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Abstract. Data mining is known to be among the hottest topics in E-
science. New methods for mining vast amounts of heterogeneous data
from several data sources are emerging all the time. In this paper, we
explore two of the most important data mining tasks in a distributed
environment. We showcase some of the most important properties and
algorithms of distributed frequent itemset mining and distributed clus-
tering. Essentially two surveys for the price of one, here you will learn
about the state of the art in distributed clustering and frequent itemset
mining. Several of the most popular algorithms are explained and broken
down to key points.

1 Introduction

Data Mining is now, as much as ever, a necessity in today’s e-science environ-
ment. The problem comes quickly when we realize that our sources of data are
growing quickly at a linear rate while the majority of our data mining algorithms
take at least an n2 time frame. At the rate our data is growing (millions to billions
of records with hundreds of fields) even a linear time frame is growing quickly
impossible. Databases have been distributed for quite some time in order to help
divide the work or add redundancy. Data mining and, in particular, clustering
have traditionally been done outside of a database. The current implementation
of most data mining suites (WEKA, ADaM) operate directly on a file structure
which is outside of the database. This involves shipping the data (possibly from
multiple sources) to a single destination where all the processing takes place in a
single processing computer. This mode of operation will no longer suffice as the
rate of data growth is faster than the growth of network throughput. It becomes
necessary to explore the mining of whole datasets efficiently in a distributed
setting.

Distributed data mining requires an architecture which is completely different
from the one used in centralized approaches. In a distributed environment, the
architecture must facilitate to pay careful attention to distributed resources of
data, computing, and communication [20]. The different architectures for central-
ized and distributed data mining are shown in figure 1, which is taken from [20].
The figure clearly shows that in a distributed setting, processing should be done
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Fig. 1. Left: traditional data-warehouse based architecture for data mining. Right:
architecture for distributed data mining. Source: [20]

on different nodes generating several local models. These models are then ag-
gregated to form a global model representing the mining result of the entire
dataset.

There are three major categories that data mining algorithms fall under,
these are classification, frequent itemset mining, and clustering. Each is useful
in its own right. In this paper, we investigate two of these data mining techniques
in detail, namely clustering and frequent itemset mining.

First we explore the concepts related to the clustering of distributed data
and summarize a few of the broader algorithms. We first attempt to define
a set of rules that can measure the quality of an algorithm in a distributed
setting. Following this we summarize some of the more encapsulating distributed
clustering algorithms such that we get something of a family classification. Most
other algorithms seem to fit into one of these families. Following our clustering
chapter, we begin to explore frequent itemset mining. we give an overview of the
general goal of the technique and the issues arising in the distributed case. A
summary of a thorough paper survey will be given as well. We also identify open
problems in both research areas and outline possible solutions or next steps.

The rest of this paper is organized as follows: Section 2 gives an introduction
to distributed clustering and section 3 lists types of clustering algorithms and
presents an example algorithm for each type. In section 4 we give an introduction
to distributed frequent itemset mining. Representative algorithms for this data
mining task are presented in section 5. In section 6 we describe open problems
and possible future work in both research areas. Section 7 concludes the paper
by summarizing our findings and future goals.

2 Introduction to Distributed Clustering

The idea of data mining is inherently to look at all the data and make statements
about broad trends within it. Having distributed data is often a fact of life and



must be dealt with and as such we must be able to analyze effectively. Unless
stated otherwise, in this paper I assume that the distribution has already been
decided on and that the query is written completely independent it. I think this is
a fair assumption because we cannot assume we are given any natural advantage
when asked to cluster distributed data. I think this is also valid because if you
already have your data at a single source, there are several single pass algorithms
that can give a much better approximation in much less time than would be
required to ship the data. This is true when talking about large datasets anyway.
I do present a couple of top down type ideas, but they will be explicitly defined
as such.

There are a couple of crucial ideas that must be taken into account. The first
of which is the idea of minimizing data transmission. If our methodology requires
too much interaction throughout the clustering process then the distributed
process will have much more ground to make up against just shipping all the
data to a single source. A second point to consider is data privacy. It is entirely
possible that we might have a situation (example forth coming) such that we
want to get a clustering from a much larger set of data than we have from
several sources. This is certainly a noble goal, but can conflict if the data is at all
sensitive. Data privacy is an important attribute to keep in mind. We may choose
an algorithm that can be processed locally at the source, then only passes back
necessary statistics to another local source such that the local source can recreate
the cluster pattern. This can be done using only the abstraction of the cluster,
not necessarily exposing any single tuple directly through communication. An
important consideration as well is how the abstraction of the cluster is handled.
At some point every algorithm must transmit data for it to be accumulated.
The question becomes how well they communicate these abstract data types,
this is generally directly related to how they are formed. Local completeness is
also an attribute we must keep in mind. If we are willing to use a distributed
setting for our clustering we must know in advance if it will give us the same
quality of clusters as another algorithm would if run on a single system. These are
currently the best accepted measures for the quality of a distributed clustering
methodology. In the next section we will go into each in more detail.

