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Abstract. Let u 6≡ const satisfy an elliptic equation L 0u ≡ Σai,jDiju+ ΣbjDju =

0 with smooth coefficients in a domain in R3. It is shown that the critical set

|∇u|−1{0} has locally finite 1-dimensional Hausdorff measure. This implies in par-
ticular that for a solution u 6≡ 0 of (L0 + c)u = 0, with c ∈ C∞, the critical zero set

u−1{0} ∩ |∇u|−1{0} has locally finite 1-dimensional Hausdorff measure.

1. Introduction and Main Results

Let u 6≡ 0 be a continuous real valued solution of an elliptic equation in a domain
Ω ⊂ Rn

(1.1) Lu :=
n∑

i,j=1

aijDiju+
n∑

j=1

bjDju+ cu = 0.

Under various assumptions on the coefficients of L the zero sets of such solutions
have been investigated by various authors. In particular it has been shown that
under suitable assumptions on the coefficients the zero set u−1{0} has Hausdorff
dimension n − 1 [CF], and various interesting estimates for the n − 1-dimensional
Hausdorff measure of this set have been achieved [CM, DF1, DF2, DF3, HS, L,
N]. In other works concerning u−1{0} the behaviour of u near a zero is investi-
gated showing that u can be approximated by certain polynomials [Al,B, HOHO1,
HOHO2, HOHON, R].

For all such investigations the critical zero set

Σ0 := u−1{0} ∩ |∇u|−1{0}
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plays an important role. But in contrast to the 2-dimensional case [Al, D, DF3,
N], where Σ0 consists of finitely many isolated points the existing results on Σ0 in
dimensions ≥ 3 [CF, HS, H] are not as explicit [Y]. Essentially it has been shown,
if the coefficients of L are sufficiently smooth, then Σ0 is countable n−2-rectifiable
[HS, H, RS].

But even for the smooth case it is not known that Σ0 has (locally) finite (n−2)-
dimensional Hausdorff measure. In this paper we investigate this problem for the
case n = 3.

In the following we assume that aij , bj , c ∈ C∞(Ω) and without loss let aij =
aji, ∀i, j. Further we assume that L is strictly elliptic in Ω,Ω ⊂ R3.

We shall not consider (1.1) in general directly. Instead we first investigate the
critical set |∇u|−1{0} of a solution u to (1.1) with c ≡ 0. The result about the
critical zero set of a solution of (1.1) with c 6≡ 0 will then be an immediate conse-
quence.

Theorem 1.1. Let u 6≡ const satisfy in Ω

(1.2) L0u :=
3∑

i,j=1

aijDiju+
3∑

j=1

bjDju = 0

and let

(1.3) Σ(u,Ω) = {x ∈ Ω||∇u|(x) = 0}.

Then for every subset Ω′ of Ω with Ω′ ⊂⊂ Ω the 1-dimensional Hausdorff measure
of the critical set of u in Ω′

(1.4) H1(Σ(u,Ω′)) <∞.

Therefrom we obtain the result on critical zero sets of solutions of (1.1), namely

Corollary 1.1. Let u 6≡ 0 satisfy in Ω

(1.5) (L0 + c)u = 0.

Then ∀Ω′, Ω′ ⊂⊂ Ω

(1.6) H1(Σ0(u,Ω′)) <∞

where Σ0(u,Ω′) = {x ∈ Ω′|u(x) = |∇u|(x) = 0}.
Proof of Corollary 1.1. Given x0 ∈ Ω there is a neighbourhood U(x0) and a u0 ∈
C∞(U(x0)) with u0 > 0 and Lu0 = L0u0 + cu0 = 0 (see e.g. [BJS], p. 228). Let
µ = u

u0
, then an easy calculation shows that

3∑

i,j=1

aijDijµ+ (b− 2A
∇u0

u0
− 2
∇u0

u0
)∇µ = 0,
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where b = (b1, b2, b3) and A = (aij). Hence by Theorem 1.1, H1(Σ(µ,U(x0)) <∞,
and since clearly Σ0(u, U(x0)) ⊆ Σ(µ,U(x0)), (1.6) follows ¤

Given the assumptions of Theorem 1.1 and given x0 ∈ Ω, then there is a linear
coordinate transform Tx0

such that with x = Tx0
y and v(y) = u(x), v satisfies the

transformed equation (1.1)

(1.7)
∑

i,j

AijDijv +
∑

j

BjDjv = 0

where Aij(y0) = δij , y0 = T−1
x0
x0, and Dj , Dij denote the partial derivatives with

respect to the coordinates yj , 1 ≤ j ≤ 3. Obviously v − v(y0) also satisfies (1.7).
But this implies that there is a harmonic homogeneous polynomial PM(y0) 6≡ 0, of
degree M(y0) ≥ 1 such that for y → y0

(1.8) v(y) = v(y0) + PM(y0)(y − y0) + o(|y − y0|M(y0)).

For the smooth case which we consider (1.8) is a well known result (for a more
general setting see e.g. [Bs]), and PM(y0) 6≡ 0 due to the strong unique continuation
property of (1.7).

These considerations will be of importance for the following. The investigations
in [CF, HOHO1, HOHO2, HOHON, R] and also the present ones are certainly
motivated by the desire to understand to which extent the zero set or critical set
of a solution can be described locally qualitatively by zero sets respectively critical
sets of harmonic polynomials. Noting that for a harmonic polynomial p 6≡ const
of degree M in Rn

Hn−2(Σ(P,B1)) ≤ c(n)M2

(see [HS]) one might expect that a more explicit version of Theorem 1.1 holds.
Namely, let Bρ(x0) be a ball in Ω′ with radius ρ and centre x0, and let M be the

maximal order of vanishing of u in Ω′, then M−2H1(Σ(u,Bρ/2(x0))) is bounded
(compare also conjecture 2 in [L]).

