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The physically realistic functions implemented in nearshore process models are governed by

parameters that usually do not represent measurable attributes of the nearshore and, therefore,

need to be determined through calibration. The classical approach to calibrate nearshore process

models is via manual parameter adjustments and visual comparisons of model predictions and

measurements. In this paper a hybrid genetic algorithm, comprising a global population-evolution-

based search strategy and a local Nelder–Mead simplex search, is used to calibrate nearshore

process models in an objective and automatic manner. The effectiveness of the algorithm to find

the optimum parameter setting are examined in two case studies with increasing complexity: a

simple alongshore current model and a more complex cross-shore bed evolution model. Whereas

the algorithm is found to be an effective method to find the optimum setting of the alongshore

current model, it fails to identify the optimum parameter values in the bed evolution model,

related to the strong interaction between two of the parameters in the suspended sediment

transport equation. Setting one of the interdependent parameters to a constant value within its

feasible space while retaining the other in the optimization procedure is found to be a feasible

solution to the ill-posed optimization problem of the bed evolution model.

Key words | calibration, genetic algorithm, nearshore, optimization, physically based simulation

modelling

NOTATION

a lower bound of a parameter

b upper bound of a parameter

f factor used in non-uniform mutation

F value of objective function (simple least

squares)

�F population-average F

Fb best F in a population

Fr regularization term that can be added to F

i population number

imax maximum number of populations

j integer

ka apparent roughness

kc current-related roughness

kw wave-related roughness

m chance of selecting the best individual into the

next population

m0 normalization factor

M probability in normalized geometric ranking

n number of individuals

Nc number of crossover operations

Nn number of mutation operations

Np number of model parameters

Nt number of temporal observations

Nx number of cross-shore positions

p individual in a population

P population

r rank

t time

x cross-shore coordinate

u uniform random number between 0 and 1

�v alongshore current velocity

X obs observation (in general)

X mod model result (in general)
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b roller slope

G covariance matrix that represents the

uncertainty in u

u vector of model parameters

u0 best prior estimate of u

n eddy viscosity

s standard deviation of F

f angle of repose

INTRODUCTION

Nearshore process models are designed to resemble the

physical processes that govern nearshore hydrodynamics,

sediment transport and/or bathymetric evolution. The

physically realistic functions implemented in these models

are usually heuristically or (semi-) empirically determined

and are governed by parameters. Ideally, these parameters

have meaning outside the context of the model, which

implies that the values of the parameters can be measured

independently and do not need to be obtained through

model calibration. However, many parameters do not

represent measurable attributes in the nearshore; also, in

cases where measured values do exist, they often differ from

model calibrated values and may even show opposite trends

(see, for an example, Ruessink et al. 2003). For any

nearshore model to have (practical) applicability, model

calibration seems to be the only feasible procedure to

determine the proper (but, potentially, unrealistic) values of

the governing parameters.

The calibration of nearshore process models is a non-

linear optimization problem. The presently most-often

adopted approach of nearshore model optimization is

manual calibration, which involves numerous trial-and-

error parameter adjustments and visual comparisons of the

match between the observed and modelled variable(s) of

interest. Even though a model expert can obtain excellent

results, manual calibration is often time-consuming, labour-

intensive and subjective, and does not provide any knowl-

edge as to whether the best fit parameter values have

actually been obtained.

The alternative to manual calibration is automatic

calibration. An optimization algorithm iteratively searches

the response surface (in parameter space) of an objective

measure of the goodness of fit between observations and

model predictions (the so-called objective function) for the

parameter values that optimize this objective function.

Many different algorithms exist (see, for example, Duan

(2003) for an overview), each of which has its own set

of rules on how the parameter values are optimized

(henceforth, it is assumed minimized) as efficient (compu-

tational burden) and effective (success in finding the global

minimum) as possible. Local search methods, which start

their search for the optimum values with a single initial

parameter guess and use local information only to deter-

mine a promising direction towards a minimum, are

particularly useful when the response surface is unimodal.

On a multi-modal response surface, local search methods

fail as they may become trapped in a local minimum rather

than converge to the global minimum (e.g. Duan et al. 1992).

Even if the response function is expected to be unimodal, a

number of local-search runs with different randomly

selected initial guesses need to be carried out to investigate

whether the objective function indeed contains a single

minimum. Only if all trials converge to the same minimum

can one be sure to have found the global minimum. The use

of multiple runs has turned the optimization into a global

search method known as the multistart approach (e.g. Duan

et al. 1992). This is, however, an inefficient approach as each

local search operates independently because it does not

share any information with the other searches. One way of

improving global optimization efficiency through infor-

mation sharing is the use of genetic algorithms (GAs)

(Holland 1975). A GA maintains a population of potential

solutions, which through probabilistic manipulation (selec-

tion, cross-over (mating) and mutation) and a survival of

the fittest strategy evolve to solutions close to the global

minimum. Because the initial population can be chosen

randomly in the entire search space, a GA is globally

oriented. Once, however, the global minimum is

approached, the final convergence into the global minimum

can be tediously slow because a GA does not exploit local

information. Therefore, the final convergence is often

carried out by a local search method (e.g. Wang 1991;

Franchini 1996; Chelouah et al. 2000), which converges

faster than a GA.
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In this paper attention is focused on the optimization of

nearshore process models with a GA, whose best solution

after a given number of populations is used as a starting

point for a local search with the downhill simplex method

of Nelder & Mead (1965). Similar to a GA, the simplex

method deals with a population of (albeit a limited number

of) solutions but uses deterministic rules to find the global

minimum. The aim of this work is to investigate the ability

of the resulting hybrid algorithm, GA-SX, to find the

optimum parameter values during the calibration of a

three-parameter alongshore current model (Ruessink et al.

