
Automatic Composition of e-Services

Daniela Berardi

Dipartimento di Informatica e Sistemistica
Università di Roma “La Sapienza”
Via Salaria 113, 00198 Roma, Italy

berardi@dis.uniroma1.it

Supervisor: Maurizio Lenzerini
Thesis Committee: Maurizio Lenzerini, Giuseppe De Giacomo, and Massimo Mecella

1 Introduction

Service Oriented Computing (SOC [35]) aims at building agile networks of collaborating business
applications, distributed within and across organizational boundaries.1 e-Services, which are the
basic building blocks of SOC, represent a new model in the utilization of the network, in which
self-contained, modular applications can be described, published, located and dynamically invoked,
in a programming language independent way.

The commonly accepted and minimal framework for e-Services, referred to as Service Oriented
Architecture (SOA [36]), consists of the following basic roles: (i) the service provider, which is the
subject (e.g., an organization) providing services; (ii) the service directory, which is the subject
providing a repository/registry of service descriptions, where providers publish their services and
requestors find services; and, (iii) the service requestor, also referred to as client, which is the
subject looking for and invoking the service in order to fulfill some goals. A requestor discovers a
suitable service in the directory, and then it connects to the specific service provider and uses the
service.

Research on e-Services spans over many interesting issues regarding, in particular, composabil-
ity, synchronization, coordination, and verification [42]. In this Ph.D. thesis, we are particularly
interested in automatic e-Service composition. e-Service composition addresses the situation when
a client request cannot be satisfied by an available e-Service, but a composite e-Service, obtained by
combining “parts of” available component e-Services, might be used. Each composite e-Service can
be regarded as a kind of client wrt its components, since it (indirectly) looks for and invokes them.
e-Service composition leads to enhancements of the SOA, by adding new elements and roles, such
as brokers and integration systems, which are able to satisfy client needs by combining available
e-Services.

Composition involves two different issues. The first, sometimes called composition synthesis, or
simply composition, is concerned with synthesizing a new composite e-Service, thus producing a
specification of how to coordinate the component e-Services to obtain the composite e-Service. Such
a specification can be obtained either automatically, i.e., using a tool that implements a composition
algorithm, or manually by a human. The second issue, often referred to as orchestration, is concerned
with coordinating the various component e-Services according to some given specification, and also
monitoring control and data flow among the involved e-Services, in order to guarantee the correct
execution of the composite e-Service, synthesized in the previous phase.

Our main focus in this Ph.D. thesis is on automatic composition synthesis. In order to address
this issue in an effective and well-founded way, as a first contribution, in [8, 9] we propose a general
1 cf., Service Oriented Computing Net: http://www.eusoc.net/

formal framework for representing e-Services. As a second contribution, in [8] we present an effective
technique for automatic e-Service composition. In particular, we specialize the general framework
to the case where e-Services are specified by means of finite state machines, and we present an
algorithm that, given a specification of a target e-Service, i.e., specified by a client, and a set of
available e-Services, synthesizes a composite e-Service that uses only the available e-Services and
fully captures the target one. We also study the computational complexity of our algorithm, and we
show that it runs in exponential time with respect to the size of the input state machines. In [10,
7] we propose an alternative (though deeply related) approach, that is based on characterizing
e-Services and e-Service composition in terms of Reasoning about Actions.

The rest of this research report is organized as follows. In Section 2 we consider the state-of-
the-art of the research on e-Services and in Section 3 we highlight open issues and contextualize
our contribution by presenting how our research overcome such problems. In Sections 4, 5 and 6 we
define our general formal framework, and in Section 7 we define the problem of composition synthesis
in such a framework. In Section 8 we specialize the general framework to the case where e-Services
are specified by means of finite state machines, and in Section 9 we present an EXPTIME algorithm
for automatic e-Service composition in the specialized framework. In Section 10 we instantiate our
general framework to a specific formalism for Reasoning about Actions, namely Situation Calculus,
and show equivalent algorithms to compute e-Service composition. Finally, in Section 11 we discuss
future work.

2 State-of-the-art

Up to now, research on e-Services has mainly concentrated on the issues of (i) service description
and modeling and of (ii) service composition, including synthesis and orchestration.

Current research in description and modeling of e-Services is mainly founded on the work on
workflows, which model business processes as sequences of (possibly partially) automated activities,
in terms of data and control flow among them (e.g., [38, 27]). In [33] e-Services are represented
as statecharts, and in [12], an e-Service is modeled as a Mealy machine, with input and output
messages, and a queue is used to buffer messages that were received but not yet processed.

As far as orchestration, it requires that the composite e-Service is specified in a precise way,
considering both the specification of how various component e-Services are linked and the internal
process flow of the component one. In [26], different technologies, standards and approaches for
specification of composite e-Services are considered, including BPEL4WS, BPML, AZTEC, etc.
Reference [26] identifies three different kinds of composition: (i) peer-to-peer, in which the individual
e-Services are equals, (ii) the mediated approach, based on a hub-and-spoke topology, in which one
service is given the role of process mediator, and (iii) the brokered approach, where process control
is centralized but data can pass between component e-Services. Most of research works [14, 39, 32]
can be classified into the mediated approach to composition. Conversely in [21] the enactment of a
composite e-Service is carried out in a decentralized way, through peer-to-peer interactions.

The DAML-S Coalition [2] is defining a specific ontology and a related language for e-Services,
with the aim of composing them in automatic way. In [41] the issue of service composition is
addressed, in order to create composite services by re-using, specializing and extending existing
ones; in [31, 34] composition of e-Services is addressed by using Golog and providing a semantics
of the composition based on Petri Nets. In [1] a way of composing e-Services is presented, based
on planning under uncertainty and constraint satisfaction techniques, and a request language, to
be used for specifying client goals, is proposed. e-Service composition is indeed a form of program
synthesis as is planning. The main conceptual difference is that, while in planning we typically are

2

interested in synthesizing a new sequences of actions (or more generally a program, i.e., an execution
tree) that achieves the client goal, in e-Service composition, we try to obtain (the execution tree
of) the target e-Service by reusing in a suitable way fragments of the executions of the component
e-Services.

In [12], the interplay between a composite e-Service (global) and component ones (local) is
considered. The authors represent e-Services as FSMs and show that composite e-Services may no
longer be a FSM in presence of unexpected behavior.

Finally, it is worth noting that theoretical investigations on e-Service composition have been
explicitly or implicitly addressed in various forms by several research areas, including the following
ones: (i) Workflows [14, 27, 39], from which e-Service composition derives most of its roots; (ii)
Databases (see, e.g., [40]), where query rewriting techniques for Data Integration may be seen as
simple forms of composition of simple “data-access” e-Services, which can described by an atomic
action with query/results as input/output parameters; (iii) Software Engineering [43, 23], since
several works on architecture design based on components and objects have addressed theoretical
issues related to software composition, as well as those related to program synthesis and veri-
fication; (iv) Artificial Intelligence [31, 34, 1], where e-Services are considered as atomic actions
with input/output parameters, and agent-based technologies and planning techniques, supported
by domain ontologies, have been advocated as basic tools for action and process composition: (v)
Theoretical Computer Science, and in particular, Language and Automata Theory. Moreover, many
standards (e.g., WSDL [3], BPEL4WS [15], ebXML [19, 20, 18], WSCI [5], just to refer to the most
widespread) are providing an effective infrastructure for e-Service composition, but they lack clear
semantics, formal analysis of their properties, guidelines and methodologies on how to apply them
and effectively use them to deliver composite e-Service. However, a global, coherent, flexible and
comprehensive vision, allowing for comparing such different approaches, is still lacking. Indeed, each
area focuses on a particular feature of e-Services and therefore, e-Service composition is tackled
in heterogeneous ways: in some context composition is automatic, in other manual, in others it is
restricted to the enactment of the composite e-Service without considering the synthesis of the com-
posite service, etc. Of course, such a plethora of approaches highly depends on the expressiveness
and effectiveness of the various languages used to describe services.

3 Motivations

Although an enormous interest is moving around e-Services, several aspects related to e-Service
composition, and as an aside, to e-Service description, including foundational ones, still remain to
be clarified (see [26] for a survey on different approaches to service oriented computing).

– An agreed comprehension of what an e-Service is, in an abstract and general fashion, is still
lacking. An e-Service is mostly considered simply as a set of operations with input and output
parameters, with no constraints on their invocation order. Only recently, few proposals are
advocating that an e-Service should also be characterized by its behavior, i.e., intuitively, by
the set of admissible invocation sequences of operations. Therefore, no general and common
framework exists that contextualizes e-Services and e-Service composition.

– There does not exist a consolidated formal definition of e-Service composition. Additionally, to
the best of our knowledge, no approach to e-Service composition exists that explicitly takes the
client’s need into account.

– Due to the absence of a common vision, it is extremely difficult to compare the various ap-
proaches to composition. As a notable example, results on computational complexity of both

3

the problem of e-Service composition, and the algorithms for composition synthesis are still
lacking, and this inhibits practical and commercial developments of tools for composition.

– A clear and consolidated awareness of the relations between languages and tools for describing
e-Services and composition techniques is not present.

– A consolidated characterization of an adequate set of operators for e-Service composition is
lacking, as well as, a definition and classification of possible languages for composition.

– There does not exist a deep analysis of the possible types of composition, and their properties.

The aim of this Ph.D. thesis is to define a formal and comprehensive framework for the char-
acterization and the theoretical investigation of the problem of e-Service composition.

Although several papers have been already published that discuss either a formal model of
e-Services (even more expressive than ours, see e.g., [12]), or propose algorithms for computing
composition (e.g., [34]), to the best of our knowledge, the research done till now and reported here
is the first one tackling simultaneously the following issues:

– Presenting a formal framework where e-Services are clearly defined and the problem of automatic
e-Service composition is precisely characterized. Although simplified in several aspects, our
framework is general, comprehensive and coherent enough to accommodate various visions on
e-Services and e-Service composition. Additionally, it is flexible and robust, so that changes in
the vision on e-Service composition can be reflected on it with few adjustments.

– Providing techniques for computing e-Service composition in special but quite significant cases
(finite state e-Services). In particular, this is the first algorithm for automatic e-Service com-
position that also explicitly takes into account the client’s needs.

– Providing a computational complexity characterization of the algorithm for automatic compo-
sition.

However, several open issues remain to be solved and many possible extensions to our framework
may be taken into account. Additionally, not all aspects highlighted above have been tackled yet.
Doubtless, the research done this year has constituted a first step towards the definition of a
theoretical framework for e-Services and e-Service composition.

4 General Framework

Generally speaking, an e-Service is a software artifact (delivered over the Internet) that interacts
with its clients in order to perform a specified task. A client can be either a human user, or another
e-Service. When executed, an e-Service performs its task by directly executing certain actions, and
interacting with other e-Services to delegate to them the execution of other actions. In order to
address SOC from an abstract and conceptual point of view, we start by identifying several facets,
each one reflecting a particular aspect of an e-Service during its life time, as shown in Figure 1:

– The e-Service schema specifies the features of an e-Service, in terms of functional and non-
functional requirements. Functional requirements represent what an e-Service does. All other
characteristics of e-Services, such as those related to quality, privacy, performance, etc. con-
stitute the non-functional requirements. In what follows, we do not deal with non-functional
requirements, and hence use the term “e-Service schema” to denote the specification of func-
tional requirements only.

