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Abstract. We describe a matching algorithm for terms built over flexi-
ble arity function symbols and context, function, sequence, and individ-
ual variables. Context and sequence variables allow matching to move in
term trees to arbitrary depth and breadth, respectively. The values of
variables can be constrained by regular expressions which are not neces-
sarily linear. We prove soundness, termination, and completeness of the
algorithm, describe heuristics for optimization, and discuss applications.

1 Introduction

We describe an algorithm to solve matching problems for terms built over flexible
arity function symbols and context, function, sequence, and individual variables.
Context and sequence variables can be constrained by regular expressions. These
four kinds of variables, together with regular constraints, make the term tree
traversal and subterm extraction process very flexible: The algorithm can explore
terms in a uniform way in vertical (via function and context variables) and in
horizontal (via individual and sequence variables) directions.

Context variables may be instantiated with a context—a term with a hole,
while function variables match a single function symbol. Hence, context vari-
ables support “vertical movement” in the tree in arbitrary depth, and function
variables do the same in one depth level only. Sequence and individual variables
can be seen as the “horizontal counterparts” for context and function variables:
Sequence variables match arbitrarily long sequences of terms, and individual
variables match only a single term.

Sequence variables can be constrained by regular expressions over terms. The
values of constrained variables are required to be elements of the corresponding
regular word language. Context variables are constrained by regular expressions
over contexts. The values of constrained context variables should be elements of
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the corresponding regular tree language. (It extends the result from [29] where
context variables have been restricted by regular expressions over function sym-
bols.) We do not allow recursion in regular constraints.

Extending matching equations with regular constraints we obtain regular
context sequence matching problems. Regular expressions are not restricted to be
linear. Moreover, they may contain arbitrary variables (no matter whether these
variables occur in the matching equations or not). We construct an algorithm to
solve such problems and prove that it is sound, terminating, and complete. We
also show how to optimize the algorithm by early failure detection and branching
reduction heuristics, and discuss possible applications.

The paper is organized as follows: Preliminary notions are introduced in
Section 2. In Section 3 we describe the Csm algorithm and its optimizations. Csm
with regular expressions is addressed in Section 4. Applications are discussed in
Section 5. Related work is reviewed in Section 6. Section 7 concludes.

2 Preliminaries

We assume the following mutually disjoint sets of symbols fixed: individual
variables VInd, sequence variables VSeq, function variables VFun, context vari-
ables VCon, and function symbols F . The sets VInd, VSeq, VFun, and VCon are
countable. The set F is finite or countably infinite. All the symbols in F except
a distinguished constant ◦ (called a hole) have flexible arity. We will use x, y, z
for individual variables, x, y, z for sequence variables, F,G,H for function vari-
ables, C,D,E for context variables, and a, b, c, f, g, h for function symbols. We
may use these meta-variables with indices as well.

Terms are constructed using the following grammar:

t ::= x | x | ◦ | f(t1, . . . , tn) | F (t1, . . . , tn) | C(t).

In C(t) the term t is not a sequence variable. We will write a for the term a()
where a ∈ F . The meta-variables s, t, r, maybe with indices, will be used for
terms. The head of a nonvariable term t is defined as follows: head(◦) = ◦,
head(f(t1, . . . , fn)) = f , head(F (t1, . . . , fn)) = F , and head(C(t)) = C. A gro-

und term is a term without variables. A context is a term with a single occurrence
of the hole constant ◦. To emphasize that a term t is a context we willwrite t[◦].
A context t[◦] may be applied to a term s that is not a sequence variable,
written t[s], and the result is the term consisting of t with ◦ replaced by s. We
will use C and D, with or without indices, for contexts.

A substitution is a mapping from individual variables to those terms which are
not sequence variables and contain no holes, from sequence variables to finite,
possibly empty sequences of terms without holes, from function variables to
function variables and symbols, and from context variables to contexts, such that
all but finitely many individual and function variables are mapped to themselves,
all but finitely many sequence variables are mapped to themselves considered as
singleton sequences, and all but finitely many context variables are mapped to
themselves applied to the hole. For example, the mapping {x 7→ f(a, y), x 7→



pq, y 7→ pa,C(f(b)), xq, F 7→ g, C 7→ g(◦)} is a substitution.3 We will use lower
case Greek letters σ, ϑ, ϕ, and ε for substitutions, where ε denotes the empty
substitution. As usual, indices may be used with the meta-variables.

Substitutions are extended to terms: vσ = σ(v) for v ∈ VInd ∪ VSeq, C(t)σ =
σ(C)[tσ], F (t1, . . . , tn)σ = σ(F )(t1σ, . . . , tnσ), f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ).

The domain of a substitution σ is the set of variables:

dom(σ) = {v |v ∈ VInd ∪ VSeq ∪ VFun and vσ 6= v or

v ∈ VCon and vσ 6= v(◦)}

A substitution σ is more general than ϑ, denoted σ ≤· ϑ, if there exists a ϕ
such that σϕ = ϑ. The restriction of a substitution σ on a set of variables V,
denoted σ|V , is a substitution ϑ such that dom(ϑ) = V ∩ dom(σ) and vσ = vϑ
for all v ∈ dom(ϑ). Restrictions extend to sets: If S is a set of substitutions
and V is a set of variables then S|V = {σ|V | σ ∈ S}. A substitution σ is more

general than ϑ on a set of variables V, denoted σ ≤·V ϑ, if there exists a ϕ
such that σϕ|V = ϑ|V .A Csm problem is a finite multiset of term pairs (Csm
equations), written {s1 ≪ t1, . . . , sn ≪ tn}, where the s’s and the t’s contain no
holes, the s’s are not sequence variables, and the t’s are ground. We will also
call the s’s the query and the t’s the data. Substitutions are extended to Csm
equations and problems in the usual way. A substitution σ is called a matcher

of the Csm problem {s1 ≪ t1, . . . , sn ≪ tn} if siσ = ti for all 1 ≤ i ≤ n. We
will use Γ and ∆ to denote Csm problems. A complete set of matchers of a
Csm problem Γ is a set of substitutions S such that (i) each element of S is a
matcher of Γ , and (ii) for each matcher ϑ of Γ there exist a substitution σ ∈ S
such that σ ≤· ϑ. The set S is a minimal complete set of matchers of Γ if it is a
complete set and two distinct elements of S are incomparable with respect to ≤·.

Example 1. The minimal complete set of matchers for the context sequence
matching problem {C(f(x)) ≪ g(f(a, b), h(f(a), f))} consists of three elements:
{C 7→ g(◦, h(f(a), f)), x 7→ pa, bq}, {C 7→ g(f(a, b), h(◦, f)), x 7→ a}, and
{C 7→ g(f(a, b), h(f(a), ◦)), x 7→ pq}.

3 Matching Algorithm

We now present inference rules for deriving solutions for Csm problems. A system

is either the symbol ⊥ (failure) or a pair Γ ;σ, where Γ is a Csm problem and σ
is a substitution. The inference system I consists of the transformation rules
listed below. The indices n and m are non-negative unless otherwise stated.

T: Trivial

{t ≪ t} ∪ Γ ; σ =⇒ Γ ; σ.

IVE: Individual Variable Elimination

{x ≪ t} ∪ Γ ; σ =⇒ Γϑ; σϑ, where ϑ = {x 7→ t}.

3 To improve readability we write sequences between the symbols p and q.



FVE: Function Variable Elimination

{F (s1, . . . , sn) ≪ f(t1, . . . , tm)} ∪ Γ ; σ
=⇒ {f(s1ϑ, . . . , snϑ) ≪ f(t1, . . . , tm)} ∪ Γϑ; σϑ, where ϑ = {F 7→ f}.

PD: Partial Decomposition

{f(s1, . . . , sn) ≪ f(t1, . . . , tm)} ∪ Γ ; σ
=⇒ {s1 ≪ t1, . . . , sk−1 ≪ tk−1, f(sk, . . . , sn) ≪ f(tk, . . . , tm)} ∪ Γ ; σ,

if f(s1, . . . , sn) 6= f(t1, . . . , tm), sk ∈ VSeq for some 1 < k ≤ min(n, m)+1, and si /∈ VSeq

for all 1 ≤ i < k.

TD: Total Decomposition

{f(s1, . . . , sn) ≪ f(t1, . . . , tn)} ∪ Γ ; σ =⇒ {s1 ≪ t1, . . . , sn ≪ tn} ∪ Γ ; σ,

if f(s1, . . . , sn) 6= f(t1, . . . , tn) and si /∈ VSeq for all 1 ≤ i ≤ n.

SVD: Sequence Variable Deletion

{f(x, s1, . . . , sn) ≪ t} ∪ Γ ; σ =⇒ {f(s1ϑ, . . . , snϑ) ≪ t} ∪ Γϑ; σϑ,

where ϑ = {x 7→ pq}.

W: Widening

{f(x, s1, . . . , sn) ≪ f(t, t1, . . . , tm)} ∪ Γ ; σ
=⇒ {f(x, s1ϑ, . . . , snϑ) ≪ f(t1, . . . , tm)} ∪ Γϑ; σϑ, where ϑ = {x 7→ pt, xq}.

CVD: Context Variable Deletion

{C(s) ≪ t} ∪ Γ ; σ =⇒ {sϑ ≪ t} ∪ Γϑ; σϑ, where ϑ = {C 7→ ◦}.