That the analogy between solutions of (1.2) and harmonic polynomials should
not be stressed too much can be seen from the following example: Consider in R3

the function

u(x, y, z) =

{
u1(x, y, z) for z > 0

u2(x, y, z) for z < 0, with

u1 = xy +

4∑

k=0

(−1)k

(2k)!
z2k

(
∂2

∂x2
+

∂2

∂y2

)k
(x4y4)

and u2 = xy + x4y4.
Consider first u1 and u2 in R3, then u1(x, y, 0) = u2(x, y, 0) and ∂u1

∂z (x, y, 0) =
∂u2

∂z (x, y, 0). Furthermore u1 is harmonic and hence u satisfies ∆u = V u for, say
|x|, |y| < 1/2 with

V (x, y, z) =





0 for z > 0

12
xy3 + x3y

1 + x3y3
for z ≤ 0,
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hence V is bounded for |x|, |y| < 1/2. But for the critical zero sets we obtain
Σ0(u2, {z ≤ 0}) = {(0, 0, z)|z ≤ 0}, i.e. a line of critical zeros, whereas Σ0(u1, {z >
0}) is empty. To see this just notice that u1 has a term which depends only on
z (in fact a term ∼ z8), so |∇u1|(x, y, z) 6= 0 for small x, y and z > 0. So the
example illustrates that a critical line of zeros can in fact stop, something that
cannot happen for the analytic case.

The proof of Theorem 1.1 will be given in section 2. Thereby we need to show
that we can apply some results from singularity theory [AGV]. This amounts to
investigating properties of harmonic homogeneous polynomials or rather their com-
plexification in C3. These results which might be of independent interest are pre-
sented in section 3.

2. Proof of Theorem 1.1

Let for R > 0, BR(O) = {x ∈ R3||x| < R}. We assume without loss that
BR(O) ⊂ Ω, and that

(2.1) aij(O) = δij , 1 ≤ i, j ≤ 3.

Since u ∈ C∞(Ω) and ∀x0 ∈ Ω, u − u(x0) is a solution of (1.2) which vanishes
with some finite order M(x0) in the point x0, i.e. for some homogeneous polynomial

p
(x0)
M(x0) 6≡ 0 with degree M(x0) ≥ 1

(2.2) u(x)− u(x0) = p
(x0)
M(x0)(x− x0) + o(|x− x0|M(x0)), for x→ x0

and for every multiindex α, |α| ≤M(x0)

(2.3) Dαu(x) = Dαp
(x0)
M(x0)(x− x0) + o(|x− x0|M(x0)−|α|),

Therefrom it is easily seen that

(2.4) M := sup{M(x0)|x0 ∈ Σ(u,BR(O))} <∞

Let x0 ∈ Σ(u,BR(O)), then by the coordinate transform Tx0
considered above,

v(y) = u(Tx0
y), v has a critical point in y0 = Tx0

x0 and due to (1.8) there is a har-

monic homogeneous polynomial P
(y0)
M(y0) 6≡ 0 corresponding to this critical point. It

is well known (from Courant’s nodal theorem, or e.g. [C]) that the number of critical
points of a harmonic homogeneous polynomial PM on the unit sphere is bounded by

a constant N(M). From the foregoing we obtain P
(y0)
M(y0)(y) = p

(x0)
M(x0)(Tx0

y), where

M(x0) = M(y0), and P
(y0)
M and p

(x0)
M have the same number of critical points on

the unit sphere. This together with (2.4) implies that with N = N(M) <∞

(2.5) sup
x0∈Σ(u,Br(O))

#Σ(px0

M(x0), S
2) ≤ N
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Lemma 2.1. Let SN = {νj |νj ∈ S2, 1 ≤ j ≤ 2N + 1} be such that any three of
the unit vectors νj are linear independent. Then the following holds: There is a

c = c(M,R, SN ) > 0 such that ∀x0 ∈ Σ(u,BR(O)) one can choose ν ∈ SN with

(a) | < ω|ν > | > c ∀ω ∈ S2 with ∇p(x0)
M(x0)(ω) = O(2.6)

(b) lim inf
x→x0

x∈Σ(u,BR(O))

| < x− x0

|x− x0|
|ν > | > c.(2.7)

Proof of Lemma 2.1. We first show

Proposition 2.1. For K ∈ N let SK = {νj |νj ∈ S2, 1 ≤ j ≤ 2K + 1} with the
property that any three of the unit vectors νj are linear independent. Then there
exists c > 0 such that for arbitrary ω1,...,ωK ∈ S2 one can find ν ∈ SK with
| < ν|ωj > | > c > 0, 1 ≤ j ≤ K.

Proof of Proposition 2.1. Let ωj ∈ S2 and denote ω⊥j = {ω ∈ S2| < ω|ωj >= 0}.
Then due to the definition of SK at most two elements of SK belong to ω⊥j . Since
this is true for 1 ≤ j ≤ K, then, at most 2K elements of SK are involved. Hence
there is at least a ν ∈ SK with < ν|ωl >6= 0 for 1 ≤ l ≤ K.

To see that c = c(K,SK), but does not depend on the choice of ω1, . . . , ωK , let

ω(m) = (ω
(m)
1 , . . . , ω

(m)
K ), m ∈ N, ω

(m)
j ∈ S2, and let

cm = max
ν∈SK

min
1≤i≤K

| < ω
(m)
i |ν > |.

Then due to the above cm > 0. Suppose now for contradiction that lim infm→∞ cm =
0. Then clearly for some ω̄m, ω̄ ∈ S2, ω̄m → ω̄ for m → ∞ and | < ω̄m|ν > | → 0
∀ν ∈ SK . Hence < ω̄|ν >= 0 ∀ν ∈ SK which is a contradiction ¤

Now take K = N , then Proposition 2.1 together with (2.5) immediately implies
(a).

