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ABSTRACT
A new and robust multi-resolution approach of localizing and seg-
menting text in videos is proposed. The approach has been tested
extensively on a large variety of video frame sizes such 352x240 up
to 1920x1280 and a large representative set of video sequences
such as home videos, newscasts, title sequences and commercials.
95% of the text bounding boxes in videos were localized correctly.
80% of all characters were segmented correctly, while 7.8% charac-
ters were damaged. 90% of the correctly segmented characters were
recognized correctly by a standard OCR software.

1. INTRODUCTION
The localization, segmentation and recognition of text in videos
enables many useful applications. For instance, recognized text can
be used to search for specific video sequences such as jumping to
news stories about a specific topic, since captions in newscasts
often provide a condensation of the underlying news story. Or it can
be used to identify commercials based on product names. It may
also be used to enable future object-based video encoding of stan-
dard video if the text segmentation step is able to determine all text
pixels of a text line over time such as our approach can do.

RELATEDWORK. For an exhausting treatment of related work see
www.lienhart.de/VCAHome/Research_Topics/research_topics.html

CONTRIBUTIONS. The main contributions of this paper are:

• A truly multi-resolution approach, working from MPEG-1 up to
HDTV MPEG-2 video sequences (1980x1280) without any
parameter adjustment. Character sizes can vary between 8 pixels
and half the frame height. Only [5] and [9] address the problem
of multi-resolution. However, they are still limited to some char-
acter size limits which is not true for our approach.

• Unlike all existing work, our approach is capable of estimating
the text color reliably by using vector quantization. [7] just
assumes that over time text is brighter than anything else.

• A new scheme to perfectly register moving text lines over time.
This allows use of the temporal segmentation scheme first pro-
posed by [7]. All other previous work reporting text tracking
such as [3,4,5] do it more on a qualitative basis in order to iden-
tify false alarms. Text is not tracked with pixel accuracy.

• Unlike all existing work, detected text lines are scaled to an
aspect-ratio preserving fixed height of 100 pixels during text seg-
mentation. This scaling improves the segmentation of smaller
font sizes and reduces complexity of larger ones.

2. TEXT LOCALIZATION
The text localization step is supposed to find the locations of text in
individual video frames or images and mark them by tight text
bounding boxes. These bounding boxes should only consist of one
text line of a text column (see Figure 1 for an overview).

2.1 Image Feature
Artificial text occurrences have been commonly characterized
the research community as regions of high contrast and high f
quency [4,7]. There are many different ways to amplify this featur
We chose to use the directional as well as the overall edge stren
images as our feature images for text localization [2]:

, and .

and denote the directional derivation of image band b.

2.2 Fixed Scale Text Detector
The fixed scale text detector is supposed to classify each pixe
the overall edge strength imageE based on its local neighborhood
whether it is part of a text region with character heights of 8 to 1
pixels. There are many different techniques for developing a clas
fier, however, we decided to use a neural feed-forward netwo
(NN) due to its proven good generalization capability.

The input layer consists of 20x10 neurons fed by the image reg
centered around the pixel under consideration. It is connected to
neurons in one hidden layer. The hidden layer is aggregated i
one output neuron. The network was trained with the back propa
tion algorithm, using a ‘bootstrap’ method [8]. This method star
with a set of random patterns to initialize the non-text pattern s
Then the NN is trained and evaluated. Some of the falsely classif
non-text patterns of the validation set are added to the training
and a new NN is trained and evaluated. This cycle of training, ev
uation and adding new non-text patterns is repeated until the nu
ber of falsely classified patterns in the validation set does n
decrease anymore. Our network needed seven training cycles.
final training set consisted of 374 text and 4601 non-text samples

The trained NN is used to classify an input feature imageE. A
20x10 pixel window slides overE from left to right and top to bot-
tom, evaluating the network at each position and collecting th
response of the NN in a so-called response image. If the outpu
the NN exceeds , a box of 20x10 filled by the NN’s out
put value is added to the associated position in the response im
Since a step size of one is computationally prohibitive for larg
images or frames, we used a step factor of 3/2 inx/y direction.
Experiments have shown, that this subsampling causes no decr
in accuracy but reduces computational complexity by 83%.

