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Abstract--We present a photorefractively pumped ring resonator for the formation of self-organized, 
topology-preserving mappings. The self-imaging ring resonator with saturable gain and loss supports 
localized cavity modes at arbitrary transverse locations. When the resonator is pumped by two 
uncorrelated signals, two spatially well separated modes form. Each mode is correlated temporally 
with one of the input signals. When the resonator is pumped by partially correlated inputs, modes 
with a partial spatial overlap form. The spatial distribution of the modes preserves the spatial 
topology of the input signals. An experimental demonstration and numerical simulations are 
presented. 

1. INTRODUCTION 

Optical resonators have been used to demonstrate information-processing tasks inspired by 
neural network models of computation. Associative memories are the most frequently cited 
examples. They have been implemented with photorefractive ring resonators [1,2], 
phaseconjugating photorefractive resonators [3, 4], and lasers with active media [5]. An 
associative memory embodies two distinct phases of operation. A learning phase where 
information is stored in the memory, and a processing, or recall phase, where new data is 
compared with the stored information. In all the cited demonstrations [1-5] the learning 
phase was performed manually. That is to say, some preselected images were stored in the 
resonator, or in external fixed holograms, prior to the recall phase. 

This contribution is a continuation of recent work with self-organizing feature extractors 
[6, 7] that incorporate an unsupervised learning phase. By using a more sophisticated 
optical architecture, we are able to generalize the feature extractor, which is intended for 
spatially uncorrelated inputs, to the case of spatially correlated input signals. The 
photorefractive resonator performs a continuous mapping of input signals onto localized 
resonator modes. The spatial correlations of the resonator modes preserve the topology, as 
defined by the correlations of the input signals. 

A self-organizing resonator architecture learns to recognize features in complex, informa- 
tion bearing beams. Due to the dynamics of competition between the transverse modes of 
the resonator, different input features are mapped onto different groups of resonator 
modes. In the recall phase, where new data is presented to the resonator, groups of modes 
turn on, depending on the degree of similarity between the training set used in the learning 
phase, and the new inputs. The recall phase of the feature extractor is fundamentally 
different from the recall phase of an associative memory. In the associative memory the 
signal that is injected in the recall phase biases the nonlinear mode competition to favor the 
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Roskilde, Denmark. 

2077 



2078 M. SAFFMAN et al. 

stored resonator eigenmode that most closely matches the input [1]. Thus, a mode 
containing complete information is excited associatively when the resonator is presented 
with partial information. All other resonator modes are suppressed. In the feature 
extractor, the recall phase is purely linear. When partial information is presented, all 
linearly dependent  resonator modes are excited, not only the mode corresponding to the 
training pattern that bears the greatest resemblance to the new input. 

The recent demonstrations of self-organizing feature extractors [6, 7] were based on 
resonators with a fixed mode structure. For  example, a composite resonator,  composed of 
two rings of multimode fiber, was used to separate two spatially scrambled signals. Each 
input signal was mapped to one of the fiber rings. In the work described here, we 
demonstrate a self-organized learning system that is more sophisticated than the simple 
feature extractor. We use a self-imaging resonator where the transverse mode structure is 
strongly influenced by the nonlinear gain and loss, and only weakly affected by the linear 
boundary conditions. By placing saturable photorefractive gain and loss in spatially distinct 
resonator planes the continuum of transverse modes collapses to a localized, singlemode- 
like oscillation, at an arbitrary transverse location in the resonator [8]. This architecture 
allows a more general class of mappings to be implemented than is possible in resonators 
with a fixed mode structure. Besides feature extraction, we demonstrate a continuous 
topology-preserving mapping of partially correlated inputs, onto spatially overlapping 
transverse modes of the resonator. 

Topology-preserving feature maps [9, 10] that form due to a process of self-organization, 
are of interest, both in the context of understanding the development of sensory 
functionality in biological systems [11], and for solving difficult computational tasks such as 
the 'traveling salesman problem' [10]. The function of the topology-preserving map is to 
order  a large set of data, such that similar items in the input space are represented by 
similar locations in the output space. In many cases the output space may be of lower 
dimensionality than the input space. As introduced by Kohenen [12], the topology- 
preserving map is an algorithm that is straightforward to implement on a digital computer,  
but difficult to envision in a physical system. One goal of this contribution is to 
demonstrate a physical system, as opposed to a computer  program, that has the same 
functionality as Kohenen's  algorithm. 