To verify (b) let x(l) ∈ Σ(u,BR(O)), l ∈ N with x(l) → x0 for l→∞, and using
polar coordinates x(l) − x0 = rlωl with ωl = ω(rl). Without loss we assume that
ωl → ω̄ for l → ∞, for some ω̄ ∈ S2. From the following it is straight forward to
see that ∇px0

M(x0)(ω̄) = O: From (2.3) we obtain with x = x(l) for 1 ≤ j ≤ 3

0 = Dju(x(l)) = Djp
(x0)
M(x0)(rlωl) + o(r

M(x0)−1
l ).

Since Djp
(x0)
M(x0) is homogeneous of degree M(x0)− 1 this implies Djp

(x0)
M(x0)(ω̄) = 0

for l→∞.
Now we conclude from (a) with ω = ω̄ that liml→∞ | < ωl|ν > | = | < ω̄|ν > | > c

verifying (b). This finishes the proof of Lemma 2.1 ¤
Lemma 2.1 provides some information on the location of the critical points of u

in the neighbourhood of a critical point x0 of u, which will be relevant later on.
We now assume without loss that u has a critical zero in the origin. So according

to (1.8) there is a harmonic homogeneous polynomial PM 6≡ 0 of degree M ≥ 2
such that

(2.8) u(x) = PM (x) + o(|x|M ) for |x| → 0
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Thereby M ≤M , M given accordingly to (2.4).
In the next step of the proof of Theorem 1.1 we need some properties of homo-

geneous polynomials of complex variables.
In the following a polynomial p : Cn → C is said to be harmonic if

∆p ≡
n∑

j=1

∂2

∂z2
j

p = 0.

Lemma 2.2. Let PM (z), z ∈ C3 be a harmonic homogeneous polynomial of degree
M , 2 ≤ M ≤ M , with real coefficients and let N = N(M) be given according to
(2.5). Then there exists SN = {νj |νj ∈ S2, 1 ≤ j ≤ 2N + 1}, where any three of the
unit vectors are linear independent, with the following property:

∀j, 1 ≤ j ≤ 2N + 1, PM (z) restricted to the complex plane
(2.9)

εj = {z ∈ C3| < νj |z >= 0}, has an isolated critical point in the origin.

Now suppose that Lemma 2.2 is proven (The proof is given in section 3). Then
Lemma 2.2 together with Lemma 2.1 implies that

Σ(u,BR(O)) =

2N+1⋃

j=1

Ej , where

(2.10)

Ej := {x0 ∈ Σ(u,BR(O))|(a) and (b) hold with ν = νj}.

Clearly the sets Ej are not necessarily pairwise disjoint.
Since every critical point of u is also a critical point of u restricted to a plane

through this point, it will suffice to obtain information on the critical points of u
restricted to the planes

εj,t = {x ∈ R3| < νj |x− νjt >= 0}, 1 ≤ j ≤ 2N + 1(2.11)

with 0 ≤ |t| ≤ t0, t0 small enough .

In the following we consider u|εj,t as a perturbation of PM |εj , and because of
(2.9) this will allow us via arguments from [AGV] to show

Lemma 2.3. There exists r̃ > 0 small enough, and a constant d = d(M), such
that ∀t, |t| ≤ t0, t0 sufficiently small

(2.12) #Σ0(u, εj,t ∩ Zj,r̃) ≤ d

Thereby Zj,r̃ is the open cylinder with radius r̃ and axis {νjt|t ∈ R}.
Proof of Lemma 2.4. The proof of this Lemma is based on
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Proposition 2.2. Let p(z1, z2) be a homogeneous polynomial in C2 of degree k
with real coefficients, and assume that p has an isolated critical point in the origin
in C2. Let further ϕ ∈ C∞(Dr(O)), Dr(O) = {x ∈ R2||x| < r}, r > 0, with

ϕ(y) = p(y) + o(|y|k) for |y| → 0

and let ϕt(y) ∈ C∞(D(O)×I) for t ∈ I, I = [−t0, t0] for some t0 > 0, with ϕ0 = ϕ.
Then there exists r̃, 0 < r̃ < r such that for |t| ≤ t0, t0 small enough, the number
of critical points of ϕt(.) in Dr̃(O) is uniformly bounded by a constant d(k).

Proof of Proposition 2.2. For the proof we shall use some results of [AGV]. For
convenience we repeat some definitions given there: Let f : (Cn, z0) → (Cn,O)
be a holomorphic map germ at a point z0. Let C{z}z0 denote the algebra of all
holomorphic function-germs at z0, and let If,z0 denote the ideal in this algebra,
which is generated by the germ of the components of f .

Definition: The multiplicity of f at z0 is the dimension of the local algebra Qf,z0

µz0 [f ] := dimCQf,z0 ,

where Qf,z0 denotes the quotient algebra C{z}z0/If,z0 .
By Theorem 2 ([AGV] p. 86) a holomorphic map germ fails to be of finite mul-

tiplicity at a point z0, if and only if z0 is a non-isolated inverse image of zero of the
germ.

Due to our assumption p(z) is a homogeneous polynomial with an isolated critical
point in the origin. By the above Theorem the multiplicity of ∇p in O is finite,
µO[∇p] =: d <∞.

Definition: A critical point O of a smooth function f : (Rn,O) → (R, 0) is said
to be of finite multiplicity µ(f), if the gradient map ∇f is of finite multiplicity, i.e.