– The e-Service implementation and deployment indicate how an e-Service is realized, in terms
of software applications corresponding to the e-Service schema, deployed on specific platforms.
This aspect regards the technology underlying the e-Service implementation, and it goes beyond

4

e-Service
Schema

The specification of a software artifact
providing services. It defines interface and
behaviour of the e-Service. The specification
is realized as an e-Service Implementation

e-Service
Implementation

1

*

realization

The realization of an e-Service;
it can be installed

Deployed
e-Service

1

*

installation

An installed copy of an
e-Service Implementation; it is deployed by
registering it with the community environment,
thus enabling the environment to identify it to
use when creating an instance

e-Service
Instance

1

*

instantiation

A run-time concept: an “object” with its own
state and a unique identity, the “thing” that
performs the implemented bahavior. A
Deployed e-Service may have multiple
instances

e-Service
Schema

The specification of a software artifact
providing services. It defines interface and
behaviour of the e-Service. The specification
is realized as an e-Service Implementation

e-Service
Implementation

1

*

realization

The realization of an e-Service;
it can be installed

Deployed
e-Service

1

*

installation

An installed copy of an
e-Service Implementation; it is deployed by
registering it with the community environment,
thus enabling the environment to identify it to
use when creating an instance

e-Service
Instance

1

*

instantiation

A run-time concept: an “object” with its own
state and a unique identity, the “thing” that
performs the implemented bahavior. A
Deployed e-Service may have multiple
instances

Fig. 1. e-Service facets

the scope of our research. Therefore, although implementation issues, and other related char-
acteristics such as recovery mechanisms or exception handling, are important issues in SOC, in
what follows we abstract from these properties of e-Services.

– An e-Service instance is an occurrence of an e-Service effectively running and interacting with
a client. In general, several running instances corresponding to the same e-Service schema exist,
each one executing independently from the others.

In order to execute an e-Service, the client needs to activate an instance from a deployed e-
Service. In our abstract model, the client can then interact with the e-Service instance by repeatedly
choosing an action and waiting for either the fulfillment of the specific task, or the return of some
information. On the basis of the information returned the client chooses the next action to invoke.
In turn, the activated e-Service instance executes (the computation associated to) the invoked
action; after that, it is ready to execute new actions. Under certain circumstances, i.e., when the
client has reached his goal, he may explicitly end (i.e., terminate) the e-Service instance. However,
in principle, a given e-Service instance may need to interact with a client for an unbounded, or

5

even infinite, number of steps, thus providing the client with a continuous service. In this case, no
operation for ending the e-Service instance is ever executed.

In general, when a client invokes an e-Service instance e, it may happen that e does not execute
all of its actions on its own, but instead it delegates some or all of them to other e-Service instances.
All this is transparent to the client. To precisely capture the situations when the execution of certain
actions can be delegated to other e-Service instances, we introduce the notion of community of e-
Services, which is formally characterized by:

– a finite common set of actions Σ, called the action alphabet, or simply the alphabet of the
community,

– a set of e-Services specified in terms of the common set of actions.

Hence, to join a community, an e-Service needs to export its service(s) in terms of the alphabet of
the community. The added value of a community is the fact that an e-Service of the community may
delegate the execution of some or all of its actions to other instances of e-Services in the community.
We call such an e-Service composite. If this is not the case, an e-Service is called simple. Simple
e-Services realize offered actions directly in the software artifacts implementing them, whereas
composite e-Services, when receiving requests from clients, can invoke other e-Service instances in
order to fulfill the client’s needs.

Notably, the community can be used to generate (virtual) e-Services whose execution completely
delegates actions to other members of the community. In other words, the community can be used to
realize a target e-Service requested by the client, not simply by selecting a member of the community
to which delegate the target e-Service actions, but more generally by suitably “composing” parts of
e-Service instances in the community in order to obtain a virtual e-Service which is “coherent with”
the target one. This function of composing existing e-Services on the basis of a target e-Service is
known as e-Service composition, and is the main subject of our research.

In the following sections we formally describe how the e-Services of a community are specified,
through the notion of e-Service schema, and how they are executed, through the notion of e-Service
instance.

5 e-Service Schema

From the external point of view, i.e., that of a client, an e-Service E, belonging to a community C,
is seen as a black box that exhibits a certain exported behavior represented as sequences of atomic
actions of C with constraints on their invocation order. From the internal point of view, i.e., that
of an application deploying E and activating and running an instance of it, it is also of interest how
the actions that are part of the behavior of E are effectively executed. Specifically, it is relevant to
specify whether each action is executed by E itself or whether its execution is delegated to another
e-Service belonging to the community C with which E interacts, transparently to the client of E.
To capture these two points of view we introduce the notion of e-Service schema, as constituted by
two different parts, called external schema and internal schema, respectively.

5.1 External Schema

The aim of the external schema is to specify the exported behavior of the e-Service. For now we are
not concerned with any particular specification formalism, rather we only assume that, whatever
formalism is used, the external schema specifies the behavior in terms of a tree of actions, called
external execution tree. The external execution tree abstractly represents all possible executions of

6

a t

l l

t a t

l l

a

l = listen

..

.
..
.

.

..
.
..

a = search by author

t = search by title

(a) External tree

(a, E1, e1)

(l, E1, e1)

(a, E1, e1)

(l, E1, e1)

(t, E2, e2)

(t, E2, e2)

(l, E2, e2)

(t, E2, e2)

(a, E1, e1)

(l, E2, e2)

.

..

..

.
..
.

.

..

(b) Internal tree

Fig. 2. Execution trees of e-Service E0

all possible instances of an e-Service. Therefore, any instance of an e-Service executes a path of
such a tree. In this sense, each node x of an external execution tree represents the history of the
sequence of actions of all e-Service instances2, that have executed the path to x. For every action a
belonging to the alphabet Σ of the community, and that can be executed at the point represented
by x, there is a (single) successor node x·a. The node x·a represents the fact that, after performing
the sequence of actions leading to x, the client chooses to execute action a, among those possible,
thus getting to x·a. Therefore, each node represents a choice point at which the client makes a
decision on the next action the e-Service should perform. We call the pair (x, x·a) edge of the tree
and we say that such an edge is labeled with action a. The root ε of the tree represents the fact that
the e-Service has not yet executed any action. Some nodes of the execution tree are final : when
a node is final, and only then, the client can stop the execution of the e-Service. In other words,
the execution of an e-Service can correctly terminate only at these points3. Observe that non final
states are common in interactive e-Services (for humans) over the web. There, however, it is always
possible to abort the entire transaction. Here, we consider the abortion mechanism as orthogonal
to the e-Service specification.

Notably, an execution tree does not represent the information returned to the client by the e-
Service instance execution, since the purpose of such information is to let the client choose the next
action, and the rationale behind this choice depends entirely on the client. Additionally, our model
of e-Service is oriented towards representing the interactions between a client and an e-Service.
Therefore, our focus is on action sequences, rather than on actions with input/output parameters.

Given the external schema Eext of an e-Service E, we denote with T (Eext) the external execution
tree specified by Eext .

Example 1. Figure 2(a) shows (a portion of) an (infinite) external execution tree representing e-
Service E0 that allows for searching and listening to mp3 files4. In particular, the client may choose
2 In what follows, we omit the terms “schema” and “instance” when clear from the context.
3 Typically, in an e-Service, the root is final, to model that the computation of the e-Service may not be started at

all by the client.
4 Final nodes are represented by two concentric circles.

7

to search for a song by specifying either its author(s) or its title (action search by author and
search by title, respectively). Then the client selects and listens to a song (action listen).
Finally, the client chooses whether to perform those actions again. �

5.2 Internal Schema

The internal schema specifies, besides the external behavior of the e-Service, the information on
which e-Service instances in the community execute each given action. As before, for now, we
abstract from the specific formalism chosen for giving such a specification, instead we concentrate
on the notion of internal execution tree. An internal execution tree is analogous to an external
execution tree, except that each edge is labeled by (a, I), where a is the executed action and I is a
nonempty set denoting the e-Service instances executing a5. Every element of I is a pair (E′, e′),
where E′ is an e-Service and e′ is the identifier of an instance of E′. The identifier e′ uniquely
identifies the instance of E′ within the internal execution tree. In general, in the internal execution
tree of an e-Service E, some actions may be executed also by the running instance of E itself. In
this case we use the special instance identifier this. Note that, since I is in general not a singleton,
the execution of each action can be delegated to more than one other e-Service instance.

An internal execution tree induces an external execution tree: given an internal execution tree
Tint we call offered external execution tree the external execution tree Text obtained from Tint by
dropping the part of the labeling denoting the e-Service instances, and therefore keeping only the
information on the actions. An internal execution tree Tint conforms to an external execution tree
Text if Text is equal to the offered external execution tree of Tint .

Given an e-Service E, the internal schema Eint of E is a specification that uniquely represents
an internal execution tree. We denote such an internal execution tree by T (Eint).

An e-Service E with external schema Eext and internal schema Eint is well formed, if T (Eint)
conforms to T (Eext), i.e., its internal execution tree conforms with its external execution tree.

We now formally define when an e-Service of a community correctly delegates actions to other
e-Services of the community. We need a preliminary definition: given the internal execution tree
Tint of an e-Service E, and a path p in Tint starting from the root, we call the projection of p on an
instance e′ of an e-Service E′ the path obtained from p by removing each edge whose label (a, I) is
such that I does not contain e′, and collapsing start and end node of each removed edge.

We say that the internal execution tree Tint of an e-Service E is coherent with a community C
if:

– for each edge labeled with (a, I), the action a is in the alphabet of C, and for each pair (E′, e′)
in I, E′ is a member of the community C;

– for each path p in Tint from the root of Tint to a node x, and for each pair (E′, e′) appearing in
p, with e′ different from this, the projection of p on e′ is a path in the external execution tree
T ′

ext of E′ from the root of T ′
ext to a node y, and moreover, if x is final in Tint , then y is final in

T ′
ext .

Observe that, if an e-Service of a community C is simple, i.e., it does not delegate actions to
other e-Service instances, then it is trivially coherent with C. Otherwise, it is composite and hence
delegates actions to other e-Service instances. In the latter case, the behavior of each one of such
e-Service instances must be correct according to its external schema.
5 Note that, in general, an action can be executed by one or more e-Service instances. The opportunity of allowing

more than one component e-Service to execute the same action is important in specific situations, as the one
reported in [10].

8

a t

l l

t a t

l l

a

l = listen

..

.
..
.

.

..
.
..

a = search by author

t = search by title

Fig. 3. External view of an e-Service instance

A community of e-Services is well-formed if each e-Service in the community is well-formed,
and the internal execution tree of each e-Service in the community is coherent with the community.

Example 2. Figure 2(b)6 shows (a portion of) an (infinite) internal execution tree, conforming
to the external execution tree of e-Service E0 shown in Figure 2(a), where all the actions are
delegated to e-Services of the community. In particular, the execution of search by author action
and its subsequent listen action are delegated to instance e1 of e-Service E1, and the execution
of search by title action and its subsequent listen action to instance e2 of e-Service E2. �

6 e-Service Instances

In order to be executed, a deployed e-Service has to be activated, i.e., necessary resources need to
be allocated. An e-Service instance represents such an e-Service running and interacting with its
client.

