
A Taxonomy and Survey

of Energy-Efficient Data Centers and Cloud

Computing Systems

Anton Beloglazov
1
, Rajkumar Buyya

1
, Young Choon Lee

2
, and Albert Zomaya

2

1
Cloud Computing and Distributed Systems (CLOUDS) Laboratory

Department of Computer Science and Software Engineering

The University of Melbourne, Australia

2

Centre for Distributed and High Performance Computing

School of Information Technologies

The University of Sydney, Australia

Abstract

Traditionally, the development of computing systems has been focused on performance

improvements driven by the demand of applications from consumer, scientific and business

domains. However, the ever increasing energy consumption of computing systems has started to

limit further performance growth due to overwhelming electricity bills and carbon dioxide

footprints. Therefore, the goal of the computer system design has been shifted to power and energy

efficiency. To identify open challenges in the area and facilitate future advancements it is essential

to synthesize and classify the research on power and energy-efficient design conducted to date. In

this work we discuss causes and problems of high power / energy consumption, and present a

taxonomy of energy-efficient design of computing systems covering the hardware, operating

system, virtualization and data center levels. We survey various key works in the area and map

them to our taxonomy to guide future design and development efforts. This chapter is concluded

with a discussion of advancements identified in energy-efficient computing and our vision on future

research directions.

 2

Table of Contents

1 Introduction ... 4
2 Power and Energy Models .. 6

2.1 Static and Dynamic Power Consumption .. 6

2.2 Sources of Power Consumption ... 7
2.3 Modeling Power Consumption .. 8

3 Problems of High Power and Energy Consumption ... 10
3.1 High Power Consumption .. 11
3.2 High Energy Consumption... 12

4 Taxonomy of Power / Energy Management in Computing Systems .. 13
5 Hardware and Firmware Level ... 15

5.1 Dynamic Component Deactivation (DCD) .. 16
5.2 Dynamic Performance Scaling (DPS) .. 17

5.2.1 Dynamic Voltage and Frequency Scaling (DVFS) ... 17
5.3 Advanced Configuration and Power Interface ... 18

6 Operating System Level .. 19
6.1 The Ondemand Governor (Linux Kernel) ... 20

6.2 ECOsystem... 21
6.3 Nemesis OS .. 21
6.4 The Illinois GRACE project .. 22

6.5 Linux/RK ... 22
6.6 Coda and Odyssey .. 23
6.7 PowerNap ... 23

7 Virtualization Level .. 24
7.1 Virtualization Technology Vendors ... 24

7.1.1 Xen .. 24
7.1.2 VMware .. 25

7.1.3 KVM ... 26
7.2 Energy Management for Hypervisor-Based Virtual Machines .. 26

8 Data Center Level ... 26
8.1 Implications of Cloud Computing.. 29
8.2 Non-Virtualized Systems ... 29

8.2.1 Load Management for Power and Performance in Clusters ... 29

8.2.2 Managing Energy and Server Resources in Hosting Centers ... 30
8.2.3 Energy-Efficient Server Clusters .. 31
8.2.4 Energy-Aware Consolidation for Cloud Computing .. 32
8.2.5 Optimal Power Allocation in Server Farms .. 32
8.2.6 Environment-Conscious Scheduling of HPC Applications .. 33

8.3 Virtualized Systems ... 33
8.3.1 VirtualPower: Coordinated Power Management .. 33

8.3.2 Coordinated Multi-level Power Management ... 34
8.3.3 Power and Performance Management via Lookahead Control .. 35
8.3.4 Resource Allocation using Virtual Clusters .. 36
8.3.5 Multi-Tiered On-Demand Resource Scheduling .. 36
8.3.6 Shares and Utilities based Power Consolidation ... 37

8.3.7 pMapper: Power and Migration Cost Aware Application Placement............................... 37
8.3.8 Resource Pool Management: Reactive Versus Proactive ... 38
8.3.9 GreenCloud: Energy-Efficient and SLA-based Management Cloud Resources 39

9 Conclusions and Future Directions ... 39
Acknowledgements .. 41

 3

References .. 41
Appendix A. Operating system level research works. ... 45

Appendix B. Data center level research works. ... 46
About the Authors .. 50

 4

1 Introduction

The primary focus of designers of computing systems and the industry has been on the

improvement of the system performance. According to this objective the performance has been

steadily growing driven by more efficient system design and increasing density of the components

described by Moore's law [1]. Although the performance per watt ratio has been constantly rising,

the total power draw by computing systems is hardly decreasing. Oppositely, it has been increasing

every year that can be illustrated by the estimated average power use across three classes of servers

presented in Table 1 [2]. If this trend continues, the cost of the energy consumed by a server during

its lifetime will exceed the hardware cost [3]. The problem is even worse for large-scale compute

infrastructures, such as clusters and data centers. It was estimated that in 2006 IT infrastructures in

the US consumed about 61 billion kWh for the total electricity cost about 4.5 billion dollars [4]. The

estimated energy consumption is more than double from what was consumed by IT in 2000.

Moreover, under current efficiency trends the energy consumption tends to double again by 2011,

resulting in 7.4 billion dollars annually.

Table 1. Estimated average power consumption per server class (W/Unit) from 2000 to 2006 [2].

Server class 2000 2001 2002 2003 2004 2005 2006

Volume 186 193 200 207 213 219 225

Mid-range 424 457 491 524 574 625 675

High-end 5,534 5,832 6,130 6,428 6,973 7,651 8,163

The energy consumption is not only determined by the efficiency of the physical resources,

but it is also dependent on the resource management system deployed in the infrastructure and

efficiency of applications running in the system. This interconnection of the energy consumption

and different levels of computing systems can be seen from Figure 1. Energy efficiency impacts end

users in terms of resource usage costs, which are typically determined by the Total Cost of

Ownership (TCO) incurred by a resource provider. Higher power consumption results not only in

boosted electricity bills, but also in additional requirements to a cooling system and power delivery

infrastructure, i.e. Uninterruptible Power Supplies (UPS), Power Distribution Units (PDU), etc.

With the growth of computer components density, the cooling problem becomes crucial, as more

heat has to be dissipated for a square meter. The problem is especially important for 1U and blade

servers. These form factors are the most difficult to cool because of high density of the components,

and thus lack of space for the air flow. Blade servers give the advantage of more computational

power in less rack space. For example, 60 blade servers can be installed into a standard 42U rack

[5]. However, such system requires more than 4,000 W to supply the resources and cooling system

compared to the same rack filled by 1U servers consuming 2,500 W. Moreover, the peak power

consumption tends to limit further performance improvements due to constraints of power

distribution facilities. For example, to power a server rack in a typical data center, it is necessary to

provide about 60 Amps [6]. Even if the cooling problem can be addressed for the future systems, it

is likely that delivering current in such data centers will reach the power delivery limits.

Apart from the overwhelming operating costs and the Total Cost of Acquisition (TCA),

another rising concern is the environmental impact in terms of carbon dioxide (CO2)

emissions caused by high energy consumption. Therefore, the reduction of power and energy

consumption has become a first-order objective in the design of modern computing systems. The

roots of energy-efficient computing, or Green IT, practices can be traced back to 1992, when the

U.S. environmental protection Agency launched Energy Star, a voluntary labelling program which

is designed to identify and promote energy-efficient products in order to reduce the greenhouse gas

emissions. Computers and monitors were the first labelled products. This has led to the widespread

 5

adoption of the sleep mode in electronic devices. At that time the term "green computing" was

introduced to refer to energy-efficient personal computers [7]. At the same time, the Swedish

confederation of professional employees has developed the TCO certification program – a series of

end user and environmental requirements for IT equipment including video adapters, monitors,

keyboards, computers, peripherals, IT systems and even mobile phones. Later, this program has

been extended to include requirements on ergonomics, magnetic and electrical field emission levels,

energy consumption, noise level and use of hazardous compounds in hardware. The Energy Star

program was revised in October 2006 to include stricter efficiency requirements for computer

equipment, along with a tiered ranking system for approved products.

Customer

Users Brokers Enterprises

Internet

Scientific Business

Application domains

Commercial

resource

providers

Private

computing

infrastructures

Public and

private

Clouds

Computing environments

Servers,

network

interconnect

Cooling

systems

UPS, PDU,

power

generators

Physical resources

Power / energy

aware resource

management

system

Electricity

bills

Power budget

(e.g. capacity

limits)

CO2

emissions

Power / energy

consumption
Efficiency of

applications

Efficiency of

hardware

Figure 1. Energy consumption at different levels in computing systems.

There are a number of industry initiatives aiming at the development of standardized

methods and techniques for reduction of the energy consumption in computer environments. They

include Climate Savers Computing Initiative (CSCI), Green Computing Impact Organization, Inc.

(GCIO), Green Electronics Council, The Green Grid, International Professional Practice Partnership

(IP3), with membership of companies such as AMD, Dell, HP, IBM, Intel, Microsoft, Sun

Microsystems and VMware.

Energy-efficient resource management has been first introduced in the context of battery

feed mobile devices, where energy consumption has to be reduced in order to improve the battery

lifetime. Although techniques developed for mobile devices can be applied or adapted for servers

and data centers, this kind of systems requires specific methods. In this chapter we will discuss

ways to reduce power and energy consumption in computing systems, as well as recent research

works that deal with power and energy efficiency at the hardware and firmware, Operating System

(OS), virtualization, and data center levels. The main objective of this work is to give an overview

of the recent research advancements in energy-efficient computing, identify common characteristics

and classify the approaches. On the other hand, the aim is to show the level of development in the

 6

area and discuss open research challenges and direction for future work. The reminder of this

chapter is organized as follows: in the next Section power and energy models are introduced; in

Section 3 we discuss problems caused by high power and energy consumption; in Sections 4-8 we

present the taxonomy and survey of the research in energy-efficient design of computing systems,

followed by a conclusion and future work directions in Section 9.

2 Power and Energy Models

To understand power and energy management mechanisms it is essential to clearly

distinguish the background terms. Electric current is the flow of electric charge measured in

Amperes (Amps). Amperes define the amount of electric charge transferred by a circuit per second.

Power and energy can be defined in terms of work that a system performs. Power is the rate at

which the system performs the work, while energy is the total amount of work performed over a

period of time. Power and energy are measured in watts (W) and watt-hour (Wh) respectively.

Work is done at the rate of one watt when one Ampere is transferred through a potential difference

of one volt. A kilowatt-hour (kWh) is the amount of energy equivalent to a power of 1 kilowatt

(1000 watts) running for 1 hour. Formally, power and energy can be defined as in (1) and (2).

W
P

T
, (1)

E P T , (2)

where P is power, T is a period of time, W is the total work performed in that period of time, and

E is energy. The difference between power and energy is very important, because reduction of the

power consumption does not always reduce the consumed energy. For example, the power

consumption can be decreased by lowering the CPU performance. However, in this case a program

may require longer time to complete its execution consuming the same amount of energy. On one

hand, reduction of the peak power consumption will result in decreased costs of the infrastructure

provisioning, such as costs associated with capacities of UPS, PDU, power generators, cooling

system, and power distribution equipment. On the other hand, decreased energy consumption will

lead to reduction of the electricity bills. The energy consumption can be reduced temporarily using

Dynamic Power Management (DPM) techniques or permanently applying Static Power

Management (SPM). DPM utilizes knowledge of the real-time resource usage and application

workloads to optimize the energy consumption. However, it does not necessarily decrease the peak

power consumption. In contrast, SPM includes the usage of highly efficient hardware equipment,

such as CPUs, disk storage, network devices, UPS and power supplies. These structural changes

usually reduce both the energy and peak power consumption.

2.1 Static and Dynamic Power Consumption

The main power consumption in Complementary Metal-Oxide-Semiconductor (CMOS)

circuits comprises static and dynamic power. The static power consumption, or leakage power, is

caused by leakage currents that are present in any active circuit, independently of clock rates and

usage scenarios. This static power is mainly determined by the type of transistors and process

technology. Reduction of the static power requires improvement of the low-level system design;

therefore, it is not in the focus of this chapter. More details about possible ways to improve the

energy efficiency at this level can be found in the survey by Venkatachalam and Franz [8].

Dynamic power consumption is created by circuit activity (i.e. transistor switches, changes

of values in registers, etc.) and depends mainly on a specific usage scenario, clock rates, and I/O

 7

activity. The sources of the dynamic power consumption are short-circuit current and switched

capacitance. Short-circuit current causes only 10-15% of the total power consumption and so far no

way has been found to reduce this value without compromising the performance. Switched

capacitance is the primary source of the dynamic power consumption; therefore, the dynamic power

consumption can be defined as in (3).

2

dynamicP a C V f , (3)

where a is the switching activity, C is the physical capacitance, V is the supply voltage, and f is

the clock frequency. The values of switching activity and capacitance are determined by the low-

level system design. Whereas combined reduction of the supply voltage and clock frequency lies in

the roots of the widely adopted DPM technique called Dynamic Voltage and Frequency Scaling

(DVFS). The main idea of this technique is to intentionally down-scale CPU performance, when it

is not fully utilized, by decreasing the voltage and frequency of the CPU that in ideal case should

result in cubic reduction of the dynamic power consumption. DVFS is supported by most modern

CPUs including mobile, desktop and server systems. We will discuss this technique in detail in

Section 5.2.1.

2.2 Sources of Power Consumption

According to data provided by Intel Labs [5] the main part of power consumed by a server is

drawn by the CPU, followed by the memory and losses due to the power supply inefficiency

(Figure 2). The data show that the CPU no longer dominates power consumption by a server. This

resulted from continuous improvement of the CPU power efficiency and application of power

saving techniques (e.g. DVFS) that enable active low-power modes. In these modes a CPU

consumes a fraction of the total power, while preserving the ability to execute programs. As a

result, current desktop and server CPUs can consume less than 30% of their peak power at low-

activity modes leading to dynamic power range of more than 70% of the peak power [9]. In

contrast, dynamic power ranges of all other server's components are much narrower: less than 50%

for DRAM, 25% for disk drives, 15% for network switches, and negligible for other components

[10]. The reason is that only the CPU supports active low-power modes, whereas other components

can only be completely or partially switched off. However, the performance overhead of transition

between active and inactive modes is substantial. For example, a disk drive in a spun-down, deep-

sleep mode consumes almost no power, but a transition to active mode incurs a latency that is 1,000

times higher than regular access latency. Power inefficiency of the server's components in the idle

state leads to a narrow overall dynamic power range of 30%. This means that even if a server is

completely idle, it will still consume more than 70% of its peak power.

Another reason for reduction of the fraction of power consumed by the CPU relatively to the

whole system is adoption of multi-core architectures. Multi-core processors are much more efficient

than conventional. For example, servers built with recent Quad-core Intel Xeon processor can

deliver 1.8 teraflops at peak performance, using less than 10 kW of power. To compare with,

Pentium processors in 1998 would consume about 800 kW to achieve the same performance [5].

Adoption of multi-core CPUs along with the increasing use of virtualization technologies

and data-intensive applications resulted in growing amount of memory in servers. In contrast to the

CPU, DRAM has narrower dynamic power range and power consumption by memory chips is

increasing. Memory is packaged in dual in-line memory modules (DIMMs), and power

consumption by these modules varies from 5 W to 21 W per DIMM, for DDR3 and Fully Buffered

DIMM (FB-DIMM) memory technologies [5]. Power consumption by a server with eight 1 GB

DIMMs is about 80 W. Modern large servers currently use 32 or 64 DIMMs that leads to power

consumption by memory higher than by CPUs. Most of the power management techniques are

focused on the CPU; however, constantly increasing frequency and capacity of memory chips raise

 8

the cooling requirements apart from the problem of high energy consumption. These facts make

memory one of the most important server components that have to be efficiently managed. New

techniques and approaches to the reduction of the memory power consumption have to be

developed in order to address this problem.

Figure 2. Power consumption by server's components [5].

Power supplies transform alternating current (AC) into direct current (DC) to feed server's

components. This transformation leads to significant power losses due to the inefficiency of the

current technology. The efficiency of power supplies depends on their load. They achieve the

highest efficiency at loads within the range of 50-75%. However, most data centers create a load of

10-15% wasting the majority of the consumed electricity and leading to average power losses of 60-

80% [5]. As a result, power supplies consume at least 2% of all U.S. electricity production. More

efficient power supply design can save more than a half of the energy consumption.

The problem of low average utilization applies to disk storages, especially when disks are

attached to servers in a data center. However, this can be addressed by moving the disks to an

external centralized storage array. Nevertheless, intelligent policies have to be used to efficiently

manage a storage system containing thousands of disks. This creates another direction for the

research work aimed at optimization of resource, power and energy usage in server farms and data

centers.

2.3 Modeling Power Consumption

To develop new policies for DPM and understand their impact, it is necessary to create a

model of dynamic power consumption. Such a model has to be able to predict the actual value of

the power consumption based on some run-time system characteristics. One of the ways to

accomplish this is to utilize power monitoring capabilities that are built-in modern computer

servers. This instrument provides the ability to monitor power usage of a server in real time and

collect accurate statistics about the power usage. Based on this data it is possible to derive a power

consumption model for a particular system. However, this approach is complex and requires

collection of the statistical data for each target system.

Fan et al. [10] have found a strong relationship between the CPU utilization and total power

consumption by a server. The idea behind the proposed model is that the power consumption by a

server grows linearly with the growth of CPU utilization from the value of power consumption in

the idle state up to the power consumed when the server is fully utilized. This relationship can be

expressed as in (4).