2.3 Scale Integration
The raw fixed-scale text detection results at all scales must be in
grated into one saliency map of text in order to construct initial te
bounding boxes. As you can observe from Figure 1 column 4, te
locations identify themselves as correct hits at multiple scale
while false alarms appear less consistently over multiple scal
Similar experience have been observed by Rowley et. al for th
NN-based face detector [6]. Therefore, a salience map is created
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projection the confidence of being text (here: the NN output) back
to the original scale of the image. Hereto, the salience map is ini-
tialized by zero. For each detected bounding box at each scale its
confidence value of being text is added to the saliency map over
the size of the bounding box at the original image scale. Figure 1
column 5 gives an example.

2.4 Extraction of Text Bounding Boxes
INITIAL TEXT BOUNDING BOXES. The algorithm starts with
searching for the next not yet processed pixel in the saliency map
with a value larger then . The choice of the threshold’s
value is determined by the goal to avoid the creation of text boxes
for non-text regions. Non-text regions should be less salient. Once
such a pixel is found, it is taken as a seed for a new text box of
height and width 1. This new text box is then expanded iteratively.

The average intensity of the pixels of the adjacent row above the
total width of the box in the overall edge strength image is taken
as the criterion for growing in that direction. If the average inten-
sity is larger than , the row is added to the box. Next,
the same criterion is used to expand the box to the left, bottom,
and right. This iterative box expansion repeats as long as the
bounding box keeps growing.

REVISEDTEXT BOUNDING BOXES. The initial bounding boxes
often do not optimally frame the text in the image: Some boxes
contain no text; others span more than one line and/or column of
text, and in many the background make up a large portion of the
pixels. Fortunately, these shortcomings can be overcome by an
iterative post-processing procedure utilizing the information con-
tained in so-called projection profiles [7].

A horizontal/vertical projection profile of an image region is
defined as the vector of the sums of the pixel intensities over each
column/row. Upper/lower boundaries of text lines can be identi-
fied by steep rises/falls in the vertical projection profile. Similarly,
the right and left boundaries of text objects are indicated by steep
rises and falls in the horizontal projection profile. These steep
rises and falls are identified as locations where the profile graph
crossesthtext=.82*minprofile+.18*maxprofile, where /

are the maximum/minimum values in the profile. The
factor of 0.18 was chosen experimentally. Every line with a verti-
cal profile value exceedingthtext is classified as containing text.

Similarly, a horizontal segmentation algorithm is applied to ensure
that text in one line which does not belong together is separated.
However, there are two minor but important differences:

1. A factor of 0.25 instead of 0.18 is used. Experimentally this
value has proven to be better for the horizontal segmentation.

2. Individual words in the same column should not be split up due
to small gaps between them. Therefore, if a gap between two
contiguous pairs of down-up and up-down transitions is smaller
thanthgap, the two transitions in the middle are ignored.

Many times one pass of vertical and horizontal segmentation can-
not resolve complex layouts. Thus, a few cycles of vertical and
horizontal segmentations are applied to each text box.

Next, boxes with or are
regarded as non-text regions and thus discarded. Boxes with

are also discarded, since horizontal segmentation

assures that each text box contains word(s) of only one text li
Finally, text boxes with the same upper and lower boundaries
which touch or overlap each other are joined into one text box.

TEXT ANDBACKGROUNDCOLOR. Estimates of the text and
background color for each text box are needed later to determ
whether a text bounding box contains normal (i.e., dark text
bright background) or inverse text (i.e., bright text on dark bac
ground). Given that images are colorful and that even a visua
single-colored region like a character in a video frame consists
pixels of many different but similar colors, the complexity of th
color distribution in each text bounding box is reduced by quant
ing the colors to the four most dominating colors using the fa
vector quantizer proposed by Wu [10]. Next, two color histogram
are calculated: One describing the four center rows of the text b
and another one describing two rows directly above and und
neath the text box (four rows together). The latter histogra
describes an image region that contains no or only little text wh
the first histogram should be dominated by the text color. Takin
the difference between the first and second histogram, the ma
mum of the difference histogram is very likely to correspond
the text color and the minimum to the dominating backgroun
color. This methodology has proved experimentally to be ve
reliable for homogeneously colored text. It may fail for multi-col
ored text which, however, is rare. We assume normal text, if t
grayscale value of the text color is lower than the one of the do
inant background color, otherwise inverse text.