From an abstract point of view, a running instance corresponds to an execution tree with a
highlighted node, representing the “current position”, i.e., the point reached by the execution. The
path from the root of the tree to the current position is the run of the e-Service at a certain point,
while the execution (sub-)tree having as root the current position describes the behavior of what
remains of the e-Service once the current position is reached.

Formally, an e-Service instance is characterized by:

– an instance identifier,
– an external view of the instance, which is an external execution tree with a current position,
– an internal view of the instance, which is an internal execution tree with a current position.

Example 3. Figure 3 shows the external view of an instance of the e-Service E0 of Figure 2 (a). The
sequence of actions executed so far and the current position on the execution tree are shown in thick
lines. It represents a snapshot of an execution in which a client searched for an mp3 by specifying
its author(s), listened to it, and reached a point where he has to choose whether (i) performing
6 In the figure, each action is delegated to exactly one instance of an e-Service schema. Hence, for simplicity, we

have denoted a label (a, {(Ei, ei)}) simply by (a, Ei, ei), for i = 1, 2.

9

C

(design-time) Schema flow

(run-time) Interaction

...

Composer

engine
Orchestration

T (Eint)

T (Eext)

T (En
int)T (En

ext)

T (E1
int)T (E1

ext)

Fig. 4. e-Service Integration System

another search by author action, (ii) performing a search by title action, or (iii) terminating
the e-Service (since the current position corresponds to a final node). �

The internal view of an e-Service instance additionally maintains information on which e-Service
instances execute which actions. At each point of the execution there may be several other active
instances of e-Services that cooperate with the current one, each identified by its instance identifier.

7 Composition Synthesis

When a user requests a certain service from an e-Service community, there may be no e-Service in
the community that can deliver it directly. However, it may still be possible to synthesize a new
composite e-Service, which suitably delegates action execution to the e-Services of the community,
and when suitably orchestrated, provides the user with the service he requested. Formally, given
an e-Service community C and the external schema Eext of a target e-Service E expressed in terms
of the alphabet Σ of C, a composition of E wrt C is an internal schema Eint such that (i) T (Eint)
conforms to T (Eext), (ii) T (Eint) delegates all actions to the e-Services of C (i.e., this does not
appear in T (Eint)), and (iii) T (Eint) is coherent with C.

The problem of composition existence is the problem of checking whether there exists some
internal schema Eint that is a composition of E wrt C. Observe that, since for now we are not
placing any restriction of the form of Eint , this corresponds to checking if there exists an internal
execution tree Tint such that (i) Tint conforms to T (Eext), (ii) Tint delegates all actions to the
e-Services of C, and (iii) Tint is coherent with C.

The problem of composition synthesis is the problem of synthesizing an internal schema Eint

for E that is a composition of E wrt C.
Figure 4 shows the architecture of an e-Service Integration System, which delivers possibly

composite e-Services on the basis of user requests, exploiting the available e-Services of a community
C. When a client requests a new e-Service E, he presents his request in the form of an external
e-Service schema Eext for E, specified as an external execution tree T (Eext), and expects the e-
Service Integration System to execute an instance of E. To do so, first a composer module makes
the composite e-Service E available for execution, by synthesizing an internal schema Eint7 of E,
specified as an internal execution tree T (Eint), and that is a composition of E wrt the community
C. Then, following T (Eint), an orchestration engine activates an (internal) instance of E, and

7 If at least one exists.

10

orchestrates the different available e-Services, by activating and interacting with their external
views, so as to fulfill the client’s needs.

The orchestration engine is also in charge of terminating the execution of component e-Service
instances, offering the correct set of actions to the client, as defined by the external execution tree,
and invoking the action chosen by the client on the e-Service that offers it.

All this happens in a transparent manner for the client, who interacts only with the e-Service
Integration System and is not aware that a composite e-Service is being executed instead of a simple
one.

8 e-Services as Finite State Machines

Till now, we have not referred to any specific form of e-Service schemas. In what follows, we consider
e-Services whose schema (both internal and external) can be represented using only a finite number
of states, i.e., using (deterministic) Finite State Machines (FSMs).

The class of e-Services that can be captured by FSMs are of particular interest. This class allows
us to address an interesting set of e-Services, that are able to carry on rather complex interactions
with their clients, performing useful tasks. Indeed, several papers in the e-Service literature adopt
FSMs as the basic model of exported behavior of e-Services [26, 12, 11]. Also, FSMs constitute the
core of statecharts, which are one of the main components of UML and are becoming a widely used
formalism for specifying the dynamic behavior of entities.

In the study we report here, we make the simplifying assumption that the number of instances
of an e-Service in the community that can be involved in the internal execution tree of another
e-Service is bounded and fixed a priori. In fact, wlog we assume that it is equal to one. If more
instances correspond to the same external schema, we simply duplicate the external schema for each
instance. Since the number of e-Services in a community is finite, the overall number of instances
orchestrated by the orchestrator in executing an e-Service is finite and bounded by the number of
e-Services belonging to the community. Within this setting, in the next section, we show how to
solve the composition problem, and how to synthesize a composition that is a FSM. Instead, how
to deal with an unbounded number of instances remains open for future work.

We consider here e-Services whose external schemas can be represented with a finite number of
states. Intuitively, this means that we can factorize the sequence of actions executed at a certain
point into a finite number of states, which are sufficient to determine the future behavior of the e-
Service. Formally, for an e-Service E, the external schema of E is a FSM Aext

E = (Σ, SE , s0
E , δE , FE),

where:

– Σ is the alphabet of the FSM, which is the alphabet of the community;
– SE is the set of states of the FSM, representing the finite set of states of the e-Service E;
– s0

E is the initial state of the FSM, representing the initial state of the e-Service;
– δE : SE × Σ → SE is the (partial) transition function of the FSM, which is a partial function

that given a state s and an action a returns the state resulting from executing a in s;
– FE ⊆ SE is the set of final states of the FSM, representing the set of states that are final for

the e-Service E, i.e., the states where the interactions with E can be terminated.

The FSM Aext
E is an external schema in the sense that it specifies an external execution tree

T (Aext
E). Specifically, given Aext

E we define T (Aext
E) inductively on the level of nodes in the tree, by

making use of an auxiliary function σ(·) that associates to each node of the tree a state in the FSM.
We proceed as follows:

11

l

a

t
l = listen

a = search by author

t = search by title

(a) External FSM

(a, 1)

(t, 2)

(l, 2)

(l, 1)

(b) Internal MFSM

Fig. 5. e-Service specification as FSM

– ε, as usual, is the root of T (Aext
E) and σ(ε) = s0

E ;
– if x is a node of T (Aext

E), and σ(x) = s, for some s ∈ SE , then for each a such that s′ = δE(s, a)
is defined, x · a is a node of T (Aext

E) and σ(x · a) = s′;
– x is final iff σ(x) ∈ FE .

Figure 5(a) shows a FSM that is a specification for the external execution tree of Figure 2(a).
Note that in general there may be several FSMs that may serve as such a specification.

Since we have assumed that each e-Service in the community can contribute to the internal
execution tree of another e-Service with at most one instance, in specifying internal execution
trees we do not need to distinguish between e-Services and e-Service instances. Hence, when the
community C is formed by n e-Services E1, . . . , En, it suffices to label the internal execution tree
of an e-Service E by the action that caused the transition and a subset of [n] = {1, . . . , n} that
identifies which e-Services in the community have contributed in executing the action. The empty
set ∅ is used to (implicitly) denote this.

As far as internal schemas, for an e-Service E, we are interested in those having a fi-
nite number of states, i.e., that can be represented as a Mealy FSM (MFSM) Aint

E =
(Σ, 2[n], Sint

E , s0
E

int
, δint

E , ωint
E , F int

E), where:

– Σ, Sint
E , s0

E
int

, δint
E , F int

E , have the same meaning as for Aext
E ;

– 2[n] is the output alphabet of the MFSM, which is used to denote which e-Service instances
execute each action;

– ωint
E : Sint

E × Σ → 2[n] is the output function of the MFSM, that, given a state s and an action
a, returns the subset of e-Services that executes action a when the e-Service E is in the state s;
if such a set is empty then this is implied; we assume that the output function ωint

E is defined
exactly when δint

E is so.

The MFSM Aint
E is an internal schema in the sense that it specifies an internal execution tree

T (Aint
E). Given Aint

E we, again, define the internal execution tree T (Aint
E) by induction on the level

of the nodes, by making use of an auxiliary function σint(·) that associates each node of the tree
with a state in the MFSM, as follows:

– ε is, as usual, the root of T (Aint
E) and σint(ε) = s0

E
int ;

– if x is a node of T (Aint
E), and σint(x) = s, for some s ∈ Sint

E , then for each a such that
s′ = δint

E (s, a) is defined, x · a is a node of T (Aint
E) and σint(x · a) = s′;

– if x is a node of T (Aint
E), and σint(x) = s, for some s ∈ Sint

E , then for each a such that ωint
E (s, a)

is defined (i.e., δint
E (s, a) is defined), the edge (x, x · a) of the tree is labeled by ωint

E (s, a);

12

– x is final iff σint(x) ∈ F int
E .

As an example, Figure 5(b) shows a MFSM that is a specification for an internal execution
tree that conforms to the external execution tree specified by the FSM of Figure 5(a). Indeed the
MFSM in the figure compactly represents the e-Service whose internal execution tree is shown in
Figure 2(b). In general, an external schema specified as FSM and its corresponding internal schema
specified as MFSM may have different structures, as the example shows.

Given an e-Service E whose external schema is an FSM and whose internal schema is an MFSM,
checking whether E is well formed, i.e., whether the internal execution tree conforms to the external
execution tree, can be done using standard finite state machine techniques. Similarly for coherency
of E with a community of e-Services whose external schemas are FSMs. In this report, we do not
go into the details of these problems, and instead we concentrate on composition.

9 Automatic e-Service Composition

In this section, we address the problem of actually checking the existence of a composite e-Service
in the FSM-based framework introduced above. We show that if a composition exists then there is
one where the internal schema is constituted by a MFSM, and we show how to actually synthesize
such a MFSM. The basic tool we use to show such results is reducing the problem of composition
existence into satisfiability of a suitable formula of Deterministic Propositional Dynamic Logic
(DPDL), a well-known logic of programs developed to verify properties of program schemas [28].
We refer to Appendix A for a brief tutorial on DPDL.

Given the target e-Service E0 whose external schema is a FSM A0 and a community of e-
Services formed by n component e-Services E1, . . . , En whose external schemas are FSMs A1, . . . , An

respectively, we build a DPDL formula Φ as follows. As set of atomic propositions P in Φ we have
(i) one proposition sj for each state sj of Aj , j = 0, . . . , n, that is true if Aj is in state sj ; (ii)
propositions Fj , j = 0, . . . , n, denoting whether Aj is in a final state; and (iii) propositions moved j ,
j = 1, . . . , n, denoting whether (component) automaton Aj performed a transition. As set of atomic
actions A in Φ we have the actions in Σ (i.e, A = Σ). The formula Φ is built as a conjunction of
the following formulas.

– The formulas representing A0 = (Σ, S0, s
0
0, δ0, F0):

• [u](s → ¬s′) for all pairs of states s ∈ S0 and s′ ∈ S0, with s �= s′; these say that propositions
representing different states are disjoint (cannot be true simultaneously).