D: Deepening

{C(s) ≪ f(t1, . . . , tm)} ∪ Γ ; σ =⇒ {C(sϑ) ≪ tj} ∪ Γϑ; σϑ,

where ϑ = {C 7→ f(t1, . . . , tj−1, C(◦), tj+1, . . . , tm)} for some 1 ≤ j ≤ m, and m > 0.

SC: Symbol Clash

{f(s1, . . . , sn) ≪ g(t1, . . . , tm)} ∪ Γ ; σ =⇒ ⊥, if f /∈ VCon ∪ VFun and f 6= g.

AD: Arity Disagreement

{f(s1, . . . , sn) ≪ f(t1, . . . , tm)} ∪ Γ ; σ =⇒ ⊥,

if m 6= n and si /∈ VSeq for all 1 ≤ i ≤ n, or m = 0 and si /∈ VSeq for some 1 < i ≤ n.

SVD, W, CVD, and D are non-deterministic rules. A derivation (in I) is a se-
quence Γ1;σ1 =⇒ Γ2;σ2 =⇒ · · · of system transformations (by rules in I).

Definition 1. A Csm algorithm M is any program that takes a system Γ ; ε as

input and uses the rules in I to generate a complete tree of derivations, called

the matching tree for Γ , in the following way:

1. The root of the tree is labeled with Γ ; ε.
2. Each branch of the tree is a derivation. The nodes in the tree are systems.



3. If several transformation rules, or different instances of the same transfor-

mation rule are applicable to a node in the tree, they are applied concurrently.

No rules are applicable to the leaves.

The algorithm M was first introduced in [29]. The leaves of a matching tree
are labeled either with the systems of the form ∅;σ or with ⊥. The branches
that end with ∅;σ are successful branches, and those that end with ⊥ are failed

branches. We denote by vars(Γ ) the variable set of Γ and by SolM(Γ ) the
solution set of Γ generated by M, i.e., the set of all σ’s such that ∅;σ is a leaf
of the matching tree for Γ . Obviously, dom(σ) = vars(Γ ) and vσ contains no
variables for each σ ∈ SolM(Γ ) and v ∈ dom(σ).

We call the substitutions computed at transformation steps (the ϑ’s in the
rules above) the local substitutions. We may write Γ1;σ1 =⇒e,R,ϑ Γ2;σ2 to
indicate that the system Γ1;σ1 was transformed into Γ2;σ2 by applying the
rule R ∈ I on the matching equation e ∈ Γ1 with the local substitution ϑ. Some
of the subscripts will be omitted if they are not relevant. We will sometimes use
the abbreviation Γ1;σ1 =⇒+

ϑ Γn;σn for the derivation Γ1;σ1 =⇒ϑ1
Γ2;σ2 =⇒ϑ2

· · · =⇒ϑn−1
Γn;σn, where ϑ = ϑ1 · · ·ϑn−1.

Lemma 1. If Γ1;σ1 =⇒ϑ Γ2;σ2 by a rule in I and ϕ is a matcher for Γ2

then ϑϕ is a matcher for Γ1.

Proof. By case distinction on the possible rule applications. Here we prove for W

and D only. For the other rules it is trivial.
W: We have

Γ1 ={f(x, s1, . . . , sn) ≪ f(t, t1, . . . , tm)} ∪∆,

ϑ ={x 7→ pt, xq},

Γ1ϑ ={f(t, x, s1ϑ, . . . , snϑ) ≪ f(t, t1, . . . , tm)} ∪∆ϑ,

Γ2 ={f(x, s1ϑ, . . . , snϑ) ≪ f(t1, . . . , tm)} ∪∆ϑ.

Obviously, Γ1ϑ and Γ2 have the same matchers, which implies that for any
matcher ϕ of Γ2 the substitution ϑϕ is a matcher of Γ1.

D: We have

Γ1 ={C(s) ≪ f(t1, . . . , tm)} ∪∆,

ϑ ={C 7→ f(t1, . . . , tj−1, C(◦), tj+1, . . . , tm)},

Γ1ϑ ={f(t1, . . . , tj−1, C(sϑ), tj+1, . . . , tm) ≪ f(t1, . . . , tm)} ∪∆ϑ,

Γ2 ={C(sϑ) ≪ tj} ∪∆ϑ.

Again, it is obvious that Γ1ϑ and Γ2 have the same matchers, which implies that
for any matcher ϕ of Γ2 the substitution ϑϕ is a matcher of Γ1. ⊓⊔

Corollary 1. If Γ1;σ1 =⇒+
ϑ Γ2;σ2 in I and ϕ is a matcher for Γ2, then ϑϕ is

a matcher for Γ1.

Proof. By induction on the length of the derivation. ⊓⊔



Theorem 1 (Soundness of M). Let Γ be a Csm problem. Then every substi-

tution σ ∈ SolM(Γ ) is a matcher of Γ .

Proof. For each σ ∈ SolM(Γ ) there exists a derivation Γ ; ε =⇒+
σ ∅;σ. Since ε is

a matcher of ∅, by Corollary 1, εσ = σ is a matcher of Γ . ⊓⊔

The size of a term t, size(t), is the number of symbols occurring in t. With each
Csm problem Γ we associate a complexity measure cm(Γ ) as a pair 〈n1, n2〉
where n1 is a multiset of positive integers and n2 is a nonnegative integer defined
as follows:

n1 = ⋒s≪t∈Γ {size(t)}. (⋒ denotes multiset union.)

n2 = the number of distinct variables in Γ.

For ⊥ we define cm(⊥) = 〈{0}〉. Lexicographic order > on complexity measures
is well-founded.

Theorem 2 (Termination of M). The algorithm M terminates on any input.

Proof. We prove that every rule R in I strictly decreases the complexity measure:
If Γ1;σ1 =⇒R Γ2;σ2 then cm(Γ1) > cm(Γ2), and cm(Γ ) > cm(⊥) for any Γ .
Indeed, FVE, SVD, and CVD do not change n1 and strictly decrease n2. All the
other rules strictly decrease n1. Hence, M terminates on any input. ⊓⊔

Theorem 3 (Completeness of M). Let Γ be a Csm problem and let ϑ be a

matcher of Γ . Then there exists a derivation Γ ; ε =⇒+ ∅;σ in I such that σ =
ϑ|V where V = vars(Γ ).

Proof. We use well-founded induction on complexity measures. Assume that for
any Csm problem Γ ′ if cm(Γ ) > cm(Γ ′) then for any matcher ϑ′ of Γ ′ there
exists a derivation Γ ′; ε =⇒+ ∅;σ′ such that σ′ = ϑ′|V′ where V ′ = vars(Γ ′). We
show how to build the desired derivation from Γ ; ε for a matcher ϑ of Γ .

We pick an arbitrary equation s≪ t from Γ and represent Γ as {s≪ t}∪∆.
Depending on the form of s≪ t, we have three cases:

Case 1. The terms s and t are the same. Then Γ ; ε =⇒T ∆; ε. Moreover, ϑ is
a matcher of ∆, vars(∆) = V, and cm(Γ ) > cm(∆). By the induction hypothesis
we obtain a derivation Γ ; ε =⇒T ∆; ε =⇒+ ∅;σ with σ = ϑ|V .

Case 2. The term s is an individual variable x. Then for ψ = {x 7→ t} we
have Γ ; ε =⇒IVE ∆ψ;ψ. Moreover, xϑ = t and there exists ϕ such that ψϕ = ϑ
and ϕ is a matcher of ∆ψ. Let V ′ = vars(∆ψ). Since cm(Γ ) > cm(∆ψ), by the
induction hypothesis there exists a derivation ∆ψ; ε =⇒+ ∅;σ′ with σ′ = ϕ|V′ .
Since t is ground, σ′ = ϕ|V′ implies ψσ′ = ψϕ|V′∪{x}. Therefore, the existence
of the derivation Γ ; ε =⇒IVE ∆ψ;ψ =⇒+ ∅;ψσ′ with ψσ′ = ψϕ|V′∪{x} = ϑ|V is
straightforward.

Case 3. The terms s and t are not the same and s is a compound term. The
only nontrivial cases are those when the first argument of s is a sequence variable,
or when the head of s is a context variable. If s = f(x, s1, . . . , sn) and t =
f(t1, . . . , tm) then xϑ must be pt1, . . . , tkq, where 0 ≤ k ≤ m and ti’s are ground



terms. Then we transform Γ ; ε with the step Γ ; ε =⇒R Ψ ;ψ, where ψ, Ψ and R are
defined as follows: If k = 0 then ψ = {x 7→ pq}, Ψ = {f(s1, . . . , sn)ψ ≪ t}∪∆ψ,
and R = SVD. If k > 0 then ψ = {x 7→ pt1, xq}, Ψ = {f(x, s1ψ, . . . , snψ) ≪
f(t2, . . . , tm)} ∪ ∆ψ, and R = W. In either case cm(Γ ) > cm(Ψ) and there
exists ϕ such that ψϕ = ϑ and ϕ is a matcher of Ψ . By the induction hypothesis
there exists a derivation Ψ ; ε =⇒+ ∅;σ′ with σ′ = ϕ|V′ where V ′ = vars(Ψ).
Moreover, ψσ′ = ψϕ|V′∪{x}. Therefore, we obtain Γ ; ε =⇒R Ψ ;ψ =⇒+ ∅;ψσ′

with ψσ′ = ψϕ|V′∪{x} = ϑ|V .