2001) and of the three-parameter cross-shore profile

evolution model Unibest-TC (Bosboom et al. 1997). The

alongshore current model is relatively simple, considering

the amount of processes involved, and the three parameters

show limited interaction. Unibest-TC is a more complex

model and contains interdependent parameters. For each

model the GA-SX is applied to a synthetic case, for which

the global minimum is known and the model is an error-free

representation, and to a measurement case, based on data

collected during the 1998 Coast3D experiment at the

double barred beach at Egmond aan Zee (Netherlands).

Each time the effectiveness of the GA-SX algorithm is

examined by running it five times with different initial

populations. Finally, the main findings are discussed and

summarized.

OPTIMIZATION

The use of an automatic optimization method requires the

specification of the objective function, the algorithm and

the termination criterion to decide whether or not conver-

gence has been reached.

Objective function

The objective function adopted here is the Simple Least

Squares function F, given by

FðuÞ ¼
XNx

x¼1

XNt

t¼1

Xobs
x:t 2 Xmod

x;t ðuÞ
h i2

ð1Þ

where u is a vector of model parameters, Nx and Nt are the

number of cross-shore (x) positions and moments in time t

for which observations (X obs) and model results (X mod) are

available. Note that F is dimensional and that its value

depends on Nx and Nt. The minimum value F(u) can attain

is 0, in which case there is perfect agreement between X obs

and X mod for all x and t.

Algorithm

The GA-SX algorithm comprises two successively applied

search algorithms. It starts off with a genetic algorithm

performing a global search through the feasible parameter

search space to find a near-optimum solution. This solution

is then further optimized using the local-search downhill

simplex method of Nelder & Mead (1965). The principle of

combining a globally oriented GA search to find the main

area of interest with a local simplex search to converge to the

global minimum was introduced by Wang (1991) and has

recently been applied by Wolf & Moros (1997), Chelouah

et al. (2000) and Chelouah & Siarry (2003). Our GA-SX

algorithm differs from the existing algorithms in the selection

and transformation rules used in the genetic algorithm.

Genetic algorithm

A genetic algorithm maintains a population of individuals at

iteration i, PðiÞ ¼ pi
1; … ;pi

n

� �
, where n is the number of

individuals. Each individual p i represents a potential

solution to the global minimum. Based on the objective

function value of each individual a new population

(iteration i þ 1) is selected from the more “fit” individuals,

that is, the individuals having the lowest F. However, by

chance, a poor individual may also be selected and a fit

individual may be discarded; also, some individuals may be

selected more than once. After the new population has been

selected, some (randomly selected) individuals undergo

transformations, known as crossover (mating) and

mutation. It is hoped that the GA’s “survival of the fittest”

strategy and the subsequent transformations lead to a

population whose individuals are closer to the desired

global minimum than the individuals of the previous

population. After the mutation step, the (i þ 1)th iteration

is complete. Then, the termination criterion is checked

which, when satisfied, implies the end of the algorithm (and

hands over the fittest individual of the last population to the

simplex algorithm), or otherwise returns the population to

the selection step to form a new population, etc.
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In the present work a float representation (Michalewicz

1996) is used to describe each p i, which implies that the

actual real-number parameter values of u make up the

values of each p i; this contrasts with the more traditional

binary representation of p i (Holland 1975). As shown by

Michalewicz (1996), the float representation converges

faster to a near-optimum solution than the binary represen-

tation, is more robust and provides a higher precision; also,

it is intuitively more attractive to use than the binary coding

because the value of the objective function is determined by

parameters that are real numbers. For each parameter, a

lower and upper bound is specified to outline the feasible

space in which each parameter can vary.

Selection of the fitter individuals is here based on

normalized geometric ranking (Houck et al. 1995). For each

individual a measure of “fitness” is defined as the

probability M that it is selected for the next population:

M ¼ m0ð1 2 mÞr21 ð2Þ

where m is the (user-specified) probability of selecting the

best individual, r is the rank of the individual (where 1 is the

best) and m0 is the normalization factor given by

m0 ¼ m= ½1 2 ð1 2 mÞn�: ð3Þ

The actual selection of individuals is performed based on a

comparison of the cumulative probability of M to a series of

n sorted uniform random numbers between 0 and 1, see

Houck et al. (1995) for further details. It is possible that an

individual is selected more than once.

Now that a new population has been formed, some

individuals will undergo crossover and mutation to guide

the GA through the feasible parameter space to the global

minimum. The intuition behind crossover is the exchange of

information to find a near-optimum solution in an efficient

way, whereas mutation serves to keep the population

diverse, thereby avoiding early convergence in a local

minimum. Here the crossover and mutation rules designed

by Michalewicz (1996 pp 127–130) for float representations

were implemented using a MATLAB tool developed by

Houck et al. (1995).

