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Abstract— Future generations of air traffic management
systems will give appropriately equipped aircraft the free-
dom to change flight paths in real-time. This will require
a conflict avoidance and resolution scheme that is both
decentralized and cooperative. Satisficing game theory
provides a theoretical framework in which autonomous
decision makers may coordinate their decisions. A key
feature of the theory is that satisficing decision makers
form their preferences by taking into consideration the
preferences of others, unlike conventional game theory
which models agents that maximize self-interest metrics.
This makes possiblesituational altruism, a sophisticated
form of unselfish behavior in which the preferences of
another agent are accommodated provided that the other
agent will actually take advantage of the sacrifice. This
approach also makes possible the creation of groups in
which every decision maker receives due consideration. We
describe a solution to aircraft conflict resolution based on
satisficing game theory. We present simulation results of
a variety of scenarios in which the aircraft are limited
to constant-speed heading-change maneuvers to avoid
conflicts. We show that the satisficing approach results
in behavior that is attractive both in terms of safety and
performance. The results underscore the applicability of
satisficing game theory to multi-agent problems in which
self-interested participants are inclined to cooperation.

I. Introduction

Inefficiencies in the current air traffic control (ATC)
system cost the airline industry billions of dollars an-
nually in delays and wasted fuel [1, 2], and the burning
of unnecessary fuel contributes to atmospheric pollution
[3]. Part of the anticipated solution isfree flight, an op-
erating environment in which pilots are given increased
autonomy to select or modify their flight path in real
time [4]. In the current system, centralized air traffic
controllers issue directives that guide aircraft along
prespecified corridors; in free flight, controllers will
monitor flight paths and intervene only when necessary.

Safety is the most important aspect of ATC; whether
centralized or distributed, its purpose is to maintain ad-
equate separation between aircraft. Substantial changes
in the ATC system will take place only experts conclude

that the modified system will be stable and work reliably
under all possible conditions. Relative to the safety of
the current centralized system, free flight offers certain
advantages; the increased automation is likely to reduce
controller workloads, and the overall system is less
affected by failures in the ground control system [5].

To ensure separation from other aircraft during free
flight, pilots are likely to rely on automated decision
support systems that make use of recent advancements
in navigation aids, communication technologies, and
computing power. In general, separation is maintained
by detecting and resolving possible conflicts before
proximity violations can occur. Many conflict resolution
techniques have been proposed, particularly for use in
open airspace between airports. Thisenrouteairspace
is an attractive candidate for automation because plane
density is low compared with airport airspace and
because rigid scheduling is unnecessary.

This paper presents a framework for an intelligent
decision-support system for aircraft conflict resolution.
In our approach, aircraft are viewed as autonomous
agents inclined to cooperative decision making [6–8].
The framework is based onsatisficing game theory, a
decision making approach that allows the modeling of
complex social relationships. Satisficing agents are able
to condition their own preferences on the preferences
of others, allowing agents to compromise in order to
achieve both individual and group goals. In contrast,
true cooperation is difficult to obtain when agents em-
ploy conventional decision-making approaches based on
optimization of a self-centered utility function.

In our approach, it is assumed that each aircraft is
aware of critical information (e.g., position, velocity,
destination) of all aircraft within a particular communi-
cation radius. We also assume a popular model of 2D
airspace in which all aircraft fly at the same altitude
and at constant velocity: conflicts can be avoided only
through heading change maneuvers. In contrast with
typical conflict resolution schemes that resolve conflicts
pairwise, satisficing agents can consider many projected
conflicts in the choice of next avoidance maneuver.
Within the satisficing framework, many possible behav-
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iors can be specified; we describe two that are suitable
for real-time implementation and present simulation
results that show them to compare favorably with pre-
viously published approaches, both in terms of safety
(maintaining separation) and efficiency (reducing flight
length).

Our results are strong indicators that satisficing is a
promising and viable method of synthesizing multia-
gent systems in which self-interest and cooperation are
both naturally present. While satisficing shows promise
as a framework for a multiagent solution to conflict
resolution in free flight, a full ATC system based on
this approach would require much more analysis and
additional components.

The remainder of this paper is organized as follows:
In the next section, we describe satisficing game theory,
the basis for our cooperative multiagent approach to
conflict resolution. In Section III, we describe two
behavioral models of conflict resolution constructed
within a satisficing framework, detailing precisely how a
decision option is selected. To illustrate the operation of
the resolution schemes, Section IV presents an example
conflict involving two aircraft and discusses the re-
sulting computation and outcome. Previously proposed
schemes for conflict resolution are summarized in V,
and appropriate measures of system performance are
discussed in VI. Section VII describes our simulator
and presents simulation results in a variety of conflict
scenarios. Where possible, results of previous schemes
are included for comparison. Section VIII presents a
brief summary and discusses further work.