If s = C(s1) then Cϑ must be a ground context C. Then we transform Γ ; ε
with the step Γ ; ε =⇒R Ψ ;ψ, where ψ, Ψ and R are defined as follows: If C = ◦
then ψ = {C 7→ ◦}, Ψ = {s1ψ ≪ t} ∪ ∆ψ, and R = CVD. If C 6= ◦ then C
should have a form f(t1, . . . , tj−1,D, tj+1, . . . , tm), where D is a context and
f(t1, . . . , tm) = t. Then ψ = {C 7→ f(t1, . . . , tj−1, C(◦), tj+1, . . . , tm)}, Ψ =
{C(s1ψ) ≪ tj} ∪ ∆ψ, and R = D. In either case cm(Γ ) > cm(Ψ) and there
exists ϕ such that ψϕ = ϑ and ϕ is a matcher of Ψ . By the induction hypothesis
there exists a derivation Ψ ; ε =⇒+ ∅;σ′ with σ′ = ϕ|V′ where V ′ = vars(Ψ).
Moreover, ψσ′ = ψϕ|V′∪{x}. Therefore, we obtain Γ ; ε =⇒R Ψ ;ψ =⇒+ ∅;ψσ′

with ψσ′ = ψϕ|V′∪{x} = ϑ|V . ⊓⊔

Theorem 4 (Minimality). Let Γ be a Csm problem. Then SolM(Γ ) is a min-

imal set of matchers of Γ .

Proof. Assume by contradiction that SolM(Γ ) is not minimal. Then there exist
two substitutions σ, ϑ ∈ SolM(Γ ) such that σ ≤· ϑ. It implies that vσ = vϑ
for each v ∈ vars(Γ ) because vσ contains no variables. Therefore, there should
be a variable in dom(ϑ) that does not belong to vars(Γ ). But it is impossible
because vars(Γ ) is the domain for each substitution in SolM(Γ ). ⊓⊔

These results are summarized in the main theorem for M:

Theorem 5 (Main Theorem for M). The Csm algorithm M terminates for

any input problem Γ and generates a minimal complete set of matchers of Γ .

Moreover, M never computes the same matcher twice. If we are not interested
in bindings for certain variables, we can replace them with the anonymous vari-
ables: “ ” for any individual or function variable, and “ ” for any sequence or
context variable. It is straightforward to adapt the rules in I to such cases: If
an anonymous variable occurs in the rule IVE, FVE, SVD, W, CVD, or D then
the substitution ϑ in the same rule is ε. Strictly speaking, if {s ≪ t} is a Csm
problem where s contains anonymous variables and ϑ is a solution computed by
the adapted version of the algorithm then sϑ is not identical to t (because it still
contains anonymous variables) but is embedded in t.

We can use (the adapted form of) M for multi-slot information extraction
from data by nonlinear queries (cf. e.g. [37]):

Example 2. Solving the Csm problem

{C(F ( ,D(f(x)), , E(f(x)), )) ≪ f(g(b, f(a), f(a)), f(b), f(a))}



by M gives three solutions:

{C 7→ ◦,D 7→ g(b, ◦, f(a)), E 7→ ◦, F 7→ f, x 7→ a},

{C 7→ ◦,D 7→ g(b, f(a), ◦), E 7→ ◦, F 7→ f, x 7→ a},

{C 7→ f(◦, f(b), f(a)),D 7→ ◦, E 7→ ◦, F 7→ g, x 7→ a}.

It extracts contexts under which two equal subtrees of the form f(x) are located.
With the help of function variables one can also extract contexts under which
two equal leaves lie: {C(F ( ,D(G()), , E(G()), )) ≪ f(g(a, b), a)} returns
{C 7→ ◦,D 7→ g(◦, b), E 7→ ◦, F 7→ f,G 7→ a} (remember that a() = a).

The algorithm M can be further optimized by detecting failure early and avoiding
branching whenever possible. Below we consider some of the methods to achieve
this. Let s≪ t be a Csm equation where s = f(s1, . . . , sn) and t = f(t1, . . . , tm).
Then s≪ t fails if any of the following matching pretests succeeds:

1. The number of symbol occurrences N different from context and sequence
variables in s is greater than that in t. For instance, if s = f(C(a), F (x), y)
and t = f(a, a), then N(s) = 4, N(t) = 3 and, hence, s≪ t fails.

2. If s contains a function symbol that does not occur in t like, for instance,
for s = f(x,C(a), b) and t = f(c, b) where a does not occur in t.

3. If the sequence of nonvariable heads of s’s is not a subsequence of the se-
quence of heads of t’s. This is the case, e.g. for s = f(C(a), g(x), x, g(y)) and
t = f(a, g(a), f(a)), where the sequence g, g is not a subsequence of a, g, f .

4. If the minimum depth of s is greater than the depth of t. The minimum depth
of a term is computed as the depth without context variables. For instance,
the minimum depth of s = f(f(C(F (x, f(a)))), g(a, f(x))) is 4, and s does
not match t = f(f(a, f(a)), g(a, f(b))) whose depth is 3.

Various such pretests are known in the term indexing literature; see, e.g. [41].
Branching is caused by context and sequence variables that permit multiple

bindings. It happens in the rules SVD, W, CVD, and D. In certain cases back-
tracking can be avoided if we can detect the right binding early enough. For
instance, for the matching equation f(x) ≪ f(a, b, c) we can immediately com-
pute the solution {x 7→ pa, b, cq} instead of applying the rule W three times and
then SVD once. Therefore, a good heuristics would be first, to select such equa-
tions as early as possible, and second, to facilitate generating such equations. To
achieve the latter whenever possible, we introduce the following two rules:

Sp: Splitting

{f(x, s1, . . . , si, . . . , sn) ≪ f(t1, . . . , tj , . . . , tm)} ∪ Γ ; σ =⇒
{f(x, s1, . . . , si−1) ≪ f(t1, . . . , tj−1), si ≪ tj ,
f(si+1, . . . , sn) ≪ f(tj+1, . . . , tm)} ∪ Γ ; σ, where head(si) = head(tj).

TlD: Tail Decomposition

{f(x, s1, . . . , si−1, y, si+1, . . . , sn) ≪ f(t1, . . . , tj , . . . , tm)} ∪ Γ ; σ =⇒
{f(x, s1, . . . , si−1, y) ≪ f(t1, . . . , tj), si+1 ≪ tj+1, . . . , sn ≪ tm} ∪ Γ ; σ,

if sk /∈ VSeq for all i < k ≤ n and n − i = m − j.



Note that Sp still introduces branching because there can be several choices
of si and tj . (Branching factor can be reduced by tailoring early failure pretests
into Sp.) Applying Sp and TlD eagerly together with early failure detection tests
and the deterministic rules from I eventually generates Csm problems where se-
quence variables occur in the equations like f(x) ≪ t and f(x, s1, . . . , sn, y) ≪ t.
Here s’s are variables or have function or context variables as their heads.
The equations of the former type can be solved immediately, while the lat-
ter ones can be attacked either by SVD and W rules, or by eliminating se-
quence variables by Diophantine techniques. It can be done as follows: Let
f(s1, . . . , sn) ≪ f(t1, . . . , tm) be a Csm problem, where x1, . . . , xk are all se-
quence variables among s’s, and Ni is the number of occurrences of xi (at

the topmost level). We associate a linear Diophantine equation
∑k

i=1NiXi =
m − n + k to each such Csm problem and solve it for X’s over nonnegative
integers. If the equation is unsolvable then the matching attempt fails. Other-
wise, a solution li for each Xi specifies the length of sequence the variable xi

can be bound with. Therefore, we replace f(s1, . . . , sn) ≪ f(t1, . . . , tm) with
new matching problems f(si) ≪ f(tji

, . . . , tji+ki
) for each 1 ≤ i ≤ n, where

j1 = 1, ji+1 = ji + ki + 1, jn + kn = m; ki = li − 1 if si is a sequence variable,
and ki = 0 otherwise. Since linear Diophantine equations can have several solu-
tions, this technique introduces a branching point. For instance, the matching
problem {f(x, y) ≪ f(a, b)} will lead either to {f(x) ≪ f(), f(y) ≪ f(a, b)}, to
{f(x) ≪ f(a), f(y) ≪ f(b)}, or to {f(x) ≪ f(a, b), f(y) ≪ f()}.

Although solving linear Diophantine equations over nonnegative integers is
NP-complete, in practice it may still be useful to apply this technique for cer-
tain problems. Hence, in this way a Csm problem can essentially be reduced to
matching with individual, context, and function variables. For such problems we
can easily adapt context matching optimization techniques from [40] and add
them to M.

4 Matching Algorithm with Regular Constraints

Regular expressions provide a powerful mechanism for restricting data values.
The classical approach to regular expression matching is based on automata. In
this section we show that regular expression matching can be easily incorporated
into the rule-based framework of Csm.

Regular expressions on terms are defined by the following grammar:

R ::= t | pq | pR1, R2q | R1|R2 | R∗,

where t is a term without holes, pq is the empty sequence, “,” is concatena-
tion, “|” is choice, and “∗” is repetition (Kleene star). The operators are right-
associative; “*” has the highest precedence, followed by “,” and “|”.

Substitutions are extended to regular expressions on terms in the usual way:
pqσ = pq, pR1, R2qσ = pR1σ, R2σq, (R1|R2)σ = R1σ|R2σ, and R∗σ = (Rσ)∗. Each
regular expression on terms R defines the corresponding regular language L(R).



