposed definition of k-cliques for directed networks is not unique, and other

extensions can be considered as well.

Local Density Clustering

One other clustering method that aims to detect clusters based solely on local information, is the one

presented by Schaeffer and Virtanen in Refs. [89, 90] respectively. The basic idea of the approach is to

extend the concept of cluster density to directed networks. (The problem is similar to the one presented

earlier in Section 4.3.3 about local graph partitioning). More precisely, a local search method is applied in

order to find a good cluster that contains a specified seed node (the approach can be naturally extended

to several seed nodes). That is, the internal degree of a local cluster C ⊆ V is defined as int-deg(C) =

|{(u, v) ∈ E|u, v ∈ C}| (i.e., the number of edges with both endpoints in C), while the external degree is

ext-deg(C) = |{(u, v) ∈ E|u ∈ C, v /∈ C}| (i.e., the number of directed edges (u, v) that have only the start

node u in C). The density of the directed network G = (V,E) is defined as δ =
m

n(n− 1)
, where m = |E| and

n = |V |. Similarly, the density of a cluster C (also called local density) can be defined as δ`(C) =
int-deg(C)

|C|(|C| − 1)

and the relative density as δr(C) =
int-deg(C)

int-deg(C) + ext-deg(C)
. The authors combine the local and relative

density and the final quality measure is selected to be the product of them: f(C) = δ`(C) · δr(C). Having

define the clustering quality function, the problem of local clustering can be stated as follows: find a

subgraph C with k nodes (i.e., the cluster) that contains a given node v ∈ V , maximizing f(C). Since this

is a computational difficult problem, the authors propose a local search approach starting from node v and

gradually expanding the subgraph around v.

4.4. Alternative Approaches for Community Detection in Directed Networks

In this section we review “alternative” clustering approaches for directed networks that do not belong

to one of the previous categories. While the approaches described so far either transform the original

directed network to undirected or constitute well-known extensions from undirected to directed networks,

here we will review algorithms that follow different and diverse methodological approaches. We classify

them in three categories, according to the main methodology they follow, namely (a) information-theoretic,

(b) mixture models and statistical inference, and (c) stochastic blockmodels. One additional category is

devoted to approaches that mainly deal with variations of the clustering problem (e.g., community detection

in dynamic directed networks). We note that even some of these approaches have been applied in the
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past on undirected networks, we decide to review them independently, trying to identify and demonstrate

additional concepts that can be used for the problem. Moreover, some of them can be applied on both

directed and undirected networks (i.e., independent from edge directionality), and we briefly discuss about

this interesting feature. Although categories (b) and (c) both refer to approaches on probabilistic models,

we decide to review them independently, since they are based on different statistical inference techniques.

4.4.1. Information-Theoretic Based Approaches

A prominent methodology for extracting the community structure of a network is the one that applies

information-theoretic and compression principles. Generally, the existence of communities in networks rep-

resent structural patterns and regularities, that similar to more traditional data mining and analysis tasks,

they can be used to effectively compress the network (data), e.g., Refs. [91, 92]. Rosvall and Bergstrom

[18] proposed a method (called Isomap) to identify communities in directed networks, by combining random

walks and compression principles. That is, the modules of the network can be recognized based on how

fast information flows on them. The authors apply the concept of random walks to describe the process

of information flow in the network and the clusters can be extracted by compressing the description of the

random walk. As we have already discussed, a community corresponds to a group of nodes in which the

random surfer is more likely be trapped in, visiting more time nodes of the group than other nodes outside

of that. Thus, intuitively, a community would correspond to a group of nodes in which the random walk can

be compressed better and the problem can be reformulated as a coding one: the goal is to select a partition

M of the n nodes into c communities, minimizing the description length of the random walk.

At a first step, each node in the network is described by a unique codeword based on the visiting frequency

of the random walk. Using Huffman coding, shorter codewords are assigned to more frequently visited

nodes. At a second step, the random walk trajectory on the network can be described following a two-level

description: unique names (codewords) are assigned to the clusters of the network (coarse-grained structure),

while the codewords for the description of nodes inside a module are reused (fine-grained structure). Thus,

reporting only the codewords that have been assigned to communities, a coarse-grained description of the

network is achieved. The procedure is similar to the one used while designing a geographic map; unique

names are assigned to cities (communities in our case), while names for the streets (nodes in our case) of

a city can be reused. Then, the clustering problem can be expressed as finding the partition that yields

the minimum description code length. If the network has a well-defined community structure, the above

two-level description scheme will produce shorter code length: the random walk will jump between different

communities infrequently and thus the description length will be shorter (since the codewords represent

individual nodes are shorter). The minimization of the description length can be achieved combining greedy

search and simulated annealing methods. Regarding the clustering results, the Isomap algorithm is able to

identify pattern-based clusters and more specifically clusters of flow patterns induced by the edges of the
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Figure 11: An example of the community detection algorithm through co-clustering: (a) The initial adjacency
matrix. (b) The columns and rows of the matrix are reordered forming homogeneous blocks that can be used to
better compress the matrix. At the end, these blocks correspond to co-clusters. Figures redesigned from Ref. [93].
©2004 Springer.

network.

A somewhat different formulation of information theoretic principles in the community detection problem

has been presented by Chakrabarti in Ref. [93] (even though the algorithm is tested on undirected networks,

it seems that it can be applied in directed networks as well). The proposed algorithm (called AutoPart)

can be considered as a co-clustering tool for binary matrices (the adjacency matrix in our case), where

compression concepts are applied to identify the underlying clustering structure8. The goal of the algorithm

is to group the nodes of the network into clusters in such a way that the adjacency matrix will be divided into

rectangular, homogeneous blocks of high or low density, indicating that the certain node groups have more

(or less) connections with other groups (e.g., Fig. 11). This can be achieved through a reordering procedure

of the adjacency matrix, where the rows and columns of the matrix are rearranged to achieve this structure.

The quality of different possible clustering structures is evaluated in terms of the total compression cost

T . That is, the best compression scheme should achieve a tradeoff between the number of produced blocks

(i.e., clusters) and how homogeneous these blocks are. In the two extreme cases, one could select either only

one block (the whole matrix) but not very homogeneous, or n2 perfectly homogeneous blocks of size 1 (each

cell of the matrix). This tradeoff is achieved applying the Minimum Description Length principle (MDL)

for model selection: the best clustering (model) is the one that minimizes both the compression cost of the

data as well as the cost for the “summary” of the node groups.

To minimize the total compression cost T , a two-step iterative approach is applied. Initially, the graph

is considered as a single cluster itself. At each iteration, the algorithm first finds a good node grouping for

a given number of clusters, and then, is looking for the number of clusters k to be formed by splitting the

previously created clusters with the maximum entropy per node. This iterative procedure continues until

8The term co-clustering refers to the task of simultaneously clustering the rows and columns of a matrix. As we will present
later in this Section, the formulation of the co-clustering problem is similar to the blockmodeling approach.
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finding the optimal number of clusters k, for which the compression cost T cannot further be decreased.

Thus the complexity of the method is O(Imk2), where I the number of iterations to achieve convergence

of the compression cost (the author state that in practice I ≤ 20 iterations are enough). To conclude, the

main features of the algorithm are: (i) it treats the community detection problem as a co-clustering task

where the number of clusters is automatically determined by the MDL principle, and (ii) it scales linearly

with respect to the number of edges.

4.4.2. Probabilistic Models and Statistical Inference

A different formulation and solution for the community detection problem in networks can be achieved

applying statistical inference methods. Broadly speaking, statistical inference9 is the process of drawing

conclusions from data, subject to a set variables. Newman and Leicht [94] proposed an approach for

community detection in directed networks based on mixture models for statistical inference. More precisely,

let c be the number of communities in the network and assume that gi represents the community (group)

that node i belongs to. The group memberships are initially unknown and the goal of the algorithm is to

infer them from the observed network structure. To this direction, the authors propose to use a mixture

model10 for the underlying communities and their properties, in which its parameters can be adjusted to

find the best fit to the network. This point is particularly significant since the method does not assume any

prior information about the network structure.

Assume that πr is a variable that represents the fraction of nodes in community r and θri is the probability

of existence of a directed edge from a particular node in community r to a node i (i.e., the preferences of

nodes in r about which other nodes they link to). The following quantities are used to define the model: the

network data {Aij}, the missing data {gi} (i.e., community assignment), and model parameters {πr}, {θri}.

