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Abstract— Modern architecture research relies heavily on
detailed pipeline simulation. Simulating the full execution of
an industry standard benchmark can take weeks to complete.
Simulating the full execution of the whole benchmark suite for
one architecture configuration can take months. To address this
issue researchers have examined using targetted sampling based
on phase behavior to significantly reduce the simulation time of
each program in the benchmark suite. However, even with this
sampling approach, simulating the full benchmark suite across
a large range of architecture designs can take days to weeks to
complete.

The goal of this paper is to further reduce simulation time for
architecture design space exploration. We reduce simulation time
by finding similarity between benchmarks and program inputs
at the level of samples (100M instructions of execution). This
allows us to use a representative sample of execution from one
benchmark to accurately represent a sample of execution of other
benchmarks and inputs. The end result of our analyis is a small
number of sample points of execution. These are selected across
the whole benchmark suite in order to accurately represent the
complete simulation of the whole benchmark suite for design
space exploration. We show that this provides approximately the
same accuracy as the SimPoint sampling approach while reducing
the number of simulated instructions by a factor of 1.5.

I. INTRODUCTION

Understanding the cycle level behavior of a processor during
the execution of an application is crucial to modern computer
architecture research. To gain this understanding, researchers
typically employ detailed simulators that model each and every
cycle. Unfortunately, this level of detail comes at the cost of
speed, and simulating the full execution of an industry standard
benchmark can take weeks or months to complete, even on
today’s fastest simulators running on the fastest machines.
Exacerbating this problem further is the need of architecture
researchers to simulate each benchmark over a variety of
different architectural configurations and design options, to
find the set of features that provides the appropriate tradeoff
between performance, complexity, area, and power. The same
program binary, with the exact same input, may be run hun-
dreds or thousands of times to examine how, for example, the
effectiveness of a given architecture changes with cache size.
Researchers need techniques which can reduce the number
of machine-months required to estimate the impact of an
architectural modification without introducing an unacceptable
amount of error or excessive simulator complexity.

Sampled simulation is a well known approach for speeding
up simulation runs [1], [2], [3]. One tool for guiding sampled
simulations is called SimPoint [1], [2] which reduces the
simulation time of a single program by exploiting the phase
behavior found in applications. Executing programs have be-
haviors that change over time in ways that are not random, but
rather are often structured as sequences of a small number of
reoccurring behaviors, which are called phases. This structured
behavior is a great benefit to simulation. SimPoint allows
very fast and accurate sampling by identifying each of the
repetitive behaviors and then taking only a single sample
of each repeating behavior to represent that behavior. All
of these samples together represent the complete execution
of the program. SimPoint intelligently chooses a very small
set of samples called Simulation Points that, when simulated
and weighted appropriately, provide an accurate picture of the
complete execution of the program. In addition, simulating
only these carefully chosen simulation points can save hours
of simulation time.

SimPoint’s focus was on finding a small set of representative
samples to represent a single program’s execution. What we
have found in this paper is that two samples from two different
applications can have very similar behavior across many differ-
ent microarchitecture independent metrics, and these samples
end up also having very similar architecture metrics. This
means that we can reduce the simulation time of a complete
benchmark suite by picking a representative reduced set of
samples from the programs across the benchmark suite. That
is the focus of this paper.

We use SimPoint’s model of breaking each program’s
execution into a set of contiguous non-overlapping intervals
of 100 million instructions of execution. For each interval
of execution we collect a set of architecture independent
characteristics such as instruction mix, data and instruction
working set sizes, and more. We then perform Principal
Component Analysis (PCA) across a set of all program and
input pairs for a benchmark suite to reduce the dimensionality
of the data set into non-correlated principal components. These
principal components are then represented as a signature for
each interval of execution (sampled) for all benchmarks and
we use cluster analysis to pick the samples to use across all
of the benchmarks. This results in approximately the same



accuracy as SimPoint and a reduction of a factor of 1.5 in the
number of instructions that need to be simulated.

The contributions of this paper are:
• We propose reducing the simulation time for a whole

benchmark suite by finding cross program and cross input
similarities based upon representing a program’s phase
behavior through a set of microarchitecture independent
characteristics.

• We show that using microarchitecture independent char-
acteristics based on instruction mix, working set sizes,
etc, can find a set of representative simulation points inde-
pendent of the microarchitecture. These simulation points
can then be used to represent the complete benchmark
suite to accurately guide design space exploration.

• We show that performing benchmark suite reduction on a
per phase level across all of the benchmark suite reduces
simulation time by a factor of 1.5 over using SimPoint
with roughly the same error rate.

• We show that when performing benchmark suite reduc-
tion it is better to select representative samples from
all program-input pairs instead of performing benchmark
suite reduction by focusing on which program-input com-
binations can be completely removed from simulation as
was done in [4], [5].

II. PRIOR WORK

In this section we summarize the SimPoint approach that we
improve upon and prior work in benchmark suite reduction.

A. Program Phase Behavior and SimPoint

Sherwood et al. [2] proposed using code signatures to break
a program’s execution into phases. To identify phases, they
broke a program’s execution into contiguous non-overlapping
intervals. An interval is a continuous portion of execution (a
slice in time) of a program. A phase is a set of intervals within
a program’s execution with similar behavior, regardless of
temporal adjacency. This means that a phase may appear many
times as a program executes. Phase classification partitions a
set of intervals into phases with similar behavior. For our paper
we use an interval size of 100 million instructions as in [2].