The crossover rules are a set of three crossover

operators (arithmetical, heuristic and simple crossover)

which are run consecutively on the new individuals.

In arithmetical crossover two individuals (“parents”) are

randomly selected and combined to yield two new

individuals (“children”) that take the place of their parents:

u 0
1 ¼ uu1 þ ð1 2 uÞu2

u 0
2 ¼ ð1 2 uÞu1 þ uu2:

ð4Þ

In this equation, u1 and u2 are the parameter vectors of the

two parents, u01 and u02 are the parameter vectors of the two

children and u is a uniform random number between 0 and

1. In heuristic crossover a single child with parameter

vector u0 is formed from two randomly selected parents as

u 0 ¼ uðu2 2 u1Þ þ u2 ð5Þ

where F(u2) $ F(u1). The child takes the place of the u2

parent. It is possible that u 0 contains parameter values

outside their bounds. In that case, a new u is generated until

u 0 is located in feasible parameter space. If heuristic

crossover is still unsuccessful after five attempts, the

crossover operator terminates and both parents remain in

the population. In contrast to arithmetical crossover,

heuristic crossover uses F information to guide the direction

of the search. Finally, in simple crossover the parameter

vectors of two randomly selected parents are crossed after

the jth parameter, where j is a random integer number

between 1 and the number of parameters Np. Thus

u 0
1 ¼ ku1;1; … ; u1; j; u2; jþ1; … ; u2;Np l

u 0
2 ¼ ku2; j; … ; u2; j; u1; jþ1; … ; u1;Np l

ð6Þ

where k·l denotes a vector. Arithmetical, heuristic and

simple crossover were performed Nc1, Nc2 and Nc3 times,

respectively.

The mutation rules are a set of three mutation operators

(uniform, boundary and non-uniform mutation), again run

successively on the new individuals (some of which, by

now, are the result of crossover operations). In uniform

mutation a randomly selected parameter from a randomly

selected individual is replaced by a random value in the

feasible space of the selected parameter. In boundary

mutation a randomly selected parameter from a randomly

selected individual takes the value of the lower bound of

that parameter if u is less than 0.5 and of its upper bound if

u is larger than or equal to 0.5. Finally, in non-uniform
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mutation the jth randomly selected parameter of a

randomly selected individual is adjusted as

u 0
j ¼

uj þ ðbj 2 ujÞfðiÞ if u1 , 0:5

uj 2 ðaj þ ujÞfðiÞ if u1 $ 0:5

8<
: ð7Þ

where u 0
j is the adjusted value of the jth parameter, aj and bj

are the lower and upper bound of uj, respectively, f(i) is

given by

fðiÞ ¼ u2 1 2
i

imax

	 
� �2

ð8Þ

u1 and u2 are two uniform random numbers between 0 and

1, i is the current generation number and imax is the

maximum number of populations. In contrast to uniform

mutation, non-uniform mutation invokes a global search of

the GA when i ! imax, turning into a local search when i is

approaching imax and, hopefully, all individuals have

converged to the vicinity of the global minimum. Uniform,

boundary and non-uniform mutation affected Nm1, Nm2 and

Nm3 individuals, respectively.

Simplex algorithm

The “simplex” in the Nelder & Mead (1965) method is a

geometric shape with Np þ 1 distinct vectors that are its

vertices. In the three-parameter space of the present study,

the simplex is a tetrahedron. After the initial simplex is

formed using a step size equal to 5% of the parameter values

provided by the GA, the simplex iteratively searches for the

global minimum through a series of deterministic geometric

transformations known as reflection, expansion, inside and

outside contraction, and shrinkage. Because the downhill

simplex algorithm is among the most often applied local

search methods (because of its ease and robustness) it is not

further described here. Instead, the interested reader is

referred to Walters et al. (1991) and Lagarias et al. (1998).

A graphical representation of the various geometric trans-

formations for a simplex with four vertices (as is the case

here) can be found in Chelouah et al. (2000).

Termination criteria

The global search with the genetic algorithm was termi-

nated after a specified maximum number of generations

imax. The subsequent local simplex search was ended when,

for each parameter, the absolute difference in parameter

value between the best and worst vertex was less than 0.001.

ALONGSHORE CURRENT MODELLING

Model

The alongshore current is a time-averaged (over ,3600 s)

current that flows parallel to the coast and is forced by

obliquely incident breaking waves, the alongshore com-

ponent of the wind stress and 10–100 km scale alongshore

surface slopes owing to tides. Its cross-shore distribution

over an arbitrary cross-shore depth profile can be

computed by solving the one-dimensional, time- and

depth-averaged alongshore momentum balance, in which

the three forcing terms balance with bottom stress and

lateral mixing.