2.1 Data Privacy

Consider that you might be working in a hospital, doing research on many of the
patients there. You are running a clustering algorithm on the hospitals patients
which is returning adequate results, but the number of patients might not be
enough to establish a real trend. You might write to another hospital and medical
school asking to cluster their records, searching for a deeper broader package.
This request would almost surely be denied due to the need to protect patient
privacy. A hospital, financial institute, or secret government agency does not
care to share any of its private data but might be willing to run an algorithm
on its own data, such that only an abstraction of the cluster is returned.

This requirement can negate the need for algorithm efficiency. If a single
source is unwilling to share any of its actual tuples, then we are forced to elimi-



nate the naive plan of shipping all tuples. We must find a way of communicating
how a local source contributes to the global cluster scheme without revealing any
data from the local source. I’ll give examples of several algorithms that present
novel means of insuring data privacy. This is primarily a direct trait of how they
abstract the cluster and how well the clusters are summarized.

2.2 Cluster Abstraction

An idea that helps is thinking of the clustering algorithm as a mapping. We
give it a set of points as input and it then returns a set of clusters as output.
We cannot call it a function as a single set of inputs can return various clusters
depending on some random factors (as with K-means). The point of clustering
is such that we can represent a large number of points into a single cluster
that suits them well. We want a cluster to summarize the points within it as a
grouping. There are a number of ways to deal with this process, as can be seen
just in standard clustering. Results for a cluster can vary erratically as we will see
ahead, but some common plans include: list of members, representative point,
statistics and a radius, outer hull, and a functional representation. Those are a
handful of the representations you will see in centralized clustering algorithms.
Even intuitively some of these methodologies are a horrible idea for a distributed
setting. Later examples of specific algorithms will give some illumination to the
choices of abstract representation.

Some algorithms[12] utilize member representatives. By choosing a represen-
tative you lose a lot of information. Your hope is that in a manner similar to
K-means you will be able to aggregate or summarize several points into a sin-
gle point that some how captures all the information. The adaptive method of
K-means does exactly the same thing as the centralized K-means does, however
this limits the clusters to being circular in shape. By choosing a representative
that is in the center and within a given radius of the rest of the points in the
cluster we are able to consolidate all the information into that single point. This
is fine for methods where the cluster is created by a single point, but certainly
has weaknesses. We should also consider what happens when we use a density
or grid based approach.

2.3 Minimize Data Transmission

The naive idea here for most all data mining suites is such that we just transmit
all the data to the same site then run a standard single clustering technique
there. This is often not feasible at all, as the dataset are so large they can barely
be recorded, much less transferred to a single site and recorded temporarily
there. The idea then must be to work on several local components and have
them merge in some way or another. This directly implies that we can not send
each point from each partition with membership, so we must abstract the cluster.
There seem to be several classes of cluster abstraction for several different types
of planning.



2.4 Local Completeness

An important consideration to keep in mind is that we cannot always control the
distribution of the data. Keeping that in mind we need to either be forewarned
or be sure that performing our clustering operation will provide for as accurate
a clustering as transferring all the data to a central computer. This is to say, if
we have a small cluster spread out to a single point on every distributed surface
we should recognize it as a cluster in the global clustering.

3 General Listings of Types of Clustering Algorithms

Here we go over some of the more archetypal clustering algorithms that were
included in the readings. I have tried to grab a few of the unique algorithms as
most other algorithms are similar to one of these categories.

K-means is something of the most general methodology for clustering. It has
traditionally been the most adaptable of the clustering algorithms as its concept
of cluster abstraction is fairly standard. The (slightly more than naive) approach
used by Kriegel et al. [15] and the more traditional distributed Kmeans will be
presented here.

3.1 K-Means

To start out the Kmeans algorithm [7] only has to be moderately modified to
work on a global level. We start out choosing our K cluster centers randomly
among all the random data points. The cluster centers are sent to every local
representative and a local K means clustering takes place. Each local machine
gathers it statistics about membership within its own clusters. The generation
of these sufficient statistics are how even this naive algorithm fulfills a number
of the rules above. The statistics are those sufficient to add up local pieces to
recreate the whole. After this step each of the statistics are transmitted a central
controller.

By representing each cluster as a set of gathered statistics we mostly satisfy
the data privacy rule by not giving any single point of data away except under
very specific circumstances.? By reducing any number of points into a single
cluster we are reducing (although perhaps not minimizing) the data transferred.
The downside is that we have to send this statistics over and over again until
convergence is achieved. This is not assured to be a very quick process and
depending on what transfer time is like it could end up being faster to just ship
the data. Certainly, this methodology leaves a lot to be desired.