Sherwood et al. [2] created a tool called SimPoint that
groups together intervals with similar code signatures into the
same phase. The code signature for each interval is represented
by a Basic Block Vector (BBV) [6] to capture information
about changes in a program’s behavior over time. A Basic
Block Vector is a one dimensional array, where each element
in the array corresponds to one static basic block in the
program. The BBV for each interval represents the frequency
of execution of each static basic block in the program for
that interval. SimPoint then performs clustering on BBVs,
because each vector contains the frequency distribution of code
executed in each interval. By comparing BBVs of two intervals
during clustering, SimPoint can evaluate the similarity of two
intervals. If the distance between the two BBVs is small (close
to 0), then the two intervals spend about the same amount
of time in roughly the same code, and therefore we expect
the performance of those two intervals to be similar. Code
signatures grouped into the same cluster have been shown

to exhibit similar CPI, numbers of branch mispredictions,
numbers of cache misses, etc. [6].

After this phase classification algorithm is done, intervals
with similar code usage will be grouped together into the same
phase. Then from each phase, they choose one representative
interval that will be simulated in detail to represent the
behavior of the whole phase. Therefore, by simulating only
one representative interval per phase, SimPoint can extrapolate
and capture the behavior of the entire program. This set of
intervals, one chosen from each phase, is called the set of
Simulation Points. This same set of simulation points for a
given program-input pair are simulated to create an estimated
CPI (and other architecture metrics) for each architecture
configuration during design space exploration.

In this paper, we build on SimPoint to try to find cross
program and cross input similarities. To achieve this we
examine finding similar behavior using signature vectors that
are both microarchitecture and code signature independent.
SimPoint’s vectors (BBVs) are code dependent, since they are
based upon the code signatures when executing that program.
This is an important distinction, because little similarity can
be found across programs and only minor similarity across
inputs if one was to look at only code signatures.

B. Benchmark Suite Reduction with PCA

Eeckhout et al. [4] proposed a workload reduction approach
that picks a number of program-input representatives from a
large set of program-input pairs. They first measure a number
of program characteristics of the complete execution for each
program-input pair. They subsequently apply principal com-
ponents analysis (PCA) in order to get rid of the correlation
in the data set. (In section III-B we will discuss why this is
important.) As a final step, cluster analysis (CA) computes
the similarities between the various program-input pairs in
the rescaled PCA space. Program-input pairs that are close to
each other in the rescaled PCA space exhibit similar behavior;
program-input pairs that are further away from each other
are dissimilar. As such, these similarity metrics can be used
for selecting a reduced workload. For example, there is little
benefit in selecting two program-input pairs for inclusion in
the reduced workload if both exhibit similar behavior.

The set of program characteristics used by Eeck-
hout et al. [4] is a collection of microarchitecture-
independent and microarchitecture-dependent characteristics.
The microarchitecture-dependent characteristics include for
example miss rates for specific cache configurations and
specific branch predictors. The main disadvantage of using
microarchitecture-dependent characteristics is that it is un-
clear whether the results are directly applicable for other
microarchitectural configurations. In this paper, we follow
the proposal by Phansalkar et al. [5] to only use a set of
important microarchitecture-independent characteristics. The
main contribution made in this paper over these previously
proposed benchmark suite reduction techniques which con-
sidered aggregate metrics only (averaged over the complete
benchmark execution), is that we reduce the benchmark suite
based on a phase level analysis. We break up a complete
benchmark execution into intervals in order to collect a number



of microarchitecture-independent characteristics per phase. As
we will show, by exploiting the phase behavior of a benchmark
execution the reduced workload is more accurate than when
aggregate behavior is considered.

Several additional studies have been performed using this
workload analysis approach, for example comparing the mem-
ory behavior of SPEC CPU95 and SPEC CPU2000 [7], sub-
setting benchmark suites [8], studying the interaction between
the virtual machine and the Java application [9], and validating
reduced input sets [10]. Yi et al. [11] use the Plackett-Burman
design to quantify the similarity between benchmarks. The
Plackett-Burman design requires that a number of simulations
are run for a number of microprocessor configurations. All
of this prior work on quantifying benchmark similarity con-
sidered microarchitecture-dependent characteristics measured
from complete benchmark executions. Our paper on the other
hand, uses only microarchitecture-independent characteristics
at the phase level.

III. WORKLOAD ANALYSIS

This section discusses our workload analysis. We iden-
tify two major issues: (i) the microarchitecture-independent
characteristics that need to be collected for each interval of
execution for the various benchmarks under consideration, and
(ii) the data analysis to extract useful information from this
large data set.

A. Microarchitecture-independent characteristics

In order to be able to measure cross-input and cross-program
similarity at the phase level, we consider microarchitecture-
independent characteristics measured over intervals of pro-
gram execution. The program execution intervals we use in
this paper are fixed-length intervals of 100 million dynamically
executed instructions. This does not affect the generality of our
approach—the approach presented in this paper could also
be used for fixed-length intervals of other sizes as well as
for variable-length intervals. The reason why we use 100M
instruction intervals is that 100M intervals are easy to use
because they are fairly insensitive to warmup issues, i.e.
simple warmup strategies are sufficient [12]. Note this is
also the reason why Intel’s PinPoint uses large instruction
intervals [13].