Regular expressions on contexts are defined as follows:

Q ::= C | pQ1, Q2q | Q1|Q2 | Q∗.

Like for regular expressions on terms, substitutions are extended to regular ex-
pressions on contexts in the usual way. Each regular expression on contexts Q

defines the corresponding regular tree language L(Q) as follows:

L(C) = {C}.

L(pQ1, Q2q) = {C1[C2] | C1 ∈ L(Q1) and C2 ∈ L(Q2)}.

L(Q1|Q2) = L(Q1) ∪ L(Q2).

L(Q∗) = {◦} ∪ L(pQ, Q∗q).

Membership atoms are atoms of the form Ts in R or Cv in Q, where Ts is
a finite, possibly empty, sequence of terms, and Cv is either a context or a
context variable. Regular constraints are pairs (p, f) where p is a membership
atom and f is a flag that is a boolean expression (with the possible values 0 or 1).
The intuition behind the regular constraint (Ts in R, f) is that Ts ∈ L(R)\{pq}
for f = 1 and Ts ∈ L(R) for f = 0.4 Similarly, the intuition behind (Cv in Q, g)
is that Cv ∈ L(Q)\{◦} for g = 1 and Cv ∈ L(Q) for g = 0. It will be needed later
to guarantee that the regular matching algorithm terminates. Substitutions are
extended to regular constraints in the usual way. A regular Csm problem is a
multiset of matching equations and regular constraints of the form:

{s1 ≪ t1, . . . , sn ≪ tn, (x1 in R1, f1), . . . , (xm in Rm, fm),

(C1 in Q1, g1), . . . , (Ck in Qk, gk)},

where all x’s and all C’s are distinct and do not occur in R’s and Q’s.5 We will
assume that all x’s and C’s occur in the matching equations. A substitution σ is
called a regular matcher for such a problem if siσ = ti, fjσ ∈ {0, 1}, Qlσ ∈ {0, 1},
xjσ ∈ L(Rjσ)fjσ, and Clσ ∈ L(Qlσ)glσ for all 1 ≤ i ≤ n, 1 ≤ j ≤ m, and
1 ≤ l ≤ k, where L(R)0 = L(R), L(R)1 = L(R) \ {pq}, L(Q)0 = L(Q), and
L(Q)1 = L(Q) \ {◦}. We say that x’s and C’s are constrained in the matching
problem.

A straightforward way to solve regular Csm problems would be first comput-
ing matchers and then testing whether the values of constrained variables satisfy
the corresponding constraints. Testing can be done by automata constructed
from regular expressions for each computed matcher. (Since regular expressions
contain variables that get instantiated during the matching process, the au-
tomata would be different for each matcher.) However, this approach might face
difficulties when regular expressions are not linear (contain same variable more
than once), or when regular expressions contain variables that do not occur in

4 Note that (Ts in R∗, 1) does not have the same meaning as (Ts in pR, R∗q, 0): Just
take a∗ as R.

5 This restriction can be relaxed allowing occurrences without cycles.



the matching equations. Below we propose a different approach that, first, does
not suffer from these problems and, second, saves the effort of solution testing.
We construct an algorithm that computes the correct answers directly.

We define the inference system IR to solve regular Csm problems. It operates
on systems Γ ;σ where Γ is a regular Csm problem and σ is a substitution. The
system IR includes all the rules from the system I, but SVD, W, CVD, and D

need an extra condition on applicability: For the variables x and C in those rules
there should be no regular constraint (x in R, f) and (C in Q, g) in the matching
problem. There are additional rules in IR for the variables constrained by regular
constraints listed below. For the function symbols NonEmptySeq, NonEmptyCtx,
and ⊕ used in these rules the following equalities hold: NonEmptySeq() = 0 and
NonEmptySeq(r1, . . . , rn) = 1 if ri /∈ VSeq for some 1 ≤ i ≤ n; NonEmptyCtx(◦) =
0 and NonEmptyCtx(C) = 1 if the context C contains at least one symbol different
from context variables and the hole constant; 0 ⊕ 0 = 1 ⊕ 1 = 0 and 1 ⊕ 0 =
0 ⊕ 1 = 1.

ESRET: Empty Sequence in a Regular Expression for Terms

{f(x, s1, . . . , sn) ≪ t, (x in pq, f)} ∪ Γ ; σ

=⇒

�
{f(x, s1, . . . , sn)ϑ ≪ t} ∪ Γϑ; σϑ, with ϑ = {x 7→ pq} if f = 0,
⊥ if f = 1.

TRET: Term in a Regular Expression for Terms

{f(x, s1, . . . , sn) ≪ t, (x in s, f)} ∪ Γ ; σ
=⇒ {f(x, s1, . . . , sn)ϑ ≪ t} ∪ Γϑ; σϑ, where ϑ = {x 7→ s} and s /∈ VSeq.

SVRET: Sequence Variable in a Regular Expression for Terms

{f(x, s1, . . . , sn) ≪ t, (x in y, f)} ∪ Γ ; σ =⇒ {f(x, s1, . . . , sn)ϑ ≪ t} ∪ Γϑ; σϑ,

where ϑ = {x 7→ y} if f = 0. If f = 1 then ϑ = {x 7→ py, yq, y 7→ py, yq} where y is a
fresh variable.

ChRET: Choice in a Regular Expression for Terms

{f(x, s1, . . . , sn) ≪ t, (x in R1|R2, f)} ∪ Γ ; σ
=⇒ {f(x, s1, . . . , sn) ≪ t, (x in Ri, f)} ∪ Γ ; σ, for i = 1, 2.

CRET: Concatenation in a Regular Expression for Terms

{f(x, s1, . . . , sn) ≪ t, (x in pR1, R2q, f)} ∪ Γ ; σ
=⇒ {f(x, s1, . . . , sn)ϑ ≪ t, (y1 in R1, f1), (y2 in R2, f2)} ∪ Γϑ; σϑ,

where y1 and y2 are fresh variables, ϑ = {x 7→ py1, y2q}, and f1 and f2 are computed
as follows: If f = 0 then f1 = f2 = 0 else f1 = 0 and f2 = NonEmptySeq(y1) ⊕ 1.

RRET1: Repetition in a Regular Expression for Terms 1

{f(x, s1, . . . , sn) ≪ t, (x in R∗, 0)} ∪ Γ ; σ
=⇒ {f(x, s1, . . . , sn)ϑ ≪ t} ∪ Γϑ; σϑ, where ϑ = {x 7→ pq}.

RRET2: Repetition in a Regular Expression for Terms 2

{f(x, s1, . . . , sn) ≪ t, (x in R∗, f)} ∪ Γ ; σ
=⇒ {f(x, s1, . . . , sn)ϑ ≪ t, (y in R, 1), (x in R∗, 0)} ∪ Γϑ; σϑ,

where y is a fresh variable and ϑ = {x 7→ py, xq}.



HREC: Hole in a Regular Expression for Contexts

{C(s) ≪ t, (C in ◦, g)} ∪ Γ ; σ

=⇒

�
{C(s)ϑ ≪ t} ∪ Γϑ; σϑ, with ϑ = {C 7→ ◦} if g = 0,
⊥ if g = 1.

CxREC: Context in a Regular Expression for Contexts

{C(s) ≪ t, (C in C, g)} ∪ Γ ; σ =⇒ {C(s)ϑ ≪ t} ∪ Γϑ; σϑ,

where C 6= ◦, head(C) /∈ VCon, and ϑ = {C 7→ C}.

CVREC: Context Variable in a Regular Expression for Contexts

{C(s) ≪ t, (C in D(◦), g)} ∪ Γ ; σ =⇒ {C(s)ϑ ≪ t} ∪ Γϑ; σϑ,

where ϑ = {C 7→ D(◦)} if g = 0. If g = 1 then ϑ = {C 7→ F (x, D(◦), y), D 7→
F (x, D(◦), y)}, where F, x, and y are fresh variables.

ChREC: Choice in a Regular Expression for Contexts

{C(s) ≪ t, (C in Q1|Q2, g)} ∪ Γ ; σ =⇒ {C(s) ≪ t, (C in Qi, g)} ∪ Γ ; σ,

for i = 1, 2.

CREC: Concatenation in a Regular Expression for Contexts

{C(s) ≪ t, (C in pQ1, Q2q, g)} ∪ Γ ; σ
=⇒ {C(s)ϑ ≪ t, (D1 in Q1, g1), (D2 in Q2, g2)} ∪ Γϑ; σϑ,

where D1 and D2 are fresh variables, ϑ = {C 7→ D1(D2(◦))}, and g1 and g2 are compu-
ted as follows: If g = 0 then g1 = g2 = 0 else g1 = 0 and g2 = NonEmptyCtx(D1) ⊕ 1.

RREC1: Repetition in a Regular Expression for Contexts 1

{C(s) ≪ t, (C in Q∗, 0)} ∪ Γ ; σ
=⇒ {C(s)ϑ ≪ t} ∪ Γϑ; σϑ, where ϑ = {C 7→ ◦}.

RREC2: Repetition in a Regular Expression for Contexts 2

{C(s) ≪ t, (C in Q∗, g)} ∪ Γ ; σ
=⇒ {C(s)ϑ ≪ t, (D in Q, 1), (C in Q∗, 0)} ∪ Γϑ; σϑ,

where D is a fresh variable and ϑ = {C 7→ D(C(◦))}.