Datta et al.[6] use a similar methodology only remove the need for a central
server. The by removing the need for a central point they allow for a far more

? It is entirely possible that you will have a K big enough such that some of the clusters
could consist of a single point. In this case, the sufficient statistics are going to be a
direct copy of the single tuple of data.



dynamic network. This algorithm is more tailored towards P2P and sensor net-
works. A non stable network such that any data that is available is considered
the complete set. While this methodology is interesting, it is not really the object
of this review.

3.2 Model Based

Kriegel et al. [15] develop this methodology a little bit more. On the local level
we are based on EM (Expectation Maximization) clustering [17]. This is just
like K-means except that we may use more functions to decide on the final clus-
tering. So we start out with each local system processing only its own pieces.
This methodology differs because we do not take to transferring partial results.
Instead we take our local EM clustering and model each cluster as a sum of
Gaussian functions. This is a handy methodology used again in other algorithms.
There is also a measure of privacy that we employ. Similar to the previous algo-
rithm, if there are too few actual data points represented by the local gaussian
equation we may be able to decipher too much about the original data points.
Therefore this algorithm gives a specific privacy algorithm to determine (and
optionally change) whether the functions being used are giving too much infor-
mation. These functions are then transferred to a global collection point when
then combines the functions to give global information about the probability
density of the global picture. This information is then sent to each local source
who can then reevaluate this data in respect to this, or merely use the new in-
formation. The idea of using several probability functions to represent a cluster
is also well-developed by Klusch et al.[14]

This methodology has problems that are not unique to distributed clustering.
It has a standard problem that some call ‘strong connection’ such that two large
clusters with a small densely connected component can end up being in the
same cluster even though they should not be. There is also the weakness that
the number of clusters is still a parameter. On the plus side, however, it no longer
forces spherical type clusters which of great help to accuracy.

3.3 Density Grid

Density Based approaches[18] seemed to be among the most successful in a
distributed clustering environment. This specific algorithm attempts to make the
CLIQUE[1] algorithm more appropriate to a distributed setting. They improve
a couple of problems that were in the original to make it better suited to follow
the great rules of distributed clustering. They start out by scanning each of the
attributes in the user specified query. Rather than setting some global setting for
the size of each grid square they decide on it dynamically based on the statistics.
This makes a lot of sense because depending on the distribution of the data bins
need to be variable. This comes at a relatively small cost later when we must
determine relative density of adjacent grid elements.

This is a very strong algorithm which yields strong clusters of even results.
However, it is based on a top down methodology where it is assumed that we



have the data centralized in a single repository then we distribute it (either to
other processors or nodes). This algorithm is quite nice because it represents the
clusters as a filling of a grid. This means, because of the dynamic gridding, that
the cluster will be fine grained in heavy density areas and courser in areas of
lower population.

3.4 Hierarchy

Another Archetypal distributed clustering methodology is presented by Johnson
and Kargupta [13] in the form of a hierarchical algorithm. This uses a method-
ology similar to the previous in that it uses a density gridding type approach.

It uses distributed adaptation of single link seems to do a good job creat-
ing clusters through the use of dendograms and creating a tight bound on the
minimum and maximum distance between the clusters. By tight bounding the
distances at any local point, we can then transmit only the TID (any unique
identifier for an object) along with it’s necessary statistics for determining min-
imum distances for merging. These fairly minimal statistics can give us a lot of
information for choosing which set of clusters to combine. The global model is
kept relatively simple in combination by use of the reducibility property [13]. To
summarize it simply, it says that two clusters combined into one cannot be any
closer to a third cluster(assuming you are always taking the closest pair next)
than the minimum of the two parts. This helps greatly when creating the global
model.

3.5 Extend DBScan

Density based algorithms continue to be popular because of the additive property
of densities. If we grid off the space of the clustering query we can add each
local density to combine into a single estimate for the global subspace. At first
Januzaj et al. [12] create the DBDC (Density Based Distributed Clustering)
algorithm to make DB Scan a distributed friendly algorithm. Then Januzaj
et al. [11] heroically proceed to extend their own DBDC algorithm to work
better that same year. The algorithm starts out with each local branch using
the DBscan algorithm to create a local clustering arrangement. The algorithm
decides, perhaps in a counterintuitive move, to then use a member representative
for each cluster. I found this choice odd as the beauty of DB Scan is it’s ability
to create clusters of irregular shape rather than just spherical ones. The member
representatives are then shipped back to a single source with some statistics to a
global repository (thereby violating the idea of data privacy) where a new scan
is then conducted and the global information is dispatched.