() ()idle busy idleP u P P P u , (4)

 9

where P is the estimated power consumption,
idleP is the power consumption by an idle server,

busyP is the power consumed by the server when it is fully utilized, and u is current CPU utilization.

The authors have also proposed an empirical non-linear model given in (5).

() () (2)r

idle busy idleP u P P P u u , (5)

where r is a calibration parameter that minimizes the square error and has to be obtained

experimentally. For each class of machines of interest a set of calibration experiments must be

performed to fine tune the model.

Extensive experiments on several thousands of nodes under different types of workloads

(Figure 3) have shown that the derived models accurately predict the power consumption by server

systems with the error below 5% for the linear model and 1% for the empirical model. The

calibration parameter r has been set to 1.4 for the presented results. These precise results can be

explained by the fact that CPU is the main power consumer in servers and, in contrast to CPU, other

system components have narrow dynamic power ranges or their activities correlate with the CPU

activity (e.g. I/O, memory). For example, current server processors can reduce power consumption

up to 70% by switching to low power-performance modes [9]. However, dynamic power ranges of

other components are much narrower: less than 50% for DRAM, 25% for disk drives, and 15% for

network switches.

Figure 3. Power consumption to CPU utilization relationship [10].

This accurate and simple power model enables easy prediction of the power consumption by

a server supplied with CPU utilization data and power consumption values at idle and maximum

CPU utilization states. Therefore, it is especially important that the increasing number of server

manufactures publish actual power consumption figures for their systems at different utilization

levels [11]. This is driven by the adoption of the ASHRAE Thermal Guideline [12] that

recommends providing power ratings for minimum, typical and full utilization.

 10

Dhiman et al. [13] have found that although regression models based on just CPU utilization

are able to provide reasonable prediction accuracy for CPU-intensive workloads, they tend to be

considerably inaccurate for prediction of power consumption caused by I/O- and memory-intensive

applications. The authors have proposed a power modeling methodology based on Gaussian

Mixture Models that predicts power consumption by a physical machine running multiple VM

instances. To perform predictions, in addition to CPU utilization the model relies on run-time

workload characteristics, such as the number of Instructions Per Cycle (IPC) and the number of

Memory accesses Per Cycle (MPC). The proposed approach requires a training phase to perceive

the relationship between the metrics of the workload and the power consumption. The authors have

evaluated the proposed model via experimental studies involving different types of the workload.

The obtained experimental results have shown that the model predicts the power consumption with

high accuracy (<10% prediction error), which is consistent over all the tested workloads. The

proposed model outperforms regression models by a factor of 5 for particular types of the workload,

which proves the importance of architectural metrics like IPC and MPC as compliments to CPU

utilization for prediction of the power consumption.

3 Problems of High Power and Energy

Consumption

The energy consumption by computing facilities rises various monetary, environmental and

system performance concerns. A recent study on the power consumption of server farms [2] shows

that in 2005 the electricity use by servers worldwide – including their associated cooling and

auxiliary equipment – costed US$7.2bn. The study also indicates that the electricity consumption in

that year had doubled as compared with consumption in 2000. Clearly, there are environmental

issues with the generation of electricity. The number of transistors integrated into today’s Intel

Itanium 2 processor reaches to nearly 1 billion. If this rate continues, the heat (per square

centimetre) produced by future processors would exceed that of the surface of the Sun [14],

resulting in poor system performance. The scope of energy-efficient design is not limited to main

computing components (e.g., processors, storage devices and visualization facilities), but it can

expand into a much larger range of resources associated with computing facilities including

auxiliary equipments, water used for cooling and even physical/floor space that these resources

occupy.

While recent advances in hardware technologies including low-power processors, solid state

drives and energy-efficient monitors have alleviated the energy consumption issue to a certain

degree, a series of software approaches have significantly contributed to the improvement of energy

efficiency. These two approaches (hardware and software) should be seen as complementary rather

than competitive. User awareness is another non-negligible factor that should be taken into account

when discussing Green IT. User awareness and behavior in general considerably affect computing

workload and resource usage patterns; this in turn has a direct relationship with the energy

consumption of not only core computing resources, but also auxiliary equipment, such as

cooling/air conditioning systems. For example, a computer program developed without paying

much attention to its energy efficiency may lead to excessive energy consumption and it may

contribute to more heat emission resulting in increases in the energy consumption for cooling.

Traditionally, power and energy-efficient resource management techniques have been

applied to mobile devices. It was dictated by the fact that such devices are usually battery-powered

and it is essential to consider power and energy management to improve their lifetime. However,

due to continuous growth of power and energy consumption by servers and data centers, the focus

of power and energy management techniques has been switched to these systems. Even though the

problems caused by high power and energy consumption are interconnected, they have their

 11

specifics and have to be considered separately. The difference is that the peak power consumption

determines the cost of the infrastructure required to maintain the system's operation, whereas the

energy consumption accounts for electricity bills. Let us discuss each of these problems in detail.

3.1 High Power Consumption

The main reason of the power inefficiency in data centers is low average utilization of the

resources. We have used data provided as a part of the CoMon project
1
, a monitoring infrastructure

for PlanetLab
2
. We have used the data of the CPU utilization by more than a thousand servers

located at more than 500 places around the world. The data have been collected each five minutes

during the period from the 10th to 19th of May 2010. The distribution of the data over the

mentioned 10 days along with the characteristics of the distribution are presented in Figure 4. The

data confirm the observation made by Barroso and Holzle [9]: the average CPU utilization is below

50%. The mean value of the CPU utilization is 36.44% with 95% confidence interval: (36.40%,

36.47%). The main run-time reasons of underutilization in data centers are variability of the

workload and statistical effects. Modern service applications cannot be kept on fully utilized

servers, as even non-significant workload fluctuation will lead to performance degradation and

failing to provide the expected QoS. On the other hand, servers in a non-virtualized data center are

unlikely to be completely idle because of background tasks (e.g. incremental backups), or

distributed data bases or file systems. Data distribution helps to tackle load-balancing problem and

improves fault-tolerance. Furthermore, despite the fact that the resources have to be provisioned to

handle theoretical peak loads, it is very unlikely that all the servers of a large-scale data centers will

be fully utilized simultaneously.

988470564228140

CPU utilization

Median

Mean

35.032.530.027.525.022.520.0

1st Quartile 5.000

Median 21.000

3rd Quartile 64.000

Maximum 100.000

36.401 36.471

21.000 21.000

36.743 36.792

A-Squared 290412.05

P-Value < 0.005

Mean 36.436

StDev 36.767

Variance 1351.839

Skewness 0.745091

Kurtosis -0.995180

N 4270388

Minimum 0.000

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev

95% Confidence Intervals

Figure 4. The CPU utilization of more than 1000 PlanetLab nodes over a period of 10 days.

Systems where average utilization of resources less than 50% represent huge inefficiency, as

most of the time only a half of the resources are actually in use. Although the resources on average

1
 http://comon.cs.princeton.edu/

2
 http://www.planet-lab.org/

http://comon.cs.princeton.edu/
http://www.planet-lab.org/

 12

are utilized by less than 50%, the infrastructure has to be built to handle the peak load, which rarely

occurs in practice. In such systems the cost of over-provisioned capacity is very significant and

includes expenses on additional capacity of the cooling system, PDU, generators, power delivery

facilities, UPS, etc. The less average resource utilization in a data center, the more expensive it

becomes as a part of the Total Cost of Ownership (TCO), as it has to support peak loads and meet

the requirements to the peak power consumption. For example, if a data center operates at 85% of

its peak capacity on average, the cost of building the data center (in terms of the building cost per

Watt of the average power consumption) will still exceed the electricity cost for ten years of

operation [10]. Moreover, peak power consumption can constrain further growth of power density,

as power requirements already reach 60 Amps for a server rack [6]. If this tendency continues,

further performance improvements can be bounded by the power delivery capabilities.

Another problem of high power consumption and increasing density of server's components

(i.e. 1U, blade servers) is the heat dissipation. Much of the electrical power consumed by the

computing resources gets turned into heat. The amount of heat produced by an integrated circuit

depends on how efficient the component's design is, and the voltage and frequency at which the

component operates. The heat generated by the resources has to be dissipated to keep them within

their safe thermal state. Overheating of the components can lead to decreased lifetime and high

error-proneness. Moreover, power is required to feed the cooling system operation. For each watt of

power consumed by computing resources an additional 0.5 to 1 W is required for the cooling

system [6]. For example, to dissipate 1 W consumed by a High-Performance Computing (HPC)

system at the Lawrence Livermore National Laboratoy (LLNL), 0.7 W of additional power is

needed for the cooling system [15]. This fact justifies the significant concern about efficiency and

real-time adaptation of cooling system operation. Moreover, modern high density servers, such as

1U and blade servers, further complicate cooling because of the lack of space for airflow within the

packages.

3.2 High Energy Consumption

Considering the power consumption, the main problem is the minimization of the peak

power required to feed a completely utilized system. In contrast, the energy consumption is defined

by the average power consumption over a period of time. Therefore, the actual energy consumption

by a data center does not affect the cost of the infrastructure. On the other hand, it is reflected in the

electricity cost consumed by the system during the period of operation, which is the main

component of a data center's operating costs. Furthermore, in most data centers 50% of consumed

energy never reaches the computing resources: it is consumed by the cooling facilities or dissipated

in conversions within the UPS and PDU systems. With the current tendency of continuously

growing energy consumption and costs associated with it, the point when operating costs exceed the

cost of computing resources themselves in few years can be reached soon. Therefore, it is crucial to

develop and apply energy-efficient resource management strategies in data centers.

Except for high operating costs, another problem caused by growing energy consumption is

high carbon dioxide (CO2) emissions, which contribute to the global warming. According to

Gartner [16] in 2007 the Information and Communications Technology (ICT) industry was

responsible for about 2% of global CO2 emissions that is equivalent to the aviation. According to

the estimation by the U.S. Environmental Protection Agency (EPA), current efficiency trends lead

to the increase of annual CO2 emissions from 42.8 million metric tons (MMTCO2) in 2007 to 67.9

MMTCO2 in 2011. Intense media coverage has raised the awareness of people around the climate

change and greenhouse effect. More and more customers start to consider the "green" aspect in

selecting products and services. Besides the environmental concern, businesses have begun to face

risks caused by being non-environmentally friendly. Reduction of CO2 footprints is an important

problem that has to be addressed in order to facilitate further advancements in computing systems.

 13

4 Taxonomy of Power / Energy Management in

Computing Systems

Large volume of research work has been done in the area of power and energy-efficient

resource management in computing systems. As power and energy management techniques are

closely connected, from this point we will refer to them as power management. As shown in Figure

5, from the high level power management techniques can be divided into static and dynamic. From

the hardware point of view, Static Power Management (SPM) contains all the optimization methods

that are applied at the design time at the circuit, logic, architectural and system levels [17]. Circuit

level optimizations are focused on the reduction of switching activity power of individual logic-

gates and transistor level combinational circuits by the application of a complex gate design and

transistor sizing. Optimizations at the logic level are aimed at the switching activity power of logic-

level combinational and sequential circuits. Architecture level methods include the analysis of the

system design and subsequent incorporation of power optimization techniques in it. In other words,

this kind of optimization refers to the process of efficient mapping of a high-level problem

specification onto a register-transfer level design. Apart from the optimization of the hardware-level

system design, it is extremely important carefully consider the implementation of programs that are

supposed to run in the system. Even with perfectly designed hardware, poor software design can

lead to dramatic performance and power losses. However, it is impractical or impossible to analyse

power consumption caused by large programs at the operator level, as not only the process of

compilation or code-generation but also the order of instructions can have an impact on power

consumption. Therefore, indirect estimation methods can be applied. For example, it has been

shown that faster code almost always implies lower energy consumption [18]. Nevertheless,

methods for guaranteed synthesizing of optimal algorithms are not available, and this is a very

difficult problem.

Power Management Techniques

Static Power Management (SPM) Dynamic Power Management (DPM)

Hardware Level Software Level

Circuit Level Logic Level Architectural Level

Hardware Level Software Level

Single Server Multiple Servers, Data

Centers and Clouds

OS Level Virtualization Level

Figure 5. High level taxonomy of power and energy management.

This chapter focuses on DPM techniques that include methods and strategies for run-time

adaptation of a system's behavior according to current resource requirements or any other dynamic

characteristic of the system's state. The major assumption enabling DPM is that systems experience

variable workloads during the operation time allowing the dynamic adjustment of power states

according to current performance requirements. The second assumption is that the workload can be

predicted to a certain degree. As shown on Figure 5, DPM techniques can be distinguished by the

level at which they are applied: hardware or software. Hardware DPM varies for different hardware

components, but usually can be classified as Dynamic Performance Scaling (DPS), such as DVFS,

and partial or complete Dynamic Component Deactivation (DCD) during periods of inactivity. In

contrast, software DPM techniques utilize interface to the system's power management and

according to their policies apply hardware DPM. The introduction of the Advanced Power

 14

Management (APM)
3
 and its successor, the Advanced Configuration and Power Interface (ACPI)

4
,

have drastically simplified the software power management and resulted in broad research studies

in this area. The problem of power efficient resource management has been investigated in different

contexts of device specific management, OS level management of virtualized and non-virtualized

servers, followed by multiple-node system, such as homogeneous and heterogeneous clusters, data

centers and Clouds.

DVFS creates a broad dynamic power range for the CPU enabling extremely low-power

active modes. This flexibility has lead to the wide adoption of this technique and appearance of

many policies that scale CPU performance according to current requirements, while trying to

minimize performance degradation [19]. Subsequently, these techniques have been extrapolated on

multiple-server systems providing coordinated performance scaling across them [20]. However, due

to narrow overall dynamic power range of servers in a data center, it has been found beneficial to

consolidate workload to a limited number of servers and switch off or put to sleep / hibernate state

idle nodes [21].

Another technology that can improve the utilization of resources, and thus reduce the power

consumption is virtualization of computer resources. Virtualization technology allows one to create

several Virtual Machines (VMs) on a physical server and, therefore, reduce the amount of hardware

in use and improve the utilization of resources. The concept originated with the IBM mainframe

operating systems of the 1960s, but was commercialized for x86-compatible computers only in the

1990s. Several commercial companies and open-source projects now offer software packages to

enable a transition to virtual computing. Intel Corporation and AMD have also built proprietary

virtualization enhancements to the x86 instruction set into each of their CPU product lines, in order

to facilitate virtualized computing. Among the benefits of virtualization are improved fault and

performance isolation between applications sharing the same computer node (a VM is viewed as a

dedicated resource to the customer); the ability to relatively easily move VMs from one physical

host to another using live or off-line migration; and support for hardware and software

heterogeneity. The ability to reallocate VMs in run-time enables dynamic consolidation of the

workload, as VMs can be moved to a minimal number of physical nodes, while idle nodes can be

switched to power saving modes.

Terminal servers have also been used in Green IT practices. When using terminal servers,

users connect to a central server; all of the computing is done at the server level but the end user

experiences a dedicated computing resource. It is usually combined with thin clients, which use up

to 1/8 the amount of energy of a normal workstation, resulting in a decrease of the energy

consumption and costs. There has been an increase in the usage of terminal services with thin

clients to create virtual laboratories. Examples of terminal server software include Terminal

Services for Windows, the Aqua Connect Terminal Server for Mac, and the Linux Terminal Server

Project (LTSP) for the Linux operating system. Thin clients possibly are going to gain a new wave

of popularity with the adoption of the Software as a Service (SaaS) model, which is one of the kinds

of Cloud computing [22], or Virtual Desktop Infrastructures (VDI) heavily promoted by

virtualization software vendors
5
.

Traditionally, an organization purchases its own computing resources and deals with the

maintenance and upgrades of the outdated hardware and software, resulting in additional expenses.

The recently emerged Cloud computing paradigm [22] leverages virtualization technology and

provides the ability to provision resources on-demand on a pay-as-you-go basis. Organizations can

outsource their computation needs to the Cloud, thereby eliminating the necessity to maintain own

computing infrastructure. Cloud computing naturally leads to power-efficiency by providing the

following characteristics:

3
 Advanced power management. http://en.wikipedia.org/wiki/Advanced_power_management

4
 Advanced Configuration & Power Interface. http://www.acpi.info/

5
 VMware View (VMware VDI) Enterprise Virtual Desktop Management. http://www.vmware.com/products/view/

 Citrix XenDesktop Desktop Virtualization. http://www.citrix.com/virtualization/desktop/xendesktop.html

 Sun Virtual Desktop Infrastructure Software. http://www.sun.com/software/vdi/

http://en.wikipedia.org/wiki/Advanced_power_management
http://www.acpi.info/
http://www.vmware.com/products/view/
http://www.citrix.com/virtualization/desktop/xendesktop.html
http://www.sun.com/software/vdi/

 15

 Economy of scale due to elimination of redundancies.

 Improved utilization of the resources.

 Location independence – VMs can be moved to a place where energy is cheaper.

 Scaling up and down – resource usage can be adjusted to current requirements.

 Efficient resource management by the Cloud provider.

One of the important requirements for a Cloud computing environment is providing reliable

QoS. It can be defined in terms of Service Level Agreements (SLA) that describe such

characteristics as minimal throughput, maximal response time or latency delivered by the deployed

system. Although modern virtualization technologies can ensure performance isolation between

VMs sharing the same physical computing node, due to aggressive consolidation and variability of

the workload some VMs may not get the required amount of resource when requested. This leads to

performance losses in terms of increased response time, time outs or failures in the worst case.

Therefore, Cloud providers have to deal with the power-performance trade-off – minimization of

the power consumption, while meeting the QoS requirements.