Kohenen's  algorithm is based on two essential components.  The first is an adaptable 
interconnection network that maps data from an input layer to an output layer. The second 
is a set of lateral connections, within the output layer, that implement a modified version 
of the so-called 'winner takes all' function. When data are presented to the input layer of 
the network, some location in the output layer will have the strongest response. Kohenen's  
algorithm prescribes that the connections between the input and the point of strongest 
response should be strengthened. However ,  in contrast to a pure 'winner takes all' 
algorithm, the connections to the local region surrounding the point of strongest response 
are also strengthened. It is this additional updating of the connections to a spatially 
localized region that give the algorithm its topological properties. 

The essential elements of Kohenen's  algorithm correspond, using an admittedly over- 
simplified description, to different parts of the self-imaging resonator with gain and loss. 
The adjustable interconnection network is simply the index grating in the volume of the 
photorefractive gain crystal. This grating adaptively connects spatially complex input signals 
with transverse resonator modes. The photorefractive loss crystal causes the complicated 
transverse mode structure to collapse to a localized, singlemode-like oscillation. This 
corresponds to the modified 'winner takes all' behavior [13].* Feedback provided by the 

*Winner takes all behavior in a resonator with discrete modes was demonstrated in ref. [13]. 
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optical cavity serves to connect these two elements. The result is a dynamical evolution that 
implements the functionality of Kohenen's  algorithm. 

Experimental  demonstrations of feature extraction and topology preserving mappings are 
described in Section 2. The demonstrations employ speckle fields that are generated by 
propagation in a multimode fiber. The speckle fields are spatially uncorrelated in the case 
of the feature extractor, while they are prepared to have a finite correlation in- the  
demonstration of a topology-preserving mapping. When the input signals are uncorrelated 
spatially well separated modes form in the resonator.  Each of the modes is temporally 
correlated with one of the input signals. When the input signals are spatially correlated 
spatially overlapping modes form in the resonator.  The spatial correlation of the resonator 
modes is observed to vary continuously, as a function of the input correlation. In Section 3 
we develop a two-dimensional model for the resonator dynamics based on the equations of 
photorefractive nonlinear optics. The equations are solved numerically in Section 4. The 
numerical results agree qualitatively with the experimentally observed behavior. Further- 
more,  the numerical results show that the mapping tends to be contracted: the correlation 
inside the resonator is always greater than the input correlation. While the numerical 
calculations serve to corroborate  the experimental results, they offer little insight into the 
reason for the observed behavior. Semianalytical arguments based on a simplified plane- 
wave model are given in Section 5. The plane-wave model shows that the input signals do 
not map onto the same resonator mode because the oscillating intensity is maximized when 
the input signals map onto different resonator modes. The main results are summarized in 
Section 6. 

2. E X P E R I M E N T A L  RESULTS 

In this section we present experimental observations of feature-extraction and topology- 
preserving mappings in a self-imaging photorefractive resonator. A detailed description of 
the resonator,  and the formation of localized transverse modes, has been given in [8]. For 
completeness we include a short description of the resonator geometry below. 

The transverse-mode profile in a high Fresnel number self-imaging optical cavity is not 
well defined. The observed transverse structure is a continuously changing superposition of 
many metastable transverse modes. Several groups have recently demonstrated self-induced 
conversion of a complicated transverse structure into a localized mode with a well-defined 
profile [8, 14, 15]. The basic approach in all of these demonstrations is similar: combine 
saturable gain in one plane of the resonator with saturable loss in a spatially distinct plane. 
The spatial mode naturally adjusts itself until the net gain is maximized. The result is a 
transverse mode that is highly localized in the plane of the loss medium, since this gives the 
largest possible loss saturation for given oscillating power. When the optical cavity is 
self-imaging [8, 15], such that there are no preferred transverse modes, the localized mode 
can form at an arbitrary transverse location. 

The optical geometry is shown in Fig. 1. Planes labeled q3 are imaged onto each other,  
and planes labeled 5g are imaged onto each other,  while q3 and ~ are spatially conjugate 
planes. The field profiles in the planes of the gain and loss media are therefore Fourier 