The reason we consider microarchitecture-independent char-
acteristics instead of microarchitecture-dependent characteris-
tics is that the workload analysis needs to be done only once
so that its results can be used multiple times for estimating
the performance of a collection of processor configurations.
This is important since we want to run our analysis once on
a benchmark suite and use the simulation points found across
all the different architecture configurations during design
space explorations. Table I summarizes the microarchitecture-
independent characteristics that we use in this paper, which
we now describe.

The range of microarchitecture-independent characteristics
is fairly broad in order to cover all major program behaviors
such as instruction mix, inherent ILP, working set sizes,
memory strides, branch predictability, etc. The results given
in the evaluation section of this paper confirm that this

set of characteristics is indeed broad enough for accurately
characterizing cross-program and cross-input similarity. We
include the following characteristics:

Instruction mix. We include the percentage of loads, stores,
control transfers, arithmetic operations, integer multiplies and
floating-point operations.

ILP. In order to quantify the amount of instruction-level par-
allelism (ILP), we consider an idealized out-of-order processor
model in which everything is idealized or unlimited except for
the window size. We measure for a given window size over
a set of 32, 64, 128 and 256 in-flight instructions how many
independent instructions there are within the current window.

Register traffic characteristics. We collect a number of
characteristics concerning registers [14]. Our first characteris-
tic is the average number of input operands to an instruction.
Our second characteristic is the average degree of use, or the
average number of times a register instance is consumed (reg-
ister read) since its production (register write). The third set
of characteristics concerns the register dependency distance.
The register dependency distance is defined as the number of
dynamic instructions between writing a register and reading
it.

Working set. We characterize the working set size of the
instruction and data stream. For each interval, we count how
many unique 32-byte blocks were touched and how many
unique 4KB pages were touched for both instruction and data
accesses.

Data stream strides. The data stream is characterized with
respect to local and global data strides [15]. A global stride
is defined as the difference in the data memory addresses
between temporally adjacent memory accesses. A local stride
is defined identically except that both memory accesses come
from a single instruction—this is done by tracking memory
addresses for each memory operation. When computing the
data stream strides we make a distinction between loads and
stores.

Branch predictability. The final characteristic we want
to capture is branch behavior. The most important aspect
would be how predictable the branches are for a given interval
of execution. In order to capture branch predictability in a
microarchitecture-independent manner we used the Prediction
by Partial Matching (PPM) predictor proposed by Chen et
al. [16], which is a universal compression/prediction tech-
nique.

A PPM predictor is built on the notion of a Markov
predictor. A Markov predictor of order k predicts the next
branch outcome based upon k preceding branch outcomes.
Each entry in the Markov predictor records the number of
next branch outcomes for the given history. To predict the
next branch outcome, the Markov predictor outputs the most
likely branch direction for the given k-bit history. An m-order
PPM predictor consists of (m+1) Markov predictors of orders
0 up to m. The PPM predictor uses the m-bit history to index
the mth order Markov predictor. If the search succeeds, i.e.
the history of branch outcomes occurred previously, the PPM
predictor outputs the prediction by the mth order Markov
predictor. If the search does not succeed, the PPM predictor



category no. characteristic
instruction mix 1 percentage loads

2 percentage stores
3 percentage control transfers
4 percentage arithmetic operations
5 percentage integer multiplies
6 percentage fp operations

ILP 7 32-entry window
8 64-entry window
9 128-entry window
10 256-entry window

register traffic 11 avg. number of input operands
12 avg. degree of use
13 prob. register dependence = 1
14 prob. register dependence ≤ 2
15 prob. register dependence ≤ 4
16 prob. register dependence ≤ 8
17 prob. register dependence ≤ 16
18 prob. register dependence ≤ 32
19 prob. register dependence ≤ 64

working set size 20 I-stream at the 32B block level
21 I-stream at the 4KB page level
22 D-stream at the 32B block level
23 D-stream at the 4KB-page level

category no. characteristic
data stream strides 24 prob. local load stride = 0

25 prob. local load stride ≤ 8
26 prob. local load stride ≤ 64
27 prob. local load stride ≤ 512
28 prob. local load stride ≤ 4096
29 prob. local store stride = 0
30 prob. local store stride ≤ 8
31 prob. local store stride ≤ 64
32 prob. local store stride ≤ 512
33 prob. local store stride ≤ 4096
34 prob. global load stride = 0
35 prob. global load stride ≤ 8
36 prob. global load stride ≤ 64
37 prob. global load stride ≤ 512
38 prob. global load stride ≤ 4096
39 prob. global store stride = 0
40 prob. global store stride ≤ 8
41 prob. global store stride ≤ 64
42 prob. global store stride ≤ 512
43 prob. global store stride ≤ 4096

branch predictability 44 GAg PPM predictor
45 PAg PPM predictor
46 GAs PPM predictor
47 PAs PPM predictor

TABLE I

MICROARCHITECTURE-INDEPENDENT CHARACTERISTICS.

uses the (m-1)-bit history to index the (m-1)th order Markov
predictor. In case the search misses again, the PPM predictor
indexes the (m-2)th order Markov predictor, etc. Updating
the PPM predictor is done by updating the Markov predictor
that makes the prediction and all its higher order Markov
predictors. In this paper, we consider four variations of the
PPM predictor: GAg, PAg, GAs and PAs. ‘G’ means global
branch history whereas ‘P’ stands for per-address or local
branch history; ‘g’ means one global predictor table shared
by all branches and ‘s’ means separate tables per branch. We
want to emphasize that these metrics for computing the branch
predictability are microarchitecture-independent. The reason is
that the PPM predictor is to be viewed as a theoretical basis for
branch prediction—it attains upper-limit performance—rather
than an actual predictor that is to be built in hardware.