The following sections detail different levels of the presented taxonomy: in Section 5 we

will discuss power optimization techniques that can be applied at the hardware level. We will

consider the approaches proposed for power management at the operating system level in Section 6,

followed by the discussion of modern virtualization technologies and their impact on power-aware

resource management in Section 7 and the recent approaches applied at the data center level in

Section 8.

5 Hardware and Firmware Level

As shown in Figure 5, DPM techniques applied at the hardware and firmware level can be

broadly divided into two categories: Dynamic Component Deactivation (DCD) and Dynamic

Performance Scaling (DPS). DCD techniques are built upon the idea of the clock gating of parts of

an electronic component or complete disabling during periods of inactivity.

Hardware DPM

Dynamic Component Deactivation (DCD) Dynamic Performance Scaling (DPS)

Predictive Stochastic

Static Adaptive

DVFS

Interval-Based Intertask

Fixed Timeout Predictive Shutdown

Static Adaptive

Predictive Wakeup

Intratask

Resource throttling

Figure 5. DPM techniques applied at the hardware and firmware levels.

The problem could be easily solved if transitions between power states would cause

negligible power and performance overhead. However, transitions to low-power states usually lead

to additional power consumption and delays caused by the re-initialization of the components. For

example, if entering a low-power state requires shut-down of the power supply, returning to the

active state will cause a delay consisting of: turning on and stabilizing the power supply and clock;

re-initialization of the system; and restoring the context [23]. In the case of non-negligible

transitions, efficient power management turns into a difficult on-line optimization problem. A

transition to low-power state is worthwhile only if the period of inactivity is longer than the

 16

aggregated delay of transitions from and into the active state, and saved power is higher than

required to reinitialize the component.

5.1 Dynamic Component Deactivation (DCD)

Computer components that do not support performance scaling and can only be deactivated

require techniques that will leverage the workload variability and disable the component when it is

idle. The problem is trivial in the case of a negligible transition overhead. However, in reality such

transitions lead not only to delays, which can degrade performance of the system, but to additional

power draw. Therefore, to achieve efficiency a transition has to be done only if the idle period is

long enough to cover the transition overhead. In most real-world systems there is a limited or no

knowledge about the future workload. Therefore, a prediction of an effective transition has to be

done according to historical data or some system model. A large volume of research has been done

to develop efficient methods to solve this problem [23] [24]. As shown in Figure 5, the proposed

DCD techniques can be divided into predictive and stochastic.

Predictive techniques are based on the correlation between the past history of the system

behavior and its near future. The efficiency of such techniques is highly dependent on the actual

correlation between past and future events and quality of tuning for a particular type of the

workload. A non-ideal prediction can result in an over-prediction or under-prediction. An over-

prediction means that the actual idle period is shorter than the predicted leading to a performance

penalty. On the other hand, an under-prediction means that the actual idle period is longer the

predicted. This case does not have any influence on the performance; however, it results in reduced

energy savings. Predictive techniques can be further split into static and adaptive, which are

discussed below.

Static techniques utilize some threshold for a real-time execution parameter to make

predictions of idle periods. The simplest policy is called fixed timeout. The idea is to define the

length of time after which a period of inactivity can be treated as long enough to do a transition to a

low-power state. Activation of the component is initiated once the first request to a component is

received. The policy has two advantages: it can be applied to any workload type, and over- and

under-predictions can be controlled by adjusting the value of the timeout threshold. However,

disadvantages are obvious: the policy requires adjustment of the threshold value for each workload,

it always leads to a performance loss on the activation, and the energy consumed from the

beginning of an idle period to the timeout is wasted. Two ways to overcome the drawbacks of the

fixed timeout policy have been proposed: predictive shutdown and predictive wakeup. Predictive

shutdown policies address the problem of the missed opportunity to save energy within the timeout.

These policies utilize the assumption that previous periods of inactivity are highly correlated with

the nearest future. According to the analysis of the historical information they predict the length of

the next idle period before it actually starts. These policies are highly dependent on the actual

workload and strength of the correlation between past and future events. History-based predictors

have been shown to be more efficient and less safe than timeouts [25]. Predictive wakeup

techniques aim to eliminate the performance penalty on the activation. The transition to the active

state is predicted based on the past history and performed before an actual user request [26]. This

technique increases the energy consumption, but reduces performance losses on wakeups.

All the static techniques are inefficient in cases when the system workload is unknown or

can vary over time. To address this problem adaptive predictive techniques have been introduced.

The basic idea is to dynamically adjust the parameters, which are fixed for the static techniques,

according to the quality of prediction that they have provided in the past. For example, the timeout

value can be increased if for the last several intervals the value has lead to over-prediction. Another

way to provide the adaptation is to maintain a list of possible values of the parameter of interest and

assign weights to the values according to their efficiency at previous intervals. The actual value is

obtained as a weighted average over all the values in the list. In general, adaptive techniques are

 17

more efficient than static when the type of the workload is unknown a priori. Several adaptive

techniques are discussed in the paper by Douglis et al. [27].

Another way to deal with non-deterministic system behavior is to formulate the problem as a

stochastic optimization, which requires building of an appropriate probabilistic model of the system.

For instance, in such a model system requests and power state transitions are represented as

stochastic processes and can be modelled as Markov processes. At any moment, a request arrives

with some probability and a device power state transition occurs with another probability obtained

by solving the stochastic optimization problem. It is important to note, that the results, obtained

using the stochastic approach, are expected values, and there is no guarantee that the solution will

be optimal for a particular case. Moreover, constructing a stochastic model of the system in practice

may not be straightforward. If the model is not accurate, the policies using this model may not

provide an efficient system control.

5.2 Dynamic Performance Scaling (DPS)

Dynamic Performance Scaling (DPS) includes different techniques that can be applied to

computer components supporting dynamic adjustment of their performance proportionally to the

power consumption. Instead of complete deactivations, some components, such as CPU, allow

gradual reductions or increases of the clock frequency along with the adjustment of the supply

voltage in cases when the resource is not utilized for the full capacity. This idea lies in the roots of

the widely adopted Dynamic Voltage and Frequency Scaling (DVFS) technique.

5.2.1 Dynamic Voltage and Frequency Scaling (DVFS)

Although the CPU frequency can be adjusted separately, frequency scaling by itself is rarely

worthwhile as a way to conserve switching power. Saving the most power requires dynamic voltage

scaling too, because of the V
2
 component and the fact that modern CPUs are strongly optimized for

low voltage states. Dynamic voltage scaling is usually used in conjunction with frequency scaling,

as the frequency that a chip may run at is related to the operating voltage. The efficiency of some

electrical components, such as voltage regulators, decreases with a temperature increase, so the

power used may increase with temperature. Since increasing power use may raise the temperature,

increases in voltage or frequency may raise the system power demand even faster than the CMOS

formula indicates, and vice-versa. DVFS reduces the number of instructions a processor can issue in

a given amount of time, thus reducing the performance. This, in turn, increases run time for

program segments which are sufficiently CPU-bound. Hence, it creates challenges of providing

optimal energy / performance control, which have been extensively investigated by scientists in

recent years. Some of the research works will be reviewed in the following sections.

Although the application of DVFS may seem to be straightforward, real-world systems raise

many complexities that have to be considered. First of all, due to complex architectures of modern

CPUs (i.e. pipelining, multi-level cache, etc.), the prediction of the required CPU clock frequency

that will meet application’s performance requirements is not trivial. Another problem is that in

contrast to the theory, power consumption by a CPU may not be quadratic to its supply voltage. For

example, in [8] it is shown that some architectures may include several supply voltages that power

different parts of the chip, and even if one of them can be reduced, overall power consumption will

be dominated by the larger supply voltage. Moreover, execution time of the program running on the

CPU may not be inversely proportional to the clock frequency, and DVFS may result in non-

linearities in the execution time [28]. For example, if the program is memory or I/O bounded, CPU

speed will not have a dramatic effect on the execution time. Furthermore, slowing down the CPU

may lead to changes in the order in which tasks are scheduled [8]. In summary, DVFS can provide

substantial energy savings; however, it has to be applied carefully, as the result may significantly

vary for different hardware and software system architectures.

 18

Approaches that apply DVFS to reduce energy consumption by a system can be divided into

interval-based, intertask and intratask [28]. Interval-based algorithms are similar to adaptive

predictive DCD approaches in that they also utilize knowledge of the past periods of the CPU

activity [29] [30]. Depending on the utilization of the CPU during previous intervals, they predict

the utilization in the near future and appropriately adjust the voltage and clock frequency. Wierman

et al. [31] and Andrew et al. [32] have conducted analytical studies of speed scaling algorithms in

processor sharing systems. They have proved that no online energy-proportional speed scaling

algorithm can be better than 2-competitive comparing to the offline optimal algorithm. Moreover,

they have found that sophistication in the design of speed scaling algorithms does not provide

significant performance improvements; however, it dramatically improves robustness to errors in

estimation of workload parameters. Intertask approaches instead of relying on coarse grained

information on the CPU utilization, distinguish different tasks running in the system and assign

them different speeds [33] [34]. The problem is easy to solve if the workload is known a priori or

constant over all the period of a task execution. However, the problem becomes non-trivial when

the workload is irregular. In contrast to intertask, intratask approaches leverage fine grained

information about the structure of programs and adjust the processor frequency and voltage within

the tasks [35] [36]. Such policies can be implemented by splitting a program execution into

timeslots and assigning different CPU speeds to each of them. Another way is to implement them at

the compiler level. This kind of approaches utilizes compiler’s knowledge of a program’s structure

to make inferences about possible periods for the clock frequency reduction.

5.3 Advanced Configuration and Power Interface

Many DPM algorithms, such as timeout-based as well as other predictive and stochastic

policies, can be implemented in the hardware as a part of an electronic circuit. However, a hardware

implementation highly complicates the modification and reconfiguration of the policies. Therefore,

there are strong reasons to shift the implementation to the software level. In 1996 to address this

problem Intel, Microsoft and Toshiba have published the first version of the Advanced

Configuration and Power Interface (ACPI) specification – an open standard defining a unified

operating system-centric device configuration and power management interface. In contrast to

previous BIOS central, firmware-based and platform specific power management systems, ACPI

describes platform-independent interfaces for hardware discovery, configuration, power

management and monitoring.

ACPI is an attempt to unify and improve the existing power and configuration standards for

hardware devices. The standard brings DPM into the operating system control and requires an

ACPI-compatible operating system to take over the system and have the exclusive control of all

aspects of the power management and device configuration responsibilities. The main goals of

ACPI are to enable all computing systems to implement dynamic power management capabilities,

and simplify and accelerate the development of power-managed systems. It is important to note that

ACPI does not put any constraints on particular power management policies, but provides the

interface that can be used by software developers to leverage flexibility in adjustment of the

system’s power states.

ACPI defines a number of power states that can be applied in the system in run-time. The

most important states in the context of DPM are C-states and P-states. C-states are the CPU power

states C0-C3 that denote the operating state, halt, stop-clock and sleep mode accordingly. While the

processor operates, it can be in one of several power-performance states (P-state). Each of these

states designates a particular combination of DVFS settings. P-states are implementation-dependent,

but P0 is always the highest-performance state, with P1 to Pn being successively lower-performance

states, up to an implementation-specific limit of n no greater than 16. P-states have become known

as SpeedStep in Intel processors, PowerNow! or Cool'n'Quiet in AMD processors, and PowerSaver

in VIA processors. ACPI is widely used by operating systems, middleware and software on top of

them to manage power consumption according to their specific policies.

 19

6 Operating System Level

In this section, we will discuss research works that deal with power efficient resource

management at the operating system level. The taxonomy of the characteristics used to classify the

works is presented in Figure 6. To highlight the most important characteristics of the works, they

are summarized in Table 2 (full table is given in Appendix A).

Operating system level

Application adaptation

System resources

Target systems

Goal

Power saving techniques

Workload

No

Adapted applications

Multiple resources

Single resource

Arbitrary

Mobile systems

Servers

Minimize power / energy

consumption

Minimize performance

loss

DVFS

Meet power budget

Resource throttling

DCD

Arbitrary

Real-time applications

HPC-applications

Figure 6. Operating system level taxonomy

Table 2. Operating system level research works.

Project name
System

resources

Target

systems
Goal

Power-saving

techniques

The Ondemand

Governor, Pallipadi

and Starikovskiy [19]

CPU Arbitrary Minimize power

consumption, minimize

performance loss

DVFS

ECOsystem, Zeng et

al. [37] [38]

CPU, memory,

disk storage,

network

interface

Mobile

systems

Achieve target battery

lifetime

Resource

throttling

 20

Project name
System

resources

Target

systems
Goal

Power-saving

techniques

Nemesis OS,

Neugebauer and

McAuley [39]

CPU, memory,

disk storage,

network

interface

Mobile

systems

Achieve target battery

lifetime

Resource

throttling

GRACE, Sachs et al.

[40] [41]

CPU, network

interface

Mobile

systems

Minimize energy

consumption, satisfy

performance requirements

DVFS,

resource

throttling

Linux/RK, Rajkumar

et al. [42]

CPU Real-

time

systems

Minimize energy

consumption, satisfy

performance requirements

DVFS

Coda and Odyssey,

Flinn and

Satyanarayanan [43]

CPU, network

interface

Mobile

systems

Minimize energy

consumption by

application degradation

Resource

throttling

PowerNap, Meisner et

al. [44]

System-wide Server

systems

Minimize power

consumption, minimize

performance loss

DCD

6.1 The Ondemand Governor (Linux Kernel)

Pallipadi and Starikovskiy [19] have developed an in-kernel real-time power manager for

Linux OS called the ondemand governor. The manager continuously monitors the CPU utilization

multiple times per second and sets a clock frequency and supply voltage pair that corresponds to

current performance requirements keeping the CPU approximately 80% busy to handle fast changes

in the workload. The goal of the ondemand governor is to keep the performance loss due to reduced

frequency to the minimum. Modern CPU frequency scaling technologies provides extremely low

latency allowing dynamic adjustment of the power consumption matching the variable workload

with almost negligible performance overhead. For example, Enhanced Intel Speedstep Technology

enables frequency switching with the latency as low as 10 ms. To accommodate to different

requirements of diverse systems, the ondemand governor can be tuned via specification of the rate

at which the CPU utilization is checked and upper utilization threshold, which is set to 80% by

default.

The ondemand governor effectively handles multiprocessor SMP systems, as well as multi-

core and multi-threading CPU architectures. The governor manages each CPU individually and can

manage different cores in the CPU separately if this is supported by the hardware. In cases if

different processor cores in a CPU are dependent on each other in terms of frequency, they are

managed together as a single entity. In order to support this design, the ondemand governor will set

the frequency to all of the cores based on the highest utilization among the cores in the group.

There are a number of improvements that are currently under investigation, including

parallel calculation of the utilization and a dedicated work queue. The original governor samples the

utilization of all of the processors in the system in a centralized way that can become a significant

overhead with increase of the number of CPUs. To overcome this problem the authors have

proposed a parallel sampling independently for each CPU. Another improvement that can increase

performance for multiprocessor systems is to have dedicated kernel threads for the governor and do

sampling and changing of frequencies in the context of a particular kernel thread.

 21

6.2 ECOsystem

Zeng et al. [37] [38] have proposed and developed ECOsystem – a framework for managing

energy as a first-class OS resource aimed at battery powered devices. The authors’ fundamental

assumption is that applications play an important role in energy distribution opportunities that can

be leveraged only at the application level. ECOsystem provides an interface to define a target

battery lifetime and applications’ priorities used to determine the amount of energy that will be

allocated to applications at each time frame.

The authors split OS-level energy management into two dimensions. Along the first

dimension, there are a variety of the system devices (e.g. CPU, memory, disk storage, network

interface) that can consume energy concurrently. The other dimension spans applications that share

the system devices and cause the energy consumption. To address the problem of accounting the

energy usage by both devices and applications, the authors have introduced a new measurement unit

called currentcy. One unit of currentcy represents the right to consume a certain amount of energy

during a fixed period of time. When the user sets the target battery lifetime and prioritises the

applications, ECOsystem transforms these data into an appropriate amount of currentcy and

determines how much currentcy should be allocated to each application at each time frame. The

length of the timeframe has been empirically determined as 1 second that is sufficient to achieve

smooth energy allocation. An application expends the allocated amount of currentcy by utilizing the

CPU, performing disk and memory accesses and consuming other system resources. An application

can accumulate currentcy up to a specified limit. When an expenditure of an application exceeds the

allocated amount of currentcy, none of the associated processes are scheduled or otherwise

serviced.

The system has been implemented as a modified Linux kernel and has been experimentally

evaluated. The obtained results show that the proposed model can be effectively used to meet

different energy goals, such as achieving a target battery lifetime and proportional energy

distribution among competing applications.

6.3 Nemesis OS

Neugebauer and McAuley [39] have developed the resource-centric Nemesis OS – an

operating system for battery powered devices that strive to provide a consistent QoS for time-

sensitive application, such as multimedia applications. Nemesis provides fine grained control and

accounting for energy usage over all system resources: CPU, memory, disk and network bandwidth.

To implement per-process resource usage accounting, the OS has been vertically structured:

most of the system’s functions, protocol stacks and device drivers are implemented in user-level

shared libraries that execute in the applications’ processes. This design allows accurate and easy

accounting for the energy consumption caused by individual applications.

The goal of Nemesis is to address the problem of battery lifetime management. To achieve

the target battery lifetime specified by the user, the system relies on the cooperation with

applications. If the current energy consumption rate exceeds the threshold that can lead to failing to

meet the user’s expectations, the system charges the applications according to their current energy

usage. The applications should interpret the charges as feedback signals and adapt their behavior.