Defining a community as a set of nodes that have similar connection patterns to each other, the task of

community detection can be formulated as a likelihood maximization problem. In this case, the goal is to

maximize the likelihood Pr(A, g|π, θ), i.e., the probability that the data were generated by the given model,

with respect to model’s parameters. A common approach is to maximize the log-likelihood function instead

of the likelihood itself. At the end, the expected probabilities qir that node i belongs to community r can

be expressed in terms of {πi} and {θri} as

qir =
πr
∏
j θ

Aij

rj∑
s πs

∏
j θ

Aij

sj

. (29)

Moreover, the authors state that the maximization of the likelihood occurs when

9Wikipedia’s lemma for statistical inference: http://en.wikipedia.org/wiki/Statistical_inference.
10Wikipedia’s lemma for mixture models: http://en.wikipedia.org/wiki/Mixture_model.
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(a) (b) (c)

Figure 12: A simple case where the mixture model proposed by Newman and Leicht [94] has problem to assign the
nodes of the network into communities (colors indicate community membership). The possible outputs of the method
are those presented in the shadowed regions of (a) and (b), while the natural grouping presented in (c) cannot be
identified (proposed by Ramasco and Mungan in Ref. [95]). Figure redesigned from Ref. [95]. ©2008 American
Physical Society.

πr =
1

n

∑
i

qir, θrj =

∑
iAijqir∑
i k
out
i qir

, (30)

where kouti is the out degree of node i. Combining Equations (29) and (30), an expectation-maximization

(EM) algorithm can be applied to produce the belonging probabilities qir (the authors state that the con-

vergence of the algorithm is fast).

As we mentioned earlier, the major strength of this approach is that it is independent from the underlying

clustering structure of the network, making it capable to reveal various types of community structure.

However, the number of communities is a parameter and needs to be specified a priori, but the authors state

that it can also be inferred from the data.

In a subsequent work, Ramasco and Mungan [95] observed that in the model of Newman and Leicht [94]

that presented above, the probability θri that a node i has an incoming edge from a node in community

r, suggests that each community r should have at least one node with non-zero out-degree. However, this

constraint may have impact at the produced communities, as depicted in Fig. 12. In this case, the EM

algorithm cannot identify the more natural and intuitive communities of a bipartite directed network, as

shown in Fig. 12 (c). On the other hand, the cluster assignments in Fig. 12 (a) and (b) are the possible

outputs of the algorithm.

To avoid this problem, the authors of Ref. [95] generalize the EM approach, in such a way that the

direction of edges do not restrict the possible assignment of nodes into groups. This can be achieved

replacing the edge probabilities θri by three new types of probabilities: (i)
−→
θri representing the probability

of a directed edge from a node of community r to node i, (ii)
←−
θri for the probability of having a directed edge

from node i to a node inside community r, and (iii)
←→
θri for a bidirectional edge between node i and a node in

community r. Then, the problem is formulated according to the above new parameters and the generalized
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EM method is able to detect a broad range of diverse types of communities. Moreover, the authors provide

a way for determining the number of communities in the EM formulation of the problem.

Another extension of the mixture models method by Newman and Leicht [94] has been presented by Wang

and Lai [96]. The authors modified a subset of the parameters of mixture models, adding some interesting

features to the proposed APBEMA algorithm, such as independence from the degree distribution of the

network (i.e., there is no restriction about the degree of each node that affects the produced communities)

and applicability to both directed and undirected networks without any modifications.

4.4.3. Blockmodeling Methods

Blockmodeling is an approach that has been extensively used to analyze and describe the structure of

social networks and generally relational data (e.g., see Refs. [97, 98, 99]. The goal of blockmodeling is to

represent a large and possibly incoherent network, by a smaller structure that can be interpreted more easily.

In other words, blockmodeling can be considered as a clustering procedure, where the nodes of the network

are grouped together according to how equivalent they are, under some meaningful definition of equivalence.

This procedure is similar to a reordering scheme of the adjacency matrix, causing the formation of a block-

wise structure similar to the co-clustering task for community detection described in Section 4.4.1. Figure 13

depicts an example where a blockmodeling approach has been applied in a directed network (top part of the

figure), and how the network is finally represented (bottom part) [98]. That is, the corresponding blockmodel

can be described by a matrix Bc×c, where Bgq = 1 if an edge exists between groups (communities) g and

q, and the goal is to find the node assignment into groups and the matrix B that best fits the adjacency

matrix A of the graph.

Usually, two definitions of equivalence have been proposed: (i) structural equivalence, where the nodes

are equivalent if they have the same connection patterns to the same neighbors, and (ii) regular equivalence,

in which nodes are equivalent if they have the same or similar connection patterns to (possibly) different

neighbors. Structural equivalence can be extended to probabilistic models, where the notion of stochastic

equivalence is introduced: the nodes of the same group are said to be stochastic equivalent if their linking

probabilities to any other node of the graph are the same. Holland et al. [100] describe the stochastic

equivalence as “We say two nodes a and b are stochastically equivalent if and only if the probability of any

event about the networks is unchanged by interchanging nodes a and b”. The above definition is formed on

the basis of the stochastic blockmodeling methods, in which every pair of nodes that belong to the same

community are stochastically equivalent. In this case, every node belongs to a cluster and the relationships

between different nodes are related to the corresponding pair of clusters (this is in contrast with more

traditional mixture models, where nodes are assumed to be independent given their cluster assignments).

Therefore, stochastic blockmodels can be considered as generative models for communities or blocks in

networks and in the general case they fall in the class of random graph models. Finally, the problem is
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Figure 13: Schematic representation of a blockmodeling example [98]. The top graph corresponds to the initial
directed network and the bottom one depicts how the network is represented by a blockmodeling approach. Figure
redesigned from Ref. [98]. ©2002 Springer.

formulated as a maximum likelihood estimation. Wang and Wong [101] proposed a stochastic blockmodel

for directed networks and applied it on small scale social networks. Another method for blockmodeling that

can be applied on both directed and undirected networks (also in weighted networks), was presented by

Reichardt and White [102].

Yang et al. [103] proposed a stochastic blockmodel for directed networks, called Popularity and Pro-

ductivity Link model (PPL), which aims to model both incoming and outgoing links simultaneously. In

order to achieve this goal, they introduce two latent variables, namely productivity and popularity, to ex-

plicitly capture outgoing and incoming edges respectively. That is, in the general case, PPL models the

joint probability Pr(i→, j←), i.e., the probability that there exists a directed edge from node i to node j, as

follows

Pr(i→, j←) =
∑
c

Pr(i→|c) Pr(j←|c) Pr(c)

=
∑
c

(
γikαi∑
i′ γi′cαi′

γjkβj∑
i′ γi′cβi′

∑
i′

γi′cwi′

)
, (31)

where γic represents the probability of node i to belong to community c, αi the productivity of node i (i.e.,

how likely an edge starts from i), βj the popularity of node j (i.e., how likely an edge is received by j) and
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wi the weight of node i for deciding the Pr(c) that belongs to community c. A generative process can be

defined for Eq. (31) and finally, through an EM algorithm the MLE solution can be derived (the complexity

per iteration for the EM algorithm will be linear).

A limitation of the stochastic blockmodels is that each node belongs only to one community. However, this

may not hold for several types of network data; in many cases nodes belong to more than one communities.

Airoldi et al. [104] proposed the mixed membership model, an extension of the stochastic blockmodel, where

each node belongs to any possible communities via a membership probability. That is, allowing multiple

membership of nodes into communities, one is able to capture different underlying roles that nodes may

exhibit in the network (similar to the concept of overlapping communities). More precisely, each node i

is associated with a K-dimensional vector ~πi, where πi,g denotes the probability that node i belongs to

group (community) g and K is the number of groups. Moreover, for each pair of nodes i, j, the indicator

vector ~zi→j denotes the membership of node i regarding its interaction with node j, and ~zj→i the group

membership of node j regarding node i. Then, the mixed membership stochastic blockmodel for a graph

G = (V,E) (directed) is drawn according to the following procedure:

• For each node i ∈ V :

– Draw a K-dimensional mixed membership vector ~πi ∼ Dirichlet(~α)

• For each node pair (i, j) ∈ V × V

– Draw membership indicator for ~zi→j ∼ Multinomial(~πi)

– Draw membership indicator for ~zj→i ∼ Multinomial(~πj)

– Sample the value of their interaction E(i, j) ∼ Bernoulli(~z T
i→j B ~zj→i)

where matrix BK×K represents the probabilities of interactions between different communities. The authors

discuss how one can compute the parameters of the model, and they provide several experiments on real

data (e.g., social networks, protein interaction data).

A different kind of blockmodel was recently presented by Rohe and Yu [105], and is based on the

notion of co-clustering (i.e., the task in which both rows and columns of the adjacency matrix are clustered

simultaneously). The blockmodel is also accompanied by a new spectral clustering algorithm for directed

networks. More precisely, at a first step a new co-clustering algorithm for directed networks is introduced,

based on the decomposition of a graph’s Laplacian defined by the authors. The idea behind this approach

is based on the fact that the co-clustering task may be more meaningful for the case of directed networks:

two rows will belong to the same co-cluster if they have common endpoints, while two columns will be in the

same co-cluster if they receive edges from several common nodes. The authors extend the spectral clustering

algorithm presented in Section (either for directed or undirected networks) to the co-clustering task, where
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the eigendecomposition is replaced by the singular value decomposition for dealing with the asymmetric

matrix. To better understand the properties of the algorithm, the authors present a stochastic blockmodel

for directed networks, based on the concept of co-clustering. That is, the notion of stochastic equivalence is

relaxed into two types, in order to capture the two different roles of nodes (senders and receivers):

• Two nodes i and j are stochastically equivalent senders if and only if Pr(i→ v) = Pr(j → v), ∀v ∈ V .