Here, the alongshore current model as proposed by

Ruessink et al. (2001) is adopted. Measured offshore values of

the root-mean-square wave height, wave period, wave angle,

water level, alongshore wind stress and the large-scale sea-

surface slope and a cross-shore depth profile are input into

the model. A typical example of the predicted cross-shore

structure of the alongshore current (�v) on a barred profile (as

at Egmond aan Zee) is given in Figure 1 (offshore root-mean-

square wave height ¼ 1.5 m, wave period ¼ 8 s and wave

angle relative to shore normal ¼ 308, with no wind and no

tidal forcing). As can be seen, the model produces current

jets that are located at or on the shoreward side of each bar

and near the shoreline (Figure 1). The magnitude of �v, the

location of the maximum current of each jet (�vmax) and the

cross-shore width of each jet are determined by three

parameters. The wave-front slope b influences the break-

ing-wave forcing; a decrease in b shifts the �vmax location

onshore and broadens the current jet by increasing �v in the

trough (Figure 1(a)). The apparent bed roughness ka, a

parameter within the bottom stress formulation, affects the

magnitude of �v but does not alters the cross-shore shape of �v

(Figure 1(b)). The magnitude of the depth-averaged eddy

viscosity n determines the degree of lateral mixing, which

smooths the cross-shore distribution of �v without shifting the

location of �vmax (Figure 1(c)).
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Synthetic data

Synthetic 500 h �v time series (t ¼ 107–613 h in Figure 2) at

the six instrumented Egmond positions (Figure 1(d)) were

computed with b ¼ 0.08, ka ¼ 0.03 m and n ¼ 0.5 m2 s21

using the input information measured during the Coast3D

experiment (Figure 2), see Figure 3. In the synthetic data,

the maximum j�vj (in the cross-shore) ranges from 0.02 m s21

to 1.10 m s21 and is generally located just shoreward of the

bar crest at E3 or E4. The semi-diurnal variations in �v, most

apparent at E1 and E6, are caused by semi-diurnal

variations in the large-scale alongshore surface slope

(Figure 2(g)).

An initial population of 30 individuals was generated by

choosing u randomly from a uniform distribution on the

intervals [0.04, 0.12] for b, [0.015 m, 0.045 m] for ka and

[0 m2 s21, 1 m2 s21] for n. The intervals for b and ka are

^50% of their correct value, whereas the n interval is

^100% of the correct value; this wider range reflect that

model �v is less sensitive to changes in n than to changes in b

or ka. Values for the other parameters in the GA were

imax ¼ 10, m ¼ 0.08, Nc1 ¼ Nc2 ¼ Nc3 ¼ 4, Nm1 ¼ Nm2 ¼ 4

and Nm3 ¼ 0. In this way, the chance that the best

individual is selected into the new population is 2.5 times

as large as by pure chance; also, each new population has 20
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Figure 1 | Alongshore current �v versus cross-shore distance showing the effect of

changing the wavefront slope, apparent bed roughness and eddy viscosity.

The solid curve in panels (a)–(c) is the standard run (b ¼ 0.1, ka ¼ 0.1 m

and n ¼ 0.5 m2/s). Other curves correspond to changes in one parameter

with the others held constant: (a) b ¼ 0.15 (dotted line) and b ¼ 0.05

(dashed line), (b) ka ¼ 0.05 m (dotted line) and ka ¼ 0.2 m (dashed line), (c)

n ¼ 0 m2/s (dotted line) and n ¼ 1 m2/s (dashed line). (d) The depth profile

was measured at Egmond on 15 October 1998. The shallow parts of the

profile near cross-shore distances of 200 and 460 m are morphological

features known as nearshore sandbars. The circles in (d) are the

instrumented positions used in the optimization of the synthetic and

measured �v cases. The instrumented positions are labeled E1 to E6 from

offshore to onshore.
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Figure 2 | (a) Offshore root-mean-square wave height Hrms, (b) offshore wave period

Tp, (c) offshore wave angle um relative to shore normal, (d) offshore water

level z with respect to mean sea level, (e) wind speed ws, (f) wind direction

wd relative to shore normal and (g) large-scale alongshore surface slope

dz/dy versus time at Egmond. Time ¼ 1 h corresponds to 11 October 1998,

00:00 MET. The black dots in (a) show the availability of depth profiles

covering both the inner and outer bar.
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new individuals formed through crossover ( ¼ 67% of total

population, assuming all four heuristic crossovers to be

successful) and eight parameter values are mutated ( ¼ 9%

of all parameter values). Boundary mutation was not

employed because it is known a priori that the correct

values are within the feasible search space; boundary

mutation may thus lead to unnecessary diversification

when switched on. All numbers were experimentally chosen

as representing a reasonable compromise between the

constraints of population convergence and diversity, com-

puting time and accuracy.

To test the effectiveness of the GA-SX algorithm, it was

run five times, each time with a different initial population.

Figures 4(a)–(c) show the GA convergence results of five

trials. The mean F(u), FðuÞ, of each initial population varied

between 6.7–10.1 m2 s22, with standard deviations s

between 5.9–11.2 m2 s22 (Figure 4(b)). The best individual

had F values (Fb(u)) of 0.06–1.89 m2 s22 (Figure 4(c)). As

the population number increased, most individuals evolved

more and more to the main region around the global

minimum: FðuÞ and s decreased (Figures 4(a, b)), as did

Fb(u) (Figure 4(c)). Because of the uniform mutation

operator s did not reduce to 0 or close to 0 but varied

around 0.5–1 m2 s22. In tests without this operator (and

thus with non-uniform mutation only) s decreased further

to 0 (not shown).