µ(f) := dimRR[[x]]/

(
∂f

∂x1
, . . . ,

∂f

∂xn

)
<∞

Thereby R[[x]] denotes the algebra of formal power series and
(
∂f
∂x1

, . . . , ∂f∂xn

)
de-

notes the ideal generated by the components of ∇f .
By the subadditivity of the multiplicity (see [AGV], Proposition 1, p. 94) we

conclude from the above that µ(ϕ) ≤ d, and again by the subadditivity of the
multiplicity there exists a Dr̃(O), r̃ > 0, such that for |t| ≤ t0, t0 small enough
the number of critical points of ϕt in Dr̃(O) counted with their multiplicities is
bounded from above by d. ¤
Remark 2.1. We note that since p is semiquasi-homogeneous (compare [AGV],
p. 193) it follows from Bezout’s formula (see [AGV], Corollary 1, p. 200) that
d = (k − 1)2.

Now we apply Proposition 2.2 to our case: Representing the planes εj,t as εj,t =
{n1y1+n2y2+νjt|(y1, y2) ∈ R2} with some n1, n2 ∈ S2, < n1|n2 >= 0, < nl|νj >= 0,
l = 1, 2, we then identify p(y) with PM (n1y1 +n2y2), and ϕt(y) with u(n1y1 +n2y2 +
tνj). Due to (2.8) we have

ϕ0(y) = ϕ(y) = u(n1y1 + n2y2) = PM (n1y1 + n2y2) + o(|y|M ).
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Then by Proposition 2.2 there is a r̃ > 0, such that for |t| ≤ t0, t0 small enough
the number of critical points of u|εj,t∩Zj,r̃ is uniformly bounded by d(M) (actually

d = (M − 1)2). This finishes the proof of Lemma 2.3. ¤
In the following let t̃ > 0 such that

(2.13) t̃ < min(r̃, t0, 1) ≡ t̃0.

In this last step of the proof of Theorem 1.1 we shall use Lemma 2.3 and Lemma 2.1
to show that the 1-dimensional Hausdorff measure of the critical set of u is finite.

Lemma 2.4. For some C = C(M, c) <∞, c given according to Lemma 2.1,

H1(Σ(u,Bt̃(O))) ≤ C.

Given Lemma 2.4, then by translation of the coordinate system it follows that
∀x0 ∈ Σ(u,Ω) the H1-measure of the critical set of u is finite in a neighbourhood
of x0. Let Ω′ ⊂⊂ Ω, then Σ(u,Ω′) is a compact set and it follows via Heine-Borel
that H1(Σ(u,Ω′)) is finite finishing the proof of Theorem 1.1.

Proof of Lemma 2.4. We first show

Proposition 2.3. Let Σj = Ej ∩ Bt̃(O), 1 ≤ j ≤ 2N + 1. Then for some C =

C(M, c) <∞, H1(A) ≤ C for every closed subset A of Σj ,∀j .
Proof of Proposition 2.3. Let Ij denote the line segment [−t̃0νj , t̃0νj ] in R3 and
denote by Zj the compact truncated cylinder with radius t̃0 and axis {νjt||t| ≤ t̃0}.
Let A be a closed subset of Σj and define ∀x ∈ A

πj(x) =< x|νj > νj

i.e. the orthogonal projection to the line segment Ij . For y ∈ Ij let εj,y denote the
plane orthogonal to νj with y ∈ εj,y.

Then we conclude from Lemma 2.3 that εj,y ∩ Σ(u, Zj) consists of at most k =
k(y, j) points, where k ≤ d(M), hence

(2.14) ∀y ∈ Ij , #π−1
j (y) ≤ d.

So let y ∈ Ij and π−1
j (y) = {x(1), . . . , x(k)}. Now we use Lemma 2.1.: According

to the Lemma there is a c > 0 and ρl := ρ(x(l)) > 0, 1 ≤ l ≤ k such that for some
c1 > c

(2.15) | < x− x(l)

|x− x(l)| |νj > | ≥ c1 ∀x ∈ Σ(u,Bρl(x
(l))).

Let ρ0(y) = min1≤l≤k ρ(x(l)) and δ0(y) := cρ0(y). Further, for δ > 0, we denote
the line segment [y − δνj , y + δνj ], by Iδ (suppressing the y-dependence).

We claim: There is a δ(y) > 0, δ(y) ≤ min(δ0(y), t̃0 − t̃) =: δ̃, such that

∀δ with 0 < δ ≤ δ(y)(2.16)

π−1
j (Iδ) ⊂

k⋃

l=1

Bρ(x
(l)), where ρ =

δ

c
.
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Note first that because of (2.15) we know that

∀δ with δ ≤ δ̃, x ∈ π−1
j (Iδ)\

k⋃

l=1

Bρ(x
(l))

implies

x ∈ π−1
j (Iδ)\

k⋃

l=1

Bρ0
(x(l)).

Now suppose for contradiction that (2.16) is not true. Then because of the above
there is a sequence

δm ↓ 0 and x̄(m) ∈ π−1
j (Iδm)\

k⋃

l=1

Bρ0
(x(l)), ∀m.

Since x̄(m) ∈ A and A is compact, there is a convergent subsequence with limit x̄ ∈
A and without loss let x̄(m) → x̄ for m→∞. Obviously x̄ ∈ π−1

j (y)\⋃kl=1Bρ0
(x(l)),

which is a contradiction since x̄ must be equal to some x(l), 1 ≤ l ≤ k. This verifies
(2.16).

Now let J = {Iδ(y)/5|y ∈ Ij}. It is a standard covering result (see e.g. Lemma
1.9., p. 10 [F]) that there exists a (finite or) countable disjoint subcollection J ′ of J
such that the following holds: with J ′ = {Iδ(ȳi)/5|i ∈ N}, Ij ⊂

⋃
I∈J I ⊂

⋃
i∈N Iδ(ȳi).