A regular Csm algorithm MR is defined in a similar way to the algorithm M

(Definition 1) with the only difference that the rules of IR are used instead of the
rules of I. From the beginning, each flag in the input problem is set either to 0
or to 1. Note that the rules in IR work either on a selected matching equation,
or on a selected pair of a matching equation and a regular constraint. No rule
selects a regular constraint alone. We denote by SolMR

(Γ ) the solution set of Γ
generated by MR. Mostly we will be interested in the set SolMR

(Γ )|vars(Γ ): the
restriction of SolMR

(Γ ) to vars(Γ ). First, we show that MR is sound.

Lemma 2. If Γ1;σ1 =⇒ϑ Γ2;σ2 by a rule in IR and ϕ is a regular matcher

for Γ2 then ϑϕ is a regular matcher for Γ1.

Proof. We use case distinction on the possible rule applications. For the rules
from I the result is already proved in Lemma 1. Here we prove for CREC and
RREC2 only. For the rest of the rules it can be done in a similar way.



CREC: We have

Γ1 ={C(s) ≪ t, (C in pQ1, Q2q, g)} ∪∆,

ϑ ={C 7→ D1(D2(◦))},

Γ2 ={C(s)ϑ≪ t, (D1 in Q1, g1), (D2 in Q2, g2)} ∪∆ϑ.

where g1 = g2 = 0 if g = 0. Otherwise g1 = 0 and g2 = NonEmptyCtx(g1).
For each Csm equation s ≪ t ∈ Γ1 there exists its instance sϑ ≪ t ∈ Γ2.

Since ϕ is a regular matcher of Γ2, we have sϑϕ = t which implies that ϑϕ solves
each Csm equation in Γ1.

For each regular constraint (v in E, e) ∈ Γ1 with v 6= C we have its instance
(vϑ in Eϑ, eϑ) = (v in E, eϑ) in Γ2. Hence, if ϕ solves (v in E, eϑ) then ϑϕ solves
(v in E, e).

As for the remaining regular constraints, ϕ is a solution for (D1 in Q1, g1)
and (D2 in Q2, g2). Therefore, D1ϕ ∈ L(Q1ϕ)g1ϕ and D2ϕ ∈ L(Q2ϕ)g2ϕ which
implies (D1ϕ)[D2ϕ] ∈ L(pQ1ϕ, Q2ϕq)u where u is 0 if (D1ϕ)[D2ϕ] = ◦, and is 1
otherwise. But (D1ϕ)[D2ϕ] = Cϑϕ and pQ1ϕ, Q2ϕq = pQ1, Q2qϑϕ. (Remember
that C does not occur in Q1 and Q2.) Hence, Cϑϕ ∈ L(pQ1, Q2qϑϕ)u. If u = 0
then g = 0. If u = 1 then either g = 0 or g = 1. In any case ϑϕ is a solution for
(C in pQ1, Q2q, g).

RREC2: We have

Γ1 ={C(s) ≪ t, (C in Q∗, g)} ∪∆,

ϑ ={C 7→ D(C(◦))},

Γ2 ={C(s)ϑ≪ t, (D in Q, 1), (C in Q∗, 0)} ∪∆ϑ.

We can show that ϑϕ is a solution of each Csm equation and a regular constraint
different from (C in Q∗, g) in Γ1 in a similar way as we did above for CREC. As
for the constraint (C in Q∗, g), since Dϕ ∈ L(Qϕ)1, Cϕ ∈ L((Qϕ)∗)0, and Q does
not contain C, we have Cϑϕ ∈ L((Qϑϕ)∗)1. It implies that ϑϕ is a solution for
(C in Q∗, g). ⊓⊔

Corollary 2. If Γ1;σ1 =⇒+
ϑ Γ2;σ2 in IR and ϕ is a regular matcher for Γ2,

then ϑϕ is a regular matcher for Γ1.

Proof. By induction on the length of the derivation. ⊓⊔

Theorem 6 (Soundness of MR). Let Γ be a regular Csm problem. Then every

substitution σ ∈ SolMR
(Γ ) is a regular matcher of Γ .

Proof. For each σ ∈ SolMR
(Γ ) there exists a derivation Γ ; ε =⇒+

σ ∅;σ. Since ε
is a regular matcher of ∅, by Corollary 2, εσ = σ is a regular matcher of Γ . ⊓⊔

Our next goal is to prove termination and completeness. It requires to define
a complexity measure for regular Csm problems. First we need to introduce
auxiliary notions.



The regular expression size, denoted rexsize, is defined in the following way:
rexsize(t) = rexsize(C) = rexsize(pq) = 1, rexsize(E1|E2) = rexsize(pE1, E2q) =
1 + rexsize(E1) + rexsize(E2), and rexsize(E∗) = 1 + rexsize(E) for any regular
expressions E, E1, E2 over terms or contexts.

A position is a sequence of positive integers. For a term t and a position p,
symb(t, p) denotes the symbol of t at position p: symb(t, pq) = t if t ∈ VInd∪VSeq,
symb(t, pq) = head(t) if t /∈ VInd ∪ VSeq, symb(Σ(t1, . . . , tn), pi, i1, . . . , imq) =
symb(ti, pi1, . . . , imq) if 1 ≤ i ≤ n and Σ ∈ F∪VFun∪VCon (n = 1 for Σ ∈ VCon).
In all other cases symb(t, p) is undefined. Positions are ordered with the order-
ing ≻ that is a lexicographic extension of the standard ordering > on positive
integers. Moreover, we assume to have a constant ∞ such that ∞ ≻ p for any
position p.

Let t be a term and S be a set of regular constraints. The minimal nonzero-

constrained position in t with respect to S, denoted min≻(t, S), is a position p
in t that is the minimal (with respect to ≻) position in t with the property
(symb(t, p) in E, e) ∈ S for some E and e with e 6= 0. If there is no such position
in t then min≻(t, S) = ∞.

The constrained variable prefix of a term t with respect to a set of regular
constraints S, denoted cvp(t, S), is the multiset of all rexsize(E)’s such that E

constrains a variable occurring in a position p′ � min≻(t, S), i.e., symb(t, p′) ∈
VSeq ∪ VCon, (symb(t, p′) in E, e) ∈ S, e = 0 if min≻(t, S) ≻ p′, and e 6= 0 if
min≻(t, S) = p′.

With each regular Csm problem Γ we associate a regular complexity measure

cmR(Γ ) as a quadruple 〈n1, n2, n3, n4〉, where n1 and n3 are multisets of positive
integers and n2 and n4 are nonnegative integers defined as follows:

n1 = ⋒s≪t∈Γ {size(t)}.

n2 = the number of equations s≪ t ∈ Γ such that

s = f(x, s1, . . . , sn) or s = C(s1) for some f, x, s1, . . . , sn, C.

n3 = ⋒s≪t∈Γ cvp(s, S), where S is the regular constraint part of Γ.

n4 = the number of distinct variables in Γ.

For ⊥ we define cmR(⊥) = 〈{0}〉. The ordering > compares measures lexico-
graphically. Obviously, > is well-founded.

Theorem 7 (Termination of MR). MR terminates on any input.

Proof. Termination of MR follows from the fact that every rule R in IR strictly
decreases the regular complexity measure: If Γ1;σ1 =⇒R Γ2;σ2 then cmR(Γ1) >
cmR(Γ2), and cmR(Γ ) > cmR(⊥) for any Γ . Table 4 shows which rule in IR

decreases which component of the regular complexity measure. ⊓⊔

Theorem 8 (Completeness of MR). Let Γ be a regular Csm problem, ϑ
be a regular matcher of Γ , and V = vars(Γ ). Then there exists a substitution

σ ∈ SolMR
such that σ|V = ϑ|V .



Rule n1 n2 n3 n4

T >
IVE >
FVE = = = >
PD >
TD >
SVD = ≥ = >
W >
CVD = ≥ = >
D >
SC >
AD >
ESRET, if f = 0 = ≥ >
ESRET, if f = 1 >
TRET = >
SVRET, if f = 0 = = >
SVRET, if f = 1 = >
ChRET = = >
CRET = = >
RRET1 = ≥ >
RRET2 = = >
HREC, if g = 0 = ≥ >
HREC, if g = 1 >
CxREC = >
CVREC, if g = 0 = = >
CVREC, if g = 1 = >
ChREC = = >
CREC = = >
RREC1 = ≥ >
RREC2 = = >

Table 1. Rules in IR on the regular complexity measure. The equality sign = means
the component remains unchanged, > means it strictly decreases, and ≥ means it does
not increase.

Proof. We use well-founded induction on regular complexity measures. Assume
that for any regular Csm problem Γ ′ if cmR(Γ ) > cmR(Γ ′) then for any
matcher ϑ′ of Γ ′ there exists a derivation Γ ′; ε =⇒+ ∅;σ′ such that σ′|V′ = ϑ′|V′

where V ′ = vars(Γ ′). We show how to build the desired derivation from Γ ; ε for
a matcher ϑ of Γ .

We pick an arbitrary equation s≪ t from Γ and represent Γ as {s≪ t}∪∆.
Depending on the form of s ≪ t we have three cases: s and t are the same
terms, s is an individual variable, or s is a compound term different from t.
The first two cases as well as all the subcases of the third one, except the ones
considered below, can be handled in the same way as in the proof of Theorem 3.