• [u](s → 〈a〉true ∧ [a]s′) for each a such that s′ = δ0(s, a); these encode the transitions of
A0.

• [u](s → [a]false) for each a such that δ(s, a) is not defined; these say when a transition is
not defined.

• [u](F0 ↔ ∨
s∈F0

s): this highlights final states of A0.
– For each component FSM Ai = (Σ, Si, s

0
i , δi, Fi), the following formulas:

• [u](s → ¬s′) for all pairs of states s ∈ Si and s′ ∈ Si, with s �= s′; these again say that
propositions representing different states are disjoint.

• [u](s → [a](moved i ∧ s′ ∨ ¬moved i ∧ s)) for each a such that s′ = δi(s, a); these encode the
transitions of Ai, conditioned to the fact that the component Ai is actually required to make
a transition a in the composition.

• [u](s → [a]¬moved i) for each a such that δi(s, a) is not defined; these say that when a
transition is not defined, Ai cannot be asked to execute in the composition.

• [u](Fi ↔
∨

s∈Fi
s): this highlights final states of Ai.

13

– Finally, the following formulas:
• s0

0 ∧
∧

i=1,...,n s0
i : this says that initially all e-Services are in their initial state; note that this

formula is not prefixed by [u]·.
• [u](〈a〉true → [a]

∨
i=1,...,n moved i), for each a ∈ Σ; these say that at each step at least one

of the component FSM has moved.
• [u](F0 → ∧

i=1,...,n Fi): this says that when the target e-Service is in a final state also all
component e-Services must be in a final state.

Theorem 1. The DPDL formula Φ, constructed as above, is satisfiable if and only if there exists
a composition of E0 wrt E1, . . . , En.

Proof (sketch). “⇐” Suppose that there exists some internal schema (without restriction on
its form) E0

int which is a composition of E0 wrt E1, . . . , En. Let Tint = T (E0
int) be the internal

execution tree defined by E0
int .

Then for the target e-Service E0 and each component e-Service Ei, i = 1, . . . n, we can define
mappings σ and σi from nodes in Tint to states of A0 and Ai, respectively, by induction on the level
of the nodes in Tint as follows.

– base case: σ(ε) = s0
0 and σi(ε) = s0

i .
– inductive case: let σ(x) = s and σi(x) = si, and let the node x · a be in Tint with the edge

(x, x · a) labeled by (a, I), where I ⊆ [n] and I �= ∅ (notice that this may not occur since Tint

is specified by a composition). Then we define

σ(x · a) = s′ = δ0(s, a)

and

σi(x · a) =

{
si

′ = δi(si, a) if i ∈ I

si if i �∈ I

Once we have σ and σi in place we can define a model I = (∆I , {aI}a∈Σ , {P I}P∈P) of Φ as
follows:

– ∆I = {x | x ∈ Tint};
– aI = {(x, x · a) | x, x · a ∈ Tint}, for each a ∈ Σ;
– sI = {x ∈ Tint | σ(x) = s}, for all propositions s corresponding to states of A0;
– sIi = {x ∈ Tint | σi(x) = si}, for all propositions si corresponding to states of Ai;
– movedI

i = {x · a | (x, x · a) is labeled by I with i ∈ I}, for i = 1, . . . , n;
– F I

0 = {x ∈ Tint | σ(x) = s with s ∈ F0};
– F I

i = {x ∈ Tint | σi(x) = si with si ∈ Fi}, for i = 1, . . . , n.

It is easy to check that, being Tint specified by a composition Eint , the above model indeed satisfies
Φ.

“⇒” Let Φ be satisfiable and I = (∆I , {aI}a∈Σ , {P I}P∈P) be a tree-like model. From I we
can build an internal execution tree Tint for E0 as follows.

– the nodes of the tree are the elements of ∆I ; actually, since I is tree-like we can denote the
elements in ∆I as nodes of a tree, using the same notation that we used for internal/external
execution tree;

– nodes x such that x ∈ F I
0 are the final nodes;

– if (x, x · a) ∈ aI and for all i ∈ I, x · a ∈ movedIi and for all j �∈ I, x · a �∈ movedIj , then (x, x · a)
is labeled by (a, I).

14

It is possible to show that: (i) Tint conforms to T (A0), (ii) Tint delegates all actions to the e-Services
of E1, . . . , En, and (iii) Tint is coherent with E1, . . . , En. Since we are not placing any restriction
on the kind of specification allowed for internal schemas, it follows that there exists an internal
schema Eint that is a composition of E0 wrt E1, . . . , En.

Observe that the size of Φ is polynomially related to the size of A0, A1, . . . , An. Hence, from
the EXPTIME-completeness of satisfiability in DPDL and from Theorem 1 we get the following
complexity result.

Theorem 2. Checking the existence of an e-Service composition can be done in EXPTIME.

Observe that, because of the small model property, from Φ one can always obtain a model which
is at most exponential in the size of Φ. From such a model one can extract an internal schema for E0

that is a composition of E0 wrt E1, . . . , En, and has the form of a MFSM. Specifically, given a finite
model I = (∆I , {aI}a∈Σ , {P I}P∈P), we define such an MFSM Ac = (Σ, 2[n], Sc, s

0
c , δc, ωc, Fc,) as

follows:

– Sc = ∆I ;
– s0

c = d0 where d0 ∈ (s0
0 ∧

∧
i=1,...,n s0

i)
I ;

– s′ = δc(s, a) iff (s, s′) ∈ aI ;
– I = ωc(s, a) iff (s, s′) ∈ aI and for all i ∈ I, s′ ∈ movedIi and for all j �∈ I, s′ �∈ movedIj ;
– Fc = F I

0 .

As a consequence of this, we get the following result.

Theorem 3. If there exists a composition of E0 wrt E1, . . . , E0, then there exists one which is
a MFSM of at most exponential size in the size of the external schemas A0, A1, . . . , An of E0,
E1, . . . , En respectively.

Proof (sketch). By Theorem 1, if A0 can be obtained by composing A1, . . . , An, then the DPDL
formula Φ constructed as above is satisfiable. In turn, if Φ is satisfiable, for the small-model property
of DPDL there exists a model I of size at most exponential in Φ, and hence in A0 and A1, . . . , An.
From I we can construct a MFSM Ac as above. It is possible to show that the internal execution
tree T (Ac) defined by Ac satisfies all the conditions required for Ac to be a composition, namely:
(i) T (Ac) conforms to T (A0), (ii) T (Ac) delegates all actions to the e-Services of E1, . . . , En, and
(iii) T (Ac) is coherent with E1, . . . , En.

In Appendix B a detailed example is provided, that explains the composition synthesis algorithm
step by step.

From a practical point of view, because of the correspondence between Propositional Dynamic
Logics (which DPDL belongs to) and Description Logics (DLs [13]), one can use current highly
optimized DL-based systems [4, 24]8 to check the existence of e-Service compositions. Indeed, these
systems are based on tableaux techniques that construct a model when checking for satisfiability,
and from such a model one can construct a MFSM that is the composition.

8 In fact, current DL-based systems cannot handle Kleene star. However, since in Φ, ∗ is only used to mimic universal
assertions, and such systems have the ability of handling universal assertions, they can indeed check satisfiability
of Φ.

15

10 e-Service Composition in Situation Calculus

We address the problem of computing e-Service composition in our setting by following another
different but equivalent approach. Specifically, we use formalisms developed for Reasoning about
Actions to represent e-Services, and show that again we can use logical reasoning, and in particular,
satisfiability, to characterize the problem of e-Service composition. As before, we focus on e-Services
whose execution trees have a finite representation and assume that at most one instance of an e-
Service in the community can be involved in the internal execution tree of a composite e-Service.
Instead, again, how to deal with an unbounded number of instances remains open for future work.

There are many possible action languages that can be used for representing e-Services (including
some tightly related to DL [17, 29]). Here we focus on Reiter’s Situation Calculus Basic Action
Theories [37], which are widely known and allow us to concentrate on the aspects specific to our
problem. Since we aim at actually computing the compositions we will deal with the propositional
variant of the Situation Calculus (in which fluents are propositions).

We will not go over the Situation Calculus [30] here, except to note the following components:
there is a special constant S0 used to denote the initial situation, namely that situation in which no
actions have yet occurred; there is a distinguished binary function symbol do, where do(a, s) denotes
the successor situation to s resulting from performing the action a; propositions whose truth values
vary from situation to situation are called (propositional) fluents, and are denoted by predicate
symbols taking a situation term as their last argument; and there is a special predicate Poss(a, s)
used to state that action a is executable in situation s. Within this language, we can formulate
domain theories that describe how the world changes as the result of the available actions. One
possibility are Reiter’s Basic Action Theories, which have the following form [37]:

– Axioms describing the initial situation, S0.
– Action precondition axioms, one for each primitive action a, of the form ∀s.Poss(a, s) ≡ Ψa(s),

where Ψa(s) is a Situation Calculus formula (uniform in s) with s as the only free variable and
in which Poss does not appear.

– Successor-state axioms, one for each fluent F , of the form ∀a, s.F (do(a, s)) ≡ ΦF (a, s), where
ΦF (a, s) is a Situation Calculus formula (uniform in s) with a and s as the only free variables.
These axioms take the place of effect axioms, but also provide a solution to the frame problem.

– Unique names axioms for the primitive actions plus some foundational, domain independent
axioms.

In order to characterize composition in this setting, we first show how a Basic Action Theory
can represent the external execution tree of an e-Service. We represent the external schema Eext

of an e-Service E as a Basic Action Theory Γ , where each action is represented by a Situation
Calculus action. Γ includes among its fluents a special fluent Final , denoting that the e-Service
execution can stop in that situation. Also, Γ fully specifies the value of each fluent in the initial
situation S0. Technically, this means that we have complete information on the initial situation,
and, because of the action precondition and successor-state axioms, we have complete information
in every situation.

Observe that the fluents used in Γ have a meaning only wrt to the e-Service community, since
they are not attached in any way to the actual e-Service instance the client interacts with. In
contrast, actions represent interactions meaningful both to the client and the e-Service instance.

Intuitively, the part of the situation tree [37] formed only by the actions that are possible (as
specified by Poss) directly corresponds to the external execution tree T (Eext) of the e-Service,
where the final nodes are the situations in which Final is true. To formally define such an execution

16

tree, we first inductively define a function n(·) from situations to sequences of actions union a
special value undef :

– n(S0) = ε;
– n(do(a, s)) = n(s) · a if n(s) �= undef and Poss(a, s) holds;
– n(do(a, s)) = undef otherwise.

The execution tree T (Eext) generated by Γ is defined over the set of nodes {n(s) | n(s) �= undef },
such that a node n(s) is final if and only if Final(s) holds. It is easy to check that T (Eext) is indeed
an execution tree.