The applications are supposed to limit their resource usage according to the data provided by the

OS. However, not all application may support the adaptation. In this case the user can prioritise the

applications leading to shut down of the low-priority tasks. Nemesis currently supports a number of

platforms including Intel 486, Pentium, Pentium Pro and Pentium II based PCs, DEC Alpha

workstations and evaluation boards, and StrongARM SA-110 based network computers.

 22

6.4 The Illinois GRACE project

Sachs et al. [40] [41] have developed the Illinois GRACE project (Global Resource

Adaptation through CoopEration). They have proposed saving energy through coordinated

adaptation at multiple system layers according to changes in the applications’ demand for system

resources. The authors have proposed three levels of adaptation: global, per-application and internal

adaptation. The global adaptation takes into account all the applications running in the system and

all the system layers. This level of adaptation responses to significant changes in the system, such as

application entry or exit. The per-application adaptation considers each application in isolation and

is invoked every time frame adapting all the system resources to the application’s demands. The

internal adaptation focuses on different system resources separately that are possibly shared by

multiple applications and adapts the states of the resources. All the adaptation levels are coordinated

in order to ensure adaptation decisions that are effective across all levels.

The framework supports adaptations of the CPU performance (DVSF), applications (frame

rate and dithering), and soft CPU scaling (CPU time allocation). The second generation of the

framework (GRACE-2) focuses on a hierarchical adaptation for mobile multimedia systems.

Moreover, it leverages the adaptation of the application behavior depending on the resource

constraints. GRACE-2 apart from the CPU adaptation enforces network bandwidth constraints and

minimizes network transmission energy. The approach has been implemented as a part of the Linux

kernel and requires applications to be able to limit their resource usage in run-time on order to

leverage the per-application adaptation technique. There is only a limited support for legacy

applications.

The experimental results show that the application adaptation provides significant benefits

over the global adaptation when the network bandwidth is constrained. Energy savings in a system

with the CPU and network adaptations when adding the application adaptation reach 32% (22% on

average). When both the CPU and application adaptations are added to a system with the global

adaptation, the energy savings have been found to be more than additive.

6.5 Linux/RK

Rajkumar et al. [42] have proposed several algorithms for application of DVFS in real-time

systems and have implemented a prototype as a modified Linux kernel – Linux/Resource Kernel

(Linux/RK). The objective is to minimize the energy consumption, while maintaining the

performance isolation between applications. The authors have proposed four alternative DVFS

algorithms that are automatically selected by the system when appropriate.

SystemClock Frequency Assignment (Sys-Clock) is suitable for systems where the overhead

of voltage and frequency scaling is too high to perform at every context switch. A single clock

frequency is selected at the admission of an application and kept constant until a set of applications

running in the system changes. Priority-Monotonic Clock Frequency Assignment (PM-Clock) is

suitable for systems with a low voltage and frequency scaling overhead allowing adjustment of the

voltage and frequency settings at each context switch. Each application is assigned its own constant

clock frequency which is enabled when the application is allocated a CPU time frame. Optimal

Clock Frequency Assignment (Opt-Clock) uses a non-linear optimisation model to determine an

optimal frequency for each application that minimizes the energy consumption. Due to high

computational complexity this technique is suitable only for offline usage. Dynamic PM-Clock

(DPM-Clock) suits systems where the average execution time of an application is significantly less

than the worst case. The authors have conducted experimental studies to evaluate the proposed

algorithms. The results show that SysClock, PM-Clock and DPM-Clock provide up to 50% energy

savings.

 23

6.6 Coda and Odyssey

Flinn and Satyanarayanan [43] have explored the problem of managing limited computing

resources and battery lifetime in mobile systems, as well as addressing the variability of the network

connectivity. They have developed two systems, Coda and Odyssey that implement adaptation

across multiple system levels. Coda implements application-transparent adaptation in the context of

a distributed file system, which does not require any modification of legacy applications to run in

the system.

Odyssey is responsible for initiation and managing of application adaptations. This kind of

adaptation allows adjustment of the resource consumption by the cost of the output data quality,

which is mostly suitable for multimedia applications. For example, video data can be processed or

transferred over network in lower resolution or sound quality can be reduced in cases of constrained

resources.

Odyssey introduces a term fidelity that defines the degree to which the output data

corresponds to the original quality. Each application can specify acceptable levels of fidelity that

can be requested by Odyssey when the resource usage has to be limited. When Odyssey notifies an

application about a change of the resource availability, the application has to adjust its fidelity to

match the requested level. For energy-aware adaptation it is essential that reductions in fidelity lead

to energy savings that are both significant and predictable. The evaluation results show that this

approach allows the extension of the battery lifetime up to 30%. A limitation of such a system is

that all the necessary applications have to be modified in order to support the proposed approach.

6.7 PowerNap

Meisner et al. [44] have proposed an approach for power conservation in server systems

based on fast transitions between active and low power states. The goal is to minimize power

consumption by a server while it is in an idle state. Instead of addressing the problem of achieving

energy-proportional computing as proposed by Barroso and Holzle [9], the authors require only two

power states (sleep and fully active) for each system component. The other requirements are fast

transitions between the power states and very low power consumption in the sleep mode.

To investigate the problem, the authors have collected fine grained utilization traces of

several servers serving different workloads. According to the data, the majority of idle periods are

shorter than 1 second with the mean length in the order of hundreds of milliseconds. Whereas, busy

periods are even shorter falling bellow 100 ms for some workloads. The main idea of the proposed

approach is to leverage short idle periods that occur due to the workload variability. To estimate the

characteristics of the hardware able to implement the technique, the authors have constructed a

queueing model based on characteristics of the collected utilization traces. They have found that if

the transition time is less than 1 ms, it becomes negligible and power savings vary linearly with the

utilization for all workloads. However, with the growth of the transition time, power savings

decrease and the performance penalty becomes higher. When the transition time reaches 100 ms,

the relative response time for low utilization can grow up to 3.5 times relatively to a system without

power management, which is clearly unacceptable for real-world systems.

The authors have concluded that if the transition time is less than 10 ms, power savings are

approximately linear to the utilization and significantly outperform the effect from DVFS for low

utilization (less than 40%). However, the problem is that the requirement for the transition time

being less than 10 ms cannot be satisfied by the current level of technology. According to the data

provided by the authors, modern servers can ensure the transition time of 300 ms, which is anyway

far from the requested 10 ms. The proposed approach is similar to the fixed time-out DCD

technique, but adapted to fine grained management. Therefore, all the disadvantages of the fixed

time-out technique are inherited by the proposed approach, i.e. constant performance penalty on

wake ups and the overhead in cases when an idle period is shorter then the transition time to and

 24

from a low power state. The authors have reported that if the stated requirements are satisfied, the

average server power consumption can be reduced by 74%.

7 Virtualization Level

The virtualization level enables the abstraction of an OS and applications running on it from

the hardware. Physical resources can be split into a number of logical slices called Virtual Machines

(VMs). Each VM can accommodate an individual OS creating for the user a view of a dedicated

physical resource and ensuring performance and failure isolation between VMs sharing a single

physical machine. The virtualization layer lies between the hardware and OS and; therefore, a

Virtual Machine Monitor (VMM) takes control over resource multiplexing and has to be involved

in the system’s power management in order to provide efficient operation. There are two ways of

how a VMM can participate in the power management:

1. A VMM can act as a power-aware OS without distinction between VMs: monitor the overall

system’s performance and appropriately apply DVFS or any DCD techniques to the system

components.

2. Another way is to leverage OS’s specific power management policies and application-level

knowledge, and map power management calls from different VMs on actual changes in the

hardware’s power state or enforce system-wide power limits in a coordinated manner.

We will discuss these techniques in detail in the following sections.

7.1 Virtualization Technology Vendors

In Section 7.1 we will discuss three of the most popular virtualization technology solutions:

the Xen hypervisor
6
, VMware solutions

7
 and KVM

8
. Both of these systems support the first

described way to perform power management, however, neither allows coordination of VMs’

specific calls for power state changes. Section 7.2 discusses an approach proposed by Stoess et al.

[45] that utilizes both system-wide power control and fine grained application-specific power

management performed by guest operating systems.

Other important capabilities supported by the mentioned virtualization solutions are offline

and live migrations of VMs. They enable transferring VMs from one physical host to another, and

thus have facilitated the development of different techniques for virtual machines consolidation and

load balancing that will be discussed in Section 8.

7.1.1 Xen

The Xen hypervisor is an open source virtualization technology developed collaboratively

by the Xen community and engineers from over 20 innovative data center solution vendors [46].

Xen is licensed under the GNU General Public License (GPL2) and available at no charge in both

source and object formats. Xen’s support for power management is similar to what is provided by

the Linux’s ondemand governor described in Section 6.1. Xen supports ACPI’s P-states

implemented in the cpufreq driver [47]. The system periodically measures the CPU utilization,

determines an appropriate P-state and issue a platform-dependent command to make a change in the

hardware’s power state. Similarly to the Linux’s power management subsystem, Xen provides four

governors:

6
 http://www.xen.org/

7
 http://www.vmware.com/

8
 http://www.linux-kvm.org/

http://www.xen.org/
http://www.vmware.com/
http://www.linux-kvm.org/

 25

 Ondemand – chooses the best P-state according to current resource requirements.

 Userspace – sets the CPU frequency specified by the user.

 Performance – sets the highest available clock frequency.

 Powersave – sets the lowest clock frequency.

Apart from P-states, Xen also incorporates the support for C-states (CPU sleeping states)

[47]. When a physical CPU does not have any task assigned, it is switched to a C-state. When a new

request comes, the CPU is switched back to the active state. An issue is to determine which C-state

to enter: deeper C-states provide higher energy saving by the cost of higher transition latency. At

this moment, by default Xen puts the CPU into the first C-state, which provides the least transition

delay. However, the user can specify a C-state to enter. As the CPU wakes up upon receiving a

load, it always gets an inevitable performance penalty. The policy is a fixed timeout DCD implying

all its disadvantages described in Section 5.1.

Besides P- and C-states, Xen also supports regular and live migration of VMs, which can be

leveraged by power-aware dynamic VM consolidation algorithms. Migration is used to transfer a

VM between physical hosts. Regular migration moves a VM from one host to another by

suspending, copying the VM’s memory contents, and then resuming the VM on the destination

host. Live migration allows transferring a VM without suspension and from the user side the

migration should be inconspicuous. To perform a live migration, both hosts must be running Xen

and the destination host must have sufficient resources (e.g. memory capacity) to accommodate the

VM after the transmission. Xen starts a new VM instance that forms a container for the VM to be

migrated. Xen cyclically copies memory pages to the destination host, continuously refreshing the

pages that have been updated on the source. When it notices that the number of modified pages is

not shrinking anymore, it stops the source instance and copies the remaining memory pages. Once it

is completed, the new VM instance is started. To minimize the migration overhead, the hosts are

usually connected to a Network Attached Storage (NAS) or similar storage solution, which

eliminates the necessity to copy disk contents. The developers argue that the final phase of a live

migration, when both instances are suspended, typically takes approximately 50 ms. Given such a

low overhead, the live migration technology has facilitated the development of various energy

conservation dynamic VM consolidation approaches proposed by researchers around the world.

7.1.2 VMware

VMware ESX Server and VMWare ESXi are enterprise-level virtualization solutions

offered by VMware, Inc. Similarly to Xen, VMware supports host-level power management via

DVFS. The system monitors the CPU utilization and continuously applies appropriate ACPI’s P-

states [48]. VMware VMotion and VMware Distributed Resource Scheduler (DRS) are two other

services that operate in conjunction with ESX Server and ESXi [49]. VMware VMotion enables

live migration if VMs between physical nodes. A migration can be initiated manually by system

administrators or programmatically. VMware DRS monitors the resource usage in a pool of servers

and uses VMotion to continuously rebalance VMs according to the current workload and load

balancing policy.

VMware DRS contains a subsystem called VMware Distributed Power Management (DPM)

to reduce power consumption by a pool of servers by dynamically switching off spare servers [49]

[50]. Servers are powered back when there is a rising demand for the resource capacity. VMware

DPM utilizes live migration to reallocate VMs keeping the minimal number of servers powered on.

VMware ESX Server and VMware ESXi are free for use, whereas other components of VMware

Infrastructure have a commercial license.

 26

7.1.3 KVM

KVM is a virtualization platform, which is implemented as a module of the Linux kernel

[51]. Under this model Linux works as a hypervisor, and all the VMs are regular processes

scheduled by the Linux scheduler. This approach reduces the complexity of the hypervisor

implementation, as scheduling and memory management are handled by the Linux kernel.

KVM supports the S4 (hibernate) and S3 (sleep / stand by) power states
9
. S4 does not

require any specific support from KVM: on hibernation the guest OS dumps memory state to a hard

disk and initiates powering off the computer. The hypervisor translates this signal into termination

of the appropriate process. On the next boot, the OS reads the saved memory state from the disk,

resumes from the hibernation and reinitializes all the devices. During the S3 state memory is kept

powered, and thus the content does need to be saved to a disk. However, the guest OS must save

states of the devices, as they should be restored on resume. During the next boot, the BIOS should

recognize the S3 state and not initialize the devices, but jump directly to the restoration of the saved

device states. Therefore, the BIOS is modified in order to support such behaviour.

7.2 Energy Management for Hypervisor-Based Virtual

Machines

Stoess et al. [45] have proposed a framework for energy management in virtualized servers.

Typically, energy-aware OSes assume full knowledge and full control over the underlying

hardware, implying device- or application level accounting for the energy usage. However, in

virtualized systems, a hardware resource is shared among multiple VMs. In such an environment,

device control and accounting information are distributed across the whole system, making it

infeasible for an OS to take a full control over the hardware. This results in inability of energy-

aware OSes to invoke their policies in the system. The authors have proposed mechanisms for fine

grained guest OS-level energy accounting and allocation. To encompass the diverse demands on

energy management, the authors have proposes to use the notion of energy as the base abstraction in

the system, an approach similar to the currentcy model in ECOsystem described in Section 6.2.

The prototypical implementation comprises two sub-systems: a host-level resource manager

and an energy-aware OS. The host-level manager enforces system-wide power limits across VM

instances. The power limits can be dictated by a battery or power generator, or by thermal

constraints imposed by reliability requirements and the cooling system capacity. The manager

determines power limits for each VM and device type, which cannot be exceeded to meet the

defined power constraints. The complementary energy-aware OS is capable of fine grained

application-specific energy management. To enable application-specific energy management, the

framework supports accounting and control not only for physical but also of virtual devices. This

enables guest resource management subsystems to leverage their application-specific knowledge.

Experimental results presented by the authors show that the prototype is capable of

enforcing power limits for energy-aware and energy-unaware guest OSes. Three areas are

considered to be prevalent for future work: devices with multiple power states, processors with

support for hardware-assisted virtualization, and multi-core architectures.

8 Data Center Level

In this chapter recently proposed approaches that deal with power management at the data

center level are discussed. The characteristics used to classify the approaches are presented in

Figure 7.

9
 http://www.linux-kvm.org/page/PowerManagement

http://www.linux-kvm.org/page/PowerManagement

 27

Usually an approach is based on consolidation of the workload across physical nodes in data

centers. The workload can be represented by incoming requests for online services or web

applications, or virtual machines. The goal is to allocate requests / virtual machines to the minimal

amount of physical resources and turn off or put in sleep / hibernate state the idle resources. The

problem of the allocation is twofold: firstly, it is necessary to allocate new requests; secondly, the

performance of existing applications / VMs should be continuously monitored and if required the

allocation should be adapted to achieve the best possible power-performance trade-off regarding to

specified QoS.

Table 3 illustrates the most significant characteristics of the reviewed research works (full

table is given in Appendix B).

Data center level

Virtualization

System resources

Target systems

Goal

Power saving techniques

Workload

Yes

No

Multiple resources

Single resource

Homogeneous

Heterogeneous

Minimize power / energy

consumption

Minimize performance

loss

DVFS

Meet power budget

Resource throttling

DCD

Arbitrary

Real-time applications

HPC-applications

Workload consolidation

Figure 7. Data center level taxonomy

Table 3. Data center level research works.

Project name
Virtua-

lization

System

resources
Goal

Power-saving

techniques

Load Balancing and

Unbalancing for Power

and Performance in

Cluster-Based System,

Pinheiro et al. [21]

No CPU, disk

storage,

network

interface

Minimize power

consumption, minimize

performance loss

Server power

switching

Managing Energy and

Server Resources in

Hosting Centers, Chase et

No CPU Minimize power

consumption, minimize

performance loss

Workload

consolidation,

server power

 28

Project name
Virtua-

lization

System

resources
Goal

Power-saving

techniques

al. [52] switching

Energy-Efficient Server

Clusters, Elnozahy et al.

[20]

No CPU Minimize energy

consumption, satisfy

performance

requirements

DVFS, server

power switching

Energy-Aware

Consolidation for Cloud

Computing, Srikantaiah et

al. [53]

No CPU, disk

storage

Minimize energy

consumption, satisfy

performance

requirements

Workload

consolidation,

server power

switching

Optimal Power Allocation

in Server Farms, Gandhi et

al. [54]

No CPU Allocate the available

power budget to

minimize mean

response time

DVFS

Environment-Conscious

Scheduling of HPC

Applications, Garg et al.