• Two nodes i and j are stochastically equivalent receivers if and only if Pr(v → i) = Pr(v → j), ∀v ∈ V .

In the case of blockmodels for the traditional clustering task, both these conditions for stochastic equivalence

should occur. On the other hand, considering these concrete cases of stochastic equivalence, a blockmodeling

based notion of co-clusters can be defined. The authors define formally the stochastic co-blockmodel for

directed networks and study thoroughly the performance of their spectral algorithm under this model.

4.4.4. Other Approaches

In this section we describe diverse approaches that can generally be applied in the task of community

detection and exploration in directed networks. In most cases, these methods adopt completely different

methodological approaches and they typically deal with variations of the community detection problem (e.g.,

community detection for time evolving networks or community exploration methods). Some of these topics

will also be discussed in Section 8, since they constitute interesting extensions and future research directions

for the problem.

Community Structure Exploration and Evaluation Methods

Community Kernels. Most of the approaches presented so far are based on the assumption that commu-

nities correspond to subgraphs with dense internal connections and sparse external connections, while there

is no special treatment of the most influential nodes of the network. However, in many cases (usually in so-

cial networks), there exist some influential nodes (e.g., important/popular users in online social networking

applications such as twitter) whose community structure is quite different from that of the other nodes. To

deal with these cases, Wang et al. [106] proposed the notion of community kernels and studied the problem

of community kernel detection in social networks (both directed and undirected), as a way for exploring

the community structure of large networks. Usually, social networks (e.g., the Twitter’s who-follows-whom

network) form a near bipartite structure, where one partition corresponds to a few influential nodes (e.g.,

celebrities or politicians) while the other to the rest of the nodes; the partitions are typically connected

via a large number of edges targeting to influential nodes, as shown in the leftmost part of Fig. 14. Most

of the well known community detection algorithms (which are based on density-based measures) cannot

identify this underlying structure, partitioning the influential users into different communities and placing

them in the same communities with their followers (Fig. 14 (center)). However, one would expect that
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Figure 14: An example of community kernel detection (rightmost figure) in the Twitter network (leftmost figure)
and how the outcome is differentiated from a traditional community detection method based on modularity (central
figure) [106]. The figure is courtesy of Wang et al. [106]. ©2011 IEEE.

the influential nodes should be placed in the same communities according to common interests (e.g., politi-

cians, entertainers) forming the community kernels, while for each kernel there should exist a corresponding

auxiliary community that is associated with that kernel (rightmost part of Fig. 14).

Wang et al. [106], at a first step defined the notion of community kernel; each member of the kernel has

more connections with members of the same kernel, than outside of it. Moreover, each member (node) of an

auxiliary community has more connections with the associated kernel than to any other kernel. The notion

of community kernels can also be applied in several settings. For example, in a co-authorship network, a

kernel may correspond to a group of senior researchers or professors in a specific area, while the auxiliary

community to a group of students or junior researchers in this area. Two algorithms are proposed to extract

the community kernels of large scale social networks, a greedy one and WeBA which provides approximation

guarantees (since the problem of identifying the best community kernel is computationally difficult). Both

of them scale linearly with respect to the size of the network.

Mutuality-Tendency Aware Community Detection. Most of the approaches presented so far do not

explicitly distinguish the existence of mutual (i.e., two nodes u, v are mutually connected if both directed

edges (u, v), (v, u) exist in the network) or one-way connections between the nodes of a directed network

in the graph clustering task. In other words, by simply minimizing the number of inter-cluster edges,

clustering methods do not capture the existence of possible tendencies between node pairs to be mutually

connected. This point is of particular interest since the existence of mutual connections in a cluster may

be an indicator of cluster’s stability. Towards this direction, Li et al. [107] developed a spectral clustering

algorithm for directed networks, which takes into account the tendencies of node pairs to form reciprocal

(mutual) connections. More precisely, the mutuality tendency among a pair of nodes is quantified using
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Figure 15: An example of the difference between traditional spectral graph clustering (a) and tendency aware
spectral clustering (b) defined by Li et al. [107]. The dashed line edges represent one way edges while normal lines
show mutual connections. The figure is courtesy of Li et al. [107]. ©2012 Springer.

graph theoretic concepts and according to this, a mutuality tendency aware criterion for the clustering

algorithm can be defined by maximizing the intra-cluster mutuality tendency and minimizing the inter-

cluster mutuality tendency. Figure 15 depicts an example of a social network where nodes of the same group

tend to have reciprocal connections, while nodes across different groups are connected by one way edges.

When applying traditional spectral clustering methods (Fig. 15 (a)), the nodes of the second group (Group

B) are partitioned into two clusters, while a tendency aware clustering approach (Fig. 15 (b)) is able to

utilize edges’ mutuality information and thus the majority of mutual connections are placed within the same

clusters [107].

Connected Components based Method. A simpler explanation about the notion of communities is

given in Ref. [108]. The authors argue that a specific type of connected components in the network, can be

used to represent and explore the community structure. Generally, the definition of connected components

in directed networks is more complicated than the undirected case, and the main types are the following:

weakly connected component (WCC), connected component (or unilaterally connected component - UCC)

and strongly connected component (SCC) (see Section 2 for details). The authors of Ref. [108] applied a

more strict definition and more precisely the one of strongly p-connected components (p-SCC). A p-SCC

corresponds to a subgraph G′ = (V ′, E′), in which ∀u, v ∈ V ′, there is a directed path of length at most

p between u and v and one between v and u, with p ≥ 2. In other words, the notion of p-SCC represents

a SCC with an additional constraint on the path length between two nodes. The authors combined the

p-SCC concept with a merging routine that adjusts the size of the produced communities, to detect clusters

in directed networks.

Core-based Community Exploration. The notion of community structure is also closely related to

the one of collaboration between the nodes of a network. A natural mechanism for the formation of a

57



community in networks is related to the notion of cohesion, which actually quantifies the collaboration

nature among its members. In other words, quantifying the degree of cohesion of a community, one can

estimate the collaboration among its elements. To the direction, Giatsidis et al. [109] introduced novel

metrics for evaluating the cohesion of directed networks, extending the k-core concept from the undirected

setting to the one of D-cores for directed networks. Broadly speaking, a core can be defined as a maximum

size subgraph that is dense enough, i.e., for each node in the subgraph, there exist at least k incident edges

that are adjacent to nodes of the same subgraph. The concept is extended to directed networks, where

the (k, `)-D-core is defined, which corresponds to a maximal size subgraph where for every node i in the

core, kini ≥ k and kouti ≥ ` (the in- and out- degree respectively), leading to a degeneracy-based community

exploration and evaluation approach.

Game-Theoretic Approaches. A different formulation of the clustering and community detection task

in directed networks can be achieved based on game-theoretic notions. Torsello et al. [110] presented a

framework for clustering in directed networks within the context of object grouping in computer vision

and pattern recognition. The grouping process is expressed as a non-cooperative game of the competition

between the hypotheses of group membership, where groups (clusters) correspond to evolutionary stable

strategies.

Extracting the Best Clusters on Large Scale Directed Networks

An important characteristic of real networks which recently has gained an increased interest is their

size (scale). As networks grow in size, the complexity of the analysis tasks applied to them (including the

clustering/community detection task) increases, and therefore the feature of scalability should be taken into

consideration. Moreover, regarding the graph clustering task, many applications require only a subset of the

“best” clusters and not all the possible clusters produced by an algorithm. In other words, depending on the

application domain, not all possible clusters of the entire graph are useful, but the most strongly connected

ones are typically needed. For example, in a social networking application, only the most strongly connected

groups of individuals may be of interest. Methods that first identify all the clusters of a network, rank them

and keep only the top clusters tend to be inefficient, both in time and space requirements. However, it is

possible to reduce the searching space of an algorithm by a pruning process, examining only those clusters

with the highest scores (regarding their quality).

Macropol and Singh [111] proposed the TopGC (Top Graph Clusters) algorithm, for finding the best

connected, clique-like clusters in large networks. The algorithm works on both directed and undirected

networks finding variable size clusters, while its running time is linear with respect to the size of the

network. The basic idea behind the algorithm is based on the observation that nodes with similar neighbors

in a graph, generally should belong on the same cluster. In other words, the overlap between the neighbor
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sets for two nodes is an indicator for whether or not these nodes should be clustered together (e.g., the

neighbor sets of the nodes of a clique (except from the node itself) match exactly). The TopGC algorithm

exploits the fast similarity search based on Locality Sensitive Hashing (LSH) in order to find nodes with

similar neighborhoods. In addition, the LSH method is modified to achieve reduced memory consumption,

since only the best clusters of the graphs need to be extracted. The authors also state that the algorithm is

highly parallelizable, making its implementation possible in the MapReduce framework [112].