3.6 Cluster Aggregation

When dealing with cluster aggregation[9]we are talking about taking several sets
of potentially similar clusters and finding a clustering set up that is the least



disagreeable to them all. This paper is quite clever and does not really need any
single clustering methodology but rather can consolidate the results of several.
This is generally useful for vertically split data where data privacy is demanded.
This is because each set of data all refer to the same cluster so as long as there is
a unique identifier for all tuples (which there must be for vertical partitioning).
They each cluster their own aspects of the data and then can be queried regarding
cluster agreement. The idea is that we take these various clustering schemes, a
mapping for each item into a group, and attempt to merge them into a single
plan. In this process we minimize the amount that all the clusters disagree with
the final clustering. A clustering is said to agree with another for a single data
item if they are sorted to the same grouping. While this algorithm is great for
data privacy it cannot operate on horizontally fragmented data nor does it do
very well with data transmission. There is a lot of data sent because we must
either query for every single point or send a table regarding the unique identifier
and cluster id of every data item.

4 Introduction to Distributed Frequent Itemset Mining

4.1 Overview and Objectives

In general, the objective of frequent itemset mining is to find all subsets of items
which occur frequently together in a given set of transactions. Much research in
the area of frequent itemset mining on a single machine has been done in the
past. Starting with the Apriori algorithm proposed by Agrawal and Srikant [3],
research has gone a long way in optimizing the performance of frequent itemset
mining algorithms.

In the case of a finite number of transactions, the main performance criteria
is the number of passes an algorithm has to perform over the entire dataset.
Algorithms exists, e.g. the frequent pattern tree approach and the fp-growth
method by Han et al. [10], that need only two passes over the data to determine
the correct and complete set of frequent itemsets for a given frequency threshold
σ.

When mining data streams, which opposed to a fixed set of transactions
may contain an infinite number of transactions, the nature of the appropriate
algorithms changes. Frequent itemset mining algorithms on data streams are
inherently one-pass algorithms. Due to space and runtime constraints, those al-
gorithms focus on determining an approximate result set rather than the correct
and complete one. The first such algorithm, Lossy Counting, was published by
Manku and Motwani [16]. Most other frequent itemset mining algorithms on
data streams are either based on Lossy Counting, e.g. Chang and Lee’s sliding
window approach [4], or use the frequent pattern tree approach as Giannella
et al. do in their work [8]. In the case of data streams, the main performance
criteria for frequent itemset mining algorithms is the size of the maximal error
ε in the approximate mining result. More precisely one could state this criteria
as the ratio between the space requirements of the synopsis data structure and
the magnitude of the guaranteed error threshold.



In a distributed setting the objectives of frequent itemset mining algorithms
become more complex. The cost of communication between all sites participating
in the distributed data mining is one of the main issues in this case. The com-
munication overhead grows with the number of partitions. Schuster and Wolff
state in [22] that some existing algorithms do not scale well with the number of
partitions, thus motivating the need for a reduction of the overall communica-
tion between sites and a thorough communication cost analysis when designing
such distributed algorithms.

Additional objectives in the distributed setting include data distribution
techniques and load balancing. In a setting where the data is not distributed
initially, an efficient strategy of how to distribute the data among the available
sites is crucial for leveraging the advantages induced by the distributed envi-
ronment. And since properties of the data may vary between different sites and
thus resource requirements may differ from one site to another, load balancing
during the processing of the data is an important consideration as well.

4.2 Data Distribution

There are two possible motivations for distributed processing of a data mining
task. First, the data may be distributed initially, as in the domains of large com-
panies, network traffic analysis and sensor networks. There, it may be beneficial
to process the data on the local sites and only ship the data mining results,
instead of shipping all data to one site and do the data mining on one node.

Second, if the dataset is tremendous, then the distributed computation of
smaller portions of the data may yield a better performance than using a single
centralized approach and mining the whole dataset at once. But as we men-
tioned in section 4.1 already, the necessary communication between the different
computing sites has a huge impact on the improvements that can be gained in
performance by distributing the frequent itemset mining task.

As in frequent itemset mining on a single node, the properies of the data
partitions on each side significantly influence the run-time of the data mining
algorithm (see e.g. [23, 28]). Some partitions may contain only very few frequent
itemsets whereas others contain many frequent itemsets and thus take longer to
process the data. So if the data distribution is highly skewed on different sites,
the time required to get a mining result will vary. It is therefore an important
step to balance the workload of every node in oder to achieve the best speed-up
possible when using a distributed data mining approach.

In the first scenario mentioned the distribution of the data is already defined,
since the individual datasets on each node represent a partitioning of the overall
dataset being processed. Thus, not much can be done to fix initially skewed data
distributions. However, dynamic load balancing mechanisms can be deployed
while mining the data just like in the second scenario.