B. Statistical data analysis

Our statistical data analysis consists of two major steps:
principal components analysis and cluster analysis.

1) Principal components analysis: Principal components
analysis (PCA) [17] is a statistical data analysis technique that
presents a different view on a given data set. The two most
important features of PCA are that (i) PCA is a data reduction
technique that reduces the dimensionality of a data set and
(ii) PCA removes correlation from the data set. Both features
are important to increase the understandability of the data set.
For one, analyzing a q-dimensional space is obviously easier
than analyzing a p-dimensional space in case q � p. Second,
analyzing correlated data might give a distorted view; non-
correlated data does not have that problem. The reason is that
a distance measure in a correlated space gives too much weight
to correlated variables (these correlated variables result from
the same underlying program characteristic; the underlying
characteristic would thus have too much weight in the overall
distance measure).

The input to PCA is a matrix in which the rows are
the cases and the columns are the variables. In this paper,

the cases are the various 100M intervals from the vari-
ous benchmarks; the columns are the 47 microarchitecture-
independent characteristics presented in the previous section.
PCA computes new variables, called principal components,
which are linear combinations of the original variables, such
that all principal components are uncorrelated. PCA tranforms
the p variables X1,X2, . . . , Xp into p principal components
Z1, Z2, . . . , Zp with Zi =

∑p
j=1 aijXj . This transforma-

tion has the properties (i) V ar[Z1] ≥ V ar[Z2] ≥ . . . ≥
V ar[Zp]—this means Z1 contains the most information and
Zp the least; and (ii) Cov[Zi, Zj ] = 0,∀i �= j—this means
there is no information overlap between the principal com-
ponents. Note that the total variance in the data (variables)
remains the same before and after the transformation, namely∑p

i=1 V ar[Xi] =
∑p

i=1 V ar[Zi]. In this paper, Xi is the ith
microarchitecture-independent characteristic; Zi then is the ith
principal component after PCA. V ar[Xi] is the variance of
the original microarchitecture-independent characteristic Xi

computed over all intervals. Likewise, V ar[Zi] is the variance
of the principal component Zi over all intervals.

As stated in the first property in the previous paragraph,
some of the principal components will have a high variance
while others will have a small variance. By removing the prin-
cipal components with the lowest variance from the analysis,
we can reduce the dimensionality of the data while controlling
the amount of information that is thrown away.

We retain q principal components which is a sig-
nificant information reduction since q � p in most
cases. To measure the fraction of information retained in
this q-dimensional space, we use the amount of variance
(
∑q

i=1 V ar[Zi])/(
∑p

i=1 V ar[Xi]) accounted for by these q
principal components. For example, criteria such as ‘60%,
70% or 80% of the total variance should be explained by
the retained principal components’ could be used for data
reduction. An alternative criterion is to retain all principal
components for which the individual retained principal com-
ponent explains a fraction of the total variance that is at least



as large as the minimum variance of the original variables.
In this study the p original variables are the

microarchitecture-independent characteristics mentioned
in section III-A. By examining the most important q principal
components, which are linear combinations of the original
variables (Zi =

∑p
j=1 aijXj , i = 1, . . . , q), meaningful

interpretations can be given to these principal components
in terms of the original microarchitecture-independent
characteristics. A coefficient aij that is close to +1 or -1
implies a strong impact of the original characteristic Xj on
the principal component Zi. A coefficient aij that is close to
0 on the other hand, implies no impact.

In principal components analysis, one can either work with
normalized or non-normalized data (the data is normalized
when the mean of each variable is zero and its variance is
one). In the case of non-normalized data, a higher weight is
given in the analysis to variables with a higher variance. In
our experiments, we have used normalized data because of our
heterogeneous data; e.g., the variance of the ILP is orders of
magnitude larger than the variance of the instruction mix.

The output obtained from PCA is a matrix in which the
cases or the rows are the intervals for the various benchmarks
and the variables or the columns are the retained principal
components. Before we proceed to the next step we make
sure we normalize the principal components, i.e. we rescale
the principal components to unit variance. The reason is that a
non-unit variance of a principal component is a consequence of
the correlation as observed in the original data set. And since
our next step in the data analysis uses a distance measure to
compute the similarity between cases, we make sure correla-
tion does not give a higher weight to correlated variables—
correlation in a data set skews the distance measure. We will
call the obtained multidimensional space, the rescaled PCA
space.