3. INFORMATION REDUNDANCY
Video distinguishes itself from images by temporal redundanc
Each text line appears over several contiguous frames. This te
poral redundancy can be exploited to

• increase the chance of localizing text since the same text m
appear under varying conditions from frame to frame,

• remove false text alarms in individual frames since they a
usually not stable throughout time,

• interpolate the locations of ‘accidentally’ missed text lines i
individual frames, and

• enhance text segmentation by bitmap integration over time.
Complete text objects, which describe text lines over time by th
text bitmaps, sizes and positions in the various frames as well
their temporal range of occurrence, are extracted in a two-sta
process in order to reduce computational complexity.

3.1 Stage 1: Video Monitoring For Text Occurrences
Video is monitored for text occurrences at a coarse temporal re
lution. For this purpose, the image-based text localizer is on
applied to an evenly spaced frame subset of the video. The ma
mum possible step size is given by the minimum assumed tem
ral duration of text lines occurrences, which we assume to be o
second. Thus, it seems reasonable to assume that text sh
appear clearly for at least 2/3 of a second in order to be eas
readable.

If the image-based text localizer does not find any text line
, the monitor process continues with . If, how

ever, at least one text line is found, the image-based text locali
will be applied to and . Next, for each text line

thcore 5.0=

thregion 4.5=

maxprofile
minprofile

height 8pixels< height imageheight2⁄>

height width>

framet framet 20+

framet 1– framet 1+
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in the algorithm searches for a corresponding text line in
and . Correspondence between to text lines is

defined as an area overlap of at least 80% of their respective
bounding boxes at their frame locations. If corresponding boxes in

and are found for a text box in , a new
text object comprising these text boxes is created and marked for
tracking in time.

3.2 Stage 2: Fast and Precise Text Tracking
Each text object must now be extended to all frames containing
the respective text line based on the information contained in the
text objects created in the video monitoring stage. Obviously, text
tracking must be performed backwards and forwards in time.
However, we restrict our description to forward tracking only
since backward tracking does not differ from forward tracking
except in the direction you go through the video.

The basic idea behind our fast text tracker is to take the text line in
the current video frame, calculate a characteristic signature which
allows us to distinguish this text line from text lines with other
contents and search for the image region of same dimension in the
next video frame which best matches the reference signature.

The vertical and horizontal projection profile serve as a compact
and characteristic reference signature, and the center of a signa-
ture is defined as the center of the associated text bounding box.
Similarity between two signatures is measured by signature inter-
section, i.e., by the sum of the minimum between respective ele-
ments in the signatures. To find the precise position of a text line
in the next frame, all signatures whose centers fall into a search
window around the center of the reference signature, are calcu-
lated and compared to the reference signature. If the best match
exceeds a minimum required similarity, the text line is declared to
be found and added to the text object. If the best match does not
exceed a minimum required similarity, a signature-based drop-out
is declared. The size of the search radius depends on the maxi-
mum assumed velocity of text. In our experiments we assumed
that text needs at least 2 seconds to move from left to right in the
video.

The signature-based text line search can track zooming text only
over a very short period of time. To overcome these limitations,
the signature-based search is replaced every 5-th frame by the
image-based text localizer in order to re-calibrate locations and
sizes of the text lines. Newly detected text boxes, however, are not
considered here.

Due to imperfection in the video signal continuous recognition of
text objects in every frame is often not possible. Therefore two
thresholds and are
defined. Whenever a text object cannot be extended to the next
frame, the respective counter is incremented by one. The respec-
tive counter is reset to zero whenever its related search method
succeeds. The tracking process is aborted, as soon as one of both
counters exceeds its respective threshold.

3.3 Postprocessing
To prepare a text object for text segmentation, it should be
trimmed down to the part which has been detected with high con-
fidence. Therefore, each text object is temporally trimmed down
to the first and last frame in which the image-based text localizer

detected the text line. Next, all text objects are discarded wh
occur less than a second or show a drop-out rate of more th
25%. A few global features are determined for each text object:

1. Text color: The text color of a text object is determined as th
median of all determined text colors per frame.

2. Text size: If the size of the text bounding box is fixed, we dete
mine its width and height by means of the median over the s
of widths and heights.

3. Text position: A text line is regarded as static in the x and/or
direction if the average movement per frame is less than 0.
pixels. If the text line is static, we replace all text boundin
boxes by the median text bounding box. The median te
bounding box is the box which left/right/top/bottom border i
the median over all left/right/top/bottom borders. If the positio
is only fixed in one direction, the left and right or the top an
bottom are replaced by the median value, respectively.