II. Satisficing Game Theory

Game theory, as established by von Neumann and
Morgenstern [9], provides the logical foundation for
much of multiagent decision making. Even if a game-
theoretic format is not explicitly used, game theoretic
logic — maximization of expected utility — is the
principle that guides much of the theory. Unfortunately,
this view of rationality possesses serious limitations
— only individuals can optimize. If a group were to
optimize its behavior, then it must act as if it were a
single entity, but the resulting solution would not neces-
sarily be optimal, or even acceptable, for its individual
members. Individual optimization is the Occam’s razor
of social relationships: every agent will do the best thing
for itself regardless of the effect doing so has on others.
Such a sociology is simply not sophisticated enough to
accommodate the type of cooperative behavior that is
essential to the operation of a distributed ATC system.

Furthermore, optimization is not a well-conceived

concept with open systems, even for individuals, where
each decision maker responds to its immediate environ-
ment. What may be viewed as a good joint decision by
one agent from its limited perspective may be viewed as
a bad one by others with different perspectives. Thus,
the agents must be flexible in their decision making,
and the group must possess the capability to negotiate
to reach a mutually agreeable decision. Optimization,
by its very structure, precludes such flexible behavior.

A. Social Utilities

To formulate a more sophisticated concept, it is
necessary to return to the “headwaters” of rational
choice; namely, to review the way utilities are formed.
Conventional utility theory, as established by von Neu-
mann and Morgenstern, assumes that each individual
possesses a preference ordering of its set of possible
actions as a function of the actions that others may
take. Thus, considering a set ofn decision makers, the
ith participant has a utility functionφi(u1, u2, . . . , un)
where uk is the action taken by thekth agent. It
is not until these utilities are juxtaposed in a payoff
array that opportunities for conflict and cooperation
become evident. Under this paradigm, the possibilities
for cooperation and conflict are not considered when
defining the utilities. It is as if each participant forms
its utilities in a social vacuum, without taking into
consideration any social relationships that may exist
between agents.This is a fundamental limitation of von
Neumann-Morgenstern utility theory.

One way to overcome this limitation is to formsocial
utilities as functions of agentpreferences for action,
rather than directly as functions of agent actions, as
is done with von Neumann-Morgenstern utilities. To
achieve this goal, let us consider the notion that each
agent has two roles, or personas. One persona focuses
on achieving the fundamental goal of the decision
problem, regardless of cost, while the other persona
focuses on conserving resources and reducing costs
without worrying about achieving the goal. Together,
these two (possibly conflicting) personas provide a com-
plete description of a decision maker who must balance
the desire to achieve its goal with the cost of doing so.
We require two utilities to account for the preferences
of these two personas. One utility characterizes the
selectability of the options available to the decision
maker; that is, the degree of effectiveness of the options
with respect to achieving the goal without worrying
about cost or other consequences. The other utility
characterizesrejectability of the options; that is, the
degree to which resources are consumed (e.g., energy
costs, social costs, time delays, exposure to hazards).
These two utilities are normalized to be mass functions.
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In the multiagent case, they are multivariate mass func-
tions that permit the simultaneous characterization of a
multiagent decision system. By normalizing the utilities,
they assume the same mathematical structure as proba-
bility mass functions, and therefore we may characterize
relationships such as independence and conditioning
that are analogous to the probabilistic notions. That is,
they posses the same syntax as do probabilities, but with
different semantics. The justification for this structure is
described in detail elsewhere [10, 11].

Let pS and pR denote selectability and rejectability
mass functions, respectively, and letpSR denote the
joint mass function when simultaneously taking into
consideration the selectable and rejectable attributes of
the options. For ann agent system, the joint selectabil-
ity/rejectability is a mass function with2n variables of
the form

pS1S2···SnR1R2···Rn
(u1, u2, . . . , un; v1, v2, . . . , vn);

where S1S2 · · ·Sn corresponds to the collection of
selectability personas andR1R2 · · ·Rn corresponds to
the collection of rejectability personas. This function
is called theinterdependence function. The variables
ui, i = 1, . . . , n correspond to the options available
to the ith agent as viewed from the perspective of
goal achievementand the variablesvi, i = 1, . . . , n
correspond to the options available to theith agentas
viewed from the perspective of resource conservation.
By characterizing these joint preferences with a mul-
tivariate mass function, we are able to account for all
of the relationships that exist between all personas of a
multiagent decision problem in much the same way as
a joint probability mass function characterizes the joint
behavior of a random vector.