2 2 transforms of each other.  The resonator Fresnel number is given by ~ = rmax/Trcoc, where 
rma x is the limiting iris radius, and coc = ~/(Afl/Tr) is the confocal mode radius of the 
equivalent linear resonator.  All of the data presented here were taken with rma x = 3.5 mm, 
giving ~ -- 240. Setting the pump beam radius to COp = COc gives a localized mode in the loss 
plane with radius (f3/f2)COp. The demagnification provided by lenses ]'2 and f3 increases the 
intensity in the loss medium. Since the photorefractive time constant is inversely propor- 
tional to the intensity, the increase in intensity speeds up the response of the loss medium. 
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Fig. 1. Self-imaging ring resonator with photorefractive (BaTiO3) gain and loss. The gain and loss pumps are from 
a cw Argon-ion laser, ~. = 514 nm, all beams are polarized in the plane of the figure, the gain pump is a speckle 
beam with radius rp - Wc ~ 260/zm, and the loss pump is an expanded copy of the speckle beam with a radius 
of - 5.5 ram. The coupling and time constants of the gain and loss crystals are G = 4.9, r 0 = 4.2 secWcm 2 and 
L =2 .1 ,  r % = 0 . 0 6 1 s e c W c m  -2, where the small signal gain and loss are given by e~p(G)  and e x p ( - L ) .  
The lenses are fl = 100 mm, f2 = 150 mm, f3 = 30 mm, all lenses are confocally spaced, and the passive cavity 
reflectivity is R = e x p ( - C ) ,  C = 3.4. The data presented here were obtained with a limiting iris radius 

rmax = 3.5 mm, giving a Fresnel number ~ - 240. 

This is necessary in order  to ensure that the resonator  prefers a localized mode  structure 

[81. 
The dynamics of the localized modes depend strongly on the cavity alignment. For small 

cavity misalignment,  such that the transverse phase mismatch across the limiting iris is 
~< rr, the transverse location of the localized mode  becomes unstable [8]. The cavity 

misalignment causes a linear feeding of energy from the oscillating mode  to neighboring 
locations. This results in a continuous drifting of the spot in the transverse plane of the 
resonator.  Simulation of the drift instability [16] shows that it persists for arbitrarily small 
cavity misalignment.  We wish to use the resonator  modes  as static representat ions of the 
images pumping the resonator.  It  is therefore necessary to eliminate the drift motion.  The 
stabilization method used here is simply to misalign the optical cavity such that the 
transverse phase mismatch is several n. In this case the oscillating pat tern,  with no loss 
pumping,  is a set of fringes that represent the cavity equiphase contours. When the loss 
pump is turned on localized modes still form, but they are restricted to locations on the 
bright fringes. The dark fringes act as barriers to the drift motion. The maximum number  
of fringes consistent with the formation of localized modes is [8] Nmax ~< ~/(7r~)/2, which in 
the geometry of Fig. 1 gives N m a  x ~ 14. The experiments  reported here were performed 
with N ~ 7. The disadvantage of this approach to mode stabilization is that the modes can 
no longer form at arbitrary transverse locations. However ,  modes  can still form at arbitrary 
locations along a single fringe. Thus, the resonator  described here is suitable for 
implementing mappings f rom a two-dimensional input space to a one-dimensional trans- 
verse mode distribution. 

The pump beam to the photorefract ive gain crystal need not have a smooth Gaussian 
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transverse profile. Since the photoreffactive gain results from diffraction in a volume 
hologram, arbitrary spatial-pump profiles may be transformed into arbitrary resonator- 
mode profiles. When a Gaussian beam is propagated through a length of mult imode fiber it 
emerges as a speckle pattern. Pumping the resonator with a speckle pattern also leads to a 
mode with a smooth, localized envelope. When the resonator is pumped with two spatially 
distinct speckle patterns, each one leads to a localized mode. When the speckle patterns 
are spatially and temporally orthogonal,  the resulting resonator modes are also spatially 
and temporally orthogonal.  Thus the resonator acts as a feature extractor. 

The input signals for the feature extraction experiment are prepared using the arrange- 
ment of Fig. 2(a). The acousto-optic modulators are turned on at alternate times, so the 
inputs are never present simultaneously. Both modulators are driven from the same 
80 MHz oscillator so that the first-order diffracted beams that are coupled into the fiber 
have the same carrier frequency. The output of the fiber is imaged onto the gain crystal of 
the resonator in Fig. 1 with x 2.5 magnification. This gives a pump beam spot radius of 
cop = 125/t. The fiber output  is imaged onto the loss crystal with × 80 magnification to 
cover uniformly the available aperture. The resonator mode with the loss pump blocked is 
shown in the top row of Fig. 3. Each input leads to a multimode oscillation. The two 
oscillation patterns have a high degree of similarity, but are not identical. The loss pump 
beam is then turned on. The multimode oscillations collapse to two nearly singlemode 
oscillations, shown in the bot tom row of Fig. 3. The intensity overlap and crosstalk 
between the modes are very low. 