In the 10th population the parameter values of the most

fit individual were usually within 5–10% of their correct

values. In all five trials, the subsequent downhill simplex

algorithm converged in the global minimum. This 100%

success ratio indicates the effectiveness of the GA-SX

algorithm in finding the global minimum for the present

synthetic data set. The average number of function calls

(including the 30 calls required to initialize the first

population and the calls made by the downhill simplex

algorithm) amounted to 311.

Measurements

As for the synthetic current case, five initial populations

with 30 individuals were generated, now sampled from a

uniform distribution on the intervals [0.03, 0.1] for b,

[0.005 m, 0.1 m] for ka and [0 m2 s21, 2 m2 s21] for n. The

GA variables were set to the same values as in the synthetic

current case, except for Nm3, which was set to 4. This

increased the number of parameters mutated in each

population to 12 ( ¼ 13% of all parameters). The data to

which the model predictions were compared comprise

,500 h time series (t ¼ 107–613 h in Figure 2) measured at

the six instrumented positions at Egmond (Figure 1(d))

during the Coast3d experiment.

As can be seen in Figures 4(d, e), FðuÞ in the first

population varied between 74.7–85.7 m2 s22, with standard

deviations between 14.5–18.7 m2 s22. These FðuÞ are

substantially higher than in the synthetic current case

because now both the model and the data contain errors.

In all five initial populations Fb(u) already outperformed

the best F(u) determined manually by Ruessink et al. (2001),

see Figure 4(f). This implies that a pure random search

(Brooks 1958) with 30 different u guesses already results in a

u estimate closer to the global minimum than an extensive

manual calibration in which each parameter is varied one at

a time.

As the GA moved from population to population, FðuÞ

and Fb(u) further reduced (Figures 4(d, f)). In contrast, s

typically remained rather high (Figure 4(e)), caused by the

boundary mutation operator. All five simplex runs con-

verged at b ¼ 0.055, ka ¼ 0.026 m and n ¼ 1.30 m2 s21,

implying this to be the global optimum u. In the optimum, F

amounted to 55.65 m2 s22, about 5.5% lower than the

manually determined F of 58.9 m2 s22. The average amount

of function calls was 357. The measured and best-fit

modelled �v are shown in Figure 5.

Figure 3 | Synthetic �v from offshore (E1) to onshore (E6) versus time at Egmond.
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CROSS-SHORE PROFILE MODELLING

Model description

A cross-shore profile evolution model aims at predicting

cross-shore bathymetric evolution by accounting explicitly

for the various hydrodynamical and sediment transport

processes involved. A hydrodynamical module computes

the cross-shore wave height and current distributions, which

are subsequently used as local input into sediment transport

equations. Morphological changes are then calculated from

the cross-shore gradients in the time-averaged sediment

transport rates, after which the procedure is repeated. For a

depth profile with sandbars, like at Egmond (Figure 1(d)), a

profile evolution model essentially aims to predict the correct

temporal evolution of the sandbars (i.e. their position, width

and height). The model used in the following is the

commercially available 2.04d-v1 version of Unibest-TC

(Bosboom et al. 1997; Van Kessel 2000; Walstra 2000),

developed by WLjDelft Hydraulics (Netherlands). A full

description of the model equations can be found in Bosboom

et al. (1997). An initial cross-shore depth profile and time

series of offshore values of the root-mean-square wave height,

wave period, wave angle, water level, wind speed and

direction, and large-scale sea-surface slope are input into

Unibest-TC.

The model contains 15 free parameters. Earlier work,

using wave heights and mean currents measured in the

laboratory and the field, has resulted in the operational

assumption that the parameters in the wave and current

modules need not be optimized for every new application

and can thus be kept constant at their default values

(Walstra 2000). In this study the values of the three

uncertain parameters in the sediment transport module

are optimized. In Unibest-TC the cross-shore sediment

transport rate is the sum of the bedload transport rate and

the current-related suspended load transport rate. The latter
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Figure 4 | Convergence of the genetic algorithm for the synthetic (top) and measured (bottom) �v data. (a), (d) the population-mean objective function value FðuÞ versus population

number; (b), (e) the standard deviation of the objective function value versus population number; and (c), (f) the objective function value of the best individual Fb(u) versus

population number. The five lines in each plot correspond to the results of five replications started with a different stage of the random generator. The dotted lines in (d)

and (f) correspond to F in the global minimum; the dashed line in (f) is the F determined manually by Ruessink et al. (2001).

Figure 5 | Measured (symbols) and modelled (lines, b ¼ 0.055, ka ¼ 0.026 m and

n ¼ 1.30 m2 s21) �v from offshore (E1) to onshore (E6) versus time at

Egmond.
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rate, which inside the surfzone dominates over the bedload

transport rate, involves the computation of the vertical

equilibrium concentration profile using the time-averaged

convection–diffusion equation, for which the approach

outlined in Van Rijn (1993) is adopted. The convection–

diffusion equation is solved by numerical integration from a

near-bed reference level to the water surface; at the

reference level a reference concentration is specified as

boundary condition (Van Rijn 1993).