2) Cluster analysis: The second step in our workload
analysis is cluster analysis (CA) [17]. There exist two com-
monly used strategies for applying cluster analysis, namely
linkage clustering and K-means clustering. Since K-means
clustering is less compute-intensive than linkage clustering,
we use K-means in this paper. The K-means algorithm is
an iterative process that works in two steps per iteration.
The first step is to compute the distance of each point in
the multi-dimensional space to each cluster center. In the
second step, each point gets assigned to the closest cluster.
As such, new clusters are formed and new cluster centers are
to be computed. This algorithm is iterated until convergence
is observed, i.e. cluster membership ceases to change between
iterations. For this paper, we use the SimPoint software1. The
SimPoint software evaluates and compares clustering results
for k varying from 1 to max K. And for each k, the SimPoint
software also evaluates a number of randomly choosen initial
cluster centers; in our experiments, we evaluated 7 random
seeds for each k. For each clustering, the SimPoint software
also computes the Bayesian Information Criterion (BIC) score
which measures the goodness of fit of the clustering for the
given data set. When all clustering experiments are done, the

1http://www.cs.ucsd.edu/∼calder/simpoint

SimPoint software then picks the smallest clustering (value for
k) for which the BIC score is within 90% of the maximum
observed BIC over all clusterings [2].

IV. EXPERIMENTAL SETUP

In this paper, we use the SPEC CPU2000 benchmarks,
see Table II. The binaries were taken from the SimpleScalar
website2; they are compiled for the Alpha ISA. We used the
reference inputs for all benchmarks. For most benchmarks we
used multiple reference inputs; for the others we only used
those inputs for which we could run all our simulation tools.
The dynamic instruction count for each of them is shown in
the right column of Table II.

Measuring the microarchitecture-independent characteristics
discussed in section III-A is done using ATOM [18]. ATOM
is a binary instrumentation tool that allows for instrumenting
functions, basic blocks and instructions. The instrumenta-
tion itself is done offline, i.e. an instrumented binary is
stored on disk. While running the instrumented binary, the
microarchitecture-independent characteristics get collected.

In the evaluation section of this paper, we will use detailed
architectural simulation using SimpleScalar/Alpha v3.0 [19]
for computing CPI (number of committed instructions per
cycle) numbers for each benchmark. We used Wattch [20] for
computing EPI numbers (energy consumption per instruction).
The baseline processor configuration is an 8-issue machine;
this is the same configuration as in [2].

V. EVALUATION

We now present the results from our reduced workload
approach. We first discuss workload analysis through principal
components analysis and show that the principal components
correlate well with the phase behavior of a program’s execu-
tion. Second, we present the reduced workload as obtained
from our per-phase uarch-independent workload reduction
approach and discuss where the reduction comes from. We
subsequently compare this per-phase reduced workload to
prior work, i.e. SimPoint [2] and reduced workloads obtained
from aggregate program characterization [4], [5]. Finally, we
evaluate the accuracy of the reduced workload for design space
explorations.

A. Workload analysis

As mentioned before, the input to our workload analysis is
a vector signature for each interval of execution. The elements
in the vector signature are the microarchitecture-independent
characteristics—the dimensionality of a vector signature is
47. There are as many vector signatures as there are 100M-
instruction intervals of execution over all program-input pairs
in the workload. For SPECint2000, we have 32,964 vector
signatures; for SPECfp2000, we have 38,997 vector signatures.
Note that we perform separate analyses for SPECint and
SPECfp because it is to be expected that there will be little
similarity between integer and floating-point benchmarks.

The first step in our workload analysis, PCA, reduces the
dimensionality of the vector signatures from 47 to 4 and 2

2http://www.simplescalar.com



program input I-cnt (B)
bzip2 int graphic 143.5

program 124.9
source 108.8

crafty int ref 191.8
eon int cook 80.6

rush 57.8
gap int ref 256.9
gcc int 166 46.9

200 108.6
expr 12.0
integrate 13.1
scilab 62.0

mcf int ref 61.8
parser int ref 546.7

program input I-cnt (B)
gzip int graphic 103.7

log 39.5
program 168.8
random 82.1
source 84.3

perlbmk int split.957 110.8
diff 39.9
makerand 2.0
perfect 29.0

twolf int ref 346.4
vortex int ref1 118.9

ref2 138.6
ref3 133.0

vpr int route 84.0

program input I-cnt (B)
ammp fp ref 326.5
applu fp ref 223.8
apsi fp ref 347.9
art fp 110 41.7

470 45.0
equake fp ref 131.5
facerec fp ref 268.2
fma3d fp ref 268.3
galgel fp ref 409.3
lucas fp ref 142.3
mesa fp ref 281.6
mgrid fp ref 419.1
sixtrack fp ref 470.9
swim fp ref 225.8
wupwise fp ref 349.6

TABLE II

THE SPEC CPU2000 BENCHMARKS USED IN THIS PAPER.
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Fig. 1. Factor loadings for the first four principal components for SPECint2000.
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Fig. 2. Factor loadings for the first two principal components for SPECfp2000.

for SPECint2000 and SPECfp2000, respectively, where the
dimensions are the principal components. Through various
analyses we studied the required number of principal compo-
nents. We varied the number of retained principal components
and verified the accuracy of the reduced workload for perfor-
mance prediction. We concluded from our detailed analysis
that q = 4 for SPECint2000 and q = 2 for SPECfp2000,
accounting for 60% of the total variance, makes a good
balance between accuracy and simulation speedup. Adding
more principal components usually increases the number of
representative samples—which increases simulation time—
while not significantly improving accuracy. Reducing the
number of principal components usually reduces the accuracy
making the reduced workload no longer representative of the
complete workload. We do not include this detailed analysis on

the number of required PCs here because of space constraints.
Figures 1 and 2 show the factor loadings of