Dynamic Networks

One important aspect of several real-world networks is their dynamic nature, i.e., they are not static but

typically evolve over time with the addition/deletion of nodes/edges, forming graph streams. A graph stream

G is defined as a sequence of graphs G(t), i.e., G := {G(1), G(2), . . . , G(t), . . .} [113]. Dynamic networks have

recently gained much attention from the research community due to their interesting structural properties

(e.g., Refs. [114, 115]). Regarding the graph clustering and community detection problem, the works

presented so far in this paper mostly concern with the problem applied on static directed networks. In other

words, we are interested to extract the community structure of the network at a specific time point t of its

evolution, working on the snapshot G(t) of the network at timestamp t. However, an interesting question is

how the problem of community detection can be extended and tackled in the case of dynamic networks. In

this case, we need approaches that will be able to incrementally find communities on networks, as well as

to monitor and detect changes in the community structure over time. Thus, two sub-problems need to be

addressed:

(a) Community discovery: Node assignment into clusters (communities), following any of the definitions

presented in Section 3.

(b) Change point detection: How to quantify and detect the change of the community structure over time?

More precisely, the community detection problem in dynamic networks can be treated as a two-step in-

cremental procedure: (a) the community discovery subtask refers to static snapshots of the time-evolving

graph, while (b), in the change detection subtask, a measure of similarity between different partitions over

time needs to be determined in order to detect change points in the graph stream. These change points

correspond to time points where a significant change in the already identified community structure has

occurred. The above problem has been studied for both undirected [113] and directed networks. In the

latter case, the authors of Ref. [116] present an approach for detecting the community structure and the

change points in dynamic weighted directed networks. The first subtask is achieved by applying the method

of Random Walks with Restart [117] (for computing the relevance scores of the nodes), combined with a

local version of modularity for examining the quality of the produced partition. For the change detection

subtask, the authors propose a similarity metric between partitions, in order to detect change points over
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time, accompanied by an algorithm for updating the partition of a graph segment when a new graph is

added on the stream.

5. Definition-Based Classification of Clustering Methods

In Section 4 we presented our main classification for the clustering approaches in directed networks,

targeting methodologies and algorithms that have been presented so far for the problem. In this section, we

consider a different but also important (and in some cases supplementary) classification scheme, where the

methods are grouped according to the clustering notion they adopt.

In Section 3 we discussed the two main clustering notions in directed networks, otherwise the two main

approaches to characterize a subset of nodes as a cluster. The first and most common one, namely density-

based clusters, is based on the concept of intra-cluster and inter-cluster edge density (see Section 3.1 for

more details). That is, a cluster is considered to be a subgraph with high internal edge density and low

external one. Depending on the objective measure that is used to quantify edge density, some variations of

the general intra- and inter- density measures can be considered (e.g., considering only the intra-cluster edge

density of a subgraph). Nevertheless, in all these cases, the feature that dominates on the characterization

of a cluster is expressed as a function of edge density.

The second clustering notion in directed networks is more broad and includes cases where nodes are

clustered together based on criteria beyond the classical one of edge density – see Section 3.2 for a more

detailed description. That is, in several cases, the presence of (directed) edges create interesting structures

that deviate from the well-known density rule and can be naturally considered as clusters. Examples of

pattern-based clusters are the ones presented in Fig. 3. It is clear that these clusters represent a variety

of interesting patterns (e.g., citation-based clusters or the case where the cluster represent a subgraph that

imposes “strong” information flow). Furthermore, as we will present shortly, in most cases the notion of

pattern-based clusters co-exist in a network with the one of density-based. That is, a large number of methods

is able to group the nodes of a network following a density rule combined by other more sophisticated types of

structural patterns, that the “pure” density-based approaches are not able to distinguish. To conclude, one

can say that both types of clusters represent diverse and interesting structures and patterns, that induced

by the edges of the networks (link-density for the former case and link-pattern for the latter one [51]).

The goal of this section is to provide a categorization of the approaches reviewed in Section 4 according

to their clustering type-notion. A summary of this classification with the most representative algorithms

is also presented in Table 2. Since density-based and pattern-based clusters may co-exist on a directed

network, we also provide a discussion on these cases.
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5.1. Density-based Clusters

In this category of “pure” density-based clustering, usually belong approaches that become well-known

extensions from the undirected case. That is, spectral clustering methods based on the directed Laplacian

matrix [75, 61, 76, 105] are examples of approaches that identify density-based clusters. The graph clustering

method based on the weighted cuts criterion (proposed by Meilă and Pentney [59]), also leads to similar

clustering results. The attraction and repulsion approach of Ref. [77] proposed in the field of image analysis

and computer vision, also belongs to this category, as it constitutes a generalization of the normalized cuts

criterion for directed networks. Furthermore, this category includes the local partitioning [87] and local

density methods [89, 90]. Other approaches that based solely on the density-based notion of clusters are the

co-clustering algorithm (AutoPart) presented in Ref. [93], the directed clique percolation method [88] and

techniques based on the blockmodeling concept for statistical inference [101, 103, 102, 104].

5.2. Pattern-based Clusters

The second category of methods are those based on the concept of pattern-based clusters, i.e., clusters

beyond the edge density notion. One interesting thing is that most of these methods are able to identify a

mixed type of density-based and pattern-based clusters. In other words, they still identify clusters based on

the density concept, however they enhance these clusters with other significant patterns. For example, using

the idea of graph symmetrization [54], one can transform the directed network into an undirected one using

measures that capture the incoming and outgoing edge similarity, leading to the concept of citation-based

clusters (see Fig. 3 (a), (b)). In other words, the graph is transformed to an undirected one using nodes’

incoming and outgoing edge similarity, and therefore at the clustering process it is possible two nodes to

belong on the same cluster even if they are not directly connected in the original directed network. This

constitutes an important feature, especially for the case of networks where such underlying information

exists (e.g., citation networks).

The directed version of modularity presented by Arenas et al. [58] and Leicht and Newman [50], has

formed the basis for several community detection approaches in directed networks. It is able to extract

density-based clusters, but it also has the ability to recognize significant patterns imposed by edge direction-

ality: it can classify the nodes of a network into clusters, in such a way that directed edges link from the one

cluster to the other. Furthermore, similar behavior can be observed even in networks with no underlying

community structure; this is an additional evidence that directed edges lead to various interesting underlying

patterns. However, as we presented in Section 4.3.1, the above version of modularity has the drawback that

it cannot distinguish properly the direction of edges (see Fig. 9).

Another interesting type of pattern-based clusters is the one presented by Rosvall and Bergstrom [18] and

is based on the concept of patterns of movement among the nodes of a directed network. The community

detection method presented in that work (Infomap) is based on random walks and the main intuition is

61



that a community can be defined as a group of nodes where the random surfer is more likely to be trapped

in. This concept can be treated as an increased flow circulation pattern between the nodes of the same

community, as presented in Fig. 3 (c). Several community detection approaches for directed networks have

also been built upon this flow-based pattern. Lai et al. [56] presented a Laplacian network embedding

algorithm which apart from density-based clusters, it is able to detect flow patterns among the nodes. Their

subsequent approaches based on random walk similarity [64] and affinity propagation [85], are moving in a

similar axis. The LinkRank method introduced by Kim et al. [55] is also able to extract flow-based patterns.

Moreover, as discussed in the paper, their generalized version of modularity can distinguish in a proper way

the direction of the edges, compared to the one of Leicht and Newman [50]. Additionally, the approaches

that utilize the Directed Gaussian Random Network (DGRN) as null model [70, 71], are also able to cluster

the nodes of directed networks based on information flow patterns.

In the approach of Guimerà et al. [66], the directed network is converted into a bipartite one, and a

bipartite version of modularity is applied to extract the community structure. While the method mainly

considers density features, it is also able to detect communities based on common incoming and outgoing

edges; it relies on the idea of actors co-participation in a team (for bipartite networks). Additionally, other

methods that consider the directed network as a bipartite one, are also able to detect both density-based

as well as citation-based clusters [57, 67]. A similar behavior is presented in the two-step random walks

method by Huang et al. [82]; the two-step random walk model is able to capture important connectivity

patterns by exploiting the existence of co-citation and co-reference relationships.

The method of Newman and Leicht [94] based on mixture models can detect diverse types of clusters,

including assortative11 and dissassortative structures. However, as discussed in Section 4.4.2, the method

cannot identify communities that do not have at least one node with non-zero out-degree (see Fig. 12). The

approach of Ramasco and Mungan [95] and Wang and Lai [96] overcomes this problem, recovering clusters

that do not necessarily follow the density-based notion.