Therefrom and from (2.16) we obtain

A = π−1
j (Ij) ⊂ π−1

j (
⋃

i∈N
Iδ(ȳi))(2.17)

=
⋃

i∈N
π−1
j (Iδ(ȳi)) ⊂

⋃

i∈N

k(ȳi)⋃

l=1

Bδ(ȳi)/c(x
(l)).

Now we use that J ′ is a disjoint subcollection of J , so that
∑
i∈N δ(ȳi)/5 ≤ |Ij |.

Since k(ȳi) ≤ d(M) the above leads to

(2.18)
∑

i∈N

k(ȳi)∑

l=1

δ(ȳi)/c ≤
5|Ij |d(M)

c
≤ 10(M − 1)2

c
.

Because of (2.16), δ(y) can be taken arbitrarily small. Hence by (2.17) and (2.18),
A ⊂ ⋃i

⋃
lBi,l, where the diameters dil of the balls Bi,l are bounded from above

by some δ > 0. Taking δ arbitrarily small and applying (2.18) we obtain

(2.19)
∑

i,l

dil(δ) ≤
10(M − 1)2

c
=: C(M, c)

Let {Ui} denote a δ-cover of A, d(Ui) denoting the diameter of Ui, so that d(Ui) ≤ δ.
Let

H1
δ (A) := inf

{Ui}

∞∑

i=1

d(Ui).
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Then the Hausdorff 1-dimensional outer measure of A is defined by H1(A) :=
limδ→0H

1
δ and H1(A) = supδ>0H

1
δ (A). But because of (2.17) and (2.19) we obtain

for δ > 0 arbitrarily small, H1(A) ≤ C(M, c) and henceH1(A) ≤ C(M, c), verifying
Proposition 2.3. ¤

We proceed in the proof of Lemma 2.4 by showing that Σ(u,Bt̃(O)) can be
represented in a particular way as countable union of closed subsets of the Σj ’s.
For this we introduce the following: For k ≥ 2 let

Γk = {x̄ ∈ Σ(u,Bt̃(O))|u vanishes of order k in x̄}.

This means for each x̄ there is a homogeneous polynomial p
(x̄)
k of degree k, p

(x̄)
k 6≡ 0,

such that

u(x)− u(x̄) = p
(x̄)
k (x− x̄) + o(|x− x̄|k) for x→ x̄.

Let

Γk,n = {x ∈ Γk| dist (x,
⋃

j≥k+1

Γj) ≥
1

n
}, n ∈ N

Note that since k ≤ M (compare (2.4)), Γj = ∅,∀j > M . Γk,n is a closed subset

of Σ(u,Bt̃(O)), which follows easily from the smoothness of u and from (2.3).
Furthermore

(2.20) Γk =
⋃

n∈N
Γk,n.

This can be seen as follows: suppose for contradiction that for some x̄ ∈ Γk, x̄ 6∈ Γk,n
∀n. Then there is a sequence {x(m)}, x(m) ∈ Γkm , km ≥ k + 1,∀m with x(m) → x̄
for m → ∞. Because of (2.2) and (2.3) we obtain for every multiindex α with
|α| = k, that for m→∞

Dαu(x(m)) = Dαp
(x̄)
k (x(m) − x̄) + o(1).

Since for suitable α, Dαp
(x̄)
k (O) 6= 0 and Dαu is continuous we obtain

Dαu(x̄) = lim
m→∞

Dαu(x(m)) = Dαp
(x̄)
k (O) 6= 0.

On the other hand since km ≥ k + 1 ∀m, Dαu(x(m)) = 0 ∀m, which leads to a
contradiction. ¿From (2.20) we obtain that

(2.21) Σ(u,Bt̃(O)) =

M⋃

k=2

⋃

n∈N
Γk,n

To show that H1(Γk,n) can be bounded uniformly in n we need:
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Proposition 2.4. Let x̄ ∈ Γk,n and assume that x̄ ∈ Σj, then there exists ρ(x̄) > 0

such that Γk,n ∩Bρ(x̄)(x̄) ⊂ Σj.

Proof of Proposition 2.4. Suppose for contradiction that there is a sequence {x(m)},
x(m) ∈ Γk,n ∀m, x(m) → x̄ for m→∞, with x(m) 6∈ Σj , ∀m. Due to Lemma 2.1(a)

and the definition of Σj this implies that ∀m there is a ω(m) ∈ S2 with

∇p(x(m))
k (ω(m)) = O, | < ω(m)|νj > | ≤ c.

Let ω̄ be an accumulation point of {ω(m)}, and without loss assume ω(m) → ω̄ for
m→∞. Then clearly we obtain

(2.22) | < ω̄|νj > | ≤ c.

Suppose we have shown that ω̄ is a critical point of p
(x̄)
k , then since x̄ ∈ Σj ,

Lemma 2.1(a) is in contradiction to (2.22) and the proof of the Proposition is
finished.

Therefore we show that the critical points ω(m) of p
(x(m))
k tend for m→∞ to the

critical point ω̄ of p
(x̄)
k : According to (2.3) we have for every multiindex β, |β| = k

Dβu(x) = Dβp
(x(m))
k (x− x(m)) + o(1) for x→ x(m)

where p
(x(m))
k (x) :=

∑
|α|=k a

(m)
α xα, ∀m and analogously we have for x̄, p

(x̄)
k (x) :=

Σ|α|=kāαxα. Therefore Dβu(x(m)) = β!a
(m)
β , ∀m, ∀β with |β| = k. By the smooth-

ness of u
lim
m→∞

Dβu(x(m)) = Dβu(x̄)

and hence limm→∞ a
(m)
β = āβ , ∀β, |β| = k. This implies in particular that

(2.23) |∇p(x(m))
k −∇p(x̄)

k | → 0 for m→∞

pointwise uniformly. By the triangle inequality we have

(2.24) |∇p(x̄)
k (ω̄)| ≤ |∇p(x̄)

k (ω̄)−∇p(x(m))
k (ω̄)|+ |∇p(x(m))

k (ω̄)−∇p(x(m))
k (ω(m))|.

