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Abstract 
 

This paper presents a framework for event 
detection and video content analysis for visual surveillance 
applications. The system is able to coordinate the tracking 
of objects between multiple camera views, which may be 
overlapping or non-overlapping. The key novelty of our 
approach is that we can automatically learn a semantic 
scene model for a surveillance region, and have defined 
data models to support the storage of different layers of 
abstraction of tracking data into a surveillance database. 
The surveillance database provides a mechanism to 
generate video content summaries of objects detected by 
the system across the entire surveillance region in terms of 
the semantic scene model. In addition, the surveillance 
database supports spatio-temporal queries, which can be 
applied for event detection and notification applications. 
 
1. Introduction 
 

Wide area surveillance and monitoring using an 
intelligent network of cameras is a challenging task. Each 
camera must be capable of robustly detecting and tracking 
moving objects of interest, even with the presence of 
significant illumination changes that typically occur in 
outdoor environments. A process must also be defined to 
coordinate the tracking of objects between multiple views, 
so that a unique identity is assigned to objects visible in 
overlapping views, and an object’s identity is preserved 
between non-overlapping camera views. 

In this paper we primarily focus on how tracking 
data generated by a network of intelligent cameras can be 
utilized to support video content analysis for visual 
surveillance applications. We address several issues 
associated with data management, which include: how can 
object track data be stored in real-time in a surveillance 
database?  How can we construct different data models to 
capture multiple levels of abstraction of the low level 
tracking data, in order to represent the semantic regions in 
the surveillance scene? How can each of these data models 
support high-level video annotation and event detection for 
visual surveillance applications? 

One application of a continuous twenty-four hour 
surveillance system is that of event detection and recall. 
The general approach to solving this problem is to employ 
probabilistic frameworks in order to handle the uncertainty 
of the data that is used to determine if a particular event has 
occurred. A combination of both Bayesian classification 
and Hidden Markov Models (HMMs) were used in the 
VIGILANT project for object and behavioural 
classification [1]. The Bayesian classifier was used for 
identification of object types, based on the object velocity 
and bounding box aspect ratio. A HMM was used to 
perform behavioral analysis to classify object entry and exit 
events. 

One problem associated with standard HMMs is 
that in order to model temporally extended events it is 
necessary to increase the number of states in the model. 
This increases the complexity and the time required to train 
the model. This problem has been addressed by modeling 
temporally extended activities and object interactions using 
a probabilistic syntactic approach between multiple 
agents [2].  

The ‘Spot’ prototype is an information access 
system that can answer interesting questions about video 
surveillance footage [3]. The system supports various 
activity queries by integrating a motion tracking algorithm 
and a natural language system. The generalized framework 
supports: event recognition, querying using a natural 
language, event summarization, and event monitoring. In 
[4] a collection of distributed databases were used for 
networked incident management of highway traffic. A 
semantic event/activity database was used to recognize 
various types of vehicle traffic events. 

In the next section we describe the hierarchical 
database model we have employed to support the storage of 
the various types of data that are generated by the 
intelligent network of surveillance cameras. In section three 
we discuss the numerous applications for the surveillance 
database and demonstrate how it can support spatial-
temporal queries that can be used to provide event 
notification and recall applications. 
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2. Database Model 
 

Multi camera surveillance systems can accumulate 
vast quantities of data when running continuously over 
extended periods of time. In this paper we address the 
problem of how this data can be efficiently stored and 
annotated using a hierarchy of abstract data layers to 
support online queries and event recall. 

2.1 Data Abstraction and Representation 
 

The surveillance database is structured using four 
layers of abstraction: image framelet layer, object motion 
layer, semantic description layer, and meta data layer. This 
four-layer hierarchy supports the requirements for real-time 
capture and storage of detected moving objects at the 
lowest level, to the online query and activity analysis at the 
highest level. Computer vision algorithms are employed to 
automatically acquire the information at each level of 
abstraction. 
 