We consider here only those subcases of the third case where the first ar-
gument of s is a constrained sequence variable, or where the head of s is a
constrained context variable.



Let first s = f(x, s1, . . . , sn) and represent ∆ as ∆ = {(x in R, f)} ∪ Φ. The
regular expression R can be either the empty sequence, a term, a concatena-
tion pR1, R2q, a choice R1|R2, or a repetition R∗1. The only nontrivial cases are
choice and repetition:

Choice: R = R1|R2. We transform Γ ; ε with the step Γ ; ε =⇒ChRET Ψ ; ε where
Ψ = {f(x, s1, . . . , sn) ≪ t, (x in R∗i , f)} ∪∆

′ and i is either 1 or 2 depending for
which of them xϑ ∈ L(Riϑ)fϑ holds. Since cmR(Γ ) > cmR(Ψ), ϑ is a matcher
of Ψ , and vars(Ψ) = V, by the induction hypothesis we obtain the derivation
Γ ; ε =⇒ChRET Ψ ; ε =⇒+ ∅;σ with σ|V = ϑ|V .

Repetition: R = R∗1. We have xϑ = pt1, . . . , tmq, m ≥ 0, for ground t’s. We
transform Γ ; ε with Γ ; ε =⇒R Ψ ;ψ, where ψ, Ψ , and R are defined as follows:

– If m = 0 then ψ = {x 7→ pq}, Ψ = {f(x, s1, . . . , sn)ψ ≪ t} ∪ ∆′ψ, and
R = RRET1.

– If m > 0 then ψ = {x 7→ py, xq}, Ψ = {f(x, s1, . . . , sn)ψ ≪ t, (y in R1, 1),
(x in R∗1, 0)} ∪ ∆′ψ, and R = RRET2. The variable y is fresh. Moreover,
there exists ϕ such that yϕ = pt1, . . . , tkq for some 1 ≤ k ≤ m, xϕ =
ptk+1, . . . , tmq, and vϕ = vϑ for any other variable v ∈ V. It implies that ϕ
is a matcher of Ψ and ψϕ|V = ϑ|V .

In either case cmR(Γ ) > cmR(Ψ). By the induction hypothesis there exists a
derivation Ψ ; ε =⇒+ ∅;σ′ with σ′|V′ = ϕ|V′ where V ′ = vars(Ψ). Moreover,
ψσ′|{x}∪V′\{y} = ψϕ|{x}∪V′\{y}. But {x} ∪ V ′ \ {y} = V. Therefore, we obtain
Γ ; ε =⇒R Ψ ;ψ =⇒+ ∅;ψσ′ with ψσ′|V = ψϕ|V = ϑ|V .

The case when the head of s is a constrained context variable can be proved
in a similar way. ⊓⊔

Example 3. Let Γ be a regular Csm problem

{C(h(x, b, y)) ≪ f(a, g(f(a, g(h(b, b, b))))),D(h(y, x)) ≪ f(a, g(h(b, b))),

(x in y∗, 0), (C in E(◦)∗, 0), (D in E(◦)∗, 0)}.

Then SolMR
(Γ ) can be computed with two successful MR derivations. We dis-

play them below. Selected equations and constraints are framed. The derivations
share the following common initial part:

{ C(h(x, b, y)) ≪ f(a, g(f(a, g(h(b, b, b))))) ,D(h(y, x)) ≪ f(a, g(h(b, b))),

(x in y∗, 0), (C in E(◦)∗, 0) , (D in E(◦)∗, 0)}; ε

=⇒RREC2,{C 7→C1(C(◦))}

{ C1(C(h(x, b, y))) ≪ f(a, g(f(a, g(h(b, b, b))))) ,D(h(y, x)) ≪ f(a, g(h(b, b))),

(x in y∗, 0), (C1 in E(◦), 1) , (C in E(◦)∗, 0),

(D in E(◦)∗, 0)}; {C 7→ C1(C(◦))}

=⇒CVREC,{C1 7→F1(x1,E(◦),y
1
),E 7→F1(x1,E(◦),y

1
)}



{ F1(x1, E(C(h(x, b, y))), y1) ≪ f(a, g(f(a, g(h(b, b, b))))) ,

D(h(y, x)) ≪ f(a, g(h(b, b))),

(x in y∗, 0), (C in F1(x1, E(◦), y1)
∗, 0), (D in F1(x1, E(◦), y1)

∗, 0)};

{C 7→ F1(x1, E(C(◦)), y1), C1 7→ F1(x1, E(◦), y1),

E 7→ F1(x1, E(◦), y1)}

=⇒FVE,{F1 7→f}

{ f(x1, E(C(h(x, b, y))), y1) ≪ f(a, g(f(a, g(h(b, b, b))))) ,

D(h(y, x)) ≪ f(a, g(h(b, b))),

(x in y∗, 0), (C in f(x1, E(◦), y1)
∗, 0), (D in f(x1, E(◦), y1)

∗, 0)};

{C 7→ f(x1, E(C(◦)), y1), C1 7→ f(x1, E(◦), y1),

E 7→ f(x1, E(◦), y1), F1 7→ f}

=⇒W,{x1 7→pa,x1q} · · · =⇒SVD,{x1 7→pq} · · · =⇒TD,ε

{E(C(h(x, b, y))) ≪ g(f(a, g(h(b, b, b)))), f(y1) ≪ f() ,

D(h(y, x)) ≪ f(a, g(h(b, b))),

(x in y∗, 0), (C in f(a,E(◦), y1)
∗, 0), (D in f(a,E(◦), y1)

∗, 0)};

{C 7→ f(a,E(C(◦)), y1), C1 7→ f(a,E(◦), y1),

E 7→ f(a,E(◦), y1), F1 7→ f, x1 7→ a}

=⇒SVD,{y
1
7→pq} · · · =⇒T,ε

{ E(C(h(x, b, y))) ≪ g(f(a, g(h(b, b, b)))) ,D(h(y, x)) ≪ f(a, g(h(b, b))),

(x in y∗, 0), (C in f(a,E(◦))∗, 0), (D in f(a,E(◦))∗, 0)};

{C 7→ f(a,E(C(◦))), C1 7→ f(a,E(◦)),

E 7→ f(a,E(◦)), F1 7→ f, x1 7→ a, y1 7→ pq}

=⇒D,{E7→g(E(◦))} · · · =⇒CVD,{E7→◦}

{ C(h(x, b, y)) ≪ f(a, g(h(b, b, b))) ,D(h(y, x)) ≪ f(a, g(h(b, b))),

(x in y∗, 0), (C in f(a, g(◦))∗, 0) , (D in f(a, g(◦))∗, 0)};

{C 7→ f(a, g(C(◦))), C1 7→ f(a, g(◦)),

E 7→ f(a, g(◦)), F1 7→ f, x1 7→ a, y1 7→ pq}

=⇒RREC2,{C 7→C2(C(◦))}

{ C2(C(h(x, b, y))) ≪ f(a, g(h(b, b, b))) ,D(h(y, x)) ≪ f(a, g(h(b, b))),

(x in y∗, 0), (C2 in f(a, g(◦)), 1) , (C in f(a, g(◦))∗, 0),

(D in f(a, g(◦))∗, 0)};



{C 7→ f(a, g(C2(C(◦)))), C1 7→ f(a, g(◦)),

E 7→ f(a, g(◦)), F1 7→ f, x1 7→ a, y1 7→ pq}

=⇒CxREC,{C2 7→f(a,g(◦))}

{ f(a, g(C(h(x, b, y)))) ≪ f(a, g(h(b, b, b))) ,D(h(y, x)) ≪ f(a, g(h(b, b))),

(x in y∗, 0), (C in f(a, g(◦))∗, 0), (D in f(a, g(◦))∗, 0)};

{C 7→ f(a, g(f(a, g(C(◦))))), C1 7→ f(a, g(◦)),

E 7→ f(a, g(◦)), F1 7→ f, x1 7→ a, y1 7→ pq, C2 7→ f(a, g(◦))}

=⇒TD,ε · · · =⇒T,ε · · · =⇒TD,ε

{ C(h(x, b, y)) ≪ h(b, b, b) ,D(h(y, x)) ≪ f(a, g(h(b, b))),

(x in y∗, 0), (C in f(a, g(◦))∗, 0) , (D in f(a, g(◦))∗, 0)};

{C 7→ f(a, g(f(a, g(C(◦))))), C1 7→ f(a, g(◦)),

E 7→ f(a, g(◦)), F1 7→ f, x1 7→ a, y1 7→ pq, C2 7→ f(a, g(◦))}

=⇒RREC1,{C 7→◦}

{h(x, b, y) ≪ h(b, b, b), D(h(y, x)) ≪ f(a, g(h(b, b))) ,

(x in y∗, 0), (D in f(a, g(◦))∗, 0) };

{C 7→ f(a, g(f(a, g(◦)))), C1 7→ f(a, g(◦)),

E 7→ f(a, g(◦)), F1 7→ f, x1 7→ a, y1 7→ pq, C2 7→ f(a, g(◦))}

=⇒RREC2,{D 7→D1(D(◦))}

{h(x, b, y) ≪ h(b, b, b), D1(D(h(y, x))) ≪ f(a, g(h(b, b))) ,

(x in y∗, 0), (D1 in f(a, g(◦)), 1) , (D in f(a, g(◦))∗, 0)};