But because of (2.23) and because

|Dip
(x(m))
k (ω̄)−Dip

(x(m))
k (ω(m))| ≤

∑

|α|=k
|a(m)
α | · |(Dix

α)|x=ω̄ − (Dix
α)|x=ω(m) | → 0

for m → ∞, the right hand side of (2.24) tends to zero for m → ∞. Thus ω̄ is a
critical point of p(x̄). ¤

Clearly we have Γk,n ⊂
⋃
x̄∈Γk,n

Bρ(x̄)(x̄), with ρ(x̄) given according to Proposi-

tion 2.4. Since Γk,n is a compact set, there is due to Heine Borel a finite cover of
balls centered in x̄i, 1 ≤ i ≤ Lk,n for some Lk,n <∞ such that

(2.25) Γk,n ⊆
Lk,n⋃

i=1

Ai, where Ai = Bρ(x̄i)(x̄i) ∩ Γk,n.
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¿From Proposition 2.4 we concluded that ∀i, Ai is a closed subset of some Σj(i).
Since this is a finite union of closed sets we rewrite (2.25) as

Γk,n ⊆
2N+1⋃

j=1

A(k,n)
j ,(2.26)

where A(k,n)
j are closed subsets of Σj .

¿From Proposition 2.3 we have

H1(A(k,n)
j ) ≤ C, 1 ≤ j ≤ 2N + 1

which together with (2.26) leads to

(2.27) H1(Γk,n) ≤
2N+1∑

j=1

H1(A(k,n)
j ) ≤ (2N + 1)C.

Noting that obviously Γk,n ⊂ Γk,n+1 ∀n, {Γk,n}n∈N is an increasing sequence of
sets and therefore (see e.g. Lemma 1.3 [F])

H1(
⋃

n∈N
Γk,n) = lim

n→∞
H1(Γk,n).

This together with (2.27) yields

(2.28) H1(
⋃

n∈N
Γk,n) ≤ (2N + 1)C, 1 ≤ k ≤M.

Finally using (2.21) we obtain

H1(Σ(u,Bt̃(O))) ≤M(2N + 1)C

finishing the proof of Lemma 2.4 and of Theorem 1.1. ¤

3. Properties of harmonic homogeneous
polynomials and the proof of Lemma 2.2

To prove Lemma 2.2 we first collect some properties of harmonic homogeneous
polynomials:

Theorem 3.1. Let P : C3 → C, P 6≡ 0 be a harmonic homogeneous polynomial
with real coefficients. Then the set of critical points of P is the union of at most
finitely many straight lines in C3 through the origin.

The proof of Theorem 3.1 will be given later.
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Remark 3.1. (i) The assumption that the coefficients of P are real is essential
as can be seen from the example P (z1, z2, z3) = (z1 − iz2)2 : P is harmonic and
homogeneous, but all points (z1, z2, z3) with z1 = iz2 are critical points of P .
(ii) That P is harmonic is also necessary as can be easily seen from the example
P (z1, z2, z3) = z2

1 where the critical set of P is the plane z1 = 0.
Via Theorem 3.1 we obtain

Proposition 3.1. Let P : C3 → C be a harmonic homogeneous polynomial with
real coefficients and let Pν denote the restriction of P to the complex plane εν =
{z ∈ C3| < ν|z >= 0}, ν ∈ S2. Then the set

F = {ν ∈ S2|O is not an isolated critical point of Pν}

is the union of at most finitely many analytic curves and finitely many isolated
points.

Proof of Proposition 3.1. From Theorem 3.1 it follows that the critical set of P
is the union of straight lines in C3, gj , 1 ≤ j ≤ N (N depending on the degree of

P ). Let Fj = {ν ∈ F|gj ⊂ εν} and gj = {λz(j)|λ ∈ C}, then x ∈ R3 satisfies

< x|z(j) >= 0 if and only if ν = x
|x| ∈ Fj .

Since z(j) 6= O, the general solution of < x|z(j) >= 0 is at most a 2-dimensional
subspace of R3, and therefore Fj is either a great circle on S2, isolated points or
empty.

Now it remains to consider F\⋃Nj=1 Fj : So let ν ∈ F\⋃Nj=1 Fj which implies
that the complex plane εν has the following property: O is not an isolated critical
point of Pν and gj ∩ εν = {O} ∀1 ≤ j ≤ N . Since Pν is again a homogeneous
polynomial the critical set of Pν consists of finitely many complex straight lines
γi, 1 ≤ i ≤ n, through the origin, and every critical point of Pν is a zero of Pν .
Hence ∀z ∈ γi, P (z) = 0 and clearly εν is tangent to the surface P = 0 in these
points, so ∇P 6= O.

Due to the homogeneity of P we can locally represent the zero set of P (away
from the critical set) by a holomorphic function f , so that for a domain U ⊂ C,
P (Γ(ω)) = 0 ∀ω ∈ U , with Γ(ω) = (ω, f(ω), 1) and ∇P (Γ(ω)) 6= O.

Let ε(ω) denote the tangent plane to P = 0 in the point Γ(ω) and let n(ω) =
∇P (Γ(ω)) /|∇P (Γ(ω))|. Then the components of n(ω), nj(ω), 1 ≤ j ≤ 3 are
holomorphic functions. Clearly ε(ω) ∩ R3 is a 2-dimensional manifold in R3 if and
only if for some λ ∈ C, λn(ω) ∈ R3.

If all components of n are constants, then P = 0 is a plane and since P is
homogeneous and harmonic, P must be linear. Hence P has no critical points at
all.