5.3. Empirical Comparison of Clustering Approaches in Directed Networks

Having reviewed the methods proposed so far for the clustering problem in directed networks, we will now

proceed with a brief empirical comparison of them. Table 2 presents a summary of the major approaches

along with their basic features.

As we discussed earlier, the proposed approaches follow diverse methodologies and in many cases they

are built upon different notions of clusters/communities in directed networks. In the first case which follows

naturally from the the problem in undirected networks, only density features are considered to characterize

a cluster. Typically, the edges between nodes of the network represent pairwise relationships, which operate

11Assortativity is the property where the nodes of a network tend to link to other nodes that are similar in some way (see
Wikipedia’s lemma for Assortativity: http://en.wikipedia.org/wiki/Assortativity).
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as similarity measure among different entities (nodes). However, as several research works propose, due to

the existence of directed edges in a network, it is possible to exist other interesting type of clusters. In

many cases, the proposed approaches are able to identify density-based clusters combined with interesting

structures beyond the density pattern. For example, applying symmetrization schemes in the directed

network, it is possible to group nodes in the same cluster, even if they do not share an edge in the initial

network [54]. This constitutes an important characteristic for a set of networks where co-citation and co-

reference relationships may be of interest (e.g., citation networks). Similarly, another interesting clustering

definition is the one that based on random walks and the concept of information flow and movement among

the nodes of a network (e.g., Ref. [18]).

A natural question that arises from the above discussion is which method should a researcher or a

practitioner use. The answer is not clear but mainly depends on the network under consideration and on

the application domain (for the latter we discuss in Section 7). In case of networks where edges represent

pairwise relationships, it may be more useful to apply density-based methods or methods that, at least, are

able to identify density-based clusters (e.g., modularity optimization, spectral clustering, etc.). On the other

hand, when edges represent patterns of movement among nodes or generally some kind of information flow,

methods that are able to recover flow-based clusters may be preferable.

Although the clustering notion-definition is an important feature for selecting a community detection

method for directed networks, it is not the only one. As we discussed in previous sections, there exist a

plethora of algorithms that seems to follow the same clustering definition. For these approaches, additional

features should be compared in order to select the most suitable one for a specific application or for a

specific graph dataset that needs to be analyzed. Some important features are the ones presented in Table

2. For example, one may select an appropriate algorithm examining the objective function that is used to

characterize the quality of a community (e.g., modularity, normalized cuts). Some methods pose additional

characteristics, such that their ability to identify overlapping communities, that may be significant for

specific applications. The time complexity of an algorithm is also a crucial factor, especially for large scale

networks. Since in most cases the clustering problem is expressed as an optimization one, the complexity

depends heavily on the selected optimization method [11].

Thus, it becomes clear that selecting the proper clustering approach depends on multiple criteria. In Sec-

tion 7 we will see which of these approaches have been used in the related literature for specific applications

in several domains. This may be useful for practitioners without the required know-how in the field.
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6. Evaluation Metrics and Benchmarking

In this section we discuss on the task of assessing the results of a graph clustering algorithm. Generally,

a network can be divided into several meaningful partitions and one should decide which of them is the most

appropriate as a clustering result. Typically, quality measures are used for this task, but in some cases,

their accuracy may not be a good indicator [11]. Moreover, since a wealth of diverse algorithms has been

proposed for both directed and undirected networks, one wants to decide which algorithm results in better

performance – in terms of clustering quality; of course, the performance of an algorithm in terms of time

complexity is also a crucial factor. In other words, an important problem in the area is the one of evaluating

the performance of clustering algorithms by comparing their results. In the case where real datasets with

known community structure (ground truth) are available, this can been done by comparing the results

with the a priori known node assignments to communities/clusters. Moreover, a widely applied approach

is to evaluate the performance of a community detection algorithm on benchmark graphs with an inherent

community structure. However, in the case of directed networks both techniques are still premature. On the

one hand, it is very difficult to find directed graph datasets with known community structure and sufficient

size, while only a few benchmark graphs exist.

The directed clustering evaluation task is closely related to the respective one in the undirected case

and a more thorough discussion is presented in Refs. [11, 19]. In the case of quality measures, typically

the directed version of modularity [58, 50] is applied to quantify the significance of a partition, while for

benchmarking purposes some very recent benchmarks are reviewed.

6.1. Evaluating Partitions

The problem of evaluating the quality of communities produced by an algorithm is rather broad and

several approaches have been proposed and applied in the undirected case of the problem. Most of them

are applied directly to the clustering problem in directed networks, since the algorithms and the results for

both problems can be treated similarly. An approach is to examine quality indices for partitions in directed

networks, and some of them were presented in Section 4 (e.g., modularity). As noted by Schaeffer [19],

although the optimization process of these measures is a difficult issue, their evaluation for a given partition

of the network is a more lightweight operation. However, the evaluation process may be biased regarding

the characteristics of the quality measure. Moreover, while there are several comparative studies on quality

measures for undirected graph clustering [118, 39], similar studies are missing for the directed version of the

problem.

An alternative approach to evaluate the produced clusters is related to the stability of the results under

perturbations of the input graph. The motivating idea behind this technique is the following: if a cluster is

significant, then after some modifications at the original network, its significance will be retained and the
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cluster itself will be still identified by the algorithm. Typically, the stability of an algorithm is examined

by measuring the number of operations needed to transform the original clustering results to the ones

produced after the perturbation of the graph. In the related literature different perturbation approaches

have been proposed for undirected networks [119, 120, 121], but their applicability to directed ones is not

straightforward. (For a more detailed presentation one can refer to Ref. [11].)

6.2. Comparing Algorithms

Instead of examining the quality of the clustering results produced by an algorithm, it may be preferable

to compare the results produced by several algorithms, towards selecting the most accurate one. For this

task, one has to define a similarity criterion between results produced by different algorithms. In the case

where a true assignment of nodes into clusters is known a priori (also known as ground truth clustering),

these criteria can be used to evaluate the performance of a clustering algorithm. More precisely, suppose that

CA(v),∀v ∈ V represents the cluster assignment of node v using algorithm A. Then, a similarity measure for

two algorithms A,B with node cluster assignments CA(1), CA(2), . . . , CA(n) and CB(1), CB(2), . . . , CB(n),

can be defined as

S(A,B) =
1

n

∑
v∈V

|CA(v) ∩ CB(v)|
|CA(v) ∪ CB(v)|

, (32)

where a score value close to one indicates similarity for the clustering results. However, this measure does

not behave well if the results of the one algorithm have been produced by a merging process of two or more

clusters of the other algorithm [19].

In a similar spirit, one can use the measures of precision and recall, with respect to the ground truth

clustering assignment. Suppose that C = {C1, C2, . . . , CK} is the output of a clustering algorithm, where

K represents the number of clusters and Cj is the ground truth clustering. Then, for any output cluster Ci

the precision and recall of this cluster can be defined as

Prec(Ci, Cj) =
|Ci ∩ Cj |
|Ci|

and Rec(Ci, Cj) =
|Ci ∩ Cj |
|Cj |

. (33)

A measure that integrates precision and recall is the so-called F-measure F(Ci, Cj) defined as the harmonic

mean of precision and recall12:

F(Ci, Cj) =
2 · Prec(Ci, Cj) · Rec(Ci, Cj)

Prec(Ci, Cj) + Rec(Ci, Cj)
. (34)

Each produced cluster Ci is matched with its corresponding ground truth cluster Cj for which the F-measure

is maximized, F(Ci) = maxj F(Ci, Cj). Then, the average F-measure of the produced clustering is defined

12Wikipedia’s lemma for precision, recall and F-measure: http://en.wikipedia.org/wiki/Precision_and_recall.
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as the average F-measure over the set of clusters as

F(C) =

∑
i |Ci| · F(Ci)∑

i |Ci|
. (35)

Another important category of similarity measures for assessing the results of clustering algorithms,

originates from the field of information theory. Danon et al. [21] used the measure of Normalized Mutual

Information (NMI), which considers information-theoretic concepts and is based on the fact that if two

clusters are similar to each other, then only a small amount of additional information is needed to infer one

clustering assignment from the other. The definition is based on the concept of confusion matrix N (the

rows correspond to the ground truth clusters while the columns to the clusters identified by the algorithm),

and it can be expressed as follows

NMI(A,B) =
−2
∑CA

i=1

∑CB

j=1Nij log(
NijN
Ni;N;j

)∑CA

i=1Ni; log(
Ni;

N ) +
∑CB

j=1N;j log(
N;j

N )
, (36)

where |CA|, |CB | represent the number of ground truth clusters and the number of produced clusters respec-

tively. The element Nij corresponds to the number of nodes in real cluster i that appear in the produced

cluster j, while Ni; is the sum over row i and N;j the sum over column j of the confusion matrix N. In the

case where the produced results are identical with the ground truth, the NMI(A,B) measure takes its max-

imum value one, while in the case where the two clusterings totally disagree, the NMI(A,B) score is zero.