[55]

No CPU Minimize energy

consumption and CO2

emissions, maximize

profit

DVFS, leveraging

geographical

distribution of data

centers

VirtualPower:

Coordinated Power

Management in

Virtualized Enterprise

Systems, Nathuji and

Schwan [56]

Yes CPU Minimize energy

consumption, satisfy

performance

requirements

DFVS, soft scaling,

VM consolidation,

server power

switching

Coordinated Multi-level

Power Management for

the Data Center,

Raghavendra et al. [57]

Yes CPU Minimize power

consumption, minimize

performance loss, while

meeting power budget

DVFS, VM

consolidation,

server power

switching

Power and Performance

Management of

Virtualized Computing

Environments via

Lookahead Control, Kusic

et al. [58]

Yes CPU Minimize power

consumption, minimize

performance loss

DVFS, VM

consolidation,

server power

switching

Resource Allocation using

Virtual Clusters, Stillwell

et al. [59]

Yes CPU Maximize resource

utilization, satisfy

performance

requirements

Resource throttling

Multi-Tiered On-Demand

Resource Scheduling for

VM-Based Data Center,

Song et al. [60]

Yes CPU,

memory

Maximize resource

utilization, satisfy

performance

requirements

Resource throttling

Shares and Utilities based

Power Consolidation in

Virtualized Server

Environments, Cardosa et

Yes CPU Minimize power

consumption, minimize

performance loss

DFVS, soft scaling

 29

Project name
Virtua-

lization

System

resources
Goal

Power-saving

techniques

al. [61]

pMapper: Power and

Migration Cost Aware

Application Placement in

Virtualized Systems,

Verma et al. [62]

Yes CPU Minimize power

consumption, minimize

performance loss

DVFS, VM

consolidation,

server power

switching

Resource pool

management: Reactive

versus proactive, Gmach

et al. [63]

Yes CPU,

memory

Maximize resource

utilization, satisfy

performance

requirements

VM consolidation,

server power

switching

GreenCloud: Energy-

Efficient and SLA-based

Management of Cloud

Resources, Buyya et al.

[64] [65]

Yes CPU Minimize energy

consumption, satisfy

performance

requirements

Leveraging

heterogeneity of

Cloud data centers,

DVFS

8.1 Implications of Cloud Computing

Cloud computing has become a very promising paradigm for both consumers and providers

in various areas including science, engineering and not to mention business. A Cloud typically

consists of multiple resources possibly distributed and heterogeneous. Although the notion of a

Cloud has existed in one form or another for some time now (its roots can be traced back to the

mainframe era [66]), recent advances in virtualization technologies and the business trend of

reducing the TCO in particular have made it much more appealing compared to when it was first

introduced. There are many benefits from the adoption and deployment of Clouds, such as

scalability and reliability; however, Clouds in essence aim to deliver more economical solutions to

both parties (consumers and providers). By economical we mean that consumers only need to pay

per their use and providers can capitalize poorly utilized resources. From the provider’s perspective,

the maximization of their profit is a high priority. In this regard, the minimization of energy

consumption plays a crucial role. Recursively, energy consumption can be much reduced by

increasing the resource utilization. Moreover, Cloud applications require movement of large data

sets between the infrastructure and consumers, thus it is essential to consider both compute and

network aspects of energy efficiency [67]. Energy usage in large-scale computing systems like

Clouds also yields many other concerns including carbon emissions and system reliability.

Reduction in energy consumption by more effectively dealing with resource provisioning

(avoidance of resource under/over provisioning) may be obtained [68]. Large profit-driven Cloud

service providers typically develop and implement better power management, since they are

interested in taking all necessary means to reduce energy costs to maximize their profit.

8.2 Non-Virtualized Systems

8.2.1 Load Management for Power and Performance in Clusters

Pinheiro et al. [21] have proposed a technique for managing a cluster of physical machines

with the objective of minimizing the power consumption, while providing the required QoS. The

authors claim that they present a new direction of research as all previous works deal with power

efficiency in mobile systems or load balancing in clusters. The main technique to minimize power

 30

consumption is the load concentration, or unbalancing, while switching idle computing nodes off.

The approach requires dealing with the power-performance trade-off, as performance of

applications can be degraded due to the workload consolidation. The authors use the throughput and

execution time of applications as constraints for ensuring the QoS. The nodes are assumed to be

homogeneous. The algorithm periodically monitors the load and decides which nodes should be

turned on or off to minimize the power consumption by the system, while providing expected

performance. To estimate the performance the authors apply a notion of demand for resources,

where resources include CPU, disk and network interface. This notion is used to predict

performance degradation and throughput due to workload migration based on historical data.

However, the demand estimation is static – the prediction does not consider possible demand

changes over time. Moreover, due to sharing of the resource by several applications, the estimation

of the resource demand for each application can be complex when the total demand exceeds 100%

of the available resource capacity. For this reason, throughput degradation is not estimated in the

experimental study. To determine the time to add or remove a node the authors introduce a total

demand threshold that is set statically for each resource. This threshold is also supposed to solve the

problem of the latency caused by a node addition, but may lead to performance degradation in the

case of fast demand growth.

The actual load balancing is not handled by the system and has to be managed by the

applications. The algorithm is executed on a master node that creates a single point of failure and

might become a performance bottleneck in a large system. In addition, it is claimed that

reconfiguration operations are time-consuming and the implementation of the algorithm adds or

removes only one node at a time that may also be a reason for slow reaction in large-scale

environments.

The authors have also investigated the cooperation between applications and OS in terms of

power management decisions. They found that it can help to achieve more efficient control.

However, the requirement for such cooperation leads to loss of the approach generality. Generality

is also reduced as the system has to be configured for each application. This problem can be

eliminated by application of virtualization technology. To evaluate the approach, the authors have

conducted several experimental studies with different types of workloads: web-applications and

compute intensive applications. The approach can be applied to multi-service mixed-workload

environments with fixed SLA.

8.2.2 Managing Energy and Server Resources in Hosting Centers

Chase et al. [52] have studied the problem of managing resources in Internet hosting centers.

Resources are shared among multiple service applications with specified SLA – the throughput and

latency. The authors have developed an OS for an Internet hosting center (Muse) that is a

supplement for operating systems of individual servers and supposed to manage and coordinate

interactions between the data center's components. The main distinction from previous work is that

the objective is not just to schedule resources efficiently, but also minimize the consumption of

electrical power by the system components. In this work this approach is applied to data centers in

order to reduce: operating costs (power consumption by computing resources and cooling system);

carbon dioxide emissions, and thus the impact on the environment; thermal vulnerability of the

system due to cooling failures or high service load; and over-provisioning in capacity planning.

Muse addresses these problems by automatically scaling back the power demand (and therefore

waste heat) when appropriate. Such a control over resource usage optimizes the trade-off between

service quality and price, allowing the support of flexible SLA negotiated between consumers and a

resource provider.

The main challenge is to determine resource demand of each application at its current

request load level, and to allocate resources in the most efficient way. To deal with this problem the

authors apply an economic framework: the system allocates resources in a way that maximizes the

"profit" by balancing the cost of each resource unit against the estimated utility, or the "revenue"

 31

that is gained from allocating that resource unit to a service. Services "bid" for the resources in

terms of volume and quality. This enables negotiation of the SLA according to the available budget

and current QoS requirements, i.e. balancing cost of resource usage (energy cost) and benefit gained

due to usage of this resource. This enables a data center to improve the energy efficiency under

fluctuating workload, dynamically match load and power consumption, and respond gracefully to

resource shortages.

The system maintains an active set of servers selected to serve requests for each service.

Network switches are dynamically reconfigured to change the active set when necessary. Energy

consumption is reduces by switching idle servers to power saving states (e.g. sleep, hibernation).

The system is targeted at the web workload, which leads to "noise" in the load data. The authors

address this problem by applying of the statistical "flip-flop" filter, which reduces the number of

unproductive reallocations and leads to more stable and efficient control.

This work has created a foundation for the numereous studies in power efficient resource

allocation at the data center level, however, the proposed approach has several weaknesses. The

system deals only with CPU management, but does not take into account other system resources,

such as memory, disk storage and network interface. It utilizes Advanced Power Management

(APM), which is an outdated standard for Intel-based systems, while currently adopted by industry

standard is ACPI. The thermal factor is not considered as well as the latency due to switching

physical nodes on / off. The authors have pointed out that the management algorithm is stable, but

it turns out to be relatively expensive during significant changes in th e workload. Moreover,

heterogeneity of the software configuration requirements is not handled, which can be addressed by

applying the virtualization technology.

8.2.3 Energy-Efficient Server Clusters

Elnozahy et al. [20] have explored the problem of power-efficient resource management in a

single-service environment for web-applications with fixed SLA (response time) and auto load-

balancing running on a homogeneous cluster. The motivation for the work is the reduction of

operating costs and improvement of the error-proneness due to overheating. Two power

management mechanisms are applied: switching physical nodes on and off (vary on vary off,

VOVO) and DVFS of the CPU, whereas other system resources are not considered as they

"consume a smaller fraction of the total system power consumption".

The authors have proposed five policies for resource management: Independent Voltage

Scaling (IVS), Coordinated Voltage Scaling (CVS), Vary-On Vary-Off (VOVO), Combined Policy

(VOVO-IVS) and Coordinated Combined Policy (VOVO-CVS). The last mentioned policy is stated

to be the most advanced and is provided with a detailed description and mathematical model for

determining CPU frequency thresholds. The thresholds define when it is appropriate to turn on an

additional physical node or turn off an idle node. The main idea of the policy is to estimate total

CPU frequency required to provide expected response time, determine the optimal number of

physical nodes and set the proportional frequency on all the nodes.

The experimental results show that the proposed IVS policy can provide up to 29% energy

savings and is competitive with more complex schemes for some workloads. VOVO policy can

produce saving up to 42%, whereas coordinated voltage scaling policy in conjunction with VOVO

(VOVO-CVS) results in 18% higher savings that are obtained using VOVO separately. However,

the proposed approach is limited in the following factors. The transition time for starting up an

additional node is not considered. Only a single application is assumed to be run on the cluster and

the load-balancing is supposed to be done by an external system. Moreover, the algorithm is

centralized that creates a single point of failure and reduces the system scalability. The workload

data is not approximated, which can lead to inefficient decisions due to fluctuations in the demand.

No other system resources except for CPU are considered in resource management decisions.

 32

8.2.4 Energy-Aware Consolidation for Cloud Computing

Srikantaiah et al. [53] have investigated the problem of dynamic consolidation of

applications serving small stateless requests in data centers to minimize the energy consumption.

First of all, the authors have explored the impact of the workload consolidation on the energy-per-

transaction metric depending on both CPU and disk utilizations. The obtained experimental results

show that the consolidation influences the relationship between energy consumption and utilization

of resources in a non-trivial manner. The authors have found that the energy consumption per

transaction results in "U"-shaped curve. When the utilization is low, due to high fraction of the idle

state, the resource is not efficiently used leading to a more expensive in terms of the energy-

performance metric. On the other hand, high resource utilization results in increased cache miss

rate, context switches and scheduling conflicts. Therefore, the energy consumption becomes high

due to the performance degradation and consequently longer execution time. For the described

experimental setup the optimal points of utilization are at 70% and 50% for CPU and disk

utilizations respectively.

According to the obtained results, the authors stated that the goal of the energy-aware

consolidation is to keep servers well utilized, while avoiding the performance degradation due to

high utilization. They modeled the problem as a multi-dimensional bin packing problem, in which

servers are represented by bins with each resource (CPU, disk, memory and network) considered as

a dimension of the bin. The bin size along each dimension is defined by the determined optimal

utilization level. The applications with known resource utilizations are represented by objects with

an appropriate size in each dimension. The minimization of the number of bins is stated as leading

to the minimization of the energy consumption due to switching off idle nodes. However, the model

does not describe performance of applications that can be degraded due to the consolidation.

Moreover, the energy consumption may depend on a particular set of application combined on a

computer node.

The authors have proposed a heuristic for the defined bin packing problem. The heuristic is

based on idea of minimization of the sum of the Euclidean distances of the current allocations to the

optimal point at each server. As a request to execute a new application is received, the application is

allocated to a server using the proposed heuristic. If the capacity of active servers is fulfilled, a new

server is switched on, and all the applications are reallocated using the same heuristic in an arbitrary

order. According to the experimental results, the energy used by the proposed heuristic is about

5.4% higher than optimal. The proposed approached is suitable for heterogeneous environments,

however, it has several shortcomings. First of all, resource requirements of applications are assumed

to be known a priory and constant. Moreover, migration of state-full applications between nodes

incurs performance and energy overhead, which are not considered by the authors. Switching

servers on / off also leads to significant costs that must be considered for a real-world system.

Another problem with the approach is the requirement of an experimental study to obtain optimal

points of the resource utilizations for each server. Furthermore, the decision about keeping the

upper threshold of the resource utilization at the optimal point is not justified as the utilization

above the threshold can symmetrically provide the same energy-per-transaction level.

8.2.5 Optimal Power Allocation in Server Farms

Gandhi et al. [54] have studied the problem of allocating an available power budget among

servers in a virtualized heterogeneous server farm to minimize mean response time for HPC

applications. The authors have investigated how server’s CPU frequency scaling techniques affect

the server’s power consumption. They have conducted experiments applying DFS (T-states), DVFS

(P-states) and DVFS+DFS (coarse grained P-states combined with fine grained T-states) for CPU

intensive workloads. The results show linear power-to-frequency relationship for DFS and DVFS

techniques and cubic square relationship for DVFS+DFS.

 33

Given the power-to-frequency relationship, the authors consider the problem of finding the

optimal power allocation as a problem of determining the optimal frequencies of the server’s CPUs

with ensuring minimization of the mean response time. To investigate the effect of different factors

on the mean response time the authors have introduces a queuing theoretic model that allows

prediction of the mean response time as a function of the power-to-frequency relationship, arrival

rate, peak power budget, etc. The model also allows determining the optimal power allocation for

every possible configuration of the above factors.

The approach has been experimentally evaluated against different types of workloads. The

results show that an efficient power allocation can significantly vary for different workloads. To

gain the best performance constrained by a power budget, it is not always optimal to run a small

number of servers at their maximum speed. Oppositely, depending on the workload it can be more

efficient to run more servers but at lower performance levels. The experimental results show that

efficient power allocation can substantially improve server farm performance – up to a factor of 5

and by a factor of 1.4 on average.

8.2.6 Environment-Conscious Scheduling of HPC Applications

 Garg et al. [55] have investigated the problem of energy and CO2 efficient scheduling of

HPC applications in geographically distributed Cloud data centers. The aim is to provide HPC users

with the ability to leverage high-end computing resources supplied by Cloud computing

environments on demand and in a pay-as-you-go basis. The authors have addressed the problem in

the context of a Cloud resource provider and presented heuristics for energy-efficient meta-

scheduling of applications across heterogeneous resource sites. Apart from reducing the

maintenance costs, which results in higher profit for a resource provider, the proposed approach

decreases carbon dioxide footprints. The proposed scheduling algorithms take into account energy

cost, carbon emission rate, workload and CPU power efficiency, which change across different data

centers depending on their location, design and resource management system.

The authors have proposed five scheduling policies, two of which minimize carbon dioxide

emissions, two maximize the profit of resource providers, and the last one is a multi-objective

policy that minimizes CO2 emissions and maximizes the profit. The multi-objective policy finds for

each application a data center, which provides the least carbon dioxide emissions, among data

centers able to complete an application by its deadline. Then among all the application-data center

pairs, the policy chooses one, which results in the maximal profit. These steps are repeated until all

the applications are scheduled. The energy consumption is also reduced by applying DVFS for all

the CPUs in data centers.

The proposed heuristics have been evaluated using simulations of different scenarios. The

experimental results have shown that the energy-centric policies allow the reduction of energy costs

by 33% on average. The proposed multi-objective algorithm can be effectively applied when

limitations of carbon dioxide emissions are desirable by resource providers or forced by

governments. This algorithm leads to reduced carbon emission rate, while maintains a high level of

the profit.

8.3 Virtualized Systems

8.3.1 VirtualPower: Coordinated Power Management

Nathuji and Schwan [56] have investigated the problem of power efficient resource

management in large-scale virtualized data centers. This is the first time when power management

techniques have been explored in the context of virtualized systems. The authors have pointed out

the following benefits of virtualization: improved fault and performance isolation between

applications sharing the same resource; ability to relatively easy move VMs between physical hosts

applying live or offline migration; support for hardware and software heterogeneity, which they

 34

investigated in their previous work [69]. Besides the hardware scaling and VMs consolidation, the

authors apply a new power management technique in the context of virtualized systems called "soft

resource scaling". The idea is to emulate hardware scaling by providing a VM less time for utilizing

the resource using the VMM's scheduling capability. ―Soft‖ scaling is useful when hardware scaling

is not supported or provides a very small power benefit. The authors have found that combination of

"hard" and "soft" scaling may provide higher power savings due to usually limited number of

hardware scaling states.

The goals of the proposed approach are support for isolated and independent operation of

guest VMs, and control and coordination of diverse power management policies applied by the

VMs to resources. The system intercepts guest VMs' ACPI calls to perform changes in power states,

map them on 'soft' states and uses as hints for actual changes in the hardware’s power state. In this

way the system supports guest VM's system level or application level specific power management

policies, while maintaining isolation between multiple VMs sharing the same physical node.