4. TEXT SEGMENTATION

4.1 Resolution Adjustment
All subsequent text segmentation steps are performed on text
bitmaps rescaled by cubic interpolation to a fixed height of 10
pixels, while preserving the aspect ratio for two reasons:

1. Resolution enhancements of small font sizes for better segm
tation results since it a) enables sub-pixel precise text alignm
for small text occurrences and b) the usage of standard O
software for recognition.

2. Computational savings for large font sizes (e.g. for HDT
video sequences at 1920x1280). A text height larger than 1
pixels does not improve segmentation nor OCR performance

4.2 Removing Complex Backgrounds
The temporal redundancy is exploited to remove complex bac
grounds surrounding the actual characters. The method app
here was first proposed by [7] for static text. In our work, it is als
applied to moving text since we solved the problem of sub-pix
accurate text alignment. The basic idea works as follows: A te
object’s bitmaps are piled up such that the characters are alig
perfectly with each other. Looking though a specific pixel in time
you may notice that pixels belonging to text vary only slightly
while background pixels often change vastly through time. Sin
the text’s location is static due to its alignment its pixels are n
supposed to change. Background pixels are likely to change
to motion in the background or motion of the text line.

Given the pile of perfectly aligned bitmaps, the maximum/min
mum operator is applied through time on the grayscale images
normal/inverse text [7]. The only serious problem we have
solve is the perfect alignment of the text bitmaps: All boundin
text boxes of a text object are extended horizontally by 20% a
vertically by 40%. Next, all bitmaps are converted to graysca
since grayscale is not vulnerable to color compression artifac
Let , ..., denote theT+1 bitmaps under consider-
ation and the representative bitmap which is to be deriv
and initialized to . Then, for each bitmap ,

, we search for the best displacement (dx,dy) which
minimizes the difference between and with

framet
framet 1– framet 1+

framet 1– framet 1+ framet
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Figure 1. Overview over the text localization step
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respect to the text color, i.e.,

This kind of block matching search works because only pixels
with text color are taken into account. A pixel is defined to have
text color if it does not differ more than a certain amount from the
text color determined for the text object. The color distance is cal-
culated based on the RGB values.At each iteration is
updated to for nor-
mal text. For inverse textmax is replaced bymin. If a text object
has been identified to be static in Section 2.4, we do not have to
search for the perfect translations. Instead, the translations
between the various bitmaps are all set to zero.

Next, each pixel on the boundary of a text bounding box is taken
as a seed to fill all pixels with the background color (black for
inverse text and white for normal text) which do not differ more
than from the seed color. The seed fill algorithm uses a 4-
neighborhood [1]. Since the pixels on the boundary do not belong
to the text and the text contrasts with its background, the seed-fill
algorithm will never remove any character pixel. We call this
newly constructed bitmap again.

This procedure might not delete all background pixels, Therefore,
each non-background pixel is taken as a seed pixel for a 8-neigh-
borhood seed-fill. The algorithm is only applied hypothetically to

in order to determine the dimension of the region that
could be filled. All hypothetical regions with a height less than

pixels and a width less than or larger than
pixels are set to the background color.

4.3 Binarization
The text bitmap is now prepared for recognition by stan-
dard OCR software. Hereto, the grayscale text bitmaps must be
converted to black on white background. From Section 2.4 we
know the text color and whether we have to deal with normal or
inverse text. A good binarization threshold is the average between
the intensity of the text and the background color. Each pixel in
the text bitmap which is higher than the binarization threshold is
set to white for normal text and black for inverse text. Each pixel
in the text bitmap which is lower or equal than the binarization
threshold is set to black for nor-
mal text and white for inverse
text. Finally, it is recommended
to clean-up the binary bitmap
by discarding small regions.

5. RESULTS
The algorithms have been
tested extensively on a large
variety of video sizes (from
352x240 up to 1920x1280) and
a large representative and diffi-
cult set of video sequences such
as home videos, newscasts, title
sequences and commercials (10
minutes together). The text
detection system missed

approximately 38 of all text boxes containing 15% of all tex
pixel. The localization performance could be boosted up to 94.7
by exploiting the temporal redundancy in video sequences. 80
of all characters were segmented correctly and 7.8% charac
were damaged. 90% of the correctly segmented characters w
recognized correctly by a standard OCR software. These perf
mance numbers are above the ones reported for existing syste
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