Using information-theoretic concepts, the numerator of Eq. (36) corresponds to the mutual information

between the two clustering results, while the denominator represents the sum of the corresponding entropies

(actually the mutual information and entropies of the random variables that represent the cluster assign-

ments). We also stress here that these measures can also be applied to compare two clustering assignments

and not necessarily a comparison to ground truth data. Other information-theoretic criteria for comparing

different clustering results have been presented by Meilă [122] (see the related paper by Fortunato [11] for

more details).

6.3. Testing Algorithms

The step that follows the design of a new community detection algorithm, involves the testing process.

Usually, in this task, the algorithm is applied to a network with specific community structure and the

results are compared to the known structure. To do this, the algorithm should be applied to a network with

well defined community structure, in order to extract meaningful conclusions about its function. For this

reason, the use of benchmark graph datasets is involved. In the case of undirected networks, there exist a

few real graphs with known community structure that are commonly used for testing community detection

algorithms. The most known of them is Zachary’s social network (see e.g., Ref. [41]), which represents

friendship relationships between the members of a karate club. However, in most cases, these graph datasets
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are of small scale and they are not adequate for testing the performance (in terms of accuracy) of an

algorithm at larger scale. Moreover, for the directed graph clustering problem, there does not exist any such

commonly used set of benchmark graphs that can be used to assess the accuracy of algorithms.

A similar way to test a graph clustering algorithm is to examine its performance on synthetic benchmark

graphs, i.e., computer generated graphs with built-in community structure. These graphs are artificial and

typically produced by a mechanism which is controlled by some parameters. Several benchmark graph

datasets have been proposed for the undirected graph clustering problem, such as the planted `-partition

model and the LFR benchmark (see Ref. [11] for more details). For the case of directed networks which is

the focus of this paper, the problem of generating realistic benchmarks has received relatively little attention

from the research community. In several research works where a new algorithm is proposed, some specific

benchmark directed graph datasets are also presented and used for testing the algorithm. For example,

Rosvall and Bergstrom [18] proposed the directed network presented in Fig. 3(c) as a benchmark for

clustering algorithms that consider flow-based types of clusters (similar synthetic benchmarks have been

also presented in other research works).

Recently, Lancichinetti and Fortunato [123] presented an algorithm for generating directed graph bench-

marks for testing purposes (the generator has also the ability to produce weighted graphs with overlapping

communities). The benchmark graphs constitute an extension of the LFR undirected graph generator and

consider that the in-degree {yi} and out-degree {zi} sequences follow some specific distributions. Moreover,

the size of the produced communities follow a power-law distribution. The generation mechanism is as

follows: initially, we sample the in-degree sequence {yi} from a power-law distribution, and the out-degree

sequence {zi} from a δ distribution (by drawing N random numbers for each of them). Each node in the

graph shares some of its edges with other nodes inside its community and the rest of the neighbors are

outside the community depending on its degree (in- and out-). For this reason, two topological mixing

parameters are introduced for each node, to define the proportion of incoming and outgoing edges that will

fall inside and outside node’s community. According to these parameters, nodes of the same community

(stubs) are randomly connected (preserving both in-degree and out-degree distributions) and some extra

random edges are placed between them and nodes of different communities.

The LFR benchmark graphs are constructed based on a density rule, which places internal and external

edges between nodes of the same and of different communities respectively. However, as we have already

seen throughout this survey paper, the existence of directed edges may reflect other interesting structural

patterns, such as the flow-based pattern. From a first view it seems that the LFR generator is not suitable to

generate graphs with patterns of flow between nodes. However, as the authors discuss, this can be achieved

by constraining the number of incoming and outgoing edges of communities.
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7. Real-world Applications on Directed Networks

The task of graph clustering and community detection in general, and the one of directed graph clustering

in particular, lies at the heart of many applications and research agendas. A large number of research

works in several scientific disciplines have been devoted to increase our understanding of real-world complex

systems, applying graph clustering approaches. In this section we review some important applications of the

clustering problem in directed networks, in several fields, such as social and information sciences, biology,

and neuroscience. Since the clustering task constitutes one of the most common and prominent analysis tool

in networks, the following list of possible applications can be extended in every other field where directed

networks appear.

7.1. Social, Information and Technological Networks

Social networks are used to represent the interactions among individuals/entities, under a wide range of

settings. The study of social networks has its roots in the field of sociology and constitutes a prominent

research area for decades (see e.g., Ref. [124]). More recently, the advances in communication and informa-

tion technologies along with the widespread penetration of the Internet and the World Wide Web (WWW),

have led to the explosure of available social networking data. Characteristic examples are the online so-

cial networking applications, such as Facebook (www.facebook.com), Twitter (twitter.com) and Google+

(plus.google.com). Of similar importance are several information and technological networks that are part

of our everyday life, including the Internet, the World Wide Web network (the hyperlink structure between

webpages), and mobile phone communication networks. In many cases, the relationships between entities

on such networks are not reciprocal, forming directed edges. Cluster analysis in social, information and

technological networks has been proved to be a useful task that can be used to shed light on the structure

of these complex systems.

Wang and Wong [101] applied a graph clustering approach based on stochastic blockmodels for directed

networks, in order to analyze the strength of ties between students from different socioeconomic backgrounds.

According to their study, a set of 27 students (13 male and 14 female) from a single classroom were asked

to indicate liking for the other students using one of the following facial expressions: (a) big smile, (b)

moderate smile and (c) no smile. The case of big smile indicates an increased liking among students and

this information is represented as a directed edge in the network. A more extended study of a directed

friendship network of high school students (U.S. National Longitudinal Study of Adolescent Health) has

been performed in Refs. [94, 56]. Figure 16 presents the clustering results on this dataset, produced by the

method of Newman and Leicht [94].

Similar cluster detection studies have been performed for several other social networks of largest scale,

that typically arise in the context of social networking applications. For example, the authors of Refs.
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Figure 16: A directed social network representing friendship connections between high school students. The
shadowed regions represent the two clusters extracted by the algorithm of Newman and Leicht [94]. The vertex
shapes show the ethnicity of the students. The figure is courtesy of Newman and Leicht [94]. ©2007 National
Academy of Sciences, U.S.A..

[107, 106, 108] performed cluster analysis in large scale directed social networks with thousands of nodes

and edges, such as Slashdot (slashdot.org), Epinions (www.epinions.com), Twitter and e-mail exchange

networks.

Clustering algorithms can also be applied in the case of directed information networks. The most promi-

nent example here is the World Wide Web (WWW). The nodes of the Web network represent webpages, while

the edges hyperlinks between different webpages. Communities in the hyperlink structure of the Web may

represent webpages that belong on the same thematic category, and therefore, identifying communities can

be helpful in several practical applications such as recommender systems (e.g., Ref. [82]). In a similar way,

other hyperlink structures that correspond to directed information networks can be benefited by clustering

methods. For example, the well-known electronic encyclopedia of Wikipedia (http://www.wikipedia.org/)

can be naturally represented as a directed network, where each node corresponds to a lemma and the edges

to hyperlinks between different lemmas. Applying clustering methods to the directed network of Wikipedia,

one can identify meaningful categories of lemmas [54].

Another important application on information networks concerns the case of citation networks, i.e.,

directed networks where the nodes represent documents and the edges capture citation relationships (see

e.g., Refs. [1, 125]). Clustering methods have been applied in the past to citation networks, in order

to understand the connection patterns between scientific papers and more generally, to comprehend the

connections between different scientific disciplines. Rosvall and Bergstrom [18] applied their flow-based

graph clustering method (see Section 4.4.1) to a citation network of scientific journal papers, creating a map

of scientific disciplines as shown in Fig. 17. The general observation is that the structure of sciences can
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Figure 17: A map of scientific disciplines based on citation patterns of about 6.5 million citations. The figure is
courtesy of Rosvall and Bergstrom [18]. ©2008 National Academy of Sciences, U.S.A..

be represented as the letter U, with the social sciences on the one side, engineering on the other, joined

by medicine, molecular biology, chemistry and physics. Chen and Redner [126] studied the community

structure of the citation network of the Physical Review journals family between 1893 and 2007 using

modularity optimization techniques, observing interesting properties. Similarly, the authors of Ref. [127]

applied community detection methods to a patent citation network, in order to understand the patterns of

knowledge transfer between technology fields.

Clustering algorithms have been also applied to partition software systems into smaller units. A software

system can be represented by a call graph, i.e., a directed network in which nodes represent the programs

of the system and the edges depict calls from one program to another. For example, Bisseling et al. [128]

applied graph clustering to partition Java and Cobol programs into smaller modules.