In the second scenario, where the data is initially on one site, the decision
of how to partition the data is crucial for exploiting the benefits of distributed
computing optimally. As mentioned above, dynamic load balancing, e.g. [25],



during the processing of the data can be deployed to keep CPU and/or memory
requirements nearly uniform over all nodes.

Data can be split horizontally and vertically, but according to Zaki’s survey
in 1999 [28] most papers assume a horizontal fragmentation, where each portion
contains a subset of all transactions. Zaki’s claim seems to be still true today.
Only a few publication, like [21, 30], assume a vertical fragmentation, where each
item is associated with a list of TIDs, which is a list of all transactions containing
this item.

There are only very few publication that deal with data distribution as pre-
processing step for frequent itemset mining specifically. One example for an
algorithm that uses sophisticated partitioning strategies to achieve near opti-
mal balancing between processors is the distributed version of the fp-growth
algorithm [27].

However, most papers either assume distributed data initially, e.g. [26], or
they distribute the given dataset arbitrarily among the nodes as in [23]. We are
convinced that a sophisticated algorithm for partitioning a dataset in such a way
that facilitates the distributed frequent itemset mining can help improve memory
requirements and run-time benefits induced by the distributed processing even
more.

4.3 Classification Criteria

Frequent itemset mining algorithms can be categorized according to different
criteria. The most important ones are briefly described in the following para-
graphs.

Architecture The existing distributed frequent itemset mining algorithms as-
sume different architectures. A cluster of shared-nothing machines is a simple
and cost-efficient solution, since standard computers can be used and the system
is therefore easily extendable. Most algorithms (a counterexample is DDM) for
shared-nothing environments were shown to not scale well [24] and suffer from
the fact that they have to scan the database as many times as the number of
items in the largest frequent itemset.

Another common system is a shared-memory architecture, where each proces-
sor has equal access to the system’s memory. Data mining algorithms assuming
this architecture are easy to implement, but suffer from limited scalability due
to the finite bandwidth of the shared memory. In addition, these systems are not
as easily extendable as a shared-nothing architecture.

Some algorithms also use an agent-based approach, usually assuming a super-
visor agent. This special agent controls the whole mining process by supervising
all local agents.

Bottom-up vs. Top-down Mining The traditional frequent itemset mining
approach is level-based. In each round the global set of frequent k-itemsets and
local sets of candidates for frequent (k + 1)-itemsets are computed, where k is
starting from 1. A frequent k-itemset is an itemset with exactly k items. Thus,



round-based algorithms require as many iterations as the number of items in the
largest frequent itemset. Since frequency counts of the local frequent k-itemsets
have to be exchanged after each round, this method requires synchronization of
all nodes and a relatively high number of messages. This method is a bottom-up
approach since in each level larger frequent itemsets are computed based on the
result of the previous round.

The size of the set of candidates generated at each site is the most important
factor in the amount of necessary communication. One possibility to reduce the
number of candidates is that each site first individually generates the local set
of maximal frequent itemsets (frequent itemsets that are no subset of another
frequent itemset). From this, the set of global maximal frequent itemsets (MFI)
can be computed. Using this set, all frequent itemsets in the entire dataset can
be enumerated without generating infrequent candidates of frequent itemsets.
This is because of the downward closure property, which essentially says that
each subset of a frequent itemset is again a frequent itemset. Thus, if the set of
maximal frequent itemsets is known, then all frequent itemsets can be inferred
from this. Some algorithms deploy this top-down approach of first generating
the MFI set instead of a level-based approach. A top-down approach usually
requires less communication since the local models are exchanged only after the
local mining is finished, and not after every round.

Mining Static vs. Dynamic Datasets In the first years of frequent item-
set mining, one underlying assumption always was that the processed dataset
is static. Thus, if changes in a database should be reflected in the data mining
result, the frequent itemset mining was repeated for the whole database. With
the emerging of highly dynamic datasets and data streams, the need for incre-
mental algorithms grew. Incremental algorithms are capable of mining only the
delta-portion of the dataset and incorporating these result in the overall mining
result. Only a few incremental distributed frequent itemset mining algorithms
exist, but their number will surely grow as will the need for them due to settings
like sensor networks and network traffic monitors.

Complete vs. Heuristic Mining Traditionally, frequent itemset mining al-
gorithms aim at determining the complete set of frequent itemsets in the given
database. This approach is used by the majority of distributed frequent item-
set mining algorithms. However, some algorithms deploy sampling or other data
reduction mechanisms to decrease the computational workload. Usually an error-
bound is given to define the maximal possible error in the mining result.

Just like the approximate mining algorithms using the ε-bound in the cen-
tralized case, heuristic algorithms in the distributed case are used to process
rapidly changing dynamic datasets, where traditional approaches are too slow.