The first free parameter optimized here, referred to as

the current-related roughness kc, determines the height of

the near-bed reference level. An increase in kc increases this

level, which reduces the reference concentration and,

accordingly, the current-related suspended sediment trans-

port rate. Under storm conditions, when cross-shore mean

currents are offshore directed, an increase in kc thus results

in a reduced offshore bar migration (Figure 6(a)). An

increase in the second free parameter, the wave-related

roughness kw, increases the near-bed wave-related bed

shear stress, which in turn leads to an increase in the

reference concentration and the current-related suspended

sediment transport rate. Under storm conditions an

increase in kw causes a bar to migrate further in the offshore

direction (Figure 6(b)). Obviously, kc and kw are inter-

dependent because both parameters affect the current-

related suspended sediment transport rate through the

reference concentration. The third free parameter, the

tangent of the angle of repose tan f, affects bed level

prediction through the bedload formulations, in which it

determines the threshold criterion for the initiation of

motion and plays a role in the gravity-induced transport. In

both cases, a decrease in tan f hinders upslope transport

and stimulates downslope transport: in other words, smears

out the existing bars (Figure 6(c)). Its effect on bar position

is minimal. Tests suggest (not shown) that the bedload

transport rate becomes insensitive to tan f for tan f larger

than 0.25–0.30.

Synthetic data

Synthetic data (Figure 7) were generated with kc ¼ 0.03 m,

kw ¼ 0.01 m and tan f ¼ 0.2 using the waves and tides

measured during the 33-d Coast3D period (Figure 2,

t ¼ 133–925 h) and a median grainsize of 240mm.

The model, initialized with the cross-shore profile measured

at t ¼ 133 h, was run with a time step of 0.5 h on a grid with

a distance between consecutive points reducing from 5 m

across the outer bar to 1 m on the beach. Modelled cross-

shore depth profiles were stored for the same seven

moments for which measured profiles also exist (Figure 2).

In the synthetic data the crest of the inner bar moves

offshore by about 30 m during the first 15 d, after which

it moves onshore by about 12 m; note how the inner bar-

trough relief vanishes altogether in the synthetic data

(Figure 7). The outer bar has shifted offshore by about

10–15 m at t ¼ 15 d; at the same time, the outer bar-trough

relief has become more subdued (Figure 7).

The GA variables were chosen identical to the synthetic

�v case. The initial population of 30 individuals was sampled
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Figure 6 | Predicted bed levels after 16 days of storms (Figure 2, t ¼ 133–517 h) at

Egmond showing the effect of changing the current-related roughness,

wave-related roughness and angle of repose. In each case, the profile in

Figure 2(d) was used as the initial depth profile; the triangles in each panel

reflect the position of the outer and inner bar in this initial profile. The solid

curve in panels (a)–(c) is the standard run (kc ¼ 0.03 m, kw ¼ 0.01 m and tan

f ¼ 0.2). Other curves correspond to changes in one parameter with the

others held constant: (a) kc ¼ 0.01 m (dotted line) and kc ¼ 0.05 m (dashed

line), (b) kw ¼ 0.003 m (dotted line) and kw ¼ 0.03 m and (c) tan f ¼ 0.1

(dotted line) and tan f ¼ 0.3 (dashed line).
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from a uniform distribution on the intervals [0.005 m,

0.02 m] for kw, [0.02 m, 0.04 m] for kc and [0.1, 0.25] for

tan f, chosen because of the recommendations in Walstra

(2000). Values of the objective function were computed using

depth values on the interval 130 , x , 600 m (seaward side

of the outer bar up to and including the inner trough),

not including the initial depth profile. Again, the GA-SX

algorithm was run 5 times with a different initial

population to test its effectiveness in finding the true

parameter values.

Figures 8(a)–(c) show the convergence results of the

genetic algorithm. In each of the 5 trials, Fb(u) in the final

population was less than 0.1 m2, implying the modelled

depth profiles to be essentially indistinguishable from the

synthetic profiles. The value of tan f in the best parameter

vector in the final population equalled 0.2 in each trial;

however, kc and kw could still be up to 30% from their

correct values. In none of the 5 trials did the downhill

simplex method succeed in reducing F to 0, or even in

moving kc or kw towards their correct values.

As can be seen in Figure 9, the kc and kw values at

termination were located on the floor of a deep and

elongated valley in the error surface, caused by kc–kw

interaction in the computation of the current-related

suspended sediment transport rate (cf. Johnston & Pilgrim

1976; Gupta & Sorooshian 1983; Kirkby et al. 1993). Even

though the error surface is unimodal, there is a disturbing

range of kc–kw possibilities that result in a near-zero F. It

appears that once the genetic algorithm has found a

parameter vector on the main axis of the error valley,

neither additional crossover and mutation operations nor

the downhill simplex method are capable of producing a

better parameter vector (obviously, one can also argue that

any pair of kc and kw on the floor of the error valley is as

good as any other from a mathematical point of view as they

all have an F of approximately 0). Thus, even in the case of

error-free (synthetic) data the poor properties of the

response surface prohibit the GA-SX algorithm from

obtaining the correct and unique parameter set.