The authors propose to split resource management into local and global policies. At the local

level the system coordinates and leverages power management policies of guest VMs at each

physical machine. An example of such a policy is the on-demand governor integrated into the Linux

kernel. At this level the QoS is maintained as decisions about changes in power states are issued

externally, by guest OS specific policies. However, the drawback of such a solution is that the

power management may be inefficient due to a legacy or non power-aware guest OS. Moreover,

power management decisions are usually done with some slack and the aggregated slack will grow

with the number of VMs leading to under-optimal management. The authors have described several

local policies aimed at the minimization of power consumption under QoS constraints, and at power

capping. The global policies are responsible for managing multiple physical machines and use

knowledge of rack- or blade-level characteristics and requirements. These policies consolidate VMs

using migration in order to offload resources and place them into power saving states. The

experiments conducted by the authors show that usage of the proposed system leads to efficient

coordination of VM- and application-specific power management policies, and reduces the power

consumption up to 34% with little or no performance penalties. However, the authors do not

provide a detailed description of the global policies used limiting the analysis of the approach.

8.3.2 Coordinated Multi-level Power Management

Raghavendra et al. [57] have investigated the problem of power management for a data

center environment by combining and coordinating five diverse power management policies. The

authors argue that although a centralized solution can be implemented to handle all aspects of

power management, it is more likely for a business environment that different solutions from

multiple vendors will be applied. In this case it is necessary to solve the problem of coordination

between individual controllers to provide correct, stable and efficient control. The authors classify

existing solutions by a number of characteristics including the objective function, performance

constraints, hardware / software and local / global types of policies. The range of solutions that fall

into this taxonomy can be very wide. Therefore, instead of trying to address the wholes space, the

authors focus on five individual solutions and propose five appropriate power management

controllers. They have explored the problem in terms of control theory and apply feedback control

loop to coordinate the controllers' actions.

The efficiency controller optimizes average power consumption by individual servers. The

controller monitors the utilization of resources, based on the past history predicts future demand and

appropriately adjusts the P-state of the CPU. The server manager implements power capping at the

server level. It monitors power consumption by a server and reduces the P-state if the power budget

is violated. The enclosure manager and the group manager implement power capping at the

enclosure and data center level respectively. They monitor individual power consumptions across a

collection of machines and dynamically re-provision power across systems to maintain the group

power budget. The power budgets can be provided by system designers based on thermal or power

 35

delivery constraints, or by high level power managers. The VM controller reduces power

consumption across multiple physical nodes by dynamically consolidating VMs and switching idle

servers off. The authors provide integer programming model for the problem of optimization of VM

allocation. However, the proposed model does not provide a protection from unproductive

migrations due to workload fluctuations and does not show how SLA can be guaranteed in cases of

fast changes in the workload. Furthermore, the transition time for reactivating servers as well as the

ability to handle multiple system resources apart from the CPU are not considered.

The authors have provided experimental results, which show the ability of the system to

reduce the power consumption under different workloads. The authors have pointed out an

interesting outcome of the experiment: the actual power savings can vary depending on the

workload, but "the benefits from coordination are qualitatively similar for all classes of workloads".

In summary, the authors have presented the system for coordination of different power management

policies. However, the proposed system is not able to ensure meeting QoS requirements as well as

variable SLA from different applications. Therefore, the solution is suitable for enterprise

environments, but not for Cloud computing providers, where more reliable QoS and a

comprehensive support for SLA are essential.

8.3.3 Power and Performance Management via Lookahead Control

Kusic et al. [58] have explored the problem of power and performance efficient resource

management in virtualized computing systems. The problem is narrowed to dynamic provisioning

of VMs for multi-tiered web-applications according to current workload (number of incoming

requests). SLA for each application are defined as the request processing rate. The clients pay for

the provided service and receive refund in case of violated SLA as a penalty to the resource

provider. The objective is to maximize resource provider's profit by minimizing both power

consumption and SLA violation. The problem is stated as a sequential optimization and addressed

using Limited Lookahead Control (LLC). Decision variables to be optimized are the following: the

number of VMs to provision to each service; the CPU share allocated to each VM; the number of

servers to switch on or off; and a fraction of incoming workload to distribute across the servers

hosting the service.

The workload is assumed to be quickly changing, which means that resource allocations

must be adapted over short time periods – "in order of tens seconds to a few minutes". Such

requirement makes essential high performance of the optimization controller. The authors also

incorporated in the model time delays and incurred costs for switching hosts and VMs on / off.

Switching hosts on / off as well as resizing and dynamic consolidation of VMs via offline migration

are applied as power saving mechanisms. However, DVFS is not performed due to low power

reduction effect as argued by the authors.

The authors have applied Kalman filter to estimate the number of future requests, which is

used to predict future system state and perform necessary reallocations. The authors have provided

a mathematical model for the optimization problem. The utility function is risk-aware and includes

risks of "excessive switching caused by workload variability" as well as transient power-

consumption and opportunity costs. However, the proposed model requires simulation-based

learning for the application specific adjustments: processing rate of VMs with different CPU shares

must be known a priori for each application. This fact limits generality of the approach. Moreover,

due to complexity of the model the optimization controller execution time reaches 30 minutes even

for a small experimental setup (15 hosts), which is not suitable for large-scale real-world systems.

The authors have applied neural networks to improve the performance; however, the provided

experimental results are only for 10 hosts, and thus are not enough to prove the applicability of such

a technique. The experimental results show that a server cluster managed using LLC saves 26% in

the power consumption costs over a 24 hour period when compared to an uncontrolled system.

Power savings are achieved with 1.6% SLA violations of the total number of requests.

 36

8.3.4 Resource Allocation using Virtual Clusters

Stillwell et al. [59] have studied the problem of resource allocation for HPC applications in

virtualized homogeneous clusters. The objective is to maximize resource utilization, while

optimizing user-centric metric that encompasses both performance and fairness, which is referred to

as the yield. The idea is to design a scheduler focusing on a user-centric metric. The yield of a job is

―a fraction of its maximum achievable compute rate that is achieved‖. A yield of 1 means that the

job consumes computational resources at its peak rate.

To formally define the basic resource allocation problem, the authors have assumed that an

application requires only one VM instance; the application’s computational power and memory

requirements are static and known a priori. The authors have defined a Mixed Integer Programming

Model that describes the problem. However, the solution of the model requires an exponential time,

and thus can be obtained only for small instances of the problem. The authors have proposed

several heuristics to solve the problem and evaluated them experimentally across different

workloads. The results show that that the multi-capacity bin packing algorithm that sorts tasks in

descending order by their largest resource requirement outperforms or equals to all the other

evaluated algorithms in terms of minimum and average yield, as well as failure rate.

Subsequently, the authors have relaxed the stated assumptions and considered the cases of

parallel applications and dynamic workloads. The researchers have defined a Mixed Integer

Programming Model for the first case and adapted the previously designed heuristics to fit into the

model. The second case allows migration of applications to address the variability of the workload,

but the cost of migration is simplified and considered as a number of bytes required to transfer over

network. To limit the overhead due to VM migration, the authors fix the amount of bytes that can be

reallocated at one time. The authors have provided a Mixed Integer Programming Model for the

defined problem; however, no heuristics have been proposed to solve large-scale problem instances.

Limitations of the proposed approach are that no other system resources except for CPU are

considered in the optimization and that the applications’ resource needs are assumed to be known a

priori, which is not typical in practice.

8.3.5 Multi-Tiered On-Demand Resource Scheduling

Song et al. [60] have studied the problem of efficient resource allocation in multi-application

virtualized data centers. The objective is to improve the utilization of resource leading to reduced

energy consumption. To ensure the QoS, the resources are allocated to applications proportionally

according to the applications’ priorities. Each application can be deployed using several VMs

instantiated on different physical nodes. In resource management decisions only CPU and RAM

utilizations are taken into account. In cases of limited resources, the performance of a low-priority

application is intentionally degraded and the resources are allocated to critical applications. The

authors have proposed scheduling at three levels: the application-level scheduler dispatches requests

among application's VMs; the local-level scheduler allocates resources to VMs running on a

physical node according to their priorities; the global-level scheduler controls the resource "flow"

among applications. Rather than apply VM migration to implement global resource ―flow‖, the

authors pre-instantiate VMs on a group of physical nodes and allocate fractions of total amount of

resources assigned to an application to different VMs.

The authors have presented a linear programming model for the resource allocation problem

and heuristic for this model. They have provided the experimental results for three different

applications running on a cluster: a web-application, a database and a virtualized office application

showing that the approach allows satisfaction of the defined SLA. One of the limitations of the

proposed approach is that it requires machine-learning to obtain the utility functions for

applications. Moreover, it does not utilize VM migration to adapt the allocation in run-time. The

approach is suitable for enterprise environments, where application can have explicitly defined

priorities.

 37

8.3.6 Shares and Utilities based Power Consolidation

Cardosa et al. [61] have investigated the problem of power-efficient VM allocation in

virtualized enterprise computing environments. They leverage min, max and shares parameters,

which are supported by the most modern VM managers. Min and max allow the user to specify

minimum and maximum of CPU time that can be allocated to a VM. Shares parameter determines

proportions, in which CPU time will be allocated to VMs sharing the same resource. Such approach

suits only enterprise environments, as it does not support strict SLA and requires the knowledge of

the applications’ priorities.

The authors provide a mathematical formulation of the optimization problem. The objective

function to be optimized includes the power consumption and utility gained from execution of a

VM, which is assumed to be known a priori. The authors provide several heuristics for the defined

model and experimental results. A basic strategy is to pack all the VMs at their maximum resource

requirements in a first-fit manner and leave 10% of a spare capacity to handle the future growth of

the resource usage. The algorithm leverages heterogeneity of the infrastructure by sorting physical

machines in increasing order of the power cost per unit of capacity. The limitations of the basic

strategy are that it does not leverage relative values of different VMs, it always allocates a VM at its

maximum resource requirements and uses only 90% of each server’s capacity. This algorithm has

been used as the benchmark policy and improved throughout the paper eventually culminating in

the recommended PowerExpandMinMax algorithm. In comparison to the basic policy, this

algorithm uses the value of profit that can be gained by allocating an amount of resource to a

particular VM. It leverages the ability to shrink a VM to min resource requirements when necessary

and expand it when it is allowed by the spare capacity and can bring additional profit. The power

consumption cost incurred by each physical server is deducted from the profit to limit the number of

servers in use.

The authors have evaluated the proposed algorithms on a range of large scale simulations

and a small real data center testbed. The experimental results show that the PowerExpandMinMax

algorithm consistently outperforms the other policies across a broad spectrum of inputs – varying

VM sizes and utilities, varying server capacities and varying power costs. One of the experiments

on a real testbed showed that the overall utility of the data center can be improved by 47%. A

limitation of this work is that migration of VMs is not applied in order to adapt the allocation of

VMs in run-time – the allocation is static. Another problem is that no other system resources except

for CPU are handled by the model. Moreover, the approach requires static definition of the

applications’ priorities that limits generality and applicability in real-world environments.

8.3.7 pMapper: Power and Migration Cost Aware Application Placement

Verma et al. [62] have investigated the problem of dynamic placement of applications in

virtualized systems, while minimizing the power consumption and maintaining the SLA. To address

the problem the authors have proposed the pMapper application placement framework. It consists of

three managers and an arbitrator, which coordinates their actions and makes allocation decisions.

Performance Manager monitors the applications’ behavior and resizes VMs according to current

resource requirements and the SLA. Power Manager is in charge of adjusting hardware power states

and applying DVFS. Migration Manager issues instructions for live migration of VMs in order to

consolidate the workload. Arbitrator has a global view of the system and makes decisions about

new placements of VMs and determines which VMs and on which nodes should be migrated to

achieve this placement. The authors claim that the proposed framework is general enough to be able

to incorporate different power and performance management strategies under SLA constraints.

The authors have formulated the problem as a continuous optimization: at each time frame

the VM placement should be optimized to minimize the power consumption and maximize the

performance. They make several assumptions to solve the problem, which are justified by

experimental studies. The first of them is the performance isolation, which means that a VM can be

 38

seen by an application running on that VM as a dedicated physical server with the characteristics

equal to the VM parameters. The second assumption is that the duration of a VM live migration

does not depend on the background load, and the cost of migration can be estimated a priori based

on the VM size and profit decrease caused by an SLA violation. Moreover, the solution does not

focus on specific applications and can be applied to any kind of the workload. Another assumption

is that the power minimization algorithm can minimize the power consumption without knowing

the actual amount of power consumed by the application.

The authors have presented several algorithms to solve the defined problem. They consider

it as a bin packing problem with variable bin sizes and costs. The bins, items to pack and bin costs

represent servers, VMs and power consumption of servers respectively. To solve the bin packing

problem First-Fit Decreasing algorithm (FFD) has been adapted to work for differently sized bins

with item-dependent cost functions. The problem has been divided into two sub-problems: in the

first part, new utilization values are determined for each server based on the cost functions and

required performance; in the second part, the applications are packed into servers to fill the target

utilization. This algorithm is called min Power Packing (mPP). The first phase of mPP solves the

cost minimization problem, whereas the second phase solves the application placement problem.

mPP is also adapted to reduce the migration cost by keeping track of the previous placement while

solving the second phase. This variant is termed mPPH. Finally, the placement algorithm has been

designed that optimizes the power and migration cost trade-off (pMaP). A VM is chosen to be

migrated only if the revenue due to the new placement exceeds the migration cost. pMap searches

the space between the old and new placements and finds a placement that minimizes the overall cost

(sum of the power and migration costs). The authors have implemented the pMapper architecture

with the proposed algorithms and performed extensive experiments to validate the efficiency of the

approach. The experimental results show that the approach allows saving about 25% of power

relatively to the Static and Load Balanced Placement algorithms. The researchers suggest several

directions for future work, such as consideration of memory bandwidth, more advanced application

of idle states and extension of the theoretical prove of the problem.

8.3.8 Resource Pool Management: Reactive Versus Proactive

Gmach et al. [63] have studied the problem of energy-efficient dynamic consolidation of

VMs in enterprise environments. The authors have proposed a combination of a trace-based

workload placement controller and a reactive migration controller. The trace-based workload

placement controller collects data on resource usage by VMs instantiated in the data center and uses

this historical information to optimize the allocation, while meeting the specified quality of service

requirements. This controller performs multi-objective optimization by trying to find a new

placement of VMs that will minimize the number of server needed to serve the workload, while

limiting the number of VM migrations required to achieve the new placement. The bound on the

number of migrations is supposed to be set by the system administrator depending on the acceptable

VM migration overhead. The controller places VMs according to their peak resource usage over the

period since the previous reallocation, which is set to 4 hours in the experimental study.

The reactive migration controller continuously monitors the resource utilization of physical

nodes and detects when the servers are overloaded or underloaded. In contrast to the trace-based

workload placement controller, it acts based on the real-time data on resource usage and adapts the

allocation in a small scale (every minute). The objective of this controller is to rapidly respond to

fluctuations in the workload. The controller is parameterized by two utilization thresholds that

determine overload and underload conditions. An overloading occurs when the utilization of CPU

or memory of a server exceeds a given threshold. On the other hand, an underloading occurs when

the CPU or memory usage averaged over all the physical nodes falls below a specified threshold.

The threshold values are statically set depending on the performance analysis and quality of service

requirements.

 39

The authors have proposed several policies based on different combinations of the described

optimization controllers with different utilization thresholds. The simulation-driven evaluation

using three-months of real-world workload traces for 138 SAP applications has shown that the best

results can be achieved by applying both optimization controllers simultaneously rather than

separately. The best policy invokes the workload placement controller every 4 hours and when the

servers are detected to be lightly utilized. The migration controller is executed in parallel to tackle

overloading and underloading of servers when they occur. This policy provides minimal CPU

violation penalties and requires 10-20% more CPU capacity than the ideal case.

8.3.9 GreenCloud: Energy-Efficient and SLA-based Management Cloud Resources

 Buyya et al. [64] have proposed the GreenCloud project aimed at development of energy-

efficient provisioning of Cloud resources, while meeting QoS requirements defined in SLA

established through a negotiation between providers and consumers. The project has explored the

problem of power-aware allocation of VMs in Cloud data centers for application services based on

user QoS requirements such as the deadline and budget constraints [65]. The authors have

introduced a real-time virtual machine model. Under this model, a Cloud provider provisions VMs

for requested real-time applications and ensures meeting the specified deadline constraints.

The problem is addressed at several levels. At the first level, a user submits a request to a

resource broker for provisioning resources for an application consisting of a set of sub-tasks with

specified CPU and deadline requirements. The broker translates the specified resource requirements

into a request for provisioning VMs and submits the request to a number of Cloud data centers. The

data centers return the price of provisioning VMs for the broker’s request if the deadline

requirement can be fulfilled. The broker chooses the data center that provides the lowest price of

resource provisioning. The selected data center’s VM provisioner allocates the requested VMs to

the physical resources, followed by launching the user’s applications. The authors have proposed

three policies for scheduling real-time VMs in a data center using DVFS to reduce the energy

consumption, while meeting deadline constraints and maximizing the acceptance rate of

provisioning requests. The Lowest-DVS policy adjusts the CPU’s P-state to the lowest level,

ensuring that all the real-time VMs meet their deadlines. The δ-Advanced-DVS policy over-scales

the CPU speed up to δ% to increase the acceptance rate. The Adaptive-DVS policy uses the M/M/1

queueing model to calculate the optimal CPU speed if the arrival rate and service time of real-time

VMs can be estimated in advance.

The proposed approach has been evaluated via simulations using the CloudSim toolkit [70].

The simulations results have shown that δ -Advanced-DVS shows the best performance in terms of

profit per unit of the consumed power, as the CPU performance is automatically adjusted according

to the system load. The performance of Adaptive-DVS is limited by the simplified queueing model.