The topology-preserving mapping is demonstrated using partially correlated input signals. 
The correlated inputs are derived by continuous angular scanning of the input beam using a 
galvanometer mirror, as shown in Fig. 2(b). The limits of the galvanometer scan were set 
to correspond to approximately zero intensity overlap, as shown in Fig. 4(a). The scanning 
was driven by a sawtooth waveform such that all input positions were sampled equally. The 
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(a) (b) 
Fig. 2. Optical geometry for generating input signals. In (a) spatially orthogonal speckle patterns are generated in 
alternate time slots. In (b) a continuous distribution of signals is generated by scanning the beam coupled into the 

fiber. The fiber is multimode 100/140/~ diameter and 5 m long. 
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Fig. 3. Experimental observation of feature extraction. The two columns show the resonator mode with inputs 1 
or 2 turned on. The top row shows the resonator mode with gain only. The bottom row shows the localized modes 
with gain and loss. The concentric rings were superimposed on the picture as an aid to the viewer. The region 

within the outermost ring corresponds to a resonator Fresnel number of 240. 

resona tor  modes  cor responding  to the input beam posit ion are shown in Fig. 4(b). The  
modes  cor responding  to the limits of  the input scan have a low spatial correlat ion.  The 
significant aspect of  the data  shown in Fig. 4 is that  the spatial location of  the resona tor  
m o d e  varies cont inuously .  The similarity be tween resona tor  modes  at different times 
reflects the similarity be tween  input  pat terns  at different  times. The measure  of  similarity is 
the inner  product ,  h ~ f d X S l ( X ) S ~ ( X ) ,  of  two input signals. Neighbor ing  input pat terns  are 
m a p p e d  onto  ne ighbor ing  resona tor  modes ,  while wel l -separated input  pat terns  are mapped  
on to  wel l -separated resona tor  modes .  This is not  an obvious  result since the resona tor  only 
sees the speckle pat terns  coming out  of  the mul t imode  fiber. The  functionali ty of  the 
resona tor  modes  is equivalent  to that  of  K o h e n e n ' s  a lgori thm [9] for a self-organizing 
topology-preserv ing  mapping .  

3. MODEL EQUATIONS 

The  dynamical  behavior  of  the self-imaging ring resona tor  with photoref rac t ive  gain and 
loss is descr ibed by a set of  equat ions  for  the coupled  field and material  dynamics  in each 
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Fig. 4. Experimental  observation of a topology preserving mapping.  The  position of the input beam as seen at the 
input moni tor  in Fig. 2(b) is shown in the column on the left. The corresponding resonator  mode  is shown in the 
column on the right. The vertical lines are drawn through the centroids of  the intensity profiles halfway through 
the spatial scan. The displayed region of the transverse resonator  aperture corresponds to a Fresnel number  

of - 20. 

photorefractive crystal, together with boundary conditions that connect the two crystals. 
The photorefractive interaction in the gain medium, shown in detail in Fig. 5, is described 
in the paraxial limit in one transverse dimension by the set of equations 

( 3  + Or,g 3 i ~" ) 
Oz Ox 2k 9x 2 r,o,g(X, z, t) = gg(X, z, t)s~,~(x, z, t), (la) 

) g-~l + 1 gg(X, z, t) = r~o,g(X, z, t)S*g(X, z, t). (lc) 

Here the subscript g labels the gain medium, s and r are the slowly varying amplitudes 
of the input signal (pump beam) and resonator fields, g is the induced photorefractive 
grating, rg(Ig)= r%/Ig is the intensity-dependent photorefractive time constant, Ig = 

F 2 ,o,gl + Is ,gl 2 is the total intensity, and k = 27rn/,~ is the wavevector. The form of 
equations (1) implicitly assumes that the angle between the beams (0r + Os) is much larger 
than the angular divergence of each beam individually. Equations (1) are correct to order 

2 0(r.s), where O(r,s ) a r e  the mean angles of propagation of the signal and resonator beams 
with respect to the z-axis. Thus noncollinearity of the signal and resonator fields inside the 
photorefractive medium is explicitly accounted for. Crossing of the signal and resonator 
fields enables correlations between the input signals to be computed effectively by the 
photorefractive interaction. Numerical calculations that do not include the effect of beam 
crossing do not result in topology-preserving mappings. The coupling constant F will be 
assumed real, which corresponds to a medium with a purely diffusional response, and 
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Fig. 5. Geometry of the photorefractive media. The gain interaction is shown in (a) and the loss interaction in (b). 

linear absorption has been neglected. It should be emphasized that equations (1) allow for 
arbitrary longitudinal variation of both the signal and resonator fields inside the photo- 
refractive medium. This is necessary, since the experimental results were obtained in a 
resonator with cavity reflectivity of only a few percent. A mean field formulation of the 
problem, such as that used in ref. [17], would not be appropriate here. 