{C 7→ f(a, g(f(a, g(◦)))), C1 7→ f(a, g(◦)), E 7→ f(a, g(◦)), F1 7→ f,

x1 7→ a, y1 7→ pq, C2 7→ f(a, g(◦)),D 7→ D1(D(◦))}

=⇒CxREC,{D1 7→f(a,g(◦))}

{h(x, b, y) ≪ h(b, b, b), f(a, g(D(h(y, x)))) ≪ f(a, g(h(b, b))) ,

(x in y∗, 0), (D in f(a, g(◦))∗, 0)}; {C 7→ f(a, g(f(a, g(◦)))),

C1 7→ f(a, g(◦)), E 7→ f(a, g(◦)), F1 7→ f, x1 7→ a, y1 7→ pq,

C2 7→ f(a, g(◦)),D 7→ f(a, g(D(◦))),D1 7→ f(a, g(◦))}

=⇒TD,ε · · · =⇒T,ε · · · =⇒TD,ε

{h(x, b, y) ≪ h(b, b, b), D(h(y, x)) ≪ h(b, b) ,

(x in y∗, 0), (D in f(a, g(◦))∗, 0) }; {C 7→ f(a, g(f(a, g(◦)))),



C1 7→ f(a, g(◦)), E 7→ f(a, g(◦)), F1 7→ f, x1 7→ a, y1 7→ pq,

C2 7→ f(a, g(◦)),D 7→ f(a, g(D(◦))),D1 7→ f(a, g(◦))}

=⇒RREC1,{D 7→◦}

{ h(x, b, y) ≪ h(b, b, b) , h(y, x) ≪ h(b, b), (x in y∗, 0) };

{C 7→ f(a, g(f(a, g(◦)))), C1 7→ f(a, g(◦)), E 7→ f(a, g(◦)), F1 7→ f,

x1 7→ a, y1 7→ pq, C2 7→ f(a, g(◦)),D 7→ f(a, g(◦))}.

Now the derivation can be extended in two different ways both leading to success.
The first one starts with the system obtained by applying the rule RRET1 with
a local substitution {x 7→ pq} on the pair of framed equation and constraint
above, and goes on as follows:

{h(b, y) ≪ h(b, b, b), h(y) ≪ h(b, b) };

{C 7→ f(a, g(f(a, g(◦)))), C1 7→ f(a, g(◦)), E 7→ f(a, g(◦)), F1 7→ f,

x1 7→ a, y1 7→ pq, C2 7→ f(a, g(◦)),D 7→ f(a, g(◦)), x 7→ pq}

=⇒W,{y 7→pb,yq} · · · =⇒W,{y 7→pb,yq} · · · =⇒SVD,{y 7→pq}

{ h(b, b, b) ≪ h(b, b, b) , h() ≪ h()};

{C 7→ f(a, g(f(a, g(◦)))), C1 7→ f(a, g(◦)), E 7→ f(a, g(◦)), F1 7→ f,

x1 7→ a, y1 7→ pq, C2 7→ f(a, g(◦)),D 7→ f(a, g(◦)), x 7→ pq, y 7→ pb, bq}

=⇒T,ε · · · =⇒T,ε

∅; {C 7→ f(a, g(f(a, g(◦)))), C1 7→ f(a, g(◦)), E 7→ f(a, g(◦)), F1 7→ f,

x1 7→ a, y1 7→ pq, C2 7→ f(a, g(◦)),D 7→ f(a, g(◦)), x 7→ pq, y 7→ pb, bq}.

The second one starts with the system obtained by applying the rule RRET2

with a local substitution {x 7→ px2, xq} on the same pair of framed equation
and constraint, and proceeds as follows:

{ h(x2, x, b, y) ≪ h(b, b, b) , h(y, x2, x) ≪ h(b, b), (x2 in y, 1) , (x in y∗, 0)};

{C 7→ f(a, g(f(a, g(◦)))), C1 7→ f(a, g(◦)), E 7→ f(a, g(◦)), F1 7→ f,

x1 7→ a, y1 7→ pq, C2 7→ f(a, g(◦)),D 7→ f(a, g(◦)), x 7→ px2, xq}

=⇒SVRET,{x2 7→py,yq,y 7→py,yq}

{ h(y, y, x, b, b) ≪ h(b, b, b) , h(y, y, y, y, x) ≪ h(b, b), (x in py, yq∗, 0)};

{C 7→ f(a, g(f(a, g(◦)))), C1 7→ f(a, g(◦)), E 7→ f(a, g(◦)), F1 7→ f,

x1 7→ a, y1 7→ pq, C2 7→ f(a, g(◦)),D 7→ f(a, g(◦)),

x 7→ py, y, xq, x2 7→ py, yq, y 7→ py, yq}

=⇒PD,ε · · · =⇒IVE,{y 7→b}

{ h(y, x, b, b) ≪ h(b, b) , h(y, b, y, x) ≪ h(b), (x in pb, yq∗, 0)};



{C 7→ f(a, g(f(a, g(◦)))), C1 7→ f(a, g(◦)), E 7→ f(a, g(◦)), F1 7→ f,

x1 7→ a, y1 7→ pq, C2 7→ f(a, g(◦)),D 7→ f(a, g(◦)),

x 7→ pb, y, xq, x2 7→ pb, yq, y 7→ pb, yq, y 7→ b}

=⇒SVD,{y 7→pq}

{ h(x, b, b) ≪ h(b, b) , h(b, x) ≪ h(b), (x in b∗, 0) };

{C 7→ f(a, g(f(a, g(◦)))), C1 7→ f(a, g(◦)), E 7→ f(a, g(◦)), F1 7→ f,

x1 7→ a, y1 7→ pq, C2 7→ f(a, g(◦)),D 7→ f(a, g(◦)),

x 7→ pb, xq, x2 7→ b, y 7→ b, y 7→ b}

=⇒RRET1,{x7→pq}

{ h(b, b) ≪ h(b, b) , h(b) ≪ h(b)};

{C 7→ f(a, g(f(a, g(◦)))), C1 7→ f(a, g(◦)), E 7→ f(a, g(◦)), F1 7→ f,

x1 7→ a, y1 7→ pq, C2 7→ f(a, g(◦)),D 7→ f(a, g(◦)),

x 7→ b, x2 7→ b, y 7→ b, y 7→ b}

=⇒T,ε · · · =⇒T,ε

∅; {C 7→ f(a, g(f(a, g(◦)))), C1 7→ f(a, g(◦)), E 7→ f(a, g(◦)), F1 7→ f,

x1 7→ a, y1 7→ pq, C2 7→ f(a, g(◦)),D 7→ f(a, g(◦)),

x 7→ b, x2 7→ b, y 7→ b, y 7→ b}.

All the other derivations fail. Hence, we obtain SolMR
(Γ ) and SolMR

(Γ )|vars(Γ ):

SolMR
(Γ ) = {{C 7→ f(a, g(f(a, g(◦)))), C1 7→ f(a, g(◦)), E 7→ f(a, g(◦)),

F1 7→ f, x1 7→ a, y1 7→ pq, C2 7→ f(a, g(◦)),D 7→ f(a, g(◦)),

x 7→ pq, y 7→ pb, bq},

{C 7→ f(a, g(f(a, g(◦)))), C1 7→ f(a, g(◦)), E 7→ f(a, g(◦)),

F1 7→ f, x1 7→ a, y1 7→ pq, C2 7→ f(a, g(◦)),D 7→ f(a, g(◦)),

x 7→ b, x2 7→ b, y 7→ b, y 7→ b}}

SolMR
(Γ )|vars(Γ ) = {{C 7→ f(a, g(f(a, g(◦)))), E 7→ f(a, g(◦)),

D 7→ f(a, g(◦)), x 7→ pq, y 7→ pb, bq},

{C 7→ f(a, g(f(a, g(◦)))), E 7→ f(a, g(◦)),

D 7→ f(a, g(◦)), x 7→ b, y 7→ b}}.

We can adapt MR to anonymous variables like we did for M. However, a remark
has to be made about using anonymous variables in regular expressions with
Kleene star. There they behave differently from named singleton variables and
play a similar role as, for instance, the pattern Any in [24]. The reason is that
the variables that had only one occurrence in the matching problem (in an
expression with Kleene star) will have two occurrences after the application
of the RRET2 and RREC2 rules, while duplicated anonymous variables are not



considered to be the same. It affects solvability. For instance, the regular Csm
problem {f(x) ≪ f(g(a), g(b)), (x in g( )∗, 0)} has a solution {x 7→ pg(a), g(b)q}
while the problem {f(x) ≪ f(g(a), g(b)), (x in g(x)∗, 0)} is unsolvable because
it is reduced to {f(x) ≪ f(g(b)), (x in g(a)∗, 0)}.