9 Conclusions and Future Directions

In recent years, energy efficiency has emerged as one of the most important design

requirements for modern computing systems, such as data centers and Clouds, as they continue to

consume enormous amounts of electrical power. Apart from high operating costs incurred by

computing resources, this leads to significant emissions of carbon dioxide into the environment. For

example, currently IT infrastructures contribute about 2% of total CO2 footprints. Unless energy-

efficient techniques and algorithms to manage computing resources are developed, IT’s contribution

in the world’s energy consumption and CO2 emissions is expected to rapidly grow. This is

obviously unacceptable in the age of climate change and global warming. In this chapter, we have

studied and classified different ways to achieve power and energy efficiency in computing systems.

The recent developments have been discussed and categorized over the hardware, operating system,

virtualization and data center levels.

 40

Efficient power management in computing systems is a well-known and extensively studied

in the past problem. Intelligent management of resources may lead to significant reduction of the

energy consumption by a system, while meeting the performance requirements. Relaxation of the

performance constraints usually results in further decreased energy consumption. Efficient resource

management is extremely important for servers and data centers comprising multiple computer

nodes. In large-scale data centers the cost of energy consumed by computing nodes and supporting

infrastructure (e.g. cooling systems, power supplies, PDU) can exceed the cost of the infrastructure

itself in a few years. One of the most significant advancements that has facilitated further

development in the area is the implementation of the DVFS capability by hardware vendors and

subsequent introduction of ACPI. These technologies have enabled software control over the CPU’s

power consumption traded for the performance. Managing power from this level is straightforward:

the utilization of CPU is monitored, and its clock frequency and supply voltage pair is continuously

adjusted to match current performance requirements. The maturity of this technique can be

illustrated by the fact that widely spread Linux OS includes it as a kernel module. In this work we

have classified and surveyed various approaches to control power consumption by the system from

the OS level applying different power saving techniques and abstractions. The virtualization

technology has advanced the area by introduction of a very effective power saving technique:

consolidation of the workload in VMs to the minimal number of physical nodes and subsequent

switching idle nodes off. Besides the consolidation, leading virtualization vendors (i.e. Xen,

VMware) similarly to Linux OS implement continuous DVFS.

The power management problem becomes more complicated when considered from the data

center level. In this case the system is represented by a set of interconnected computing nodes that

need to be managed as a single resource in order to minimize the energy consumption. Live and

offline migrations of VMs offered by the virtualization technology have enabled the technique of

dynamic consolidation of VMs according to current performance requirements. However, VM

migration leads to time delays and performance overhead, requiring careful analysis and intelligent

techniques to eliminate non-productive migrations that can occur due to the workload variation. We

have classified and discussed a number of the proposed approaches to deal with the problem of

energy-efficient resource management in virtualized and non-virtualized data centers. Common

limitations of the most of the works are that no other system resource except for CPU are

considered in the optimization; transition time for switching power states of the resource and VM

migration overhead are not handled leading to performance degradation; VM migration is not

applied to optimize the allocation in run-time. More generic solution suitable for a modern Cloud

computing environment should comply with the following requirements:

 Virtualization of the infrastructure to support hardware and software heterogeneity and

simplify the resource provisioning.

 Application of VM migration to continuously adapt the allocation and quickly respond

to changes in the workload.

 Ability to handle multiple applications with different SLA owned by multiple users.

 Guaranteed meeting of the QoS requirements for each application.

 Support for different kind of applications, mixed workloads.

 Decentralization and high performance of the optimization algorithm to provide

scalability and fault tolerance.

 Optimization considering multiple system resources, such as CPU, memory, disk storage

and network interface.

For the future research work we propose the investigation of the following directions. First

of all, due to the wide adoption of multi-core CPUs, it is important to develop energy-efficient

resource management approaches that will leverage such architectures. Apart from the CPU and

memory, another significant energy consumer in data center is the network interconnect

infrastructure. Therefore, it is crucial to develop intelligent techniques to manage network resources

 41

efficiently. One of the ways to achieve this for virtualized data centers is to continuously optimize

network topologies established between VMs, and thus reduce network communication overhead

and load of network devices. Another direction for future work, which deals with low-level system

design, is improvement of the power supplies efficiency, as well as development of hardware

components that support performance scaling proportionally to power consumption. Reduction of

the transition overhead caused by switching between different power states and VM migration

overhead can greatly advance energy-efficient resource management and has to be also addressed

by future research. Cloud federations comprising geographically distributed data centers have to be

leveraged to improve the energy efficiency. Efficient workload distribution across geographically

distributed data centers can enable the reallocation of the workload to a place where energy or

cooling is cheaper (e.g. solar energy during daytime across different time zones, efficient cooling

due to climate conditions). Other important directions are providing fine grained user’s control over

power consumption / CO2 emissions in Cloud environments and support for flexible SLA

negotiated between resource providers and users. Building on the strong foundation of prior works,

new projects are starting to investigate advanced resource management and power saving

techniques. Nevertheless, there are many open challenges that become even more prominent in the

age of Cloud computing.

Acknowledgements

We would like to thank Adam Wierman (California Institute of Technology), Kresimir

Mihic (Stanford University) and Saurabh Kumar Garg (University of Melbourne) for their

constructive comments and suggestions on improving the paper.

References

[1] G. E. Moore et al., ―Cramming more components onto integrated circuits,‖ Proceedings of the

IEEE, vol. 86, no. 1, pp. 82–85, 1998.

[2] J. G. Koomey, ―Estimating total power consumption by servers in the US and the world,‖

Oakland, CA: Analytics Press. February 15, 2007.

[3] L. Barroso, ―The price of performance,‖ Queue, ACM Press, vol. 3, no. 7, p. 53, 2005.

[4] R. Brown et al., ―Report to congress on server and data center energy efficiency: Public law

109-431,‖ Lawrence Berkeley National Laboratory, 2008.

[5] L. Minas and B. Ellison, Energy Efficiency for Information Technology: How to Reduce

Power Consumption in Servers and Data Centers. Intel Press, Aug. 2009.

[6] P. Ranganathan, P. Leech, D. Irwin, and J. Chase, ―Ensemble-level power management for

dense blade servers,‖ in Proceedings of the 33rd International Symposium on Computer

Architecture (ISCA 2006), 2006, pp. 66–77.

[7] S. Rowe, ―Usenet archives,‖ http://groups.google.com/group/comp.misc/browse_thread/-

thread/5c4db94663b5808a/f99158e3743127f9, 1992.

[8] V. Venkatachalam and M. Franz, ―Power reduction techniques for microprocessor systems,‖

ACM Computing Surveys (CSUR), vol. 37, no. 3, pp. 195–237, 2005.

[9] L. A. Barroso and U. Holzle, ―The case for energy-proportional computing,‖ Computer, pp.

33–37, 2007.

[10] X. Fan, W. D. Weber, and L. A. Barroso, ―Power provisioning for a warehouse-sized

computer,‖ in Proceedings of the 34th Annual International Symposium on Computer

Architecture (ISCA 2007). ACM New York, NY, USA, 2007, pp. 13–23.

[11] M. Blackburn, ―Five ways to reduce data center server power consumption,‖ The Green Grid,

2008.

 42

[12] American Society of Heating and Refrigerating and Air-Conditioning Engineers, Thermal

guidelines for data processing environments. ASHRAE, 2004.

[13] G. Dhiman, K. Mihic, and T. Rosing, ―A system for online power prediction in virtualized

environments using gaussian mixture models,‖ in Proceedings of the 47th Design Automation

Conference, 2010, pp. 807–812.

[14] G. Koch, ―Discovering multi-core: Extending the benefits of Moore’s law,‖ Technology, p. 1,

2005.

[15] F. Petrini, J. Moreira, J. Nieplocha, M. Seager, C. Stunkel, G. Thorson, P. Terry, and

S. Varadarajan, ―What are the future trends in high-performance inter. connects for parallel

computers?‖ in Proceedings of the 12th Annual IEEE Symposium on High Performance

Interconnects, 2004, pp. 3–3.

[16] C. Pettey, ―Gartner estimates ICT industry accounts for 2 percent of global CO2 emissions,‖

http://www.gartner.com/it/page.jsp?id=503867, 2007.

[17] S. Devadas and S. Malik, ―A survey of optimization techniques targeting low power VLSI

circuits,‖ in Proceedings of the 32nd ACM/IEEE Conference on Design Automation, 1995, pp.

242–247.

[18] V. Tiwari, P. Ashar, and S. Malik, ―Technology mapping for low power,‖ in Proceedings of

the 30th Conference on Design Automation, 1993, pp. 74–79.

[19] V. Pallipadi and A. Starikovskiy, ―The ondemand governor,‖ in Proceedings of the Linux

Symposium, vol. 2, 2006.

[20] E. Elnozahy, M. Kistler, and R. Rajamony, ―Energy-efficient server clusters,‖ Power-Aware

Computer Systems, pp. 179–197, 2003.

[21] E. Pinheiro, R. Bianchini, E. V. Carrera, and T. Heath, ―Load balancing and unbalancing for

power and performance in cluster-based systems,‖ in Proceedings of the Workshop on

Compilers and Operating Systems for Low Power, 2001, pp. 182–195.

[22] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, ―Cloud computing and

emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility,‖

Future Generation Computer Systems, vol. 25, no. 6, pp. 599–616, 2009.

[23] L. Benini, A. Bogliolo, and G. D. Micheli, ―A survey of design techniques for system-level

dynamic power management,‖ IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 8, no. 3, pp. 299–316, 2000.

[24] S. Albers, ―Energy-efficient algorithms,‖ Communications of the ACM, vol. 53, no. 5, pp. 86–

96, 2010.

[25] M. B. Srivastava, A. P. Chandrakasan, and R. W. Brodersen, ―Predictive system shutdown

and other architectural techniques for energy efficient programmable computation,‖ IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 4, no. 1, pp. 42–55, 1996.

[26] C. H. Hwang and A. C. Wu, ―A predictive system shutdown method for energy saving of

event-driven computation,‖ ACM Transactions on Design Automation of Electronic Systems

(TODAES), vol. 5, no. 2, p. 241, 2000.

[27] F. Douglis, P. Krishnan, and B. Bershad, ―Adaptive disk spin-down policies for mobile

computers,‖ Computing Systems, vol. 8, no. 4, pp. 381–413, 1995.

[28] G. Buttazzo, ―Scalable applications for energy-aware processors,‖ in Embedded Software,

2002, pp. 153–165.

[29] M. Weiser, B. Welch, A. Demers, and S. Shenker, ―Scheduling for reduced CPU energy,‖

Mobile Computing, pp. 449–471, 1996.

[30] K. Govil, E. Chan, and H. Wasserman, ―Comparing algorithm for dynamic speed-setting of a

low-power CPU,‖ in Proceedings of the 1st Annual International Conference on Mobile

Computing and Networking (MobiCom 2005), Berkeley, California, USA, 1995, p. 25.

[31] A. Wierman, L. L. Andrew, and A. Tang, ―Power-aware speed scaling in processor sharing

systems,‖ in Proceedings of the 28th Conference on Computer Communications (INFOCOM

2009), Rio, Brazil, 2009.

 43

[32] L. L. Andrew, M. Lin, and A. Wierman, ―Optimality, fairness, and robustness in speed scaling

designs,‖ in Proceedings of ACM International Conference on Measurement and Modeling of

International Computer Systems (SIGMETRICS 2010), New York, USA, 2010.

[33] A. Weissel and F. Bellosa, ―Process cruise control: event-driven clock scaling for dynamic

power management,‖ in Proceedings of the 2002 International Conference on Compilers,

Architecture, and Synthesis for Embedded Systems, Grenoble, France, 2002, p. 246.

[34] K. Flautner, S. Reinhardt, and T. Mudge, ―Automatic performance setting for dynamic voltage

scaling,‖ Wireless networks, vol. 8, no. 5, pp. 507–520, 2002.

[35] S. Lee and T. Sakurai, ―Run-time voltage hopping for low-power real-time systems,‖ in

Proceedings of the 37th Annual Design Automation Conference, Los Angeles, CA, USA, 2000,

pp. 806–809.

[36] J. R. Lorch and A. J. Smith, ―Improving dynamic voltage scaling algorithms with PACE,‖

ACM SIGMETRICS Performance Evaluation Review, vol. 29, no. 1, p. 61, 2001.

[37] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat, ―ECOSystem: managing energy as a first

class operating system resource,‖ ACM SIGPLAN Notices, vol. 37, no. 10, p. 132, 2002.

[38] H. Zeng, C. S. Ellis, and A. R. Lebeck, ―Experiences in managing energy with ecosystem,‖

IEEE Pervasive Computing, pp. 62–68, 2005.

[39] R. Neugebauer and D. McAuley, ―Energy is just another resource: Energy accounting and

energy pricing in the nemesis OS,‖ in Proceedings of the 8th IEEE Workshop on Hot Topics

in Operating Systems, Elmau/Oberbayern, Germany, 2001, pp. 59–64.

[40] D. G. Sachs, W. Yuan, C. J. Hughes, A. Harris, S. V. Adve, D. L. Jones, R. H. Kravets, and

K. Nahrstedt, ―GRACE: a hierarchical adaptation framework for saving energy,‖ University of

Illinois at Urbana-Champaign, Tech. Rep. UIUCDCS, pp. 2004–2409, 2003.

[41] V. Vardhan, D. G. Sachs, W. Yuan, A. F. Harris, S. V. Adve, D. L. Jones, R. H. Kravets, and

K. Nahrstedt, ―Integrating fine-grained application adaptation with global adaptation for

saving energy,‖ in International Workshop on Power-Aware Real-Time Computing, Jersey

City, NJ, 2005.

[42] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa, ―Resource kernels: A resource-centric

approach to real-time and multimedia systems,‖ Readings in multimedia computing and

networking, Morgan Kaufmann, pp. 476–490, 2001.

[43] J. Flinn and M. Satyanarayanan, ―Managing battery lifetime with energy-aware adaptation,‖

ACM Transactions on Computer Systems (TOCS), vol. 22, no. 2, p. 179, 2004.

[44] D. Meisner, B. T. Gold, and T. F. Wenisch, ―PowerNap: eliminating server idle power,‖ ACM

SIGPLAN Notices, vol. 44, no. 3, pp. 205–216, 2009.

[45] J. Stoess, C. Lang, and F. Bellosa, ―Energy management for hypervisor-based virtual

machines,‖ in Proceedings of the USENIX Annual Technical Conference, Santa Clara, CA,

USA. USENIX Association, 2007, pp. 1–14.

[46] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and

A. Warfield, ―Xen and the art of virtualization,‖ in Proceedings of the 19th ACM Symposium

on Operating Systems Principles (SOSP 2003), Bolton Landing, NY, USA, 2003, p. 177.

[47] G. Wei, J. Liu, J. Xu, G. Lu, K. Yu, and K. Tian, ―The on-going evolutions of power

management in Xen,‖ Intel Corporation, Tech. Rep., 2009, Tech. Rep., 2009.

[48] VMware Inc., ―vSphere resource management guide,‖ 2009.

[49] ——, ―How VMware virtualization right-sizes IT infrastructure to reduce power

consumption,‖ 2009.

[50] ——, ―VMware® distributed power management concepts and use,‖ 2010.

[51] Qumranet Inc, ―KVM: kernel-based virtualization driver,‖ White Paper, 2006.

[52] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and R. P. Doyle, ―Managing energy

and server resources in hosting centers,‖ in Proceedings of the 18th ACM Symposium on

Operating Systems Principles. ACM New York, NY, USA, 2001, pp. 103–116.

[53] S. Srikantaiah, A. Kansal, and F. Zhao, ―Energy aware consolidation for cloud computing,‖

Cluster Computing, vol. 12, pp. 1–15, 2009.

 44

[54] A. Gandhi, M. Harchol-Balter, R. Das, and C. Lefurgy, ―Optimal power allocation in server

farms,‖ in Proceedings of the 11th International Joint Conference on Measurement and

Modeling of Computer Systems. ACM New York, NY, USA, 2009, pp. 157–168.

[55] S. K. Garg, C. S. Yeo, A. Anandasivam, and R. Buyya, ―Environment-conscious scheduling

of HPC applications on distributed cloud-oriented data centers,‖ Journal of Parallel and

Distributed Computing, 2010.

[56] R. Nathuji and K. Schwan, ―Virtualpower: Coordinated power management in virtualized

enterprise systems,‖ ACM SIGOPS Operating Systems Review, vol. 41, no. 6, pp. 265–278,

2007.

[57] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and X. Zhu, ―No "power" struggles:

Coordinated multi-level power management for the data center,‖ SIGARCH Computer

Architecture News, vol. 36, no. 1, pp. 48–59, 2008.

[58] D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy, and G. Jiang, ―Power and performance

management of virtualized computing environments via lookahead control,‖ Cluster

Computing, vol. 12, no. 1, pp. 1–15, 2009.

[59] M. Stillwell, D. Schanzenbach, F. Vivien, and H. Casanova, ―Resource allocation using

virtual clusters,‖ in Proceedings of the 9th IEEE/ACM International Symposium on Cluster

Computing and the Grid (CCGrid 2009), Shanghai, China, 2009, pp. 260–267.

[60] Y. Song, H. Wang, Y. Li, B. Feng, and Y. Sun, ―Multi-Tiered On-Demand resource

scheduling for VM-Based data center,‖ in Proceedings of the 9th IEEE/ACM International

Symposium on Cluster Computing and the Grid (CCGrid 2009), Shanghai, China, 2009, pp.