In the experimental demonstrations described in Section 2, different signals were 
presented at different times. Alternatively, the signals could be multiplexed on different 
optical carrier frequencies [6]. As long as the separation between carrier frequencies 
satisfies Aw >> 1/v, the two approaches are equivalent. As used in equations (1), o9 is a 
generic label for temporally orthogonal signals [18] that do not interfere to write a 
photorefractive grating. 

The interaction in the loss medium is shown in Fig. 5(b). Since the loss pump has been 
expanded to cover the photorefractive medium uniformly, most of the beam-crossing 
region lies outside the medium. The two-dimensional nature of the interaction may 
therefore be neglected leading to the simplified set of equations 

3 
- - r , o , t ( x ,  z ,  t) = gt(x ,  z ,  t ) s~ , l (x ,  z ,  t ) ,  (2a) 
Sz  

(2b) so~,l(X, z ,  t) = -g~ ' ( x ,  z ,  t)ro,  t (x ,  z ,  t ) ,  
Oz 

( ~ ~ z, F ~ c '  z, * z, t). (2c) + 1 gt (x ,  t) = - - / ~ r o ~ l ( x ,  t)so~,t(x, 
2 I to ,  ' 

Here subscript l labels the loss medium. Diffraction has also been neglected since the 
Rayleigh lengths of localized modes with characteristic diameters of - 0 . 1  mm is much 
larger than the crystal depth of ~ 5 mm. 

The equations of motion in the gain and loss media are supplemented by the boundary 
conditions 

(o) (x  s~o,g(X, Z = O, t) = S~o,g, ), 

= = s ~ A x ) ,  s~o,t(x, z O, t) (o) 

r~o,g(X, Z = O, t) = e ( x ,  t)S~?g(X) + e-C/2~-l[ro~,l(X, z = It, t)], 

(3a) 

(3b) 

(3c) 
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G,,t(x,  Z = O, t) = ~[ro~.g(X, z = lg, t)], (3d) 

g~(x ,  z ,  O) = g* ( x ,  z, 0) = 0. (3e) 

e(x, t) is a small coefficient that models seeding of the oscillation by random scattering at 
the crystal surface, ~ is the spatial Fourier transform operator, and the cavity reflectivity 
given by R = e  -c  is lumped to lie between the loss and gain media. The finite 
cavity-propagation time is neglected, since for the experimental conditions of Section 2, it 
is much smaller than the photorefractive relaxation time r. 

Equations (1) and (2) describe the response of the resonator to a set of temporally 
orthogonal signals. This is an appropriate description of the feature extractor. In the case 
of the continuous distribution of partially correlated inputs used to demonstrate the 
topology-preserving mapping, some caution is required. Although the equations of motion 
may be formulated to describe this situation correctly, their numerical evaluation becomes 
expensive. We will therefore use equations (1) and (2) to describe topology-preserving 
mappings, assuming a discrete set of spatially correlated, but temporally orthogonal input 
signals. Kohenen's  algorithm has been applied to discrete, as well as continuous input 
distributions. The results are in both cases similar [10, section 6.2]. 

4. NUMERICAL RESULTS 

We have numerically simulated the response of the photorefractive resonator as 
described by equations (1)-(3). The main result of the calculations is a prediction of how 
the degree of spatial correlation of the resonator fields depends on the correlation of the 
input signals, and the resonator parameters. In order to reduce the computational burden, 
the calculations were performed using smooth Gaussian input beams, instead of speckled 
beams. Calculations with speckled beams would change the numerical details of the results 
reported below, but not the general behavior. In the absence of losses, propagation in a 
multimode optical fiber is described by a unitary transformation of the field, that preserves 
inner products. This has been verified experimentally [19]. Thus, for the numerical results 
shown in Figs 6-9, the input signals were 

(0) si ,g(x)  = Al ,g  exp (iKlx) exp (-x2/~o2), (4a) 

S2,g(X)(°) = A2,g exp (iK2x) exp ( - x 2 / w 2 ) ,  (4b) 

S~03(X) = A i d  exp ( iK'IX),  (4C) 

2,t~) = A2.l exp (iK2x), (4d) 

where K, which is proportional to the angle of propagation, determines the degree of 
overlap of the input beams, and A is the field amplitude. The input beams to the loss 
crystal were assumed to have a constant transverse intensity, as was the case in the 
experiments described in Section 2. The spatial correlation of the input beams is defined by 

(~ (o) (o)*~2 
h !0) = )OXSi'gSj 'g I (5)  

(0) 2 (0) 2 ' - "  f dxlsi,g] f dxlsj ,gl 

with an analogous definition for the correlation h !&l) of the resonator fields at the output ~q 
face of the gain and loss crystals. 