2.1.1 Image Framelet Layer 
 

The image framelet layer is the lowest level of 
representation of the raw pixels identified as a moving 
object by each camera in the surveillance network. Each 
camera view is fixed and background subtraction is 
employed to detect moving objects of interest [5]. The raw 
image pixels identified as foreground objects are 
transmitted via a TCP/IP socket connection to the 
surveillance database for storage This MPEG-4 like coding 
strategy enables considerable savings in disk space, and 
allows efficient management of the video data. Typically, 
twenty-four hours of video data from six cameras can be 
condensed into only a few gigabytes of data. This compares 
to an uncompressed volume of approximately 4 terabytes 
for one day of video data in the current format we are using, 
representing a compression ratio of more than 1000:1. The 
physical database is implemented using PostgreSQL 
running on a Linux server. PostgreSQL provides support 
for storing each detected object in the database. This 
provides an efficient mechanism for real-time storage of 
each object detected by the surveillance system. 

In figure 1 an example is shown of some objects 
stored in the image framelet layer. The images show the 
motion history of two objects as they move through the 
field of view of the camera. Information stored in the image 
framelet layer can be used to reconstruct the video sequence 
by plotting the framelets onto a background image. We 
have developed a software suite that uses this strategy for 
video playback and review. 
 

 
Figure 1 Example of objects stored in the image framelet 
layer. 

 
2.1.2 Object Motion Layer 
 

The object motion layer is the second level in the 
hierarchy of abstraction. Each intelligent camera in the 
surveillance network employs a robust 2D tracking 
algorithm to record an object’s movement within the field 
of view of each camera [6]. Features are extracted from 
each object including: bounding box, normalized color 
components, object centroid, and the object pixel velocity. 
Information is integrated between cameras in the 
surveillance network by employing a 3D multi view object 
tracker [7] which tracks objects between partially 
overlapping, and non-overlapping camera views separated 
by a short spatial distance. Objects in overlapping views are 
matched using the ground plane constraint. A first order 3D 
Kalman filter is used to track the location and dynamic 
properties of each moving object. When an object moves 
between a pair of non-overlapping views we treat this 
condition as a medium term static occlusion, and use the 
prediction of the 3D Kalman filter to preserve the object 
identity when if it reappears in the field of view of the 
adjacent camera.  

In figure 2 results from both the 2D tracking and 
multi-view object tracker are illustrated. The six images 
represent the viewpoints of each camera in the surveillance 
network. Cameras 1 and 2, 3 and 4, and 5 and 6 have 
partially overlapping fields of view. It can be observed that 
the multi-view tracker has assigned the same identity to 
each object for the two overlapping fields of view. Figure 3 
shows the field of view of each camera plotted onto a 
common ground plane generated from a landmark-based 
camera calibration. 3D motion trajectories are also plotted 
on this map in order to allow the object activity to be 
visualized over of the entire surveillance region. 
 
2.1.3 Semantic Description Layer 
 

The semantic scene models define regions of 
activity in each camera view. The information in this layer 
is populated by post track analysis of trajectories stored in 
the object motion layer [8]. In Figure 4 the entry zones, exit 
zones, and routes identified for one of the camera views are 
shown. The entry zones are represented by black ellipses, 
while the exit zones are represented by white ellipses. Each 



select routeid, count(nodeid) 
from routenodes r, objects o 
where camera=2 
and o.trajectory ?# r.polyzone 
and o.videoseq =87  
and o.trackid =1 
group by routeid 

route is represented by a sequence of nodes, where the 
black points represent the main axis of the route, and the 
white points define the envelope of the route. Route one 
and two represent lanes of vehicle traffic in the scene. It can 
be observed that the entry and exit zones are consistent with 
driving on the left hand side of the road in the UK. The 
third route represents flows of pedestrian traffic along the 
pavement. 

 

 
Figure 2. Camera network on University campus 
showing 6 cameras distributed around the building. 
 