Load Balancing Since distributed frequent itemset mining algorithms partition
the data among the different nodes, they all inherently deploy a static initial load
balancing. However, almost all algorithms fail to do dynamic load balancing
during the data mining process. This may be due to the additional computation



and communication cost imposed by the process of discovering a load imbalance
and redistributing parts of the dataset. In general, we can assume that dynamic
load balancing is only useful in shared-memory architectures, since otherwise the
communication overhead induced by data movement exceeds the benefit of the
load balancing.

5 Past Work in Distributed Frequent Itemset Mining

In this summary of past work on distributed frequent itemset mining we con-
centrate on only a few algorithms that are either fundamental to this research
area or represent the current state of the art with respect to one or more of the
criteria mentioned in section 4.3. A discussion of more algorithms can be found
in the overview papers presented in section 5.1.

Frequent itemset mining is one of the two main steps necessary to discover
association rules in a set of transactions or a data stream. Thus, in many cases
the overall mining goal does not require the knowledge of the frequent itemsets
but the association rules determined from them. Therefore the following section
not only considers pure frequent itemset mining algorithm but also association
rule mining algorithms that use the notion of frequent itemsets to compute a
result.

5.1 Overview Papers

There exist several excellent survey and overview papers summarizing the work
that has been done in the area of distributed frequent itemset and association
rule mining. Since the research in this area is currently not very active, these
papers still present the current state of the art in frequent itemset and association
rule mining well.

A fairly old survey by Zaki [28] gives a good summary of existing association
rule mining algorithms. Zaki categorizes the algorithms according to different
criteria, gives examples of how they work and includes a big section about open
problems. Many of these open problems remain until today. The paper also
contains a good discussion of the different architectures used.

An overview paper is also written by Zaki [29]. In this paper, Zaki gives a very
thorough categorization of distributed data mining algorithms and provides lots
of examples of algorithms in each category. This paper provides a great overview
of the field and its content is in big parts still fitting the current state of the art.
Naturally, the content of this paper overlaps with [28], as many facts that apply
to data mining algorithms in general are also true for association rule mining
which is an important data mining task.

A more recent overview is given by Park et al. in 2002 [20]. Although they
consider data mining in general, many aspects in the paper apply to frequent
itemset mining. The paper details on data distribution and data pre-processing
and provides a good overview of issues in data mining systems. Specifically, the
impact of the underlying architecture on data mining is described thoroughly.



The section about distributed association rule mining gives a concise descrip-
tion of the basic concepts and techniques, but doesn’t mention many existing
algorithms in detail.

5.2 Distributed Apriori Algorithms

Count Distribution Many distributed frequent itemset mining algorithms use
an Apriori-based approach. The simplest one was published by Agrawal and
Shafer in 1996 [2] where they proposed a distributed version of the Apriori
algorithm. The algorithm is called Count Distribution and assumes a shared-
nothing architecture.

In this round based algorithm, each node first computes the candidates for
the frequent k-itemsets of its local data, starting with the frequent 1-itemsets, i.e.
items. Then all nodes communicate their candidates together with the frequency
values to all other nodes. From these information each node can now determine
individually which itemsets are frequent in the overall data. The nodes then start
the next round and compute all candidate (k + 1)-itemsets based on the set of
frequent k-itemsets they just obtained.

The communication cost of the Count Distribution algorithm depend on the
length of the largest frequent itemset but are kept small by the fact that only
candidates and their frequencies are sent.

Data Distribution In the same paper as Count Distribution, Agrawal and
Shafer also propose the Data Distribution algorithm [2] where all nodes compute
disjoint sets of candidates. But because of a big communication overhead this
algorithm performs much worse than Count Distribution.

FDM Cheung et al. also proposed a version of distributed Apriori in the same
year as Agrawal and Shafer did. In [5] they present the FDM algorithm (fast
distributed mining of association rules), which differs from Count Distribution in
the content of the messages sent between the nodes. This algorithm also assumes
a shared-nothing architecture.

DDM The Distributed Decision Miner (DDM) [22] was presented by Schus-
ter and Wolff in 2001. This algorithm belongs to the group of Apriori-based
algorithms assuming a shared-nothing architecture as well. Here, after local fre-
quency counts are computed on each node, the nodes perform a distributed de-
cision protocol in each round in order to determine the set of globally frequent
itemsets. In this protocol, a shared public and a private hypothesis is maintained
at each site. Nodes can choose to publish their local frequency counts of itemsets.
According to the protocol, if no node decides to publish its frequency count of a
certain itemset, then the global hypothesis regarding this itemset is correct, i.e.,
it is known to the public hypothesis if this itemset is globally frequent.

Because of this protocol, DDM is very communication-efficient. It is also more
scalable and adapts better to data skewness than other Apriori-based algorithms.