Next, we turn to the problem of characterizing e-Service composition. Let Γ1, . . . , Γn, be the
theories for the component e-Services, and let Γ0 be the theory for the target e-Service E0. The
basic idea is to represent which e-Services are executed when an action of the target e-Service is
performed. We do this by means of special predicates Stepi(a, s), denoting that the active instance
of e-Service Ei executes action a in situation s. Formally, we construct a Situation Calculus theory
ΓC formed by the union of the axioms below:

– Γ0;
– Γ ′

i , for i = 1, . . . , n, where Γ ′
i is obtained from Γi:

1. by renaming each fluent F , including Final , to Fi;
2. by renaming Poss to Poss i;
3. by modifying the successor-state axioms as follows:

∀a, s.Fi(do(a, s)) ≡ (Stepi(a, s) ∧ ΦFi(a, s)) ∨ (¬Stepi(a, s) ∧ Fi(s));

– ∀a, s.Poss(a, s) → ∨n
i=1 Stepi(a, s) ∧ Poss i(a, s);

– ∀s.Final(s) → ∧n
i=1 Final i(s).

Observe that, due to the last two axioms, the resulting theory ΓC is not a Basic Action Theory.
In ΓC , we do not have anymore complete knowledge on the value of the fluents of the various
e-Services. This is due to the new form of the successor-state axioms, which make fluents depend
on the predicates Stepi, whose value is not determined uniquely by ΓC . Note however that if we
did know such values in every situation, then the value of all the fluents would be determined. Note
also that the value of Stepi is constrained by the last two axioms so that, in every situation that is
not final for the target e-Service E0, at least one of the component e-Services steps forward. Finally,
the last axiom states that, if E0 is in a final situation, then so are all component e-Services.

It can be shown that ΓC (i) characterizes all the internal execution trees that conform to the
external execution tree generated by Γ0; (ii) delegates all actions to E1, . . . , En; (iii) is coherent
with E1, . . . , En. More precisely it can be shown that from each model of ΓC one can construct one
such internal execution tree and that on the other hand starting from each such internal execution
tree one can construct a model of ΓC .

This characterization allow us to reduce checking for the existence of a composition to checking
satisfiability of a propositional Situation Calculus theory.

Theorem 4. Let Γ0, Γ1, . . . , Γn be the Basic Action Theories representing the e-Services
E0, E1, . . . , En respectively, and let ΓC be the theory defined as above. Then, ΓC is satisfiable if
and only if E0 can be composed using E1, . . . , En.

17

10.1 DPDL encoding

Once we have characterized e-Services and the problem of e-Service composition in Situation Cal-
culus, we address the synthesis of a composite e-Service. We propose two equivalent approaches,
based on reductions to checking satisfiability of a DPDL formula and of a Description Logics knowl-
edge base, respectively. Indeed, we know from [16] that DLs and PDLs are equivalent. In the next
subsection, we discuss the DL-based approach; in what follows we consider the DPDL-based one.

Specifically, we define a mapping δ from (uniform) Situation Calculus formulas with a free
situation variable s to propositional DPDL formulas as follows:

δ(F (s)) = F, for each fluent F

δ(Poss(a, s)) = Poss a, (sim. for Poss i(a, s))
δStepi(a, s) = Step ai, for each i ∈ 1..n

δ(¬ϕ(s)) = ¬δ(ϕ(s))
δ(ϕ1(s) ∧ ϕ2(s)) = δ(ϕ1(s)) ∧ δ(ϕ2(s))

Next, we define the DPDL counterpart ∆C of ΓC as the conjunction of the following formulas.

– to model the situation tree, we add the conjunct [u](
∧

a∈Σ〈a〉true), and implicitly take into
account the tree model property;

– to model the initial situation S0, we add the conjunct δ(S0); 9

– for each precondition axiom ∀s.Poss(a, s) ≡ Ψa(s), we add the conjunct [u](δ(Poss(a, s)) ≡
δ(Ψa(s))); similarly for the modified precondition axioms in Γ ′

1, . . . , Γ
′
n;

– for each successor-state axiom ∀a, s.F (do(a, s)) ≡ ΦF (a, s), we first instantiate the axiom for
each action in Σ and we simplify the equalities on actions. Then, for each instantiated successor-
state axiom F (do(ā, s)) ≡ Φā

F (s) – where Φā
F (s) is what we obtain from ΦF (a, s) once we

instantiate it on the action ā and resolve the equalities on actions – we add the conjunct
[u]([ā]F ≡ δ(Φā

F (s)));
– for the last two axioms of ΓC , we add the conjuncts [u](Poss a∧Final → ∨n

i=1 Step ai∧Poss ai)
and [u](Final → ∧n

i=1 Final i).

Note that, in the above construction, it is necessary to instantiate the successor-state axioms
for each action, since, contrary to the Situation Calculus, DPDL does not admit quantification over
actions.

Theorem 5. The DPDL counterpart ∆C of ΓC is satisfiable if and only if ΓC is so.

Proof (sketch). Given a model of ΓC , one can easily construct a model of ∆C . For the converse,
we need to resort to the tree model property, and show that for every tree model of ∆C (possibly
obtained by unwinding an arbitrary model), we get a model of ΓC .

Observe that the size of ∆C is at most equal to the size of ΓC times the number of actions in
Σ. Hence, from the EXPTIME-completeness of satisfiability in DPDL and from Theorem 5 we get
again the following complexity result.

Theorem 6. Checking the existence of an e-Service composition can be done in EXPTIME.

Observe that, because of the small model property, from ∆C one can always obtain a model
which is at most exponential. From such a model one can immediately extract a finite (possibly
exponential) representation of the composition labeling.
9 Note that [u]· does not appear in front of the propositional formula S0.

18

10.2 DL encoding

We show how to synthesize a composite e-Service by re-expressing Situation Calculus Action The-
ories as an ALU knowledge base, a well known Description Logic [4]. ALU concepts are built by
starting from atomic concepts and atomic roles as follows:

C −→ A | ¬A | C1 � C2 | C1 � C2 | ∀R.C | ∃R.�
where A is an atomic concept and R is an atomic role. An ALU knowledge base is a set of inclusion
assertions of the form

C1 � C2

where C1, C2 are arbitrary ALU concepts. We also use the abbreviation C1 ≡ C2 for C1 � C2

and C2 � C1. As for reasoning service we concentrate on concept satisfiability in a knowledge base,
which is easily shown to be EXPTIME-complete for ALU , since concept satisfiability in a knowledge
base is already EXPTIME-hard for AL and is EXPTIME-complete for ALC which includes ALU
(see [4] for details).

ALU (as well as ALC) enjoys three properties that are of particular interest for our aims. The
first is the tree model property, which says that every model of a concept in a knowledge base can
be unwound to a (possibly infinite) tree. The second is the small model property, which says that
every satisfiable concept in a knowledge base admits a finite model of size at most exponential in
the size of the concept and the knowledge base itself. The third is the single successor property that
says that every model of a concept in a knowledge base can be transformed in such a way that in
each object there is at most a unique R-successor for each role R. Moreover such a transformation
does not increase the size of the model.

Similarly as before, we define a mapping δ from (uniform) Situation Calculus formulas (wlog
in negation normal form) with a free situation variable s to boolean combination of concepts as
follows:

δ(F (s)) = F, for each fluent F

δ(Poss(a, s)) = Poss a, (similarly for Poss i(a, s))
δ(Stepi(a, s)) = Step ai, for each i ∈ 1..n

δ(¬ϕ(s)) = ¬δ(ϕ(s)) (ϕ is an atomic proposition)
δ(ϕ1(s) ∧ ϕ2(s)) = δ(ϕ1(s)) � δ(ϕ2(s))
δ(ϕ1(s) ∨ ϕ2(s)) = δ(ϕ1(s)) � δ(ϕ2(s))

Also, we consider an ALU role for each atomic action in Σ.
Next, we define the ALU counterpart ∆C of ΓC as the following knowledge base.

– to model the situation tree, we add the assertion � � �a∈Σ ∃a.�, and implicitly take into
account the tree model property and the unique successor property;

– to model the initial situation S0, we add the assertion Init � δ(S0), where Init is a new atomic
concept denoting the initial situation;

– for each precondition axiom ∀s.Poss(a, s) ≡ Ψa(s), we add the assertion δ(Poss(a, s)) ≡
δ(Ψa(s)); similarly for the modified precondition axioms in Γ ′

1, . . . , Γ
′
n;

– for each successor-state axiom ∀a, s.F (do(a, s)) ≡ ΦF (a, s), we first instantiate the axiom for
each action in Σ and we simplify the equalities on actions. Then, for each instantiated successor-
state axiom F (do(ā, s)) ≡ Φā

F (s) – where Φā
F (s) is what we obtain from ΦF (a, s) once we

instantiate it on the action ā and resolve the equalities on actions – we add the assertion
∀ā.F ≡ δ(Φā

F (s));

19

– for the last two axioms of ΓC , we add the assertions Poss a � ⊔n
i=1 Step ai � Poss ai and

Final � �n
i=1 Final i.

Observe that, in the above construction, it is necessary to instantiate the successor-state axioms
for each action, since, contrary to the Situation Calculus, ALU does not admit quantification over
actions.

Theorem 7. The Init concept is satisfiable in the ALU-counterpart ∆C of ΓC if and only if ΓC is
satisfiable.

Observe that the size of ∆C is at most equal to the size of ΓC times the number of actions in
Σ. Hence, from the EXPTIME-completeness of concept satisfiability in ALU knowledge bases and
from Theorem 7 we get again the following complexity result.

Theorem 8. Checking the existence of an e-Service composition can be done in EXPTIME.

Observe that, because of the small model property and the single successor property, if Init
is indeed satisfiable in ∆C one can always obtain a model which is single successor and of size at
most exponential. From such a model one can immediately extract a finite (possibly exponential)
representation of the internal execution tree constituting the composition. Also from such a rep-
resentation one can build a Situation Calculus Basic Action Theory (or its counterpart in ALU if
needed) that generates exactly such a internal execution tree.

Note that all approaches lead to the same lower bound as far complexity of composition, as
Theorems 2, 6 and 8 show.

11 Future Work

The main contribution of our research on service oriented computing is in tackling simultaneously
the following issues: (i) presenting a formal model where the problem of e-Service composition is
precisely characterized, (ii) providing techniques for computing e-Service composition in the case
of e-Services represented by finite state machines, and (iii) providing a computational complexity
characterization of the algorithm for automatic composition.

In the future we plan to extend our work both in practical and theoretical directions. For exam-
ple, it is interesting to give a lower bound characterization for the complexity of the composition
problem. Additionally, we can take into account, in our setting, the presence of incomplete infor-
mation [7], as well as of communication delays and of an unbounded number of active instances.
We are also developing a DL-based prototype system that implements the devised composition
technique.

However, from our research on e-Services, even more far-reaching open issues may be identified.
We may define a real-business scenario for finite state e-Service composition, where e-Services are
expressed in terms of standard formalisms such as those based on UML statecharts. Then, we can
invoke the composition system under development on such e-Services and test how the complexity
of composition in our framework impacts the real world applications. Another possible research
line may concern studying if and how our mediated approach can evolve towards a peer-to-peer
one. Indeed, in our framework, only after the composite e-Service has been synthesized (off-line),
the orchestrator invokes each component e-Service accordingly. Therefore, for each action to be
performed by the composite e-Service, the orchestrator calls the component e-Service that executes
it; in particular, the orchestrator may repeatedly call the same e-Service to have it execute a
sequence of actions. In such a case, instead, it would be desirable to identify “bulks” of consecutive

20

actions executed by a same e-Service, and to call such an e-Service just once. Taking this situation to
the extreme, it is possible to identify situations when the composite e-Service can be decomposed
into simpler, concurrent finite state machines, to be executed by the component e-Services that
exchange synchronization messages among them, in order to decide when which e-Service executes
which action(s). In such a case the orchestrator is dropped out, and the user directly interacts with
the component e-Services in the community. This implies that the component e-Services become
more complex since they have to implement synchronization logic and communication delays. Of
course, it is interesting also to study scenarios depending on the number of synchronization messages
exchanged. As an example, when no synchronization message is present, the user interacts with
only one component e-Service.