 
Figure 3. Re-projection of the camera views from figure 
2 onto a common ground plane, showing tracked objects 
trajectories plotted into the views (white, red, blue and 
green trails). 
 

 
Figure 4. Popular paths learnt from trajectory data.  

 
In figure 5 it is illustrated how the database is used 

to perform online route classification. Four routes are 
shown that are stored in the semantic description layer of 
the database in figure 5(a). In this instance the object 
trajectory is assigned to route 4, since this is the route with 
the largest number of intersecting nodes. The corresponding 

SQL query used to classify routes is shown in figure 5(b). 
Each node along the route is modeled as a polygon 
primitive provided by the PostgreSQL database engine. The 
tracked object trajectories are transformed to a path 
geometric primitive in the database. The query counts the 
number of route nodes the object’s trajectory intersects 
with. This allows a level of discrimination between 
ambiguous choices for route classification. The ‘?#’ 
operator in the SQL statue is a logical operator that returns 
true if the object trajectory intersects with polygon region 
of a route node. 
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Figure 5. (a) Example of route classification, (b) SQL query 

to find route that intersect with an object trajectory 

 
 

 
 
 
 
 

 
Figure 6.  Information flow for online meta-data generation. 

 
2.1.4 Metadata Layer 
 

The multi-layered database allows the video 
content to be annotated using an abstract representation. It 
is possible to generate metadata online when detected 
objects are stored in the image framelet and object motion 
layers. In figure 6 the data flow is shown from the input 
video data to the metadata generated online. Initially, the 
video data and object trajectory is stored in the image 
framelet and object motion layers. The object motion 
history is then expressed in terms of the models stored in 
the semantic description layer to produce a high-level 
symbolic description of the object’s activity. The metadata 
contains information for each detected object including: 
entry point, exit point, time of activity, and the routes taken 
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Layer 

Object Motion 
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Meta-data 

Generate Meta-Data



through the field of view, along with the time spent in each 
route node. This information is tagged to each object 
detected by the system.  
 
3. Applications 
 

In order to evaluate the performance of the 
hierarchical database we have run the system continuously 
over a twenty-four hour period using a camera network 
consisting of six intelligent cameras. The majority of the 
tracking data is generated by cameras 5 and 6, which 
overlook a road that has regular flows of vehicle traffic. 
The peak data transmission rate is at around 5pm, which is 
consistent with the time of rush hour traffic in London. The 
network traffic generated is much lower than that required 
to transmit the original video from six cameras over the 
network. 

The metadata provides better indexing of the 
object motion and image framelet layers of the database, 
which results in improved performance for various types of 
activity queries. This point is illustrated in Figure 7, where 
an activity query was run to identify object motion between 
various pairs of entry and exit zones within a specific time 
interval. In Figure 7 objects moving between entry zone B 
and exit zone A are shown. The meta-data generation 
results in compact video content summaries of each object 
detected by the surveillance system. The meta-data can be 
assessed for video content analysis of the underlying low-
level video data. Another example of the results returned by 
a spatial temporal query is shown in Figure 8. An activity 
query was executed to return objects that have followed a 
certain path over a specific time interval. The results show 
objects that have followed two of the paths in one of the 
camera views. 

 
4. Conclusion 

 
We have presented a hierarchical database that can 

be employed to capture and store tracking data in real-time 
and generate video content summaries. One key novelty of 
our system is that the surveillance database contains 
semantic scene models that are generated automatically by 
post track analysis of object tracking data. The main benefit 
of the framework is that it is possible to execute high-level 
object activity queries using a SQL database. The meta-data 
reduces the response times of activity queries from several 
minutes to a few seconds. In future work we plan to 
generate more complex activity queries and use 
probabilistic methods to recognize different types of object 
interactions. 

 

 
Figure 7. Visual representation of results returned by spatial 

temporal activity queries: objects moving from entry zone B to 
exit zone A 
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Figure 8. Example of results returned by spatial temporal 

activity queries 
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