the various principal components in terms of the
original microarchitecture-independent characteristics for
SPECint2000 and SPECfp2000, respectively. The order of
the microarchitecture-independent characteristics along the
X axis in these figures is the same as in Table I. Figure 1
shows how the principal components are computed by
combining the various metrics. For example, computing
the value of the first principal component for a given
interval of execution is calculated (starting with the first 4
PC1 bars on the left hand side of Figure 1) as: PC1 =
0.58 × percentage loads + 0.68 × percentage stores −
0.21×percentage ctrl−0.65×percentage arithmetic+ ....
Recall that the microarchitecture-independent characteristics
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Fig. 3. Graphs showing how well the principal components track the phase
behavior for gcc-166 on the left and gzip-graphic on the right: top graph in
each column shows CPI as a function of the number dynamically executed
instructions (in 100 millions); the remaining graphs show the values for the
four principal components as a function of time.

appearing in this formula are the ones after normalization.
This means for example that a SPECint2000 execution
interval with a high first principal component tends to have
a relatively large percentage load/store operations and a
low number of arithmetic operations, few short register
dependences, a high ILP, a large number of local and global
store strides, and a high branch predictability. This also
means that for the given data set there appears to be a strong
correlation between these microarchitecture-independent
characteristics. Similar interpretations can be given along the
other principal components.

In order for our workload reduction technique to work, we
need to verify that the principal components correlate well
with performance. This is illustrated in Figure 3 where CPI
and the first four principal components are shown as a function
of time for two benchmarks gcc-166 and gzip-graphic.
These graphs clearly show there exists correlation between the
principal component value and overall performance. Another
way of looking at this data is to look at the receiver operating
characteristic (ROC) [21] which evaluates the relationship
between significant changes in CPI versus significant changes
in the principal components. A true positive in the ROC is
defined as a significant (5%) change in CPI that is identified by
a significant change in the principal component’s value. A false

positive is defined as a significant change in the PC’s value
without a significant (5%) change in CPI. Example ROCs are
shown in Figure 4 for gcc-166 and gzip-graphic—similar
graphs are obtained for other benchmarks; the various dots
in the graph show varying thresholds for defining a significant
change in PC value. The higher the percentage of true positives
and the lower the percentage of false positives, the better.
The ROC clearly demonstrates that the principal components
correlate well with performance. In other words, looking at the
time-varying behavior of the principal components reveals the
phase behavior of an application’s execution. This reinforces
that the principal components built from our collection of
microarchitecture-independent characteristics will be useful
for workload reduction.

An important application of PCA is that it allows for
visualizing the workload space. Figures 5 and 6 show such
a visualization for the SPECint and SPECfp benchmarks,
respectively. These workload space plots show the 100M
instruction intervals for all the benchmarks as a function of the
first two principal components. The axes on all these figures
are equal to each other which allows comparison between the
benchmarks (at least within SPECint and SPECfp; we do not
compare SPECint against SPECfp, since their principal com-
ponents were computed separately). There are several inter-
esting observations to be made from these graphs. First, some
benchmarks, e.g. crafty and eon, do not show a big diversity
across the 100M instruction intervals. Other benchmarks on
the other hand, e.g. gcc, show a widely diverse behavior across
the instruction intervals. This gives some intuition about the
time varying behavior of these applications. Second, when
interpreting the meaning of the principal components, we
can gain insight into how benchmarks differ from each other
according to the microarchitecture-independent characteristics.
For example, a SPECint benchmark such as mcf positioned
along a negative value of PC1 and a high value along PC2
tends to have relatively low ILP, a small number of local
load strides, a high branch predictability, a large data stream
working set and a small instruction stream working set.

B. Workload reduction

The data as they are obtained from PCA—the coefficients
for the various execution intervals in the rescaled PCA space—
now serve as input to the second step in our workload reduc-
tion method. The purpose of this second step is to apply cluster
analysis and to determine a set of representative execution
intervals across all benchmarks and inputs. The obtained
representative 100M instruction execution intervals then are
the simulation points of our reduced workload. Applying
the cluster analysis on the SPECint2000 data set yields 148
simulation points. The error that is observed by comparing
the CPI through complete benchmark simulation versus the
CPI through the simulation of the obtained simulation points
is only 1.11%. A similar result is obtained for estimating EPI
(Energy Per Instruction): 1.05% error. This is shown as the per-
phase uarch-independent results in Table III. For SPECfp2000
we obtain fewer simulation points than for SPECint2000,
namely 84. The CPI and EPI prediction errors are only 0.87%
and 0.90%, respectively.
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Where do these simulation reductions come from? There are
three major sources: (i) phase behavior within the execution
of a single program-input pair, (ii) cross-input similarity for a
given program, and (iii) cross-program similarity. Cross-input
similarity comes from the fact that different inputs to a single
program often result in significant parts of the entire execution
to be common over various inputs. Cross-program similarity
refers to execution intervals in different programs that exhibit
similar execution characteristics. Figure 7 quantifies these
three types of similarity for SPECint2000 and SPECfp2000.
These pies show the fraction of simulation points that represent
a set of execution intervals from (i) a single program-input
pair, (ii) a single program and multiple inputs, (iii) two differ-
ent programs, (iv) three programs, (v) four programs and (vi)
five or more programs. For SPECint2000 and SPECfp2000, the
fraction simulation points representing intervals from a single
program-input pairs equals 30% and 43%, respectively. For
SPECint2000, 31% of all simulation points represent a single
program with multiple inputs—this is the fraction cross-input
similarity. For SPECfp2000, this is only 2.4% of all simulation
points—the reason is that only one floating-point benchmark
comes with multiple reference inputs, namely art, see Table II.
Cross-program similarity is observed at the phase level in
a significant fraction of the simulation points, 38.5% for
SPECint2000 and 54.8% for SPECfp2000. These results show
that there exists an important fraction of cross-input and cross-
program similarity. This paper exploits both cross-input and
cross-program (next to intra-program) similarity to reduce the
workload. SimPoint only exploits intra-program similarity. The
reasons for cross-input and cross-program similarity are that
the same parts of a program may be exercised across different
inputs; similar initialization code, similar library codes and
similar programming constructs and code generation schedules
are being executed across programs.