5.3 D-Sampling

In 2003, Schuster, Wolff, et al. proposed a distributed sampling algorithm called
D-Sampling [24]. This algorithm is a combination of a centralized sampling algo-
rithm and the DDM algorithm Schuster and Wolff presented in 2001. It assumes
a shared-nothing architecture. D-Sampling assumes a centralized dataset and
distributes it during runtime. Each node gets the ”responsibility” for a set of
items. The algorithm loads a sample of the dataset into memory. This sample
is then distributed according to the responsibility of the different nodes, frag-
menting the dataset vertically. A modified version of the DDM algorithm is then
run on the dataset on each node. After a set of possible frequent itemsets is
generated, the entire dataset is scanned once to obtain the frequency counts for
these candidate itemsets.

Since this algorithm is based on sampling, some frequent itemsets might
be missing in the result. In [24] the authors give a tight error bound for this
sampling error. D-Sampling is the first distributed frequent itemset mining al-
gorithm assuming a shared-nothing architecture that is not level-based and does
not require multiple database scans.

5.4 Distributed fp-growth

Zaiane et al. proposed a parallel algorithm that is based on fp-growth in 2001.
The algorithm is called MLFPT (Multiple Local Frequent Pattern Tree) [27]. It
assumes a shared-memory architecture. Just like the centralized fp-growth algo-
rithm, MLFPT does not generate candidates for frequent itemsets but instead
builds multiple frequent pattern trees (FP-trees) needing only two full scans of
the dataset. Each node is only recording frequent itemsets containing a certain
subset of all the items. Thus, each node is responsible for a different set of items.

Since the set of items each node is responsible for is defined after the fre-
quency counts of the 1-itemsets are obtained, the workload can be distributed
nearly optimal among the nodes. Unfortunately, this data distribution algorithm
is only efficient in a shared-memory architecture and is tailored to the FP-tree
data structure. Thus, it can not be used for load balancing in other algorithms.

5.5 ZigZag Algorithm

In recent years, research is concentrating on frequent itemset mining in dynamic
datasets. The traditional assumption was that the underlying database is static
and the data mining task is performed completely anew if changes in the database
should be reflected in the data mining results. Opposed to this, mining algorithms
on dynamic databases are incremental. They can be seen as algorithms mining
a data stream using the landmark window model. The only difference is that in
dynamic databases transactions can also be removed, whereas in data streams
only new transactions are added.

In [19], Otey et al. propose an algorithm named ZigZag. This algorithm
assumes a shared-nothing architecture and a setting where the data is initially
distributed on different sites (like network data for intrusion detection).



In the ZigZag algorithm, each site first generates the local set of maximal
frequent itemsets. Then the global set of maximal frequent itemsets (MFI) can be
computed. Using the set MFI, all frequent itemsets can be determined without
generating infrequent candidates. The frequency counts of the frequent itemsets
can then be computed with a single scan of each local dataset.

Clearly, this approach requires far less communication than the traditional
Apriori-based algorithms, since an exchange of the local models does not take
place after every round (after generating the k-itemsets, the (k + 1)-itemsets,
etc.), but only after the local sets of MFI have been computed.

Additionally, the ZigZag algorithm can be used to determine ”high-contrast
frequent itemsets” which indicate the skewness of the distributed database. Al-
though the authors do not consider to use this information for dynamic load
balancing purposes, the skewness measure can give interesting insight into the
properties of the different local datasets.

6 Open Problems and Discussion Thereof

6.1 Future Work in Distributed Clustering: Things That Could Be
Done Better

Fuzzy Objects We wish to represent clusters not only as circles as is generally
going to be the case with K-means and other representative choosing cluster
representations. The probability function is a great idea that was used, but I’d
be curious to explore the idea in a fuller setting. A similar consideration to be
made is something as was brought up in the Jim Bosch and Daniel Zinn paper
from ECS289f W06. If we can accurately model a cluster based on functions
we can perhaps construct a better, more accurate representation without giving
away any data points directly. This is not a directly easy idea. When dealing
with function approximations of a N-dimensional convex hull, it can become
complex. Finding such an approximation, with some adequate statistics could
be invaluable to distributed streaming clustering.

Derived Distribution Clustering is something of a unique aspect of data min-
ing in that if you know something about the questions you plan to ask you might
be able to reduce a significant amount of the work you plan to do. cosmology can
be an illuminating example. Imagine you have received several new data points
from a new telescope. You are not necessarily likely to ask what the stars that
appear close to it in the sky are like. You are more likely to ask which stars have
a similar attributes in a few important columns. This means that even though
you may have a spacial correlation you might not be the most likely to use it just
yet. therefore you might want to cluster the attributes by any subset of the ele-
ments. Because this number grows exponentially with the number of attributes
it quickly diminishes the return value of presorting. By use of Amidahl’s rule we
can decide that the majority of the work will be done in an environment such
that the data is distributed arbitrarily from clustering query.