S1 R3 S3

S2 R2

R1

Fig. 1. Network of influence flows

The interdependence function captures all of the
decision-making considerations that may affect a multi-
agent decision system. Fortunately, its construction can
often be guided by appealing to the conditional influ-
ences that exist between agent personas. To illustrate,
consider the directed acyclic graph (DAG) displayed in
Figure 1, which corresponds to a three-agent system

(and hence it has three selectability personas and three
rejectability personas). In this system, the selectability
of S1 influencesS2 andR3. Furthermore,R3 influences
S2, and bothS2 andR2 influenceR1. Finally,S3 neither
influences nor is influenced by any other persona. The
interdependence function of this influence structure may
be expressed as

pS1S2S3R1R2R3
= pR1|S2R2

·pS2|S1R3
·pR3|S1

·pS1
·pR2

·pS3
,

where arguments have been suppressed in the interest
of brevity. The conditional mass functions represent
the influence flows between nodes of the graph. For
example,pR1|S2R2

(v1|u2; v2) expresses the amount of
rejectability that Agent 1 should ascribe to optionv1,
given that Agent 2 were to select optionu2 in the
interest of achieving its own goal and reject optionv2

on the basis of conserving resources.
Conditional utilities permit a sophisticated form of

altruism. In contrast to what may be termedcategorical
altruism, where an agent unconditionally changes its
preferences in order to benefit another, conditional util-
ities permit a concept ofsituational altruism, whereby
an agent may change its preferences as a function of
the preferences of another, rather than unilaterally. The
essential difference between these two concepts is that,
with the former, the agent sacrifices its own interest
regardless of the other’s desire to take advantage of it;
with the latter, the agent is willing to accommodate, at
least to some degree, the preferences of another in lieu
of its own preferences if, but only if, the other wishes
to take advantage of the offered largesse. Otherwise,
the agent would be governed by its own preferences
and would avoid needless sacrifice. Situational altruism
may be either benevolent, where an agent sacrifices its
performance to benefit another, or malevolent, where
an agent sacrifices to harm another. This more sophis-
ticated notion of altruism is difficult to model with
von Neumann-Morgenstern utilities. Conditional utili-
ties, however, are explicitly designed to accommodate
situational altruism and other forms of sophisticated
social behavior.

B. Satisficing Games

Satisficing game theory [12] provides a mathemat-
ically rigorous way to make such compromises in a
controlled way. Let us consider a set ofn decision
makers, and letUi denote the set of options available
to agenti, i = 1, . . . , n. A satisficing game is the triple
(n,U1 × · · · ×Un, pS1···SnR1···Rn

). To solve this game,
we must compute the joint selectability and rejectability
marginals as
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pS1···Sn
(ui, . . . , un) =

∑

v1∈U1

· · ·
∑

vn∈Un

pS1···SnR1···Rn
(ui, . . . , un, vi, . . . , vn) (1)

and

pR1···Rn
(vi, . . . , vn) =

∑

u1∈U1

· · ·
∑

un∈Un

pS1···SnR1···Rn
(ui, . . . , un, vi, . . . , vn) (2)

and the individual selectability and rejectability
marginals as

pSi
(ui) =

∑

u1∈U1

· · ·
∑

ui−1∈Ui−1

∑

ui+1∈Ui+1

· · ·
∑

un∈Un

pS1···Sn
(u1, . . . , ui−1, ui, ui+1, . . . , un). (3)

and

pRi
(ui) =

∑

u1∈U1

· · ·
∑

ui−1∈Ui−1

∑

ui+1∈Ui+1

· · ·
∑

un∈Un

pR1···Rn
(u1, . . . , ui−1, ui, ui+1, . . . , un). (4)

The jointly satisficing solution at caution level qof
a satisficing game is the subset of all option vectors
such that the joint selectability is at least as great as the
caution level multiplied by the joint rejectability, that is,

Σq =
{

(u1, . . . , un) ∈ U1 × · · · × Un :

pS1···Sn
(u1, . . . , un) ≥ q · pR1···Rn

(u1, . . . , un)
}

. (5)

The scalarq represents a relative weight between
achieving the goal and conserving resources; nominally,
q = 1.

The individually satisficing solutions for each agent
are obtained from the marginal selectability and re-
jectability functions, yielding theindividually satisficing
solutions:

Σi
q =

{

ui ∈ Ui : pSi
(ui) ≥ q · pRi

(ui)
}

.

The satisficing rectangleis the product set of the
individually satisficing sets, namely,

< = Σ1
q × · · · × Σn

q .

In general, the satisficing rectangle will not be the
same as the jointly satisficing set; they may even be
disjoint. However, the following theorem relates the two
sets.

Theorem 1: The Negotiation Theorem.If ui is indi-
vidually satisficing for agenti, that is,ui ∈ Σi

q, then

it must be theith element of some jointly satisficing
vector (u1, . . . , un) ∈ Σq.

A proof of this theorem was previously published
[12]. The content of this theorem is thatno one is
ever completely frozen out of a deal — every decision
maker has, from its own perspective, a seat at the
negotiating table. This condition is perhaps the weakest
condition under which negotiations are possible. Setting
q = 1 grants equal weight to achieving the goal and
conserving resources and ensures that the satisficing
sets are not empty. In practice,q can be viewed as
a negotiation parameter; reducingq increases the size
of the satisficing sets, and permits the participants to
lower their standards in a controlled way to reach a
compromise — a solution that is individually satisficing
for each member of the group and is jointly satisficing
for the group.