148–155.

[61] M. Cardosa, M. Korupolu, and A. Singh, ―Shares and utilities based power consolidation in

virtualized server environments,‖ in Proceedings of the 11th IFIP/IEEE Integrated Network

Management (IM 2009), Long Island, NY, USA, 2009.

[62] A. Verma, P. Ahuja, and A. Neogi, ―pMapper: power and migration cost aware application

placement in virtualized systems,‖ in Proceedings of the 9th ACM/IFIP/USENIX International

Conference on Middleware. Springer-Verlag New York, Inc., 2008, pp. 243–264.

[63] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper, ―Resource pool management: Reactive

versus proactive or let’s be friends,‖ Computer Networks, 2009.

[64] R. Buyya, A. Beloglazov, and J. Abawajy, ―Energy-Efficient management of data center

resources for cloud computing: A vision, architectural elements, and open challenges,‖ in

Proceedings of the 2010 International Conference on Parallel and Distributed Processing

Techniques and Applications (PDPTA 2010), Las Vegas, USA, July 12-15, 2010.

[65] K. H. Kim, A. Beloglazov, and R. Buyya, ―Power-aware provisioning of cloud resources for

real-time services,‖ in Proceedings of the 7th International Workshop on Middleware for

Grids, Clouds and e-Science (MGC 2009), Urbana Champaign, Illinois, USA, 2009, pp. 1–6.

[66] D. F. Parkhill, The challenge of the computer utility. Addison-Wesley Reading, MA, 1966.

[67] J. Baliga, R. Ayre, K. Hinton, and R. S. Tucker, ―Green cloud computing: Balancing energy in

processing, storage and transport,‖ in Proceedings of the IEEE, 2010.

[68] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson,

A. Rabkin, I. Stoica, and M. Zaharia, ―A view of cloud computing,‖ Communications of the

ACM, vol. 53, no. 4, pp. 50–58, 2009.

[69] R. Nathuji, C. Isci, and E. Gorbatov, ―Exploiting platform heterogeneity for power efficient

data centers,‖ in Proceedings of the 4th International Conference on Autonomic Computing

(ICAC 2007), Jacksonville, Florida, USA, 2007, pp. 5–5.

[70] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. D. Rose, and R. Buyya, ―CloudSim: a

toolkit for modeling and simulation of cloud computing environments and evaluation of

resource provisioning algorithms,‖ Software: Practice and Experience, Wiley Press, New

York, USA, 2010.

Appendix A. Operating system level research works.

Project name Approach / algorithm
Application

adaptation

System

resources

Target

systems
Goal

Power

saving

techniques

Workload Implementation

The Ondemand

Governor, Pallipadi

and Starikovskiy [19]

The OS continuously monitors

the CPU utilization and sets the

frequency and voltage according

to performance requirements

No CPU Arbitrary Minimize power

consumption,

minimize

performance loss

DVFS Arbitrary Part of Linux kernel

ECOsystem, Zeng et

al. [37] [38]

The system determines overall

amount of currentcy and

distributes it between

applications according to their

priorities. Applications expend

currentcy by utilizing the

resources

Applications must

cooperate with the

OS using power-

based API

CPU,

memory,

disk

storage,

network

interface

Mobile

systems

Achieve target

battery lifetime

Resource

throttling

Arbitrary Modified Linux

kernel (introduced a

new kernel thread

kenrgd)

Nemesis OS,

Neugebauer and

McAuley [39]

Nemesis notifies applications if

their energy consumption

exceeds the threshold. The

applications must adapt their

behaviour according to the

signals from the OS

Applications must

be able to adapt

their behavior

according to the

signals from the

OS

CPU,

memory,

disk

storage,

network

interface

Mobile

systems

Achieve target

battery lifetime

Resource

throttling

Real-time

applications

New operating

system, source

codes are available

to download

GRACE, Sachs et al.

[40] [41]

Three levels of adaptation:

global, per-application and

internal. All the adaptation levels

are coordinated to ensure

adaptation effective across all

levels

Applications must

be able to adapt

their behavior

according to the

signals from the

OS

CPU,

network

interface

Mobile

systems

Minimize energy

consumption,

satisfy

performance

requirements

DVFS,

resource

throttling

Real-time

multimedia

applications

Extension of Linux

OS

Linux/RK, Rajkumar

et al. [42]

Proposed four alternative DVFS

algorithms. Each is suitable for

different system characteristics

and is selected automatically by

the system

No CPU Real-

time

systems

Minimize energy

consumption,

satisfy

performance

requirements

DVFS Arbitrary Real-time

extensions to the

Linux kernel

Coda and Odyssey,

Flinn and

Satyanarayanan [43]

Coda implements application-

transparent adaptation in the

context of a distributed file

system. Odyssey implements

application adaptation allowing

adjustment of the resource

Applications must

be able to adapt

their behavior

according to the

signals from the

OS

CPU,

network

interface

Mobile

systems

Minimize energy

consumption

allowing

application data

degradation

Resource

throttling

Multimedia

applications

Coda is

implemented as a

package for Linux,

Odyssey is

integrated into

Linux

 46

Project name Approach / algorithm
Application

adaptation

System

resources

Target

systems
Goal

Power

saving

techniques

Workload Implementation

consumption by the cost of

output data quality

PowerNap, Meisner et

al. [44]

Leveraging short idle periods in

the resource utilization using fast

transitions to system-wide low

power states

No System-

wide

Server

systems

Minimize power

consumption,

minimize

performance loss

DCD Arbitrary Extension to Linux

OS

Appendix B. Data center level research works.

Project name
Virtua-

lization
Approach / algorithm

System

resources

Target

systems
Goal

Power

saving

techniques

Workload Implementation

Load Balancing

and Unbalancing

for Power and

Performance in

Cluster-Based

System, Pinheiro

et al. [21]

No The system periodically monitors the load and

decides which nodes should be turned on or off to

minimize power consumption by the system, while

providing expected performance.

CPU,

disk

storage,

network

interface

Homogeneous Minimize

power

consumption,

minimize

performance

loss

Server power

switching

Arbitrary Extension of

Linux

Managing energy

and server

resources in

hosting centers,

Chase et al. [52]

No Economical framework: the system allocate

resources in a way to maximize "profit" by

balancing the cost of each resource unit against the

estimated utility or "revenue" that is gained from

allocating that resource unit to a service. Services

"bid" for the resources in terms of volume and

quality. The system maintains an active set of

servers selected to serve requests for each service.

Energy consumption is reduces by switching idle

servers to power saving states.

CPU Homogeneous Minimize

power

consumption,

minimize

performance

loss

Workload

consolidation,

server power

switching

Web-

applications

Extension of

FreeBSD OS

Energy-Efficient

Server Clusters,

Elnozahy et al.

[20]

No The system estimates total CPU frequency required

to provide expected response time, determine the

optimal number of physical nodes and set the

proportional frequency on all the nodes. The

thresholds define when it is appropriate to turn on

an additional physical node or turn off an idle node.

CPU Homogeneous Minimize

energy

consumption,

satisfy

performance

requirements

DVFS, server

power

switching

Web-

applications

Simulation

Energy-aware No Applications are allocated to servers using a CPU, Heterogeneous Minimize Workload Online Simulation

 47

Project name
Virtua-

lization
Approach / algorithm

System

resources

Target

systems
Goal

Power

saving

techniques

Workload Implementation

Consolidation for

Cloud

Computing,

Srikantaiah et al.

[53]

heuristic for multi-dimensional bin packing,

resulting in the desired workload distribution across

servers. If the request cannot be allocated, a new

server is turned on and all requests are re-allocated

using the same heuristic, in an arbitrary order.

disk

storage

energy

consumption,

satisfy

performance

requirements

consolidation,

server power

switching

services

Optimal Power

Allocation in

Server Farms,

Gandhi et al. [54]

No Queueing theoretical model is used to predict the

mean response time as a function of power-to-

frequency relationship, arrival rate, peak power

budget, etc. The model also allows determining the

optimal power allocation for every possible

configuration of the above factors.

CPU Heterogeneous Allocate the

available power

budget to

minimize mean

response time

DVFS Web-

applications

Simulation

Environment-

Conscious

Scheduling of

HPC

Applications,

Garg et al. [55]

No Five heuristics for scheduling HPC applications

across geographically distributed Cloud data centers

with the objective of minimization of energy

consumption and carbon emissions, and

maximization of the resource provider’s profit.

CPU Heterogeneous Minimize

energy

consumption

and CO2

emissions,

maximize profit

DVFS,

leveraging

geographical

distribution

of data

centers

HPC

applications

Simulation

VirtualPower:

Coordinated

Power

Management in

Virtualized

Enterprise

Systems, Nathuji

and Schwan [56]

Yes Hierarchical power management: at the local level

the system coordinates and leverages power

management policies of guest VMs at each physical

machine; global policies are responsible for

managing multiple physical machines and have

knowledge about rack- or blade-level characteristics

and requirements.

CPU Heterogeneous Minimize

energy

consumption,

satisfy

performance

requirements

DFVS, soft

scaling, VM

consolidation,

server power

switching

Arbitrary Extension of

Xen

Coordinated

Multi-level

Power

Management for

the Data Center,

Raghavendra et

al. [57]

Yes A combination of five individual power

management solutions that are coordinatively act

across a collection of machines and dynamically re-

provision power across them to meet the power

budget.

CPU Heterogeneous Minimize

power

consumption,

minimize

performance

loss, meet

power budget

DVFS, VM

consolidation,

server power

switching

Arbitrary Combining and

cooperation of

five independent

commercial

solutions

Power and

Performance

Management of

Virtualized

Computing

Environments via

Yes The behavior of each application is captured using

simulation-based learning. A limited look-ahead

control (LLC) is applied to estimate future system

states over a prediction horizon using Kalman filter.

CPU Heterogeneous Minimize

power

consumption,

minimize

performance

loss

DVFS, VM

consolidation,

server power

switching

Online

services

VMware API,

Linux shell

commands and

IPMI

 48

Project name
Virtua-

lization
Approach / algorithm

System

resources

Target

systems
Goal

Power

saving

techniques

Workload Implementation

Lookahead

Control, Kusic et

al. [58]

Resource

Allocation using

Virtual Clusters,

Stillwell et al.

[59]

Yes The authors have proposed several heuristics to

solve the resource allocation problem and evaluated

them experimentally across different workloads.

The results show that that the multi-capacity bin

packing algorithm that sorts tasks in descending

order by their largest resource requirement

outperforms or equals to all the other evaluated

algorithms in terms of minimum and average yield,

as well as failure rate.

CPU Homogeneous Maximize

resource

utilization,

satisfy

performance

requirements

Resource

throttling

HPC

applications

Extension of

Xen

Multi-Tiered On-

Demand

Resource

Scheduling for

VM-Based Data

Cente, Song et al.

[60]

Yes Three scheduling levels: the application-level

scheduler dispatches requests among application's

VMs; the local-level scheduler allocates resources

to VMs running on a physical node according to

their priorities; the global-level scheduler controls

the resource "flow" among applications.

CPU,

memory

Heterogeneous Maximize

resource

utilization,

satisfy

performance

requirements

Resource

throttling

Arbitrary Extension of

Xen

Shares and

Utilities based

Power

Consolidation in

Virtualized

Server

Environments,

Cardosa et al.

[61]

Yes The hypervisor distributes resources among VMs

according to a sharing based mechanism, assuming

that the minimum and maximum amounts of

resources that can be allocated to a VM are

specified.

CPU Heterogeneous Minimize

power

consumption,

minimize

performance

loss

DFVS, soft

scaling

Arbitrary Extension of

VMware ESX

pMapper: Power

and Migration

Cost Aware

Application

Placement in

Virtualized

Systems , Verma

et al. [62]

Yes The authors consider the problem as continuous

optimization and address it using heuristics for the

bin packing problem. Performance Manager

monitors applications behavior and resize VMs

according to current resource requirements and the

SLA. Power Manager adjusts hardware power

states and applies DVFS. Migration Manager issues

instructions for live migration of VMs. Arbitrator

makes decisions about new placements of VMs and

determines VMs to migrate.

CPU Heterogeneous Minimize

power

consumption,

minimize

performance

loss

DVFS, VM

consolidation,

server power

switching

Arbitrary Extension of

VMware ESX

 49

Project name
Virtua-

lization
Approach / algorithm

System

resources

Target

systems
Goal

Power

saving

techniques

Workload Implementation

Resource pool

management:

Reactive versus

proactive, Gmach

et al. [63]

Yes The authors apply a combination of two

optimization controllers: proactive global

optimization using the workload placement

controller and reactive adaptation using the

migration controller.

CPU,

memory

Heterogeneous Maximize

resource

utilization,

satisfy

performance

requirements

VM

consolidation,

server power

switching

Arbitrary Simulation

GreenCloud:

Energy-Efficient

and SLA-based

Management of

Cloud Resources,

Buyya et al. [64],

[65]

Yes The project has proposed energy-efficient

provisioning of Cloud resources along with meeting

users’ QoS requirements as defined in SLAs. The

authors have developed heuristics for scheduling

real-time VMs in Cloud data centers applying

DVFS in order to minimize the energy consumption

and deadline constraints of the applications.

CPU Heterogeneous Minimize

energy

consumption,

satisfy

performance

requirements

Leveraging

heterogeneity

of Cloud data

centers,

DVFS

HPC

applications

Simulation

About the Authors

Anton Beloglazov is a PhD Candidate at the Cloud Computing and Distributed

Systems (CLOUDS) Laboratory within the Department of Computer Science and

Software Engineering at the University of Melbourne, Australia. He has

completed his Bachelor’s and Master’s degrees in Informatics and Computer

Science at the faculty of Automation and Computer Engineering of Novosibirsk

State Technical University, Russian Federation. Under his PhD studies, Anton is

actively involved in research on energy- and performance-efficient resource

management in virtualized data centers for Cloud computing. He has been

contributing to the development of the CloudSim toolkit, a modern open-source framework for

modeling and simulation of Cloud computing infrastructures and services. Anton has publications

in internationally recognized conferences and journals. He is a frequent reviewer for research

conferences and journals.

Dr. Rajkumar Buyya is Professor of Computer Science and Software

Engineering; and Director of the Cloud Computing and Distributed Systems

(CLOUDS) Laboratory at the University of Melbourne, Australia. He is also

serving as the founding CEO of Manjrasoft Pty Ltd., a spin-off company of the

University, commercializing its innovations in Grid and Cloud Computing. He

has authored and published over 300 research papers and four text books. The

books on emerging topics that Dr. Buyya edited include, High Performance

Cluster Computing (Prentice Hall, USA, 1999), Content Delivery Networks

(Springer, Germany, 2008), Market-Oriented Grid and Utility Computing

(Wiley, USA, 2009), and Cloud Computing (Wiley, USA, 2019). He is one of

the highly cited authors in computer science and software engineering worldwide. Software

technologies for Grid and Cloud computing developed under Dr. Buyya's leadership have gained

rapid acceptance and are in use at several academic institutions and commercial enterprises in 40

countries around the world. Dr. Buyya has led the establishment and development of key

community activities, including serving as foundation Chair of the IEEE Technical Committee on

Scalable Computing and four IEEE conferences (CCGrid, Cluster, Grid, and e-Science). He has

presented over 250 invited talks on his vision on IT Futures and advanced computing technologies

at international conferences and institutions in Asia, Australia, Europe, North America, and South

America. These contributions and international research leadership of Dr. Buyya are recognized

through the award of "2009 IEEE Medal for Excellence in Scalable Computing" from the IEEE

Computer Society, USA. Manjrasoft’s Aneka technology for Cloud Computing developed under his

leadership has received ―2010 Asia Pacific Frost & Sullivan New Product Innovation Award‖.

Dr. Young Choon Lee received the Ph.D. degree in problem-centric scheduling

in heterogeneous computing systems from the University of Sydney in 2008. He

received Best Paper Award from the 10th IEEE/ACM International Symposium

on Cluster, Cloud and Grid Computing (CCGrid 2010). He is a member of the

IEEE. His current research interests include scheduling strategies for

heterogeneous computing systems, nature-inspired techniques, and parallel and

distributed algorithms.

 51

Dr. Albert Y. Zomaya is currently the Chair Professor of High Performance

Computing and Networking in the School of Information Technologies, The

University of Sydney. He is the author/co-author of seven books, more than 350

publications in technical journals and conferences, and the editor of eight books

and eight conference volumes. He is currently an associate editor for 16 journals,

such as the IEEE Transactions on Computers, IEEE Transactions on Parallel and

Distributed Systems and the Journal of Parallel and Distributed Computing. He is

also the Founding Editor of the Wiley Book Series on Parallel and Distributed

Computing and was the Chair the IEEE Technical Committee on Parallel

Processing (1999-2003) and currently serves on its executive committee. He also serves on the

Advisory Board of the IEEE Technical Committee on Scalable Computing and IEEE Systems,

Man, and Cybernetics Society Technical Committee on Self-Organization and Cybernetics for

Informatics and is a Scientific Council Member of the Institute for Computer Sciences, Social-

Informatics, and Telecommunications Engineering (in Brussels). Professor Zomaya is also the

recipient of the Meritorious Service Award (in 2000) and the Golden Core Recognition (in 2006),

both from the IEEE Computer Society. He is a Chartered Engineer, a Fellow of the American

Association for the Advancement of Science, the IEEE, the Institution of Engineering and

Technology (U.K.), and a Distinguished Engineer of the ACM. His research interests are in the

areas of distributed computing, parallel algorithms and mobile computing.