The natural question that now may be raised is how the

failure of the GA-SX algorithm to locate the global minimum

can be repaired. Because the failure is caused by the model
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structure, it cannot be expected that much improvement over

what is already achieved so far will be obtained by changing

the settings in the GA-SX algorithm or by using another

optimization algorithm. Sorooshian & Gupta (1983) were

faced with a similar ill-posed optimization problem in the

representation of percolation in a conceptual watershed

model, motivating Gupta & Sorooshian (1983) to alter this

representation to make its two involved parameters inde-

pendent. However, as pointed out by Kirkby et al. (1993), a

change in the model structure should only be carried out

when there are sound physical reasons for requiring the

parameters to be independent. Otherwise, a simple solution

is to fix one of the two parameters within its feasible space

while retaining the other in the optimization procedure.

A potential drawback of this choice is that when other

parameters depend on either of the two interdependent

parameters, their optimum values may differ from the correct

values as a result of compensating changes necessary to

minimize the error caused by assuming one of the free

parameters to be constant (Sorooshian & Gupta 1983). This

does not appear to be the case here as, irrespective of where

the GA-SX algorithm converged in the error valley, it always

produced the correct tan f. Other drawbacks are that it may

not be a priori clear which parameter must be fixed and the

choice of its value is, to some extent, subjective. Another

solution is to extend the objective function of (1) with a

regularization term Fr(u) of the form

FrðuÞ ¼ 0:5ðu2 u0Þ
TG21ðu2 u0Þ ð9Þ

in which u0 is a best prior estimate of the parameter vector u

and G is a covariance matrix that represents the uncertainty

in u. With this regularization a well-posed optimization

solution can be obtained without the necessity to remove

one of the uncertain parameters. The final u estimate is now

a mix of the prior estimate and the agreement of model

predictions and observations. However, just as with the

fixation of a single parameter, the choice of u0 and G is

rather subjective.

Here, the suggested improvement to the Unibest-TC

optimization problem is the fixation of kc to 0.03 m.

In this way, the near-bed reference height required in

the computation of the current-related suspended sediment

transport rate is fixed to the middle of its feasible range. The

GA-SX algorithm was then run five times with kw and tan f

sampled initially from the same distribution as before. The

genetic algorithm settings were n ¼ 15, imax ¼ 6, m ¼ 0.17,

Nc1 ¼ Nc2 ¼ Nc3 ¼ 3, Nm1 ¼ 2, Nm2 ¼ 1 and Nm3 ¼ 0. Note

that n and imax were reduced because now only two

parameters are involved in the calibration procedure; values

of the remaining parameters were adjusted to have approxi-

mately the same chances of selection, crossover and mutation

as in the previous three-parameter calibration. Each time

(Figures 8(d)–(f)) Fb(u) in the sixth population was approxi-

mately 0 based on kw and tan f values within 4% of their

correct values. All five simplex runs subsequently produced

kw ¼ 0.01 m and tan f ¼ 0.2. Thus, setting kc to a constant

value within its feasible space has “solved” the Unibest-TC

optimization problem and led to a 100% success ratio. The

average number of function calls amounted to 108.

Measurements

Existing comparisons (Van Rijn et al., 2003) of model

predictions against the seven depth profiles measured

during the Egmond Coast3D campaign (Figure 2,

t ¼ 133–925 h) are based on kc ¼ 0.03 m, kw ¼ 0.01 m and

tan f ¼ 0.1. This setting (with the same grid and time step as

in the previous synthetic case) results in F ¼ 224.4 m2 on

the interval 130 , x , 600 m (seaward side of the outer bar
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up to and including the inner trough), not including the

initial depth profile.

Figure 10 shows the GA convergence results based on

kc ¼ 0.03 m, n ¼ 15, imax ¼ 6, m ¼ 0.17, Nc1 ¼ Nc2 ¼ Nc3 ¼ 3

and Nm1 ¼ Nm2 ¼ Nm3 ¼ 1. It is intriguing to see that in each

of the five initial populations FðuÞ already outperformed the

manually determined F, again showing that a simple random

sampling of the free parameters in their feasible space can

result in a lower F than one based on a manual calibration in

which each parameter is varied at a time. Each of the five trials

terminated near F ¼ 135 m2 with optimum kw ¼ 0.011 m and

tanf ¼ 0.25. Thus, the optimum kw was very close (relative to

the width of its feasible space) to the manually determined kw,

but the optimum tanfwas 2.5 times as large as the manual tan

f. The number of function calls required to reach the optimum

values amounted to 111 (averaged over the five trials).

Measured and modelled best-fit depth profiles are shown in

Figure 11. Note that the model smooths the outer bar more

than was observed in the measurements (especially from

t ¼ 8–15 d) and that the model predicts too much erosion on

the beach, causing a shoreward infilling of the inner trough

(compare modelled profiles at t ¼ 2 and t ¼ 8 d) and its

complete disappearance at t ¼ 15 d.