III. A Satisficing Approach to ATC

Although existing multi-agent solution techniques
might not offer a satisfactory solution because of the
inherent complexity, ATC can be viewed as a multi-
agent problem. In an implementation of free flight,
decisions will be made by individual aircraft in a dis-
tributed fashion using incomplete local knowledge; this
matches essential characteristics of multi-agent systems.
The challenges of ATC with high flight densities strain
the capability of any solution technique, particularly
since any useful solution must satisfy stringent safety
criteria. Moreover, it is infeasible to create a solution
based on exhaustive enumeration of possible scenarios,
so any solution technique must be truly general, flexible,
and scalable.

In our representation of the problem, all aircraft fly
at the same altitude. At each time step (currently 1
second intervals), each aircraft chooses from one of five
directional options, including flying straight, moderate
turns (2.5 degrees) left or right, and sharper turns (5
degrees) left or right.

The first step in applying satisficing decision theory
to the problem is to create influence flows that describe
relationships between agents in the system. Because the
problem is dynamic and the number of neighboring
aircraft varies, static influence flows cannot accurately
represent the system. We employ an algorithm to create
these flows dynamically; this is equivalent to creating a
ranking of aircraft.

Our algorithm for ranking the aircraft is relatively
simple. Initially, aircraft within fifty miles of their desti-
nation are placed in a group with priority over remaining
aircraft which are also treated as a group. Within each
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of the two groups, aircraft are ranked according to the
delay they have accumulated (relative to flying directly
to their destination). Aircraft with more delay are ranked
higher. Finally, aircraft in the same group with the same
delay are ranked according to their length of time in
flight, with longer flight times getting higher rankings.
Once the aircraft are ranked, a directed acyclic graph
can be created representing influence flows.

At each time step, every aircraft receives a list of all
aircraft within a fifty mile radius of itself. The aircraft
are then ranked using the algorithm described above.
A priority list is then created by removing from the
original list the aircraft itself, all aircraft ranked lower
than itself, and all other aircraft with which it has no
possibility of a conflict.

The rejectability function of each aircraft is deter-
mined by anticipated conflicts. For each directional
option, the intended direction of each (higher-priority)
aircraft on the priority list is compared to see if flying
in that direction would cause a conflict. Each conflict
that is detected adds a predetermined weight to that
option. Predicted collisions carry a higher weight than
near misses. After all higher ranking aircraft have been
considered, the weight of each option is then normalized
over the option space into a probability mass function.
The rejectability utility thus indicates which directional
choices are most (or least) likely to lead to conflicts with
higher priority aircraft. Note that the utility functions
of other aircraft do not influence the calculation of
rejectability.

The base selectabilityof each directional option is
determined by its difference from the desired head-
ing of the aircraft. An option that takes the aircraft
more directly to its destination will have higher base
selectability. The values are then normalized over the
option space. These values do not reflect social utility
since they are not affected by the preferences of other
aircraft.

The next step is to create a DAG representing the
influence flow for the full selectability function. In our
formulation, the selectabilities of all aircraft with higher
ranking influence the selectability of the current aircraft.
One by one, the directional options of the current
aircraft are compared against the directional preferences
of aircraft with higher rankings. Using Pearl’s Belief
Propagation Algorithm [13], we sum over the option
set of all other aircraft and normalize, producing the
selectability function of the current aircraft.

Our preliminary investigation has resulted in the
development of two models that produce good per-
formance across a variety of test scenarios. In the
full model, each aircraft makes use of all available
information in determining the selectability of its neigh-

bors. Rather than using only the base selectability of
higher-ranked aircraft, each aircraft uses its (incom-
plete) knowledge of the environment around aircraft
that influence it to approximate their full selectability,
including their ranking of aircraft and influences from
those aircraft. Although this approach cannot model
the selectability of influencing aircraft exactly, it does
improve the overall performance.

The simplified modeltakes advantage of the geomet-
ric similarity of the base selectabilities of all higher-
ranked aircraft. Influencing aircraft are grouped accord-
ing to which of the five options has the highest base
selectability. The number of aircraft in each group is
then used as the weight for each directional option. The
model also calculates the number of conflicts each group
will create given each option. It then normalizes over
the option set to produce the selectability function for
a given aircraft.

Once the selectability and rejectability functions for
a given aircraft have been determined, the set of satis-
ficing options can be computed. Given a satisficing set,
there are several defensible options for picking a single
decision. Agents willing to tolerate risk for high gains
could maximize selectability. Risk averse agents could
minimize rejectability, but this gives no guarantee of
progress towards the goal. In our approach, we choose
the satisficing option with the largest difference between
selectability and rejectability. This insures the greatest
possible progress towards the goal relative to the risk
incurred.

IV. An Example Scenario

To illustrate the process of satisficing-based decision
making, consider an example involving just two aircraft,
A and B, that are both headed directly to their desti-
nations. If both continue on their current heading, the
aircraft will collide. Aircraft A and B are 10 and 5
minutes behind schedule respectively, soA is ranked
higher.