7.2. Biological Networks

A large number of biological systems can be represented as directed networks. Such an example is the

network of metabolic pathways, i.e., series of chemical reactions occurring within a cell. These reactions

are connected by their intermediates: the products of the one reaction are the substrates for subsequent

reactions13. Moreover, metabolic pathways are usually considered in one direction. Numerous distinct

13Wikipedia’s lemma for Metabolic pathway: http://en.wikipedia.org/wiki/Metabolic_pathway.
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pathways co-exist within a cell, forming the so-called metabolic network. A major challenge in biology is to

understand the structure and evolution of these networks [129] and graph clustering approaches have been

applied towards this goal [130].

Another important type of biological directed networks are the gene regulatory networks (GRNs). GRNs

show the regulatory relationships among genes in a cellular system and are involved in the production of

proteins. Broadly speaking, the nodes of a GRN are proteins, mRNAs and protein-protein complexes, while

the edges represent individual reactions (protein-protein and protein-mRNA interactions)14. Clustering

tools can be applied to reveal the structural properties of these networks, since densely connected groups

may have an important biological interpretation (e.g., Ref. [131]).

In the context of lateral gene transfer and prokaryote genome sequence data, the donor-recipient relations

between genomes are modeled by directed networks called Lateral Gene Transfer networks (LGT). Applying

graph clustering methods on these networks, we are able to test hypotheses regarding LGT patterns and

mechanisms operating in nature [12].

The list of applications in the biological domain continues with the case of food web networks [132, 1],

which represent trophic relationships in ecosystems. Typically, the nodes of the network correspond to species

of an ecosystem and the directed edges capture pray-predator relationships. Regarding the community

structure of food webs, the basic question is whether the networks are organized into compartments (the

term used to describe the communities-clusters in food webs), where species within the same compartment

interact frequently among each other, but show fewer interactions between species of different compartments

(see e.g., Refs. [133, 134, 135]). The existence of community structure in food webs is an important property,

due it its relationship to the robustness of the network under perturbations.

7.3. Neuroscience

Neuroscience is the scientific discipline that studies the nervous system and the brain15. With the

advances in brain mapping and neuroimaging techniques16 (i.e., techniques used to image the structure and

function of the brain), the brain can be modeled by graph structures known as complex brain networks. In

recent years, there has been several studies concerning graph theoretical analysis of human brain networks

for a wide range of mapping techniques, such as MRI, fMRI and EEG/MEG (see the following review articles

in the area [136, 137]). Depending on the mapping approach, the nodes of the networks can be defined as

the electroencephalography electrodes or multielectrode-array electrodes, or as specific anatomically defined

regions of the brain (e.g., regions of MRI or diffusion tensor imaging data). Then, a measure of association

between nodes should be selected. Some examples are the measures of spectral coherence or Granger

14Wikipedia’s lemma for Gene regulatory network : http://en.wikipedia.org/wiki/Gene_regulatory_network.
15Wikipedia’s lemma for Neuroscience: http://en.wikipedia.org/wiki/Neuroscience.
16Wikipedia’s lemma for Neuroimaging: http://en.wikipedia.org/wiki/Neuroimaging.
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causality between two MEG sensors or the connection probability between two regions of diffusion tensor

imaging data. Finally, the adjacency matrix of the graph is typically formed by the pairwise association

between nodes (see Ref. [136] for more details). In many cases, the association is not symmetric, forming

directed brain networks.

Cluster analysis in human brain networks is an important task, which can help neuroscientists to extract

functional subdivisions of the brain. Thus, in the case of directed brain networks, the clustering methods

presented throughout this survey paper can be proved useful in the field of neuroscience. Liao et al. [138]

studied the directed influence brain network of resting-state fMRI recordings. Among other things, they

observed that the network has a modular structure, applying the modularity maximization technique of

Leicht and Newman (see Section 4.3.1 and Ref. [50]). The authors also discuss some specific properties

that are shared among nodes of the same module. In Ref. [13], the authors examined the directed networks

of spontaneous activity correlation or Resting State Networks (RSN), i.e., brain networks that capture

spontaneous activity (not stimulus or task driven), applying also the directed version of modularity [50].

Vertes and Duke [139] studied a mechanism of neuronal encoding, investigating the effects of network

topology based on spatiotemporal patterns of spikes. The produced network of neurons is directed and the

authors, among other things, applied clustering methods on the analysis. In Ref. [140], directed cortex

networks were analyzed, focusing on structural properties such as node betweenness centrality, average

shortest path length and community structure. As a last application example from the area of neuroscience,

we refer to the work of Pan et al. [141], who studied the nervous system of the nematode Caenorhabditis

elegans, focusing on its organization into modules.

7.4. Other Applications

Directed graph data arises in several other application domains, broadening the scope of clustering

methods presented throughout this paper. In the case of financial networks, the authors of Ref. [142]

analyzed the community structure of an Italian corporate ownership network, where nodes represent firms

(companies), while a directed edge between two firms i, j captures stock ownership relationship (between

the shareholder i and the owned company j). The authors applied modularity maximization techniques

[50] on the connected part of this directed network (consisting of 141 nodes), observing strong community

structure.

Clustering methods in directed networks can also be used in the field of computer vision and image

processing, and more precisely in the task of image segmentation. An image can be modeled as a graph,

where pixels are represented as nodes in the graph, and edges capture similarity between different pixels (as

computed by a pairwise similarity function on a set of image attributes such as color and intensity). The

similarity (or affinity) measure can be either symmetric or asymmetric. In the case of asymmetric affinity

measures, the produced graph is directed. Since the initial image has been transformed into a graph, the
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image segmentation task becomes a graph clustering problem and several new clustering approaches have

been proposed for this grouping problem with asymmetric affinities (e.g., Refs. [77, 110]).

The range of applications for the clustering problem in directed networks can become very broad, since

a large number of non-graph data can be represented as directed graphs using appropriate transformation

techniques. Given a set of data points x1, x2, . . . , xn, where each xi ∈ RN , and a similarity measure sij ≥ 0

for all pairs of points (xi, xj), the data can be represented by a similarity graph G = (V,E). In this graph,

each node vi ∈ V represents a data point xi, while two nodes vi, vj are connected via edge if the similarity

sij between data points xi and xj is larger than a specific threshold (the edge can be weighted by the term

sij). Then, the data clustering problem can be considered as a graph clustering task; the goal is to partition

the similarity graph in such a way that edges across different clusters should have low weight, while high

weight edges should be placed within the same cluster. Depending on the method applied to construct

the similarity graph, the latter can be either directed or undirected [14]. For example, in the approach of

k-nearest neighbor graph, node vi is connected to vj if vj is among the k-nearest neighbors of vi. This forms

a directed graph, since the neighborhood relationship is not symmetric. Hence, in the general case on non

symmetric similarity functions, i.e., sij 6= sji, the corresponding similarity graph can be directed.

8. Open Problems and Future Research Directions

In this section we discuss interesting open problems and future research directions for the graph clustering

and community detection task in directed networks. Most of the topics that will be presented shortly also

suit to the undirected case of the problem (e.g., see Ref. [11]). However, it seems that the graph clustering

problem in directed networks is more challenging compared to the undirected version. Moreover, since the

directed case is a generalization of the undirected one (each undirected graph can be also represented as a

directed, considering edges to both directions), effective methods for the former case can be used for the

latter one as well.

Formal Definition of the Problem

The major point that should be addressed in the area is a formal and precise definition of the graph

clustering and community detection problem in directed networks. We have observed that most of the pro-

posed methods follow two high-level clustering notions-definitions (or a combination of them), as described

in Section 3. The most prevalent one, the density-based clustering notion, can be considered as a direct

generalization from the undirected case, and according to this viewpoint some well-known approaches have

been proposed. Although in many of these methods (e.g., modularity optimization) the direction of the

edges is taken into consideration in the clustering task, there is no a clear way of how this can be properly

done. For example, in the directed version of modularity (e.g., Refs. [50, 58]), the existence of a directed
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edge (i, j) between nodes i, j, depends on the out-degree of node i and in-degree of node j. Then, the con-

figuration (null) model is suitably adjusted to meet this fact. However, in many cases, different approaches

set up diverse requirements for the problem and therefore, many of the proposed methods are not consistent

with each other (this has been pointed out for the undirected graph clustering problem as well [11, 19]).

As we mentioned in Section 1 regarding the challenges posed by the problem, even some direct gener-

alizations from the undirected graph clustering problem are not straightforward. We have discussed that

graph concepts applied to characterize and evaluate the community structure in undirected networks (e.g.,

density) cannot be directly extended to the directed case, making the theoretical foundations of the problem

not yet fully explored. To conclude, we consider that the foremost task regarding the problem is to establish

the theoretical tools towards a formal definition of how good clusters or communities in directed networks

should look like. Of course, one should not expect that a single definition would fit to all needs, since as

noted by Schaeffer [19], the problem is highly application-oriented (this fact holds for both directed and

undirected networks; an evidence for the former case is the plethora of diverse applications presented in

Section 7). Later at this section, we will discuss possible data-driven and application-driven methods, as an

interesting future direction.