Therefore it suffices to consider the case that two of the components, say j, l, are
not constant. Since nl(ω) is holomorphic, nl has only isolated zeros and away from

them njl(ω) =
nj(ω)
nl(ω) is holomorphic. To find out for which ω, njl(ω) ∈ R, note that

Imnjl is a real valued harmonic function in two real variables. Since Imnjl 6≡ 0 this
implies that the zero set of Imnjl considered as a subset of R2 is locally the union
of finitely many analytic curves.

This finishes the proof of Proposition 3.2 ¤
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Lemma 2.2 is now an immediate consequence of the foregoing Proposition.
Finally we give the

Proof of Theorem 3.1.

The proof is based on some well known results from algebraic geometry (see e.g.
the books [S, M]), which are collected in the following:

Proposition 3.2. (i) Let V be the complex algebraic set defined by the single
polynomial equation f(z) = 0, z ∈ C3, with f irreducible. Then every polynomial
which vanishes on V is divisible by f .

(ii) Let f(z), z ∈ C3 be an irreducible polynomial, then the zero set of f has
complex dimension 2 whereas the critical set of f is at most 1-dimensional.

Remark 3.2. A k-dimensional algebraic set in Cn is away from its critical points
a smooth manifold of complex dimension k (see e.g. [S]).

Note first that since the polynomial P is homogeneous the critical set of P is
given by

Σ(P ) = {z ∈ C3|P (z) = |∇P (z)| = 0}.
We shall exclude that Σ(P ) is 2-dimensional. Then since the critical points of P
lie on straight lines through the origin (because of the homogeneity of P ) it follows
by the analyticity of P that there are only finitely many such lines.

We suppose now for contradiction that Σ(P ) is 2-dimensional. Then Proposition
3.2 (ii) implies that P is reducible. Furthermore P can be represented as

(3.1) P = p2 · q, where p, q are homogeneous polynomials and p is irreducible .

This can be seen as follows: suppose for contradiction that P =
∏k
j=1 qj , (k ≥ 2),

qj irreducible, and let Nj denote the zero set of qj ·. If for i 6= j, Ni ∩ Nj has
dimension < 2, then it is easily seen that Σ(P ) cannot have dimension 2. So
assume without loss that N1 ∩ N2 is 2-dimensional. Then due to Proposition 3.2
(i) and the irreducibility of q1 and q2, q1 = const q2 follows verifying (3.1).

Consider now the zero set of p, N(p) = {z ∈ C3|p(z) = 0}. Let z0 ∈ N(p) with
|∇p(z0)| 6= 0.

Case (i): There is a neighbourhood Ω0 of z0, such that N(p) ∩ Ω0 is not char-
acteristic with respect to the Laplacian in C3. Then the Cauchy problem ∆u = 0,
with Cauchy data u = 0, ∂nu = 0 on N(p)∩Ω0 has due to the Theorem of Cauchy-
Kowalewsky for the complex case (see e.g. [Hö]) only the trivial solution u ≡ 0.
But ∆P = 0 in C3, P = 0 in N(p), and since

∇P = 2pq∇p+ p2∇q,

also |∇P | = 0 in N(p). This implies P ≡ 0 which is a contradiction to our assump-
tion.

Case (ii): N(p) is characteristic with respect to the Laplacian, i.e.

3∑

j=1

(
∂p

∂zj

)2

(z) = 0



15

Lemma 3.1. Let p be a homogeneous irreducible polynomial in C3, where N(p) is
characteristic with respect to the Laplacian. Then p is either linear or equals (up
to a constant multiplicative factor) z2

1 + z2
2 + z2

3 .

Suppose we have proven Lemma 3.1, then the case P = (z2
1 + z2

2 + z2
3)2q can be

excluded as follows: Let M,M ≥ 4, denote the degree of P . It is well known (see
e.g. [SW]) that a homogeneous polynomial q of degree M−4 (with real coefficients)
can be written in polar coordiantes ω = x

r , r = |x| for x ∈ R3 as

q(rω) = rM−4
2m∑

j=0

YM−4−j(ω)

with

m =

{
(M − 4)/2 for M even

(M − 5)/2 for M odd ,

where Yl(ω) are suitable spherical harmonics, i.e. the restriction of a harmonic
homogeneous polynomial of degree l to the unitsphere S2. But since P (rω) =
rMYM (ω) = r4q we obtain from the above for r = 1

YM =

2m∑

j=0

YM−4−j on S2

which is a contradiction, since∫

S2

Y 2
Mdω 6= 0 and

∫

S2

YMYkdω = 0 for M 6= k.

Therefore we obtain from (3.1), Lemma 3.1 and the above that

P (z) = L2(z)q(z) with L(z) =< a|z >, a ∈ C3\{O}(3.2)

where the plane ε = {z ∈ C3| < a|z >= 0}
is characteristic with respect to the Laplacian. Hence

3∑

j=1

a2
j = 0, a = (a1, a2, a3).

Clearly ε ∩ R3 is a 1-dimensional subspace of R3. Without loss we choose our
coordinate system such that ε = {z ∈ R3/z1−izz = 0}. Then ε∩R3 = {(0, 0, λ)|λ ∈
R} and denoting the real parts of z1, z2, z3 by x, y, z we have

(3.3) P (x, y, z) = (x− iy)2q(x, y, z) for (x, y, z) ∈ R3.

Now we use that P has real coefficients and that P is harmonic: Since P restricted
to S2 is a spherical harmonic Y it follows (see e.g. [C]) that the order of vanishing
of P in (0, 0, 1), say M , is equal to the number of nodal lines of Y passing through
(0, 0, 1). Since (x − iy)2|S2 has the only zeros (0, 0, 1) and (0, 0,−1), these nodal
lines are nodal lines of q|S2 . But then the order of vanishing of q in (0, 0, 1) is
at least M . On the other hand the order of vanishing of P in a point is equal
to the sum of the orders of vanishing of the factors q and (x − iy)2, which is in
contradiction to the foregoing.