The selectability and rejectability of aircraftA are
relatively straightforward to compute. Because its value
is reduced for options that take the aircraft off course,
pSA

is the highest for the option of flying straight,
somewhat lower for moderate turns either direction, and
the lowest for sharp turns in either direction. SinceA

has a higher ranking based on its delay, it will notB in
computing its selectability. Similarly, becauseA sees no
conflicts with aircraft on its priority list, it determines
thatpRA

is a uniform distribution over the option space.
According to our algorithm,B will sacrifice some

efficiency to resolve the conflict. In effect,B will calcu-
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late which of its options will take it the least off course
and still resolve the conflict.pSB

The selectability of
B depends on the selectability ofA and the current
distance between the aircraft. (As noted above, the
selectability ofA is the largest for the option of going
straight.) If a slight heading change forB to the right or
left will resolve the conflict, then so will sharp turns, so
all four turning options have the same selectability since
they avoid conflicts. If the distance between the aircraft
is such that a sharp turn is required, only the sharp turns
will receive the highest values of selectability forB.

The rejectability ofB is calculated by looking at
possible conflicts. If moderate turns avoid conflicts,
going straight will be assigned the value one and all
other options will have value zero. On the other hand,
if moderate turns result in a near miss and only sharp
turns avoid conflicts, going straight will be assigned
the highest rejectability, slight turns will have smaller
values, and sharp turns will have a rejectability of zero.
Ties are broken by picking the option that takes the
aircraft closer to its destination. The smallest detour
with no conflicts will be chosen — this corresponds
to maximizing the difference between selectability and
rejectability values for each option.

If the selectability ofA were highest for a sharp right
turn (to put it back on course), the result would be quite
different. The selectability ofB would see thatA would
prefer a sharp right turn, and thereforeB’s options
to turn left (into A’s anticipated path) would have
lower selectability values. Rejectability values would
remain the same because they are independent of the
preferences of other aircraft. This means thatB would
choose to go straight because it is the direction that
would take the aircraft towards its destination while still
avoiding conflicts. This is an example where the benefits
of situational altruism and the efficiency it introduces
through cooperation are easily observed.

V. Previous Conflict Resolution Schemes

Widespread interest in free flight has resulted in a
wide variety of conflict resolution approaches. Proposed
schemes differ in several important ways, including
centralized or distributed control, the actions allowed
to avoid conflicts, and the feasibility of completing the
required computation in a real-time setting.

Krozel et al. describe three different conflict reso-
lution algorithms, one centralized and two distributed
[14], all of which are implemented as constant-speed
heading change maneuvers. The centralized approach
determines the set of conflicts arising in the next eight
minutes if no corrective actions were taken. Aircraft

are partitioned into clusters such that no aircraft has
a conflict with an aircraft in a different cluster. All
aircraft within a cluster are ranked using a permutation
sequence, and the highest ranking aircraft is allowed to
fly its nominal trajectory. A conflict-free trajectory is
then sought for each remaining aircraft in sequence. If
at any point an acceptable conflict-free path cannot be
found, the algorithm restarts with a different ranking
and permutation sequence.

In Krozel’s decentralized strategies, aircraft resolve
their own conflicts as they are detected. Multiple con-
flicts within the eight-minute look-ahead window are
resolved in a sequential pair-wise fashion, either passing
in front of or behind the conflicting aircraft. Amyopic
strategy selects the alternative that requires the smallest
heading change. A secondlook-aheadstrategy further
examines the selected maneuver to ensure that it does
not produce a conflict that would occur earlier than
the original conflict. If such a conflict is detected, the
strategy tries the alternative maneuver, and then small
heading offsets from the original choice if needed.

Pappas, Tomlin and Sastry propose a decentralized
conflict architecture that views the aircraft as a hybrid
system incorporating both discrete events and individual
dynamics modeled by differential equations [15]. Pro-
jected conflicts are resolved in two phases. First, non-
cooperative methods from game theory are used by each
aircraft to search for a velocity change that guarantees
separation regardless of the actions of the opponent. If
the first phase is unsuccessful, the aircraft then employ
coordinated constant-velocity heading-change maneu-
vers to avoid the conflict. Maneuvers are described for
up to three aircraft depending on the geometry of the
scenario. In [16] the non-cooperative game-theoretic ap-
proach is expanded to include both path deviations and
speed variations. Subsequent extensions have included:
a complete methodology for generating provably safe
conflict heading-change and velocity-change resolution
maneuvers for two aircraft [17, 18], a comparison of
the hybrid approach relative to a continuous kinematic
planner proven to be safe with up to three aircraft [19],
and a protocol for resolving conflicts with instantaneous
heading-change maneuvers when conflicting aircraft are
out of direct communication range [20].