The research in e-Service composition will also be performed within two projects, currently
under review. The first one, a COFIN project, aims at studying and applying e-Services and e-
Service composition to a domotic context10. Our Department participates to this project as the
national coordinator. The second project is an european Network of Excellence aiming at defining
a general framework for e-Services from a point of view which is both theoretical and application
oriented. Our Department participates to this network as the coordinator of the work-package about
the definition of a theoretical framework for e-Service composition.

References

1. M. Aiello, M.P. Papazoglou, J. Yang, M. Carman, M. Pistore, L. Serafini, and P. Traverso. A Request Language
for Web-Services Based on Planning and Constraint Satisfaction. In Proceedings of the 3rd VLDB International
Workshop on Technologies for e-Services (VLDB-TES 2002), Hong Kong, China, 2002.

2. A. Ankolekar, M. Burstein, J. Hobbs, O. Lassila, D. Martin, D. McDermott, S. McIlraith, S. Narayanan,
M. Paolucci, T. Payne, and K. Sycara. DAML-S: Web Service Description for the Semantic Web. In Proceedings
of the 1st International Semantic Web Conference (ISWC 2002), Chia, Sardegna, Italy, 2002.

3. Ariba, Microsoft, and IBM. Web Services Description Language (WSDL) 1.1. W3C Note. http://www.w3.org/
TR/2001/NOTE-wsdl-20010315, March 2001.

4. Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F. Patel-Schneider, editors. The
Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, 2003.

5. BEA, Intalio, SAP, and Sun. Web Service Choreography Interface (WSCI) 1.0. W3C Document. http://www.
w3.org/TR/wsci/, 2002.

6. Mordechai Ben-Ari, Joseph Y. Halpern, and Amir Pnueli. Deterministic Propositional Dynamic Logic: Finite
Models, Complexity, and Completeness. J. of Computer and System Sciences, 25:402–417, 1982.

7. D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Mecella. e-Service Composition by Description
Logic Based Reasoning. In Proceedings of the Int. Workshop on Description Logics (DL03), Rome, Italy, 2003.

8. D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Mecella. Automatic Composition of e-Services
that Export their Behavior. In Proceedings of the First International Conference on Service Oriented Computing
(IC-SOC03), Trento, Italy, 2003.

9. D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Mecella. A Foundational Vision of e-Services.
In Proceedings of the CAiSE 2003 Workshop on Web Services, e-Business, and the Semantic Web (WES 2003),
Velden, Austria, 2003.

10. D. Berardi, D. Calvanese, G De Giacomo, and M. Mecella. Composing e-Services by Reasoning about Actions.
In Proc. of the ICAPS 2003 Workshop on Planning for Web Services, 2003.

10 Domotics is a multidisciplinary field where concepts from pervasive computing, networking, automation, artificial
intelligence, web services, robotics (to cite a few of them) play their role in order to make our home a more
comfortable place to live, especially, for the elderly and disabled people. Hence, the key idea behind the “domotic
home” is to enable the automation of human tasks as annoying/repetitive as common in-home activities use
to be. To obtain such results, domotic researchers envision a house environment populated by several advanced
”services” (household electronic appliances, personal computers, personal digital assistants, remote controllers,
personal robots, . . .) working together to push the quality and the scope of the service to the end-user (the human
inhabitant) far beyond the limit of standard house facilities.

21

11. D. Berardi, F. De Rosa, L. De Santis, and M. Mecella. Finite state automata as conceptual model for e-services.
In Proc. of the IDPT 2003 Conference, 2003. To appear.

12. T. Bultan, X. Fu, R. Hull, and J. Su. Conversation Specification: A New Approach to Design and Analysis of
E-Service Composition. In Proceedings of the WWW 2003 Conference, Budapest, Hungary, 2003.

13. Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Daniele Nardi. Reasoning in Expressive De-
scription Logics. In Alan Robinson and Andrei Voronkov, editors, Handbook of Automated Reasoning, chapter 23,
pages 1581–1634. Elsevier Science Publishers (North-Holland), Amsterdam, 2001.

14. F. Casati and M.C. Shan. Dynamic and Adaptive Composition of e-Services. Information Systems, 6(3), 2001.
15. F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S. Thatte, and S. Weerawarana. Business Process

Execution Language for Web Services (Version 1.0). IBM Document. http://www.ibm.com/developerworks/
library/ws-bpel/, July 2002.

16. Giuseppe De Giacomo and Maurizio Lenzerini. Boosting the Correspondence between Description Logics and
Propositional Dynamic Logics. In Proc. of the 12th Nat. Conf. on Artificial Intelligence (AAAI’94), pages 205–
212, 1994.

17. Giuseppe De Giacomo and Maurizio Lenzerini. PDL-Based Framework for Reasoning about Actions. In Proc. of
the 4th Conf. of the Ital. Assoc. for Artificial Intelligence (AI*IA’95), volume 992 of Lecture Notes in Artificial
Intelligence, pages 103–114. Springer, 1995.

18. ebXML.org. Business Process Specification Schema (Version 1.01). http://www.ebXML.org/specs/ebBPSS.pdf.
19. ebXML.org. Collaboration-Protocol Profile and Agreement Specification (Version 1.0). http://www.ebXML.org/

specs/ebCCP.pdf.
20. ebXML.org. Registry Information Model (Version 1.0). http://www.ebXML.org/specs/ebRIM.pdf.
21. M.C. Fauvet, M. Dumas, B. Benatallah, and H.Y. Paik. Peer-to-Peer Traced Execution of Composite Services. In

Proceedings of the 2nd VLDB International Workshop on Technologies for e-Services (VLDB-TES 2001), Rome,
Italy, 2001.

22. Michael J. Fischer and Richard E. Ladner. Propositional Dynamic Logic of Regular Programs. J. of Computer
and System Sciences, 18:194–211, 1979.

23. Günter Gans, Matthias Jarke, Gerhard Lakemeyer, and Dominik Schmitz. Deliberation in a Modeling and
Simulation Environment for Inter-organizational Networks. In Proceedings of the 15th International Conference
on Advanced Information Systems Engineering (CAiSE’03), Velden, Austria, 2003.

24. Volker Haarslev and Ralf Möller. Description of the RACER System and its Applications. In Proc. of the
2001 Description Logic Workshop (DL 2001), pages 132–141. CEUR Electronic Workshop Proceedings, http:
//ceur-ws.org/Vol-49/, 2001.

25. David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. The MIT Press, 2000.
26. R. Hull, M. Benedikt, V. Christophides, and J. Su. E-Services: A Look Behind the Curtain. In Proceedings of

the PODS 2003 Conference, San Diego, CA, USA, 2003.
27. E. Kafeza, D.K.W. Chiu, and I. Kafeza. View-based Contracts in an e-Service Cross-Organizational Workflow

Environment. In Proceedings of the 2nd VLDB International Workshop on Technologies for e-Services (VLDB-
TES 2001), Rome, Italy, 2001.

28. Dexter Kozen and Jerzy Tiuryn. Logics of Programs. In Jan van Leeuwen, editor, Handbook of Theoretical
Computer Science — Formal Models and Semantics, pages 789–840. Elsevier Science Publishers (North-Holland),
Amsterdam, 1990.

29. Carsten Lutz and Ulrike Sattler. A Proposal for Describing Services with DLs. In Proc. of the 2002 Description
Logic Workshop (DL 2002), pages 128–139. CEUR Electronic Workshop Proceedings, http://ceur-ws.org/

Vol-53/, 2002.
30. John McCarthy and Patrick J. Hayes. Some Philosophical Problems from the Standpoint of Aritificial Intelligence.

Machine Intelligence, 4:463–502, 1969.
31. S. McIlraith and T. Son. Adapting Golog for Composition of Semantic Web Services. In Proceedings of the 8th

International Conference on Knowledge Representation and Reasoning (KR 2002), Toulouse, France, 2002.
32. M. Mecella and B. Pernici. Building Flexible and Cooperative Applications Based on e-Services. Technical Report

21-2002, Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza”, Roma, Italy, 2002.
(available on line at: http://www.dis.uniroma1.it/~mecella/publications/mp_techreport_212002.p%df).

33. M. Mecella, B. Pernici, and P. Craca. Compatibility of e-Services in a Cooperative Multi-Platform Environment.
In Proceedings of the 2nd VLDB International Workshop on Technologies for e-Services (VLDB-TES 2001),
Rome, Italy, 2001.

34. S. Narayanan and S. McIlraith. Simulation, Verification and Automated Composition of Web Services. In
Proceedings of the 11th International Conference on World Wide Web, Hawaii, USA, 2002.

35. Mike P. Papazoglou. Agent-Oriented Technology in Support of e-Business. Communications of the ACM, October
2003. To appear.

22

36. T. Pilioura and A. Tsalgatidou. e-Services: Current Technologies and Open Issues. In Proceedings of the 2nd
VLDB International Workshop on Technologies for e-Services (VLDB-TES 2001), Rome, Italy, 2001.

37. Raymond Reiter. Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems.
The MIT Press, 2001.

38. H. Schuster, D. Georgakopoulos, A. Cichocki, and D. Baker. Modeling and Composing Service-based and Refer-
ence Process-based Multi-enterprise Processes. In Proceedings of the 12th International Conference on Advanced
Information Systems Engineering (CAiSE 2000), Stockholm, Sweden, 2000.

39. G. Shegalov, M. Gillmann, and G. Weikum. XML-enabled Workflow Management for e-Services across Hetero-
geneous Platforms. Very Large Database J., 10(1), 2001.

40. SnehalThakkar, Craig Knoblock, and Jose Luis Ambite. A View Integration Approach to Dynamic Composition
of Web Services. In Proc. of the ICAPS 2003 Workshop on Planning for Web Services, 2003.

41. J. Yang and M.P. Papazoglou. Web Components: A Substrate for Web Service Reuse and Composition. In
Proceedings of the 14th International Conference on Advanced Information Systems Engineering (CAiSE’02),
Toronto, Canada, 2002.

42. J. Yang, W.J. van den Heuvel, and M.P. Papazoglou. Tackling the Challenges of Service Composition in e-
Marketplaces. In Proceedings of the 12th International Workshop on Research Issues on Data Engineering:
Engineering E-Commerce/E-Business Systems (RIDE-2EC 2002), San Jose, CA, USA, 2002.

43. Eric S.K. Yu. Modelling Strategic Relationships for Process Reengineering. PhD thesis, Dept. of Computer
Science, University of Toronto, Toronto, ON, 1995.

23

A Deterministic Propositional Dynamic Logic

Propositional Dynamic Logics (PDLs) are a family of modal logics specifically developed for reason-
ing about computer programs [28]. They capture the properties of the interaction between programs
and propositions that are independent of the domain of computation. In this appendix, we pro-
vide a brief overview of a logic of this family, namely Deterministic Propositional Dynamic Logic
(DPDL). More details can be found in [25].