Algorithm Design and Evaluation

Several interesting points typically arise in the context of designing and evaluating algorithms for the

clustering problem in directed networks. Having define the basic functionalities of the algorithm as well as

the type-notion of clusters that we are looking for, three other aspects are of particular significance:

(a) Algorithm’s parameters: issues related to the parameters of the algorithm, such as their number, how

the user is going to set input values for the parameters, as well as the sensitivity of the algorithm on

the parameters’ selection.

(b) Algorithm’s scalability: issues related to the ability of the algorithm to perform well, while the size of

the input (i.e., the size of the graph in our case) increases.

(c) Algorithm’s evaluation: issues related to the evaluation of the algorithm, both in terms of computa-

tional efficiency and effectiveness.

Any graph clustering algorithm should contain as few parameters as possible, with the ideal case to be the

design of parameter-free algorithms. As has been noted in several research articles, this point is extremely

crucial while designing data mining algorithms (e.g., see Ref. [143]) for several reasons. First of all, a non-

expert user should be able to use the algorithm without any technical difficulties related to the selection of

appropriate values for the parameters. Moreover, in the clustering task, incorrect selection of the parameters

may lead the algorithm to extract incorrect patterns from the data. Finally, the output of the algorithm
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(the extracted clusters/communities) should not be highly sensitive to the settings of parameters’ values.

Some of the community detection algorithms presented in this paper do not require any input parameters

(e.g., the methods based on modularity optimization), while others require to select the number of clusters.

The scalability is always considered as an important performance issue in the design and evaluation

of graph clustering algorithms, and over the last years it has received great attention from the research

community due to the enormous available graph data. Usually, the objective measures used to identify

the clustering structure, lead to computational difficult problems; then, either approximation techniques or

other novel approaches (or heuristics) are applied to cope with the computational complexity constraints.

For example, in the case of undirected networks, Satuluri and Parthasarathy [144] presented a clustering

technique based on stochastic flows, that improves in terms of scalability, the well-known Markov Clustering

algorithm (MCL) proposed by van Dongen [145] (the authors also note that their method can be easily

extended to directed networks). Recently, distributed computing techniques based on the MapReduce

framework [112] have become the standard approaches for processing massive data. Several methods have

been proposed for analyzing graph data in this framework (e.g., the Pegasus system [146]), including spectral

graph analysis [147] and centrality estimation [148]. To this direction, it would be interesting to extend

already developed algorithms for the clustering problem in directed networks or to design new ones in the

MapReduce framework, letting us to study the community structure of very large networks (e.g., billion-node

networks).

One other significant point related to the clustering problem in directed networks has to do with the

evaluation of methods, i.e., how to decide if the results of an algorithm are “good” or which of several possible

clustering results is the best one. As we discussed in Section 6, in case of datasets with a priori knowledge

of the community structure, this information can be used to evaluate the performance of the algorithm.

However, ground truth data is not always available; then, the goal is to define reliable benchmark graphs

that can be used to test and evaluate algorithms. The work of Lancichinetti and Fortunato [123] presents

such a generator for benchmark directed networks but we consider that more effort should be put on this

topic by the research community due to its importance.

Furthermore, in order to become more clear which clustering algorithm may be better or at least has

better performance on specific directed networks, experimental and comparative studies should be done. In

the case of undirected networks, several experimental comparisons have been performed for different scale

and different types of networks (e.g., social networks, information networks. See Ref. [39, 21, 23] for more

details). We consider that similar studies in directed networks will shed more light on how to select a

clustering algorithm.
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Towards Data-driven and Application-driven Approaches

It becomes clear that the problem of clustering in directed networks is very challenging and several

diverse methods have been proposed to deal with it. We consider that the problem is from its nature

application-oriented and thus, there should always be space for new possible solutions depending on the

characteristics of the network data and the application domain.

A possible direction is the design of data-driven algorithms for the clustering task in directed networks.

According to this approach, the goal is to study the structure of the networks we are interested in, and

then take into account possible structural observations that may affect the community detection task; even

better would be to exploit possible patterns or interesting structures that may be contained in the data, in

the design phase of an algorithm. Such studies and approaches have already been performed in the case

of undirected networks. Some of them study the quality of communities in real networks. Leskovec et al.

[149, 150] observed that in large scale social and information networks, “good” communities exist only at

very small scales (of about 100 nodes), while at larger scales the communities gradually blend in with the rest

of the network. Similar observations have been presented by Malliaros et al. [151], studying the robustness

of large social graphs. Another example is the community detection algorithm presented by Prakash et al.

[152], which exploits the eigenspokes pattern observed in large scale sparse real graphs (i.e., pattern related

to the eigenvectors of the adjacency matrix of the graph). Thus, it would be useful to perform exploratory

analysis regarding the structural properties of directed networks and utilize possible interesting findings to

the algorithm design process.

A different possible direction is to follow application-driven approaches, i.e., design domain-specific and

application-specific clustering algorithms for directed networks. As we have already mentioned, the graph

clustering task can be applied in a wide range of applications, from social network analysis to biological net-

works and from economic networks to the domain of neuroscience. All these diverse applications demonstrate

different features and therefore it should be more appropriate to follow different methodological approaches

with respect to the application under consideration.

Other Research Directions

In this section we present other, diverse interesting topics for future research regarding the clustering/-

community detection problem in directed networks (generally, most of the research directions in the case of

undirected networks (e.g., Refs. [11, 19]) can also be considered as important aspects for directed networks).

A possible direction is to examine local (versus global) definitions of clusters in directed networks and

therefore local algorithms for detecting the community structure. In other words, instead of partitioning

the full graph, it would be interesting to define measures and design algorithms for evaluating a subgraph in

terms of community structure. Such approaches can also operate as community structure exploration tools

and may be useful either for large scale networks or for networks with no clear community structure (e.g.,
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Ref. [150]).

Generally, in the discussion until now, the directed networks represent mainly connectivity information

between entities of the same type; the edges may or may not contain weights, which quantify the significance

of the ties and typically are interpreted as deterministic values with positive meaning. However, new

domains and applications in the context of network analysis, impose new kind of information that should

be also taken into consideration in the clustering task. Three well known representative examples are the

so-called signed networks, probabilistic (or uncertain) networks and the case of heterogeneous networks.

The signed networks (e.g., Refs. [153, 154]) are trying to capture the notion of positive and negative

interactions among the nodes of a network. A positive edge denotes similarity (proximity), while negative

edges represent dissimilarity (distance). Signed networks can be both directed and undirected. Characteristic

examples of directed signed networks are the trust networks between users in product review websites, like

Epinions (www.epinions.com). The probabilistic graphs (e.g., Refs. [155, 156, 157]) capture uncertainty

that is introduced under several conditions (such as for privacy-preserving reasons), and every edge in the

network is associated with its probability of existence. Since probabilistic graphs is the natural extension

of deterministic ones to represent uncertainty factors, they can be both directed and undirected. For the

undirected case, Kollios et al. [157] recently presented an algorithm for the graph clustering task. Finally,

heterogeneous networks (in contrast to homogeneous ones) [158], directed or undirected, are used to represent

multi-typed networks, i.e., networks that contain multiple objects and link types (e.g., in a bibliographic

network the nodes may correspond to authors, publications and venues, while the edges link these different

types of nodes). An interesting research question is how can we extend existing techniques or design new

ones for the clustering task in directed networks under the settings presented above.

Finally, an important research direction which has been already discussed, is the case of dynamic directed

networks, i.e., networks that evolve over time with the addition/deletion of nodes/edges. In Section 4.4.4

we described a method for time-evolving directed networks, where the goal was both the extraction of the

community structure and the detection of a change point (regarding community structure) over time.

9. Conclusions

In this survey we have reviewed thoroughly the problem of clustering and community detection in directed

networks and to the best of our knowledge, this is the first comprehensive review fully devoted to the problem.

The main goal was to organize and present in a unified manner the work conducted so far for the problem.

In a first step, we have presented a classification of the approaches in four main categories, according to

the methodology they follow: (i) naive graph transformation approaches, (ii) transformations maintaining

directionality, (iii) approaches that extend objective functions and methodologies to directed networks, and

(iv) alternative approaches. Since a large portion of the methods constitute extensions from the undirected
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version of the problem, we have followed an incremental presentation, describing the basic features of the

undirected problem and how they can be extended to the directed case. Furthermore, we have presented

a second orthogonal classification of the methods, based on the clustering notion (or type of clusters) they

follow. This classification scheme is supplementary to the previous one and it may be useful for practitioners

that need to select an appropriate algorithm for a specific application. We have also presented methods and

tools for evaluating and testing the results of a graph clustering algorithm in directed networks. Moreover,

since the problem is highly application oriented, we have demonstrated interesting application domains. To

conclude, we consider that more effort should be put on the problem by the research community due to its

high importance, and towards this direction we have provided interesting topics for future research.
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