Equations (1) were solved on a grid of 350 (along x) x 250 (along z) points using a finite 
difference Crank-Nicholson type scheme [20] for the spatial integration, together with a 
second-order accurate method for the temporal evolution. The resonator axis was chosen 
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to lie along z so 0,,g = 0. The other  parameters were 0~,g = 7 °, ~ = 0.514 #m, n = 2.4, the 
crystal width along x was 0.6 mm, the crystal thickness along z was lg = 2.0 mm, and 
co= 0.06 mm. Since we are interested in the steady-state behavior, we set T; = 0 in 
equation (2) (i.e. instantaneous loss). The spatial integration of the fields in the loss 
medium was performed using a Runge -Ku t t a  method,  and the other parameters were the 
same as for the gain medium. The input signals were of equal intensity (Al,(g,;t = Az(g,l)) ,  
and the loss pump intensity was 0.04 times the peak intensity of the gain pump. The 
oscillation was seeded using a low level of random noise (e (x ,  0) ) ~ 10 -3. The seeding was 
reduced linearly to zero at t = 10rg. The steady-state results shown in the figures were 
obtained by integrating for several hundred characteristic time constants. 

Consider first the response of a self-imaging resonator,  containing only a gain medium, 
to partially correlated input signals. The correlation of the resonator fields u(gl ¢~12 as  a 
function of the input signal correlation t,(0) ,,12 is shown in Fig. 6(a) for three different values 
of the coupling constant. The correlation of the resonator fields increases as the input field 
correlation is increased. The oscillating intensity also increases monotonically with the 
spatial correlation of the input signals, as is shown in Fig. 6(b). When the signals have the 
same spatial mode the value of the coupling coefficient is Fg. When the signals are spatially 
uncorrelated the effective value of the coupling coefficient is reduced to FJ2 .  In between, 
the coupling coefficient and the oscillating intensity increase as the spatial correlation is 
increased. It is also apparent that the fields inside the resonator are more strongly 
correlated than the input signals. The tendency of the resonator to increase the spatial 
correlation decreases as the nonlinear coupling is increased. For Fglg = 18 there is only a 
small difference between the correlation of the input and resonator signals. Nonetheless, 
the resonator with gain only does not lead to a useful spatial mapping of the input signals. 
The intensity distributions of the oscillating signals are strongly overlapped in the gain 
medium, and cannot be separated. Taking the spatial Fourier transform of the oscillating 
signals leads to distributions that are spread out over the available transverse aperture of 
the resonator. The signals are not localized in the Fourier transform plane. 

In order to obtain oscillating signals that are well localized spatially a loss crystal is 
added to the resonator.  The resulting correlations at the output of the gain and loss media 
are shown in Fig. 7. Introducing the loss medium leads to an even greater increase in the 
spatial correlation of the resonator fields than is observed in the resonator with gain only. 
Because the loss saturation is maximized in regions where the resonator fields have high 
intensity, the loss medium tends to 'pull' the resonator modes together. This results in 
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Fig. 6, Spatial correlation (a) and intensity (b) of the fields in a self-imaging resonator with gain only. 
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Fig. 7. Spatial correlation of the resonator fields in a self-imaging resonator with gain and loss. The coupling 
coefficients were Fglg = 15 and Fllt = -2. 

h~0 > t,~g) Each of the input signals now maps onto a localized intensity distribution in the 12 '~  i 2  " 

plane of the loss medium, as shown in Fig. 8. Note that the intensity profiles shown in 
Fig. 8 are well localized but, because of their mutual interaction, they do not have the 
smooth Gaussian-like shape that is obtained when the resonator is pumped by a single 
input signal. The calculated profiles correspond to solutions that maximize the net 
round-trip gain (amplification-loss). When the resonator is pumped by several signals the 
result is localized modes that have a complicated transverse variation of both intensity and 
phase. The Fourier  transform of the gain pump profile given by equations (4) gives a spot 
in the loss medium with diameter 2a) t = 18/am. The region covered by the two calculated 
spots in Fig. 8(b) is about 35/am, or twice as wide. The transverse phase variations, not 
shown in the figure, also contribute to the calculated value of the correlation. Observations 
of the intensity alone tend to make the correlation appear higher than it actually is. This is 
also evident in the experimental  data of Fig. 4. 