C. Comparison to SimPoint

We now compare our reduced workload with the simulation
points obtained using SimPoint [1], [2] which is described
in section II-A—the maximum number of simulation points
per benchmarks was set to 10 (MaxK=10) in the SimPoint
software. The SimPoint results represent taking the simulation
points for each program-input pair in the benchmark suite and
simulating them to find the average performance of the overall
workload. Comparing SimPoint against the newly proposed
per-phase microarchitecture-independent workload reduction
technique presented in this paper is somewhat difficult. Both
approaches result in a different number of simulation points

and a different accuracy guided by SimPoint. Therefore, com-
paring the number of simulation points for exactly the same
accuracy, or vice versa, comparing the accuracy for exactly
the same number of simulation points is not meaningful.
SimPoint identified 233 simulation points for SPECint2000
and 126 simulation points for SPECfp2000. The CPI and EPI
errors for SimPoint are very low for both SPECint2000 and
SPECfp2000, see Table III. The level of accuracy for SimPoint
is comparable to the level of accuracy obtained through our
workload reduction approach.

Comparing now the number of simulation points between
SimPoint and our reduced workload, we conclude that our
workload is smaller with a reduction of a factor of 1.57 for
SPECint2000 and a factor of 1.5 for SPECfp2000. The reason
why our workload reduction approach attains fewer simulation
points is due to the fact that we exploit cross-program, cross-
input, and intra-program similarity. SimPoint on the other
hand, only considers phase behavior for a single program-input
pair (intra-program similarity).

D. Comparison to aggregate workload analysis

Previous work [4], [5] proposed a method to determine
a set of representative program-input pairs from a large set
of program-input pairs. In their analysis, the authors use
aggregate characteristics (i.e. by averaging over the complete
program execution) instead of the per-phase characteristics
used in this paper. The characteristics used are either a mix
of uarch-dependent and uarch-independent characteristics [4],
or are a set of solely uarch-independent characteristics [5].
A reduced workload is then obtained by applying PCA and
clustering on this data set.

We now compare our reduced workload to what can be
obtained from an aggregate workload analysis. The results
for the aggregate microarchitecture-dependent approach of [4]
and the microarchitecture-independent approach of [5] are
shown in Table III. To gather these results, the analysis in [4],
[5] was used to reduce the number of program-input pairs
to be simulated to represent the workload. Then for each
program-input pair we used SimPoint to estimate the overall
benchmark’s execution. This was to provide a simulation
time (number of instructions to simulate) that is comparable
to our approach. The results show that the errors obtained
from an aggregate analysis are typically higher (3.5% and
2% for SPECint and SPECfp, respectively) than for the per-
phase analysis (1.1% and 0.8% for SPECint and SPECfp,
respectively).

We find that by selecting samples from a selected set of
representative program-input pairs in the aggregate analysis,
the resulting reduced workload lacks important phase behavior
from the other (non-selected) program-input pairs. In our
approach, which takes a collection of representative samples
from the complete workload, all important phase behavior is
represented which results in a higher accuracy. In addition,
a single set of simulation points for a workload using our
approach can be used to calculate performance estimates
for many different architecture configurations, since they are
microarchitecture-independent.



Workload reduction method CPI EPI #insns

SPECint2000

Per-phase uarch-independent workload reduction 1.11% 1.05% 14.8B
SimPoint 0.80% 0.86% 23.3B
Aggregate uarch-dependent workload reduction w/ SimPoint 3.65% 3.50% 13.1B
Aggregate uarch-independent workload reduction w/ SimPoint 4.01% 3.52% 13.3B

SPECfp2000

Per-phase uarch-independent workload reduction 0.87% 0.90% 8.4B
SimPoint 1.37% 1.34% 12.6B
Aggregate uarch-dependent workload reduction w/ SimPoint 1.97% 0.11% 8.6B
Aggregate uarch-independent workload reduction w/ SimPoint 2.00% 2.04% 8.5B

TABLE III

COMPARING PER-PHASE WORKLOAD ANALYSIS ON UARCH-INDEPENDENT CHARACTERISTICS VERSUS SIMPOINT VERSUS AGGREGATE WORKLOAD

ANALYSIS ON UARCH-DEPENDENT AND MICROARCHITECTURE-INDEPENDENT CHARACTERISTICS FOR SPECINT2000 AND SPECFP2000.