Syntactically, DPDL formulas are built by starting from a set P of atomic propositions and a
set A of deterministic atomic actions as follows:

φ −→ true | false | P | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | 〈r〉φ | [r]φ
r −→ a | r1 ∪ r2 | r1; r2 | r∗ | φ?

where P is an atomic proposition in P, r is a regular expression over the set of actions in A, and
a is an atomic action in A. That is, DPDL formulas are composed from atomic propositions by
applying arbitrary propositional connectives, and modal operators 〈r〉φ and [r]φ. The meaning of
the latter two is, respectively, that there exists an execution of r reaching a state where φ holds,
and that all terminating executions of r reach a state where φ holds. As far as compound programs,
r1 ∪ r2 means “choose non deterministically between r1 and r2”; r1; r2 means “first execute r1 then
exeute r2”; r∗ means “execute r a non deterministically chosen number of times (zero or more)”;
φ? means “test φ: if it is true proceed else fail”.

The main difference between PDLs (and modal logics in general) and classical logics relies on
the use of modalities. A modality is a connective which takes a formula (or a set of formulas) and
produces a new formula with a new meaning. Examples of modalities are 〈r〉 and [r]. The classical
logic operator ¬, too, is a connective, which takes a formula p and produces a new formula ¬p.
The only difference is that in classical logic, the truth value of ¬p is uniquely determined by the
value of p, instead modalities are not truth-functional. Because of modalities, the semantics of PDL
formulas (and modal logics) is defined over a structure, namely a Kripke structure.

The semantics of a DPDL formula is based on a the notion of deterministic Kripke structure.
A deterministic Kripke structure is a triple of the form I = (∆I , {aI}a∈A, {P I}P∈P), where ∆I

denotes a non-empty set of states (also called worlds); {aI}a∈A is a family of partial functions
aI ⊆ ∆I × ∆I from elements of ∆I to elements of ∆I , each of which denotes the state transitions
caused by the atomic program a11; P I ⊆ ∆I denotes all the elements of ∆I were P is true.

The semantic relation “a formula φ holds at a state s of a structure I”, is written I, s |= φ, and
is defined by induction on the form of φ:

I, s |= true always
I, s |= false never
I, s |= P iff s ∈ P I

I, s |= ¬φ iff I, s �|= φ
I, s |= φ1 ∧ φ2 iff I, s |= φ1 and I, s |= φ2

I, s |= φ1 ∨ φ2 iff I, s |= φ1 or I, s |= φ2

I, s |= 〈r〉φ iff there is s′ such that (s, s′) ∈ rI and I, s′ |= φ
I, s |= [r]φ iff for all s′, (s, s′) ∈ rI implies I, s′ |= φ

11 Note that the determinism of the Kripke structure derives from the fact that aI assigns to each state in ∆I a
unique successor state.

24

a

b

r

r

p2

p2

p1

s1

s2

s0p1

Fig. 6. Kripke structure for Example 4.

where the family {aI}a∈A is systematically extended so as to include, for every program r, the
corresponding function rI defined by induction on the form of r:

aI ⊆ ∆I × ∆I

(r1 ∪ r2)I = rI1 ∪ rI2
(r1; r2)I = rI1 ◦ rI2

(r∗)I = (rI)∗

(φ?)I = {(s, s) ∈ ∆I × ∆I | I, s |= φ}

Example 4. Let P = {p1, p2} be the set of atomic propositions, let A = {a, b, r} be the set of atomic
actions and let I = (∆I , {aI}a∈A, {P I}P∈P) be the Kripke structure shown in Figure 6 with:

∆I = {s0, s1, s2}
{aI} = {(s0, s1)}
{bI} = {(s0, s2)}
{rI} = {(s1, s0), (s2, s0)}
{pI1} = {s0, s1}
{pI2} = {s0, s2}

It is easy to see that in this structure, s0 |= [a]p1 ∧ [b]p2 ∧ [r]false, s1 |= [r](p1 ∧ p2), and s2 |=
[r](p1 ∧ p2). �

It is important to understand, given a formula φ, which are the formulas that play some role
in establishing the truth-value of φ. In simpler modal logics, these formulas are simply all the
subformulas of φ, but due to the presence of reflexive-transitive closure (on actions) this is not the
case for PDLs. Such a set of formulas is given by the Fischer-Ladner closure [22].

A structure I = (∆I , {aI}a∈A, {P I}P∈P) is called a model of a formula φ if there exists a state
s ∈ ∆I such that I, s |= φ. A formula φ is satisfiable if there exists a model of φ, otherwise the
formula is unsatisfiable. A formula φ is valid in structure I if for all s ∈ ∆I , I, s |= φ. We call
axioms formulas that are used to select the interpretations of interest. Formally, a structure I is a
model of an axiom φ, if φ is valid in I. A structure I is a model of a finite set of axioms Γ if I
is a model of all axioms in Γ . An axiom is satisfiable if it has a model and a finite set of axioms
is satisfiable if it has a model. We say that a finite set Γ of axioms logically implies a formula φ,
written Γ |= φ, if φ is valid in every model of Γ . It is easy to see that satisfiability of a formula φ as
well as satisfiability of a finite set of axioms Γ can be reformulated by means of logical implication,
as ∅ �|= ¬φ and Γ �|= ⊥ respectively.

DPDL enjoys two properties that are of particular interest. The first is the tree model property,
which says that every model of a formula can be unwound to a (possibly infinite) tree-shaped model

25

(considering domain elements as nodes and partial functions interpreting actions as edges). The
second is the small model property, which says that every satisfiable formula admits a finite model
whose size (in particular the number of domain elements) is at most exponential in the size of the
formula itself.

Reasoning in DPDL (and, in general, in PDLs) has been thoroughly studied from the compu-
tational point of view. In particular, the following theorem holds [6]:

Theorem 9. Satisfiability in DPDL is EXPTIME-complete.

26

B Automatic e-Service Composition: an Example

In order to make clearer the composition algorithm discussed in Section 9, we show how to build
a MFSM for the target e-Service whose external schema is represented in Figure 7(a), and for the
setting specified below.

t

l

a

l = listen

a = search by author

s1
0s0

0

t = search by title

(a) External schema A0 of target e-Service E0

l

a

s1
1s0

1

(b) External schema A1 of
component e-Service E1

l

t
s1
2s0

2

(c) External schema A2 of
component e-Service E2

Fig. 7. Composition of e-Services

Figure 7(a) shows the external schema of the (target) e-Service E0 of Example 1, specified by
the client as a FSM A0. Figure 7 (b) and (c) show the external schemas, represented as FSMs A1

and A2, respectively, associated to component e-Services E1 and E2 of Example 2. In other words,
A1 and A2 are the external schemas of the e-Services that should be composed in order to obtain a
new e-Service that behaves like E0. In particular, E1 allows for searching for a song by specifying
its author(s) (action search by author) and for listening to the song selected by the client (action
listen). Then, it allows for executing these actions again. E2 behaves like E1, but it allows for
retrieving a song by specifying its title (action search by title).

E1 and E2 belong to the same community of e-Services C. Wlog, we assume that C is
composed by only E1 and E2 and therefore, the (finite) alphabet of actions of C is Σ =
{search by author, search by title, listen}. According to our setting, the client specifies the
external schema A0 of his target e-Service in terms of Σ.

In what follows, we first show how to build a possibly infinite model I for the DPDL formula
Φ encoding A0, A1 and A2, constituted as in Section 9. We follow the proof of Theorem 1 (“⇐”
direction). In order to build an internal execution tree for E0 from FMS A1 and A2, i.e., to synthesize
a composite e-Service E0 with components E1 and E2 (“⇒” direction), it suffices to repeat the
steps backwards. Then, assuming to have derived from I a finite model If for Φ12, we show how
to devise an internal schema conforming to A0 that has a finite state representation, and such that
all conditions in Section 7 holds.
12 Because of the small model property, we know that this is always possible.

27

Specifically for our example, the set of atomic actions A, the set of atomic programs P and Φ
are defined as follows:

The set P of atomic propositions is:

P = {s0
0, s

1
0, s

0
1, s

1
1, s

0
2, s

1
2, F0, F1, F2,moved1,moved2}

where,

– si
j , for i = 0, 1 and j = 0, . . . , 2 is true if automaton Aj is in state si

j

– Fj for j = 0, . . . , 2 is true if automaton Aj is in a final state
– movedj j = 1, . . . , 2 is true if (component) automaton Aj performed a transition.

The set A of deterministic atomic actions is:

A = {a, t, l}
where:

– a denotes action search by author
– t denotes action search by title
– l denotes action listen

The master modality is:
u = (a ∪ t ∪ l)∗

i.e., the reflexive and transitive closure of the union of all atomic actions in A. In other words, u
represents the iteration of a non deterministic choice among all the possible atomic actions. Indeed,
we recall that [u]φ, where φ is a proposition, asserts that Φ holds after any regular expression
involving a, t, l.

Formulas capturing the external schema A0 of the target e-Service E0 are:

[u]s0
0 → ¬s1

0

[u](s0
0 → 〈a〉true ∧ [a]s1

0)
[u](s0

0 → 〈t〉true ∧ [t]s1
0)

[u](s1
0 → 〈l〉true ∧ [l]s0

0)

[u](s0
0 → [l]false)

[u](s1
0 → [a]false ∧ [t]false)

[u](F0 ↔ s0
0)

Formulas capturing the external schema A1 of component e-Service E1.

[u]s0
1 → ¬s1

1

[u](s0
1 → [a](moved1 ∧ s1

1 ∨ ¬moved1 ∧ s0
1))

[u](s1
1 → [l](moved1 ∧ s0

1 ∨ ¬moved1 ∧ s1
1))

[u](s0
1 → [l]¬moved1 ∧ [t]¬moved1)

[u](s1
1 → [a]¬moved1 ∧ [t]¬moved1)

[u](F1 ↔ s0
1)

28

Formulas capturing the external schema A2 of component e-Service E2.

[u]s0
2 → ¬s1

2

[u](s0
2 → [t](moved2 ∧ s1

2 ∨ ¬moved2 ∧ s0
2))

[u](s1
2 → [l](moved2 ∧ s0

2 ∨ ¬moved2 ∧ s1
2))

[u](s0
2 → [l]¬moved2 ∧ [a]¬moved2)

[u](s1
2 → [t]¬moved2 ∧ [a]¬moved2)

[u](F2 ↔ s0
2)

Finally, the following formulas must hold for the overall composition.

s0
0 ∧ s0

1 ∧ s0
2

[u](〈a〉true → [a](moved1 ∨ moved2))
[u](〈t〉true → [t](moved1 ∨ moved2))
[u](〈l〉true → [l](moved1 ∨ moved2))

[u](F0 → F1 ∧ F2)

We assume that, given the component FSMs A1 and A2 there exists a composite e-Service
having FSM A0 as external schema and A1 and A2 as components. Let T (E0

int) be the internal
execution tree for E0 wrt the community C to which E1 and E2 belong, such that: (i) T (E0

int)
conforms to T (A0), i.e., to the external execution tree obtained from A0 as in Section 8, (ii) T (E0

int)
delegates all actions to the e-Services of C and in particular to E1 and E2, and (iii) T (E0

int) is
coherent with C.

The mapping σ from nodes of T (E0
int) to states of the automata, is defined as follows by

induction on the level of nodes in the tree.