DISCUSSION

In this paper the effectiveness of the globally oriented

GA-SX algorithm in finding optimum parameter settings

was examined using synthetic and measured alongshore

current and bed profile evolution data. Whereas the

algorithm was an effective method to calibrate the along-

shore current model, it failed to identify the

optimum parameter values in the bed evolution model

using error-free synthetic data, related to the strong

interaction between two of the parameters in the suspended

sediment transport equation. Fixing one of the interdepen-

dent parameters to a constant value within its feasible space

while retaining the other in the optimization procedure

proved to be an effective solution to the ill-posed optimiz-

ation problem of the bed evolution model. In the following

the efficiency of the GA-SX algorithm is examined by

comparing the required number of function calls to that

required by a multistart simplex method; also, the uncer-

tainties in the parameter estimates are discussed.

Efficiency

The motivation for the genetic algorithm was its probabilistic

information sharing methodology in maintaining a popu-

lation of solutions, a more efficient method than a multistart

method comprising independent local searches. In order to

see how much is gained by information sharing, a total of 4

multistart runs with 15 simplexes each was performed, one

for each synthetic and measured alongshore current and

depth profile case, respectively. The initial parameter guess

for each simplex was chosen randomly from the same feasible

space as in the GA-SX applications. In each multistart run, all

simplexes converged into the same parameter set as found by

the GA-SX algorithm. However, as can be deduced from

Table 1, the amount of required function calls exceeded that

of the GA-SX algorithm by at least a factor of 5 (note that in

the two �v runs the amount of simplexes was only half the

number of individuals in a population). This demonstrates

the efficiency of the GA-SX algorithm in finding the global

optimum by information sharing.

The 100% effectiveness of each multistart run implies that

the response surfaces of the alongshore current and bed
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profile evolution models are most likely unimodal. In hind-

sight, one could therefore argue that the global nature of the

GA-SX was overdone and that a single run of a local search

method would have sufficed. However, the GA-SX algorithm

required, on average, about three times as many function calls

as only a single simplex run (Table 1). In my opinion, this is a

small price to pay for a higher guarantee that the correct

parameter values have been found.

The ratios given above should not be taken too literally.

The GA method contains some arbitrary and intuitive

settings, such as the size of the population, the number of

crossovers and mutations, and the order in which the various

operators are performed. As mentioned earlier, some

experiments were carried out to ensure that the population

remained sufficiently diverse to prevent a premature conver-

gence on the best member of the first population and to avoid

excessive (more than several days for a single trial) computing

time. There is still a potential to improve the GA’s efficiency

by optimizing its settings. Also, the convergence rate of the

simplex algorithm may be improved by optimizing the step

size to form the initial simplex (Walters et al., 1991).

Parameter accuracy

Any optimal parameter solution is more meaningful if the

uncertainties in the parameter estimates can be quantified.

The posterior description of parameter uncertainty can be

used, for instance through Monte Carlo simulation, to

produce probabilistic model forecasts. The GA-SX algor-

ithm does not produce uncertainty information about the

optimal solution; accordingly, alternative methods are

needed to acquire this information. One potential method

is to use multiple calibration periods. Each period will, no

doubt, produce different optimum parameter sets, whose

distribution would reflect the uncertainty in the parameter

estimates. Multiple calibration periods can be constructed

via resampling techniques (e.g. Van den Boogaard et al.

2000) or, more simply, by dividing one extensive calibration

periods into several parts (e.g. Beven 1993), where each part

should obviously still contain sufficient different conditions

for calibrating the parameters. As pointed out by

Sorooshian et al. (1983) and Gan & Biftu (2003), the

information content in the calibration time series rather

than its length determines the success of an optimization

algorithm in finding the correct values.

The extension to multiple calibration periods to

estimate uncertainty information was, as an example,

applied to the alongshore current model by dividing the

available Egmond data into ten 50 h (roughly the duration

of a storm) periods. The optimum parameter setting for each

subperiod was then determined with a single GA-SX run

with the same settings as before. The mean ^1 standard

deviation for b, ka and n were 0.057 ^ 0.029,

0.023 ^ 0.007 m and 1.44 ^ 0.94 m2 s21, respectively.

CONCLUSIONS

Based on synthetic and measured alongshore current and

bed evolution data the globally oriented GA-SX algor-

ithm, combining a population-evolution-based search

strategy and a Nelder–Mead downhill simplex search, is

found to be an effective and efficient (relative to a

multistart simplex run) tool to find optimum parameter

Table 1 | Number of function calls

Synthetic Measured

Algorithm Current Depth Current Depth

GA-SX 311 108 357 111

Multistart SX 1446 570 2104 603
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Figure 11 | Measured (dotted lines) and modelled (solid lines, kc ¼ 0.03 m,

kw ¼ 0.011 m and tan f ¼ 0.25) bed evolution data set. The time stamp

refers to the number of days after the initial depth profile. Each

consecutive profile is offset by an additional 2 m.
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settings in nearshore process models. Essential to the

effectiveness of the algorithm is the absence of inter-

dependent free parameters which, consistent with earlier

work in watershed modelling (e.g. Johnston & Pilgrim

1976; Gupta & Sorooshian 1983), frustrate calibration by

creating a deep, elongated and flat-bottomed valley in the

error surface and result in widely varying parameter

settings with virtually the same error. Setting one of the

interdependent parameters to a constant value within its

feasible space while retaining the other in the optimiz-

ation procedure is found to be a feasible solution to such

an ill-posed optimization problem.
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