E. Design space exploration

As mentioned before, an important motivation for using
uarch-independent characteristics is the fact that the obtained
reduced workload can be used for design space exploration.
We now evaluate the accuracy of our reduced workload for
design space exploration. To this end, we use our reduced
workload approach to examine eight different architecture
configurations for the SPECint2000 benchmarks. We examine
varying the processor core resources, the branch predictor
configuration and the cache sizes. We only examine eight
configurations because we had to run each benchmark to
completion for each configuration to get the baseline results—
note this is exactly the problem we address through our
reduced workload approach. For the small processor core
resource machine we consider a 4-issue machine with a 32-
entry window; the large processor core resource machine is
8-issue with a 128-entry window. The small branch predictor
has 2K-entry tables; the large one 8K-entry tables. The small
cache hierarchy consists of a 16KB L1 D-cache, an 8KB L1 I-
cache and a 1MB L2 cache; the large cache hierarchy consists
of a 64KB L1 D-cache, a 32KB L1 I-cache and a 4MB L2
cache. Obviously, we also assume different access latencies
for the small and large cache configurations.

Our reduced workload approach computes one set of simu-
lation points using the micro-architecture independent char-
acteristics. Since this set of simulation points was chosen
independent of the underlying microarchitecture we can use
it for all 8 architecture configurations we simulated for our
design space exploration.

Figure 8 (top graph) compares the CPI numbers obtained
from complete benchmark suite simulation versus the ones
obtained from the per-phase uarch-independent reduced work-
load. The error for the reduced workload is very small
over all processor configurations (no more than 6%). These
results were gathered without warmup of the caches and
branch predictors—this explains the somewhat higher error
rates compared to the results presented before which assumed
perfect warmup (the focus in the previous sections was on the
error derived from sampling). This does not affect the overall
conclusions that can be taken from these graphs though.

More importantly than absolute accuracy, these CPI re-
sults show that during design space exploration the relative
performance between the various processor configurations is
estimated very well by the reduced workload. We believe
in early stages of a microprocessor design process, relative
accuracy is even more important than absolute accuracy in or-
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Fig. 8. Design space exploration using the per-phase uarch-independent
reduced workload: top graph shows CPI, middle graph shows EPI and bottom
graph shows EDP (Energy Delay Product). ‘SR’ and ‘LR’ stands for small
vs. large processor core resource; ‘SB’ and ‘LB’ mean small vs. large branch
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Configurations are sorted by decreasing CPI.

der to make early design tradeoff decisions. Indeed, computer
architects want to quantify how overall performance increases
or decreases as a function of a microarchitectural parameter.

To quantify the relative accuracy of the reduced workload
we first define relative error. We define the relative error of the
reduced workload for predicting the performance between two
processor configurations A and B as: REA,B = |CPIA,entire

CPIB,entire
−

CPIA,reduced

CPIB,reduced
|. This means we measure the relative difference

in quantifying performance speedup or degradation between
the entire workload simulation and the reduced workload
simulation. With the results from Figure 8 we can compute
the relative accuracy along the three microarchitectural dimen-



sions that we considered: processor core resources, branch
predictor sizes and cache sizes. These results confirm that
the reduced workload achieves a high relative accuracy with
relative errors below 4.16% along the cache size dimension,
3.54% along the processor core resource dimension and 1.79%
along the branch predictor dimension.

We can do a similar analysis while focusing on energy
consumption, see Figure 8 (middle graph). The relative errors
for the EPI numbers are below 5.51% along the cache size
dimension, 2.66% along the processor core resource dimen-
sion and 2.12% along the branch predictor dimension. When
combining the CPI and EPI estimates, we can compute the
energy-delay product (EDP): EDP = EPI · CPI . Fig-
ure 8 (bottom graph) shows EDP when simulating the entire
benchmark suite versus when simulating the per-phase reduced
workload. This graph clearly shows that the reduced workload
tracks the entire workload fairly well. Both per-phase reduced
workload simulation and entire workload simulation identify
the same optimal microarchitecture with the minimal EDP
metric, namely the large processor core configuration with the
large cache and small branch predictor configuration. We thus
conclude that the reduced workload can be used for accurate
and efficient processor design studies.

VI. CONCLUSION

In this paper we have applied taking a set of micro-
architecture independent characteristics to find similar inter-
vals of execution across different programs and inputs. We ex-
amined finding similar behaviors between different programs
at the level of intervals (phases) whereas the prior SimPoint
approach only found similarities between intervals within a
single program. To do this we had to look at microarchitecture-
independent characteristics and code-independent character-
istics, we could not just take the basic block vectors used
in SimPoint. Therefore, the characteristics we focused on
finding similarities for are instruction mix, register depen-
dencies, working set sizes, etc. These were used to find a
set of representative simulation points independent of the
microarchitecture across a set of benchmarks and inputs. These
simulation points can then be used to represent the complete
benchmark suite to accurately guide design space exploration.

We showed that performing benchmark suite reduction on
a per phase level across all of the benchmark suite reduced
simulation 1.5 times over using SimPoint with roughly the
same error rate. We showed that when performing benchmark
suite reduction that we were able to achieve a lower error
rate by exploiting per-phase interval behavior over the prior
aggregate approach [4], [5]. Since the reduced workload
simulation points were derived using the microarchitecture-
independent metrics we showed that they can be used across
different architecture designs, which is needed to guide design
space exploration.

Overall, the reduced workload simulation points generated
from our approach provide a nice reduction in simulation time
over SimPoint for full workload simulation, and can be used
for design space exploration.
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