Koseckaet al. use distributed motion planning al-
gorithms based on potential and vortex fields are used
to generate prototype heading-change maneuvers for
multi-aircraft conflicts; actual maneuvers are flyable,
piece-wise linear approximations of the prototypes
which can be proven safe using hybrid verification
techniques [5]. Selected maneuvers are shown for up to
four aircraft. This work was extended in [21] to include
altitude change maneuvers if heading changes in the
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horizontal plane were unable to resolve the conflict.
Dugail, Feron and Bilimoria analyze a decentralized

conflict resolution scheme for two perpendicular flows
of air traffic that intersect at a fixed point [22]. Upon
entering the airspace, each aircraft makes a single
instantaneous heading change — the minimum required
to avoid conflicts with those aircraft already present.
After the maneuver, each aircraft flies in a straight line
until leaving the modeled airspace. The authors prove
that this conflict resolution scheme does not result in
arbitrarily large avoidance maneuvers and is therefore
stable. In related work [23], scenarios are examined with
traffic flows that meet at arbitrary angles. Avoidance
maneuvers include both instantaneous heading changes
and instantaneous lateral position changes.

Resmerita and Heymann describe an approach that
partitions the airspace into static cells that may be
occupied by only one aircraft at a time, thus ensur-
ing separation [24, 25]. Conflict resolution equates to
finding a conflict-free path through a resource graph
representing the cells in the airspace. The aircraft share
a common database that includes preferred flight plans
for all aircraft in the system. When a new aircraft desires
to enter the system, it registers its flight plans in the
database and compares its paths with those of active
aircraft. If none of its preferred paths are conflict free,
resources are requested from other aircraft, which are
required to relinquish resources if an alternative path
to their destination exists. If resource requests do not
produce a solution, the aircraft is not allowed to enter
the airspace.

Bicchi and Pallottino propose a method for planning
optimal conflict resolution maneuvers for kinematic
models of aircraft flying in a horizontal plane with
constant velocity and curvature bounds [26]. The ap-
proach is formulated as an optimal control problem
to minimize total flight time: necessary conditions are
derived, possible trajectories are parameterized, and so-
lutions are numerically computed. In this approach, the
number of optimization problems grows combinatorially
with the number of aircraft involved. Both centralized
and decentralized implementations are described and
simulated. Similar approaches were later applied to
systems with centralized control and aircraft maneuvers
consisting of either instantaneous velocity changes or
single instantaneous heading changes [27], to a de-
centralized hybrid approach with instantaneous heading
changes including up to three aircraft [28], and to a
decentralized hybrid system for an arbitrary number of
nonholonomic vehicles [29].

Other authors have studied conflicts using proba-
bilistic models that allow for uncertainty in aircraft
position due to wind and errors in tracking, navigation,

and control. Paielli and Erzberger describe a means
for estimating the probability of a conflict between
two aircraft, given predicted trajectories for each [30].
Trajectory prediction errors are modeled with a normal
distribution, error covariances for an aircraft pair are
combined into a single covariance of relative position,
and a coordinate transformation is used that allows
an analytical solution. Prandiniet al. introduce two
probabilistic prediction models, one for mid-range (tens
of minutes to conflict) and one for short-range (seconds
or minutes to conflict) [31]. When a probable conflict is
detected, a decentralized conflict resolution algorithm is
employed to make heading changes based on potential
fields in which aircraft repel each other. Simulation
results are included for up to eight aircraft.

Rong et al. describe an cooperative agent-based so-
lution to conflict resolution based on constraint sat-
isfaction problems [32]. Using direct communication,
conflicting agents negotiate pairwise until a mutually ac-
ceptable resolution is found. Agents take turns propos-
ing solutions; if the other aircraft rejects the proposal,
it sends a revised solution accompanied by information
about whatever private constraint the previous solution
violated. If negotiation fails to produce an acceptable
alternative, the aircraft turn to centralized controllers
for a resolution.

In an approach based on computational geometry,
Chianget al. employ a Delaunay diagram to represent
the aircraft in flight [33]. Since nearest neighbor in-
formation is encoded in the diagram, a conflict alert
is triggered if the length of an edge falls below a
separation threshold. The conflict resolution algorithm
is computationally intensive, amounting to the construc-
tion of a non-intersecting set of piecewise linear tubes
or pipes through space-time, each of which corresponds
to the trajectory of an aircraft.

Finally, Kuchar and Yang describe a framework in
which 68 previously published methods for conflict
detection and resolution are categorized [34]. Critical
factors in their taxonomy included conflict resolution
methods (prescribed, optimized, force-field, or manual),
maneuvering options (speed change, lateral, vertical, or
combined), and the management of multiple aircraft
conflicts (pairwise or global).

VI. System Performance Measures

A variety of metrics have been employed to evaluate
algorithms that maintain separation and resolve conflicts
in ATC. We discuss the most promising of these below.
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A. Separation Assurance

For any algorithm, the most important metric is that
of safety or spatial separation of aircraft. The frequency
of conflicts is a function of traffic density and the
physical geometry of the scenario studied. Surprisingly,
many papers describing algorithms for ATC do not
explicitly report the number of near misses or collisions
that occurred in their simulation runs. In our studies,
we track and report two distinct types of separation
violations: collisions, when aircraft come within 300
feet of each other, and near misses, which occur when
aircraft come within five miles of each other.