In order  to demonstrate clearly the topology-preserving nature of the resonator we 
consider the case of three partially correlated input signals. The input and resonator 
correlations are shown in Fig. 9. The ordering of the resonator correlations agrees with the 
ordering of the input correlations. Thus the topology of the inputs, as measured by their 
spatial correlation, is preserved. 

5. PLANE WAVE ANALYSIS 

In this section we consider a simplified, but analytically tractable, model in order to gain 
insight into the reason for the observed behavior. Different input signals are mapped onto 
different resonator modes because this maximizes the energy transfer to the resonator. We 
know on the basis of a linear stability analysis of a multimode ring resonator with gain only 
(unpublished), that orthogonal signals always prefer  to map to orthogonal resonator 
modes. In the resonator with gain and loss the situation may in principle be different. If 
the input signals mapped onto the same resonator modes, then the gain would be lower. 
However ,  the loss would also be lower. In order  for separate resonator modes to be the 
preferred state, the net energy transfer (gain-loss),  must be maximized. Otherwise the 
feature extractor, and the topology-preserving map, would not work. 
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Fig, 9. Spatial correlations of the resonator  fields at the output  of the loss medium when the resonator  is pumped 
by three input signals. The dashed lines are input signal correlations and the solid lines are resonator  correlations 

at the output  of  the loss medium.  The coupling coefficients were Fglg = 20 and Ftlt = -3 .  

Equa t ions  (1) and (2) are not  easily solved analytically. We will the re fore  s tudy them in 
a s teady-state  plane-wave limit [18]. The  equat ions  of  mot ion  are then 

dri j ,m _ ~f'~gii',mSr j . . . .  (6a) 
d z  c 

dsij . . . . . .  Z gi*'i,m rc j ,m, (6b) 
d z  c 

_ F, ,  ~'~rij.mSi*j,,,,. (6c) 
gii',m 21,,, j 

sii .... rij,, n are signal and resona tor  fields with spatial mode  i and tempora l  mode  j,  and 
m = {g, l} labels the gain or  loss medium.  Note  that  in contrast  to equat ions  (1) and (2), 
Bragg-matching has been  implicitly assumed.  Thus  r,i .... the resona tor  field with spatial 
mode  i only scatters off  the grating due to the in ter ference  of r~j,,,, with s~,i, , , .  Resona to r  
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fields in different spatial modes do not interact directly with each other through shared 
gratings. This formulation of the equations of motion corresponds to the feature extractor 
experiment. 

Equations (6) are to be applied to the idealized resonator models shown in Fig. 10. 
Consider the situation shown in Fig. 10(a) where the input signals map to spatially 
orthogonal resonator modes. In this case, different temporal modes write Bragg- 
mismatched gratings and equations (6) decouple. The solution for the change in intensity of 
a resonator beam due to a gain or loss interaction is 

L(out) 1 + M 

Ir(in~ 1 + Me -x/N" (7) 

where M = Is(in)/L(in), X = + F l  for gain or loss, respectively, Fm is assured real, N is the 
number of input signals and, for simplicity, we have assumed equal intensities in each 
temporal mode. The resonator intensity in one temporal mode at the input to the gain 
medium is found by applying equation (7) for the gain and loss media, multiplying by the 
cavity reflectivity, and requiring the round-trip gain to be unity in steady state. This results 
in a cubic equation for ~/= Ir,g(O)/Is,g(O ). Using q << 1, which is valid for low cavity 
reflectivity, gives the following quadratic equation for ~/: 

[1 + Mglexp (r,l,/N)]rf + [exp(-r,  lg/N) + 2Mglex p {((I'll t - rslg)/N)) 
- (1 + Mgt)exp(-C)]tl + Mg~exp(-Fg/N)[exp(Ftl~ - Fglg)/N) - exp(-C)l = o. (8) 

Here Met = I~l(O)/I~g(O). Putting Mgl = 0 we recover the well-known expression for the 
oscillating intensity in a photorefractive ring resonator with gain only [21]. The ring 
resonator with saturable gain and loss may be bistable [22, 23]. The two roots of equation 

rll 
loss 

gain ~ m p  
pump 

(a) 

rll, r12 

loess pump 

gain. 
pump 

(b) 

Fig. 10. Plane wave models of the self-imaging resonator for two input signals. In (a) the input signals map onto 
spatially orthogonal resonator modes, in (b) the input signals map onto the same resonator mode. 
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(8) correspond to the upper and lower branches of the bistability curve. We will assume 
that the resonator is strongly seeded so that the observed value of ~/ lies on the upper 
branch, t/is plotted for different values of the gain and loss in Fig. 11. 