σ(ε) = s0
0

σ(a) = σ(t) = s1
0

σ(a·l) = σ(t·l) = s0
0

σ(a·l·a) = σ(a·l·t) = σ(t·l·a) = σ(t·l·t) = s1
0

σ(a·l·a·l) = σ(a·l·t·l) = σ(t·l·a·l) = σ(t·l·t·l) = s0
0

. . .

Figure 8(b) represents the internal execution tree of E0, where each node is labeled with
the corresponding state of the automaton. σ maps over s1

0 the nodes of the tree that represent
strings ending by a or t; it maps over s0

0 the root of the tree and the nodes of the tree associated
to strings ending by l.

The mapping σ1 from nodes of T (E0
int) to states of A1 is defined as follows.

29

t

l

a

l = listen

a = search by author

s1
0s0

0

t = search by title

(a) External schema A0 of target e-Service E0

(a, 1)

(l, 1)

(a, 1)

(l, 1)

(t, 2)

(t, 2)

(l, 2)

(t, 2)

(a, 1)

(l, 2)

s0
0

.

.

.

..

.
..
.

.

.

.

s0
0

s2
0

s2
0 s1

0 s2
0

s0
0

s0
0s0

0

s1
0

s1
0

(b) The mapping σ on T (E0
int)

Fig. 8. Composition of e-Services

l

a

t = search by title

l = listen

a = search by author

s1
1s0

1

(a) External schema A1 of component e-Service E1

(a, 1)

(l, 1)

(a, 1)

(l, 1)

(t, 2)

(t, 2)

(l, 2)

(t, 2)

(a, 1)

(l, 2)

s0
1

..

.

.

.

.
.
.
.

..

.

s0
1

s0
1

s0
1 s1

1 s0
1

s0
1

s0
1

s1
1

s0
1

s1
1

(b) The mapping σ1 on T (E0
int)

Fig. 9. Composition of e-Services

30

l

t
t = search by title

l = listen

a = search by author

s1
2s0

2

(a) External schema A2 of component e-Service E2

(a, 1)

(l, 1)

(a, 1)

(l, 1)

(t, 2)

(t, 2)

(l, 2)

(t, 2)

(a, 1)

(l, 2)

s1
2

.

.

.

..

.
..
.

.

.

.

s0
2

s0
2

s1
2 s0

2 s1
2

s0
2

s0
2

s0
2

s0
2

s0
2

(b) The mapping σ2 on T (E0
int)

Fig. 10. Composition of e-Services

σ1(ε) = s0
1

σ1(a) = s1
1

σ1(t) = s0
1

σ1(a·l) = σ1(t·l) = s0
1

σ1(a·l·a) = σ1(t·l·a) = s1
1

σ1(a·l·t) = σ1(t·l·t) = s0
1

σ1(a·l·a·l) = σ1(a·l·t·l) = σ1(t·l·a·l) = σ1(t·l·t·l) = s0
1

. . .

Figure 9(b) represents the internal execution tree of E0, where each node is labeled with
the corresponding state of the automaton. σ1 maps over s1

1 the nodes of the tree that represent
strings ending by a; it maps over s0

1 the root of the tree and the nodes of the tree associated to
strings ending by l or by t. Note that since the automaton is not defined over t, it does not move
when it receives t or t·l as input.

The mapping σ2 from nodes of T (E0
int) to states of A2 is defined as follows.

σ2(ε) = s0
2

σ2(a) = s0
2

σ2(t) = s1
2

σ2(a·l) = σ2(t·l) = s0
2

σ2(a·l·a) = σ2(t·l·a) = s0
2

σ2(a·l·t) = σ2(t·l·t) = s1
2

σ2(a·l·a·l) = σ2(a·l·t·l) = σ2(t·l·a·l) = σ2(t·l·t·l) = s0
2

. . .

Figure 10(b) represents the internal execution tree of E0, where each node is labeled with
the corresponding state of the automaton. σ2 maps over s1

2 the nodes of the tree that represent

31

(t, 2)

(l, 1) (l, 2)

(a, 1)

(l, 1)

(a, 1) (t, 2)

(l, 2)

moved2, F1
moved1, F2

moved2, F1

F0, F1, F2

moved1, F2

F0, F1, F2 F0, F1, F2

F0, F1, F2
.
..

.

..

s1
0, s1

1, s0
2

s0
0, s0

1, s0
2, moved1

s1
0, s0

1, s1
2

s0
0, s0

1, s0
2, moved2

s1
0, s1

1, s0
2

s0
0, s0

1, s0
2, moved1 s0

0, s0
1, s0

2, moved2

.

.

.

s1
0, s0

1, s1
2

s0
0, s0

1, s0
2

F0, F1, F2

Fig. 11. Infinite model I for Φ.

strings ending by t; it maps over s0
2 the root of the tree and the nodes of the tree associated to

strings ending by l or by a.
Given σ, σ1 and σ2, we define I = (∆I , {aI}a∈Σ , {P I}P∈P) of Φ as follows:

– ∆I = {ε, a, t, a·l, t·l, a·l·a, a·l·t, t·l·a, t·l·t, a·l·a·l, a·l·t·l, t·l·a·l, t·l·t·l, . . .},
– aI = {(ε, a), (a·l, a·l·a), (t·l, t·l·a), . . .},
– tI = {(ε, t), (a·l, a·l·t), (t·l, t·l·t), . . .},
– lI = {(a, a·l), (t, t·l), (a·l·a, a·l·a·l), (a·l·t, a·l·t·l), (t·l·a, t·l·a·l), (t·l·t, t·l·t·l), . . .}
– (s0

0)
I = {ε, a·l, t·l, a·l·a·l, a·l·t·l, t·l·a·l, t·l·t·l, . . .}

– (s1
0)

I = {a, t, a·l·a, a·l·t, t·l·a, t·l·t, . . .}
– (s0

1)
I = {ε, t, a·l, t·l, a·l·t, t·l·t, a·l·a·l, a·l·t·l, t·l·a·l, t·l·t·l, . . .}

– (s1
1)

I = {a, a·l·a, t·l·a, . . .}
– (s0

2)
I = {ε, a, a·l, t·l, a·l·a, t·l·a, a·l·a·l, a·l·t·l, t·l·a·l, t·l·t·l, . . .}

– (s1
2)

I = {t, a·l·t, t·l·t, . . .}
– movedI

1 = {a, a·l, a·l·a, t·l·a, a·l·a·l, t·l·a·l, . . .}
– movedI

2 = {t, t·l, a·l·t, t·l·t, a·l·t·l, t·l·t·l, . . .}
– F I

0 = {ε, a·l, t·l, a·l·a·l, a·l·t·l, t·l·a·l, t·l·t·l, . . .}
– F I

1 = {ε, t, a·l, t·l, a·l·t, t·l·t, a·l·a·l, a·l·t·l, t·l·t·l, t·l·t·l, . . .}
– F I

2 = {ε, a, a·l, t·l, a·l·a, t·l·a, a·l·a·l, a·l·t·l, t·l·a·l, t·l·t·l, . . .}

Figure 11 shows that I is a model for the formula Φ13. Each node of the tree is associated with
the propositions in P that hold in that node, according to I. For example, consider the root: I
imposes that s0

0 ∧ s0
1 ∧ s0

2 ∧ F0 ∧ F1 ∧ F2 holds in ε. Note that for sake of readability, in the figure
we have associated to each node simply the list of atomic propositions that are true. Additionally,
note that the DPDL encoding does not pose any constraint on the value of moved i predicates in
the root: we have arbitrarily chosen their value to be false. Finally, note that I is not finite (the
figure shows only a portion of the tree).

Because of the small model property, Φ admits a finite model If , shown in Figure 12 as a FSM.

13 The action labeling on edges, of course, is not part of the model: we report it for sake of readability.

32

(a, 1)

(l, 1) (l, 2)
(a, 1) (t, 2)

(t, 2)

(t, 2)

(a, 1)

F0, F1, F2

F0, F1, F2

s0
0, s0

1, s0
2

t0

t1

t2

t3

t4

s1
0, s1

1, s0
2

s0
0, s0

1, s0
2, moved1

s1
0, s0

1, s1
2

s0
0, s0

1, s0
2, moved2

moved2, F1
moved1, F2

F0, F1, F2

Fig. 12. Finite model If for Φ.

The finite model If induces mappings σf , σf
1 and σf

2 from its states to states of the automata
representing the external schema of the target e-Service and of the component ones.

σf (t0) = σf (t2) = σf (t4) = s0
0

σf (t1) = σf (t3) = s1
0

σf
1 (t0) = σf

1 (t2) = σf
1 (t3) = σf

1 (t4) = s0
1

σf
1 (t1) = s1

1

σf
2 (t0) = σf

2 (t1) = σf
2 (t2) = σf

2 (t4) = s0
2

σf
2 (t3) = s1

2

Given σf , σf
1 and σf

2 , we can define If = (∆I
f , {aIf }a∈Σ , {P If }P∈P) of Φ as follows:

– ∆I
f = {t0, t1, t2, t3, t4},

– aIf = {(t0, t1), (t2, t1), (t4, t1)},
– tIf = {(t0, t3), (t2, t3), (t4, t3)},
– lIf = {(t1, t2), (t3, t4)}
– (s0

0)
If = {t0, t2, t4}

– (s1
0)

If = {t1, t3}
– (s0

1)
If = {t0, t2, t3, t4}

– (s1
1)

If = {t1}
– (s0

2)
If = {t0, t1, t2, t4}

– (s1
2)

If = {t3}
– movedIf

1 = {t1, t2}
– movedIf

2 = {t3, t4}
– F

If

0 = {t0, t2, t4}
– F

If

1 = {t0, t2, t3, t4}
– F

If

2 = {t0, t1, t2, t4}

Given the finite model If = (∆I
f , {aIf }a∈Σ , {P If }P∈P) of Φ, we define the Mealy Machine

Ac = (Σ, 2[n], Sc, s
0
c , δc, ωc, Fc,) representing the internal schema of the target e-Service, as follows:

– Sc = {t0, t1, t2, t3, t4};
– s0

c = t0, where t0 ∈ (s0
0 ∧ s0

1 ∧ s0
2)

If ; note that we could have as well as chosen either t2 or t4 as
initial state.

33

(a, 1)

(t, 2)

(l, 2)

(l, 1)

k1

k0

k2

Fig. 13. Minimal FSM associated to T (E0
int).

– δc is defined as:

δc(t0, a) = t1
δc(t0, t) = t3
δc(t1, l) = t2
δc(t3, l) = t4

δc(t2, a) = t1
δc(t2, t) = t3
δc(t4, a) = t1
δc(t4, t) = t3

– ωc is defined as:

ωc(t0, a) = {1}
ωc(t0, t) = {2}
ωc(t1, l) = {1}
ωc(t3, l) = {2}

ωc(t2, a) = {1}
ωc(t2, t) = {2}
ωc(t4, a) = {1}
ωc(t4, t) = {2}

– Fc = {t0, t2, t4}.

This example shows also that the finite state machine associated to the finite model of Φ is
in general not minimal. Indeed, the minimal FSM associated to the tree representing the infinite
model is shown in Figure 13. It is easy to see that it does not represent a model for Φ since, for
instance, state k0, which corresponds to both states t0 and t1 in Figure 12, is associated to both
moved1 and ¬moved1.

34