B. System Efficiency

System efficiency (SE) is loosely defined as the de-
gree to which an aircraft is able to follow its ideal flight
path [14]. In general, conflict resolution maneuvers
will cause each aircraft to deviate from its ideal path
and to consume more resources. For free flight to be
successful, conflicts must be avoided while maintaining
acceptable efficiency. Since all aircraft are identical and
cruise at the same speed, and since conflict resolution
maneuvers are constant-speed heading-change maneu-
vers, the efficiency can be calculated by tracking the
time it takes each aircraft to get from its starting point
to its destination. The actual flight time,tt, is compared
with the aircraft’s ideal flight time,ti, determined when
the aircraft first appeared in the simulation. The delay
time for each aircraft is calculated astd = tt − ti. For
a system withN total aircraft having completed their
flights, the system efficiency is computed by

SE =
1

N
·

N
∑

i=1

( ti

tdi
+ ti

)

.

In the ideal system, all aircraft are able to fly their
ideal paths, soSE = 1. As traffic density and conges-
tion increase, aircraft deviate further from their ideal
paths, andSE decreases in value.

C. System Stability

System stability (SS) is defined as the degree to
which conflict resolution maneuvers create new conflicts
with adjacent aircraft that must be resolved [14]. As
originally proposed, the metric counts as conflict threats
all separation violations predicted to occur within a 50-
mile radius. DefineS1 as the set of conflicts that occur
if all aircraft fly their ideal flight paths, andS2 as the set
of all conflict threats that occur when conflict resolution
maneuvers are employed. ThenSS is given by

SS =
|S1|

|S2|
.

If SS has the value 0.1, then 10 times more conflict
threats occurred with the resolution algorithm employed
than occurred with no conflict resolution maneuvers.

When a truly cooperative algorithm is employed,
conflicts can be predicted and avoided before they are
ever officially tallied as a threat. For example, if aircraft
A wants to turn right to avoid one conflict, but that turn
would create a conflict with lower ranked aircraftB, B

is likely to alter its path to avoid the potential conflict
before it is ever realized as a threat. For cooperative
satisficing algorithms,S2 can be much smaller than
S1, resulting in very large values ofSS. Because this
measure as originally formulated does not give much
insight into satisficing algorithms, we did not make use
of it in our studies.

VII. Results

Our simulation environment is similar to simulations
used by other researchers [14, 22, 23]. All aircraft are
constrained to fly at the same altitude. While altitude
changes are an effective means of resolving conflicts,
they were disallowed to make it simpler to create high
aircraft densities that would stress conflict resolution
techniques. Furthermore, all aircraft travel at the con-
stant velocity of 500 mph. As previously described, once
each second each plan receives a list of information
about all aircraft within 50 miles. Each aircraft uses
this information to make a decision from its option
space. Maneuvers are modeled by instantaneous head-
ing changes. After making local decisions, all aircraft
update their own headings and positions, and then that
information is distributed to all other aircraft within the
50-mile limit and the display screen is updated with the
new information.

While certain patterns of conflicting aircraft are likely
to be common in free flight, it would be impossible to
enumerate all possible interaction geometries. For this
reason, we feel that any conflict resolution algorithm
must be evaluated across a wide range of scenarios. Our
study included scenarios with fixed geometries as well
as scenarios with completely random traffic patterns and
arbitrary traffic density. None of our scenarios include
obstacles, problematic weather areas, or no-fly zones.
We describe each scenario in detail and report the results
of our simulation runs.

A. Random Flights

This environment, based on a model used by Krozel
and colleagues [14], consists of two concentric circles
in open air space. Aircraft appear at random points on
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the outer circle (radius 120 miles) and are assigned
a random destination point on the inner circle (radius
100 miles). The 20 mile buffer between the circles is
used to ensure that no aircraft are generated already in
conflict with other aircraft. Because this scenario tests
a wide range of conflict types, it is a good test of any
algorithm’s ability to deal safely and efficiently with
unpredictable patterns. Table I shows the average of
results from four simulation runs of the full model at
each reported density, each run lasting 50 minutes.

Aircraft Near Miss Collisions Efficiency (%)
80 26 .25 97.1
70 19.8 .25 97.7
60 11 .25 98.0
50 6.25 0 98.1
45 4.75 0 98.6
40 3.75 0 99.1
30 1.75 0 99.1
20 0 0 99.6

TABLE I

RESULTS FORRANDOM FLIGHT SCENARIO

Note the high efficiency that results, even with ex-
tremely dense traffic. High efficiency equates to a de-
crease in flight delay and in resources consumed —
desirable outcomes for both passengers and industry.
Results with lower traffic densities were not included
to save space; in those cases, the conflict count is zero
and the efficiency increases as the density decreases.