If you are working on a bottom up approach, you distribute the data yourself.
You may still want to consider what the attributes you are likely to cluster
over are. If you tend to cluster over a very specific three attributes, then it
would certainly be worth your while to distribute the data into subspaces of
that field. However given the number (2n) of possible subsets one can cluster by,
it is somewhat unlikely that we will be able to help too much with the overall
clustering.

There is a good possibility of future work to be considered. I plan to grab a
couple of datasets from the University of California Irvine repository and run a
statistical analysis on them. I’d like to see if there is any reason to distribute the
data in a particular pattern as it would be mostly likely to lead to a subspace
division for several subsets of the attributes. I hope it should be an interesting,
somewhat quick, experiment.

6.2 Open Problems in Distributed Frequent Itemset Mining

Data Distribution Only very few algorithms deploy a sophisticated data par-
titioning strategy for distributing the given dataset. Thus, we see a need for
approaches for distributing data specifically for the task of frequent itemset
mining. Due to the nature of this data mining task, we believe that distributing
the data in a way that suits the deployed mining algorithm will facilitate an im-
provement in run-time and memory requirements of the overall algorithm. Since
most algorithms use a round-robin distribution or an arbitrary partitioning of
the entire database, there is much room for future research on specialized data
distribution algorithms.

Dynamic Load Balancing Most algorithms assume a homogenous and ded-
icated environment. But since this assumption might not be valid in many sys-
tems, dynamic load balancing techniques should be deployed to distribute the
workload equally among the nodes. As we mentioned before, dynamic load bal-
ancing is mainly an option for shared-memory architectures.

Data Stream Processing In the case of centralized frequent itemset mining
there exists a plethora of algorithms specifically tailored for processing data
streams. In the distributed case this development has only started as there are
only a few incremental algorithms that process dynamic datasets.

Distributed frequent itemset mining algorithms on data streams are certainly
a worthwhile area of research since settings like network traffic monitors for
distributed intrusion detection provide a concrete and prominent application.
We believe that especially equivalents of centralized sliding window and damped
window (where transactions decay over time) approaches are needed for the
use in distributed environments. Naturally, when processing data streams in a
distributed setting, the notion of approximate mining results using the ε error
threshold must also find its translation from the centralized algorithms.

Since data stream processing may be infinite, we propose that in distributed
frequent itemset mining algorithms on data streams each node holds a part of a



global data structure, just like in the case of the MLFPT algorithm. The global
data structure is never computed due to the communication overhead imposed
by the rapidly changing local models. Instead, query algorithms are developed
that query selected local models in order to determine the requested mining
result.

When considering a single high speed data stream, the issue of data distri-
bution becomes even more important than in the case of mining a finite dataset.
This is because transactions are constantly arriving and have to be distributed
among the available nodes in a certain way in order to achieve nearly equal
resource requirements on all different sites. In this scenario, dynamic load bal-
ancing is an important topic even in shared-nothing architectures.

7 Conclusion

We have shown several algorithms for mining and analyzing distributed data.
By giving an overview of these methodologies we can see the current state of the
art in distributed data mining.

Distributed Clustering As we can see there are a number of algorithms al-
ready available that offer you some choices in clustering distributed data. De-
pending on what criteria you choose to live by, which subset of the rules you
decide to prioritize. If data privacy is of the utmost importance then a algo-
rithm with strong cluster abstraction should be used, such as Kriegal’s method.
If speed is of the utmost importance, it may be worth ones while to use a rela-
tively simple update of the K-means algorithm. Similar to most everything else
in computer science (everywhere perhaps) there are several ways to compute dis-
tributed clusters. The methods I have outlined above should give an idea of what
some of the primary choices are in the current state of distributed clustering.

In general, I think that density grid based operations are the best. They
show the ability to keep the data private while leaving the door open for using
a functional abstraction to represent clusters. This methodology can still use
some work to make sure that completeness is being generated by the clusters
but they seem to be acclimating quickly and are resilient from either a top down
or bottom up approach.

Distributed Frequent Itemset Mining Distributed frequent itemset mining
is currently not very actively researched. Thus, despite their years of publication,
the presented overview papers, like [28, 29], give an up-to-date view on the ex-
isting algorithms. Recent papers are focusing on minimizing the communication
cost of the prior algorithms and are taking dynamic datasets into account.

Important open problems in the area of distributed frequent itemset mining
are twofold. First, in a setting where the dataset is initially in one big database,
the crucial question of how to distribute the data to best facilitate the specific
data mining task of frequent itemset mining is not solved. Second, equivalents
to most centralized frequent itemset mining approaches on data streams are not



existing. Especially sliding window approaches and approximate mining algo-
rithms using the common ε error threshold from the centralized case could be
useful contributions.
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