We now wish to compare the value of t/ obtained when all signals map onto the same 
resonator mode. Equations (6) must be solved for N resonator fields, rH,,~...~U,m 
interacting with N 2 signal fields. Analytic solutions may be found by assuming symmetric 
interactions ( r l l , m  = . . . =  rlN,m , Sll,m = . . . =  SNN,m , and all Si],r n equal for i=~ j). The 
equations of motion then reduce to 

drll .m 

dz 

d S l l , m  __ ds12 ,m 

dz dz 

- - g m [ S l l , m  + ( N  - 1 )S ,2 ,m] ,  (9a) 

- -  
g m r l i , m ,  (9b) 

r~ 
gm -- rll,m[S~l,m + ( N  - 1)S~z,m]. (9c) 

2/m 
Solving for the change in the resonator intensity using S0,m(0 ) = 0, for i ¢ j gives 

Ir(OUt) _ 1 + M / N  (10) 

Ir(in) 1 + ( M / N ) e x p [ -  {1 + ( M / N ) } X / ( 1  + M)] '  

where X = + Fl for gain or loss, respectively. Using Mg >> N and M~<< 1 gives the 
following quadratic equation for ~/: 

Na[i + Mglexp (rflt)]~ + N[exp (-rfljN) + 2Mgtexp (Ffl, - rfljN) 
- (1 + Mgl) exp ( -  C) ] t /+  Mgt exp ( - F g / N ) [ e x p  (Fil l - Fglg/N) - exp ( -  C)] = 0. (11) 

Referring to Fig. 11 we see that the oscillating intensity is always highest when the signals 
map to orthogonal spatial modes. Even though the loss crystal serves to attract the signals 
into the same spatial mode, the effect of the gain crystal, which repels the signals, is always 
stronger. The same qualitative behavior should also apply to topology-preserving mappings 
of correlated signals. 

0.15 

0,1 

g- 

0.05 

F i g u r e  

( Z 
00 0.2 0.4 0.6 0.'8 

r t 

Fig. 11. Osci l la t ing in tens i ty  as f ou nd  f rom equa t ions  (8) and  (11). T h e  solid l ines are for N = 2 and  the  b r o k e n  
lines are for  N = 4. T h e  p a r a m e t e r s  were:  Fglg = 10, C = 2, and  Mgt = 0.01. 
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6. DISCUSSION 

We have demons t r a t ed  a photoref rac t ive  re sona to r  that  embodies  the funct ional i ty  of a 
compu ta t iona l  a lgor i thm in the dynamics  of a physical system. The  resona to r  supports  a 
con t inuous  family of spatially localized t ransverse  modes .  W h e n  the re sona to r  is p u m p e d  
by an in fo rmat ion  bear ing  b e a m  the t ransverse  modes  self-organize to genera te  a mapp ing  
of input  signals on to  localized resona tor  modes .  The  mapp ing  is topology-preserving.  
Similar inpu t  signals, as measu red  by their  i nne r  product ,  are m a p p e d  on to  similar  
r e sona to r  modes .  Because  the photoref rac t ive  gain is med ia t ed  by a vo lume  hologram,  the 
measure  of similari ty is an i nne r  product .  Di f fe ren t  physical gain mechan i sms  could,  in 
pr inciple ,  be sensit ive to different  measures  of similarity.  

In  the geomet ry  s tudied here ,  the mapp ing  is f rom a one - d i me ns i ona l  input  space to a 
one -d imens iona l  ou tpu t  space. Numer ica l  s imula t ions  of the equa t ions  of mo t ion  show that  
the mapp ing  is compressed.  The  spatial  over lap  of the r e sona to r  fields is p ropor t iona l  to 
the spatial over lap of the input  fields raised to a power  less than  one.  F u t h e r m o r e ,  the 
in tensi ty  d is t r ibut ions  of the localized modes  depar t  f rom a smooth  Gauss ian- l ike  shape 
when  the modes  are part ial ly correla ted.  In  this s i tuat ion,  observa t ions  of the in tensi ty  
d is t r ibut ion  a lone,  make  the re sona to r  modes  appear  more  highly corre la ted than  they 
actually are. 
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