B. Choke Point

In this scenario, based on a model used by Pallottino
and colleagues[27], all aircraft begin from evenly spaced
points on a circle with radius 50 miles. Each aircraft’s
destination is the point on the circle opposite its starting
point. Thus, all aircraft are set to pass through the center
of the circle at the same time, creating a considerable
challenge for any conflict resolution algorithm. This
scenario is good for testing computational load, as all
aircraft are in the same influence net. Because of this
complexity, the full model requires too many calcula-
tions to run in real time. The results shown are for the
simplified model only. While this scenario is unrealistic,
it does provide insight into how a conflict resolution
algorithm deals with a complicated situation.

Figure 2 shows a series of screen shots as 32 aircraft
attempt to reach their destination. Although the conflict
resolution algorithm is in no way preprogrammed to
handle this specific problem scenario, the behavior that
emerges from the satisficing approach is very similar to
the previously published solution[27].

Table II summarizes simulation results for a range
of problem sizes. (Results from a single run are re-

Fig. 2. Choke Point Snapshots With 10 Mile Grid

Aircraft Near Misses Efficiency (%)
12 0 97.9
14 1 97.3
16 1 95.5
18 3 94.4
20 7 93.6
22 8 91.4
24 8 86.9
26 14 85.6
28 14 84.5
30 18 84.4
32 19 85.7

TABLE II

RESULTS FOR THECHOKE POINT SCENARIO

ported; neither the scenario nor the algorithm include
randomness, so multiple simulation runs for a given
aircraft density give identical results.) Because the circle
is of fixed size, increases in the number of aircraft
cause corresponding increases in traffic density. The
satisficing approach is able to achieve high efficiency
while completely avoiding collisions for the densities
reported.

C. Perpendicular Flows

In this scenario, similar to case study introduced
by Dugail and colleagues[22], two flows of traffic are
routed to intersect in the middle of the100 × 100
mile world. The aircraft trajectories in each flow are
generated with an initial separation just over five miles
from the preceding aircraft, ensuring that each can
make small avoidance maneuvers without violating the
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required separation distance from the following aircraft.

Distribution Flights Near Miss SE (%)
Constant Flow 97 29 98.2
µ = 25 97 26 98.8
µ = 20 94 24 97.4
µ = 15 93 6 99.8
µ = 10 87 4 99.7

TABLE III

RESULTS FORPERPENDICULARFLOW SCENARIO

Table III reports simulation results for the simplified
model for this scenario. In the case labeled “constant
flow”, a new aircraft is added to each flow every 40
seconds. For the other runs, strings of aircraft separated
by 40 seconds were generated with length given by
the Gaussian random variableN (µ,1). At the end of
each string, there is a gap of 80 seconds before the
aircraft that begins the next string. The results illustrate
that the insertion of occasional gaps can increase both
safety and efficiency. Overall, the satisficing algorithm
is impressive in both its efficiency and its safety record:
no collisions occurred.

Fig. 3. Perpendicular Flows With 10 Mile Grid

Figure 3 shows a snapshot of the pattern aircraft
assume when employing the satisficing algorithm. Al-
though the algorithm is not preprogrammed to handle
this specific scenario, the solution that emerges has
the same geometric characteristics as the algorithm
published by Dugailet al. In particular, both solutions
exhibit the formation of waves or rows of aircraft.
Again, the performance and emergent behavior of the
satisficing approach are promising.

D. Computational Load

An important factor in the real-time implementation
of any algorithm is computational load. If an algorithm
cannot be implemented in real time, other measures
of its performance are not very meaningful. In our
simulations, we used a single Pentium IV processor
to control all aircraft in all simulations. This reached
a maximum loading of 80 aircraft modeled simultane-
ously. Of the two models, the full model is the more
computationally intense. For ann agent system, where
each agent hask options, the computational load (for the
entire system) can beO(n · kn). The actual number of
computations depends on how many aircraft are within
the 50 mile radius, and how many have the chance
of causing a conflict with each other. The larger this
web of influences grows, the more difficult it becomes
to calculate. For this reason, simulations such as the
choke point scenario cannot use the full model as a
decision support algorithm. This realization was our
main motivation for creating the simplified model.

The computational load (for the entire system) of
the simplified model is simplyO(n). In other words,
the algorithm runs in constant time for each aircraft
regardless of the number of aircraft. With this algorithm,
even scenarios with the complexity of the choke point
can easily run in real time, and this makes the simplified
model an attractive alternative to investigate. Note that
the computational overhead of a truly distributed imple-
mentation is further reduced for both schemes because
each aircraft runs its own satisficing algorithm locally.

VIII. Conclusions and Future Work

The need for new algorithms that automate decision
making will continue to grow as air traffic densities
increase. Satisficing decision theory offers an attractive
method of modeling and solving distributed multiagent
problems that are inherently cooperative as in the case
of air traffic control. Satisficing theory is mathematically
sound, robust, and flexible. Solutions based on satisfic-
ing theory can exhibit complex behavior, yet be based
on relatively simple algorithms that are not specific
to any fixed problem scenario. While many envisioned
extensions to satisficing theory remain to be explored,
our results suggest that a satisficing-based approach can
offer good performance and safety for the challenging
problem of air traffic control.
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