In general, the notion of a regular matcher for regular Csm problems with
anonymous variables has to be redefined: First, we write s 4 t iff the term s
(maybe with holes) whose only variables are anonymous variables can be made
identical to the ground term t (maybe with holes) by replacing anonymous
variables in s with the corresponding expressions (terms, term sequences, func-
tion symbols, contexts) and applying contexts as long as possible. For instance,
f( , ( (◦, , a)), ) 4 f(a, f(b, g(◦, ◦, b, a)), c). Next, we write pt1, . . . , tnq ∈· S
iff there exists ps1, . . . , snq ∈ S such that si 4 ti for each 1 ≤ i ≤ n. Now, let
{s1 ≪ t1, . . . , sn ≪ tn, (x1 in R1, f1), . . . , (xm in Rm, fm), (C1 in Q1, g1), . . . ,
(Ck in Qk, gk)} be a regular Csm problem where s’s, R’s, and Q’s may contain
anonymous variables. A substitution σ is a regular matcher for such a problem if
siσ 4 ti, fjσ ∈ {0, 1}, Qlσ ∈ {0, 1}, xjσ ∈· L(Rjσ)fjσ, and Clσ ∈· L(Qlσ)glσ for all
1 ≤ i ≤ n, 1 ≤ j ≤ m, and 1 ≤ l ≤ k, where the only variables in siσ, Rjσ,
and in Qlσ are anonymous variables. For instance, {x 7→ pg(a), g(b)q, x 7→
c, C 7→ f(g(◦))} is a regular matcher for the matching problem {f(x,C(x), ) ≪
f(g(a), g(b), f(g(c)), d), (x in g( )∗, 0), (C in f( , g(◦), ), 0)}.

Special failure detection tests can be incorporated into MR. For instance, we
can add the rule {f(x, s1, . . . , sn) ≪ f(), (x in R, 1)} ∪ Γ ;σ =⇒ ⊥.

Note that for a regular Csm problem Γ there might be σ, ϑ ∈ SolMR
(Γ )

such that σ|vars(Γ ) = ϑ|vars(Γ ). This is the case, for instance, for {f(x) ≪

f(a, b, b, a), (x in pa∗, b∗q∗, 0)} and {C(a) ≪ f(g(a), f(a)), (C in (f( , ◦, )∗|
g( , ◦, )∗)∗, 0)}. It can be avoided by replacing regular expressions with the
equivalent “disambiguated” ones like, e.g. star normal forms [5]. Such an equiv-
alent formulation for the matching problems above are {f(x) ≪ f(a, b, b, a),
x in ((a|b)∗, 0)} and {C(a) ≪ f(g(a), f(a)), (C in (f( , ◦, )| g( , ◦, ))∗, 0)}.

As syntactic sugar for regular context expressions, we let function sym-
bols, function variables, and context variables be used as the basic building
blocks for regular expressions. Such regular expressions are understood as ab-
breviations for the corresponding regular expressions on contexts. For exam-
ple, pF, f |pC, gq∗q abbreviates pF ( , ◦, ), f( , ◦, )|pC(◦), g( , ◦, )q∗q. An-
swer substitutions can also be modified correspondingly. In this way MR will
understand the regular path expression syntax.

5 Applications

Csm is the main pattern matching mechanism in the rule-based programming
system ρLog [32, 34]. ρLog supports strategic programming with deterministic
(labeled) conditional transformation rules, matching with regular constraints,
and is built on top of the Mathematica system. As an example, we show a ρLog
clause (in a conventional notation) that implements rewriting: C(x) →rewrite(z)

C(y) ⇐ x →z y. Assume that we have another clause a →r b that defines the



rule labeled by r. Then the query f(a, a) →rewrite(r) x (read: find such an x
to which f(a, a) can be rewritten by r) succeeds twice: with x = f(b, a) and
x = f(a, b). The order in which these answers are generated (and, hence, the
term traversal strategy) is defined by the order of matching rules in Csm that
compute bindings for C.

Another ρLog example is the program that from a given term selects sub-
terms whose nodes are all labeled a. It consists of the following three clauses

(x) →a-subt x ⇐ x →NF[a’s] true, a →a’s true, C(a(a, x)) →a’s C(a(x)),

where NF is the ρLog strategy for a normal form computation.

Csm can be used to achieve more control on rewriting, to match program
schemata with programs (cf. semi-unification [11], see also [9]), in Web site ver-
ification (e.g. in a rewriting-based framework similar to [1]), in Xml querying,
transformation, schema matching, and related areas. For this purpose (especially
for Xml related applications) we would need to extend our matching algorithm
for orderless function symbols. (The orderless property generalizes commutativ-
ity for flexible arity function symbols.) Such functions are important for Xml
querying because the users often are not concerned with the actual order of ele-
ments in an Xml document. A straightforward but inefficient way of dealing with
orderless functions is to consider all possible permutations of their arguments
and applying the Csm. To achieve a better performance one can carry over some
known techniques from AC-matching to Csm with orderless functions.

In our opinion, a (conditional) rewriting-based query language that imple-
ments Csm with orderless functions would possess the advantages of both nav-
igational (path-based) and positional (pattern-based) types of Xml query lan-
guages. (See [18] for a recent survey on this topic.) It would easily support, for
instance, a wide range of queries (selection and extraction, reduction, negation,
restructuring, combination), parent-child and sibling relations and their closures,
access by position, unordered matching, order-preserving result, partial and total
queries, multiple results, and other properties. Moreover, the rule-based para-
digm would provide a clean declarative semantics. As an example, we show how
to express a reduction query. Reduction is one of the query operations described
as desiderata for Xml query languages in [31] and, according to [4], is a bottle-
neck for many of them. Let the Xml data (translated into our syntax) consist
of the elements of the form:

manufacturer(mn-name(Mercury), year(1999 ),

model(mo-name(SLT ), front-rating(3 .84 ), side-rating(2 .14 ), rank(9 )), . . .).

The reduction query operation is formulated as follows: From the manufactu-

rer elements drop those model sub-elements whose rank is greater than 10, and
elide the front-rating and side-rating elements from the remaining models. It can
be expressed as a rule manufacturer(x ) →NF[Reduce] y that evaluates as follows:
Its left hand side matches the data, the obtained instance is rewritten into the
normal form with respect to the rule Reduce, and the result is returned in y.



Reduce is defined by two conditional rewrite rules:

manufacturer(x1 ,model( , rank(x ), ), x2 )

→Reduce manufacturer(x1 , x2 ) ⇐ x > 10 .

manufacturer(x1 ,model(y
1
, front-rating( ), side-rating( ), rank(x ), y

2
), x2 )

→Reduce manufacturer(x1 ,model(y
1
, rank(x ), y

2
), x2 ) ⇐ x ≤ 10 .

In general, we believe that such a language would be a good candidate to meet
many of the requirements for versatile Web query languages [7]. At least, the
core principles of referential transparency and answer-closedness, and incomplete
queries and answers can be easily supported. As for dealing with nonhierarchical
relations provided by, e.g. Id/IdRef links (that naturally asks for the graph data
model), one could apply techniques of equational Csm to query such data. As an
equational theory we could specify (oriented) equalities between constants repre-
senting IdRefs and terms that correspond to Ids. If such a theory can be turned
into a convergent rewrite system, it would mean that the data it represents con-
tains no cycles via Id/IdRefs. It would be interesting to study equational Csm
in more details. Another interesting and useful future work would be to identify
the types of matching problems that Csm can solve efficiently.

6 Related Work

Solving equations with context variables has been intensively investigated in
the recent years; see, e.g. [13, 14, 30, 38–40]. Context matching is NP-complete.
Decidability of context unification is still an open question. Sequence matching
and unification was addressed, for instance, in [3, 20, 23, 26–28, 33]. Sequence
unification (and, hence, matching as well) is decidable.

There is a rich literature on matching with regular expressions, especially in
the context of general-purpose programming languages and semistructured data
querying. Regular expressions are supported in Perl, Emacs-Lisp, XDuce [25],
CDuce [2], Xtatic [19], and in the languages based on XPath [12], just to name a
few. Various automata-based approaches have been proposed for Xml querying;
see, e.g. [35, 6, 36, 16, 10]. Context matching is closely related to the evaluation
of conjunctive queries over trees [22].

Hosoya and Pierce [25] propose regular expression pattern matching for de-
veloping convenient programming constructs for tree manipulation in a statically
typed setting. Similar in spirit to Ml style pattern matching, their algorithm uses
regular expression types to dynamically match values. Patterns can be recursive
(under certain restrictions that guarantee that the language remains regular).
Recursion allows to write patterns that match, for instance, trees whose nodes are
labeled with the same label. Csm does not allow recursion in regular constraints.
That is why we needed three ρLog clauses above to solve the problem of selecting
terms with all a-labeled nodes. Patterns of Hosoya and Pierce are restricted to be
linear. We do not have such a restriction. In general, non-linearity is one of the
main difficulties for tree automata-based approaches [15]. Niehren et al [37] use



tree automata for multi-slot information extraction from semistructured data.
The automata are restricted to be unambiguous that limits n-ary queries to fi-
nite unions of Cartesian closed queries (Cartesian products of monadic queries),
but this restricted case is processed efficiently. For monadic queries an efficient
and expressive information extraction approach, monadic Datalog, was proposed
by Gottlob and Koch [21].

Simulation unification [8] uses the descendant construct that is similar to
context variables in the sense that it allows us to descend in terms to arbitrary
depth, but it does not allow regular expressions along it. Also, sequence variables
are not present there. However, it can process unordered and incomplete queries,
and it is a full scale unification, not a matching.

Our technique of using flags in constraints to guarantee termination is sim-
ilar to that of Frisch and Cardelli [17] for dealing with ambiguity in matching
sequences against regular expressions.

7 Conclusions

We described a Csm algorithm with regular constraints. The algorithm computes
a complete set of solutions for matching problems for terms built over flexible
arity function symbols and context, sequence, function, and individual variables.
Regular expressions constrain values of some context and sequence variables. The
constraints are not restricted to be linear. We discussed ways to optimize the
main algorithm as well as some of the possible applications.
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