Finally we present two versions of the proof of Lemma 3.1, namely an analytical
and a geometrical one:
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Analytical proof of Lemma 3.1. Let p(z), z ∈ C3 be a homogeneous and irre-
ducible polynomial, such that

3∑

j=1

(
∂p

∂zj

)2

(z) = 0 for z ∈ N(p).

(Note that due to Proposition 3.1 (ii) Σ(p) is at most 1-dimensional). For the
following it will suffice to consider N(p)\Σ(p) ∩ {z3 = 1} ≡ N1(p). Since p is
irreducible, N1(p) can be represented as Γ(w) = (w, f(w), 1), w ∈ C, with some
holomorphic function f , so

(3.4) p(Γ(w)) = 0 ∀w

which implies

(3.5) 0 =
d

dw
p(Γ(w)) =< ∇p(Γ(w))|Γ′(w) >

Noting that Γ′(w) = (1, f ′(w), 0), (3.5) becomes

(3.6)
∂p

∂z1
(Γ(w)) +

∂p

∂z2
(Γ(w))f ′(w) = 0

Let ε denote the tangent plane to N(p) in the point z̃ = Γ(w̃), z̃ ∈ N1(p). Then ε
is given by

(3.7) < ∇p(z̃)|z − z̃ >= 0, z ∈ C3.

Since p(λz̃) = 0 ∀λ ∈ C we have

0 =
d

dλ
p(λz̃) =< ∇p(z̃)|z̃ >,

which for λ = 1 implies ∀z ∈ N1(p)

0 =< ∇p(z)|z >(3.8)

=
∂p

∂z1
(Γ(w))w +

∂p

∂z2
(Γ(w))f(w) +

∂p

∂z3
(Γ(w)).

Combining (3.6) with (3.8) we obtain

(3.9)
∂p

∂z3
(Γ(w)) =

∂p

∂z2
(Γ(w))(f ′(w)w − f(w)).

Furthermore from (3.6) and (3.9) we have

(3.10) ∇p(Γ(w)) =
∂p

∂z2
(Γ(w))(−f ′(w), 1, f ′(w)w − f(w)).
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Now we use that N(p)\Σ(p) is characteristic, which together with (3.6) leads to

(3.11)

(
∂p

∂z3
(Γ(w))

)2

= −
(
∂p

∂z2
(Γ(w))

)2

(1 + f
′2(w)).

For ∂p
∂z2

(Γ(w)) 6= 0 we conclude via (3.9) and (3.11) that

(3.12) 1 + f
′2(w) + (f ′(w)w − f(w))2 = 0.

Let w̃ be as before and let a = (a1, a2, a3) with

a1 = −f ′(w̃), a2 = 1, a3 = f ′(w̃)w̃ − f(w̃).

We define L(z) =< ā|z >. Clearly for z3 = 1 the zero set of L can be represented
by

(3.13) L(w, g(w), 1) = 0, w ∈ C
for some holomorphic function g. For z̃ = Γ(w̃), ∇p(z̃) = ∂p

∂z2
(z̃)a, so that due to

(3.8) L(z̃) = 0. Therefore f(w̃) = g(w̃). Furthermore f and g satisfy the differential
equation

(3.14) 1 + F
′2 + (wF

′2 − F )2 = 0.

For f this is true due to (3.12) and for g this is straight forward to verify:
Because of (3.12), a2

1+1+a2
3 = 0, and because of (3.13), a1w+g(w)+a3 = 0, ∀w.

Therefore g(w) = −a1w−a3 and g′(w) = −a1 = −f ′(w̃). Hence a3 = g′(w)w−g(w)
implying (3.14) with F = g.

Let without loss 1 + w2 6= 0, then we obtain from (3.14)

F ′ = G±(w,F ), where(3.15)

G±(w,F ) = (1 + w2)−1(wF ± i
√

1 + w2 + F 2).

If 1 + w̃2 + f2(w̃) 6= 0, there are neighbourhoods U(w̃) ⊂ C and V (f(w̃)) ⊂ C
where G±(w,F ) is holomorphic and |G±(w,F )| bounded. Hence the initial value
problems

F ′ = G±(w,F ), F (w̃) = f(w̃)

have unique solutions in a neighbourhood of w̃. Now the foregoing implies that
f = g there, and by the analyticity f ≡ g. Since p is irreducible it follows from
Proposition 3.2(i) that p equals L up to a multiplicative constant.

If 1 + w2 + f2(w) = 0, ∀w, then p equals up to a multiplicative constant q(z) =
z2

1 + z2
2 + z2

3 : Since q is homogeneous and irreducible the zero set of q for z3 = 1
can be represented by w2 + g(w)2 + 1 = 0, with g holomorphic. We obtain f2 = g2

which leads again by Proposition 3.2(i) to the desired result.

Geometrical proof of Lemma 3.1.. Denote by α the projective quadric Σ3
j=1z

2
j

in C3 and let α∗ be tangent to the quadric α in C3∗. If ξj , 1 ≤ j ≤ 3, is a dual basis
in C3∗, then α∗ has the form Σ3

j=1ξ
2
j . Let γ∗ ⊂ P (C3∗) be the set of tangent planes

to the characteristic surface N(p)\Σ(p). Evidently, the characteristic property of
the surface implies that γ∗ ⊂ im(α∗) (see [B], ch.14.5). Since im(α∗) is an algebraic
curve in P (C3∗) we have: either γ∗ is a point and thus p is linear, or γ∗ coincides
with im(α∗). In the last case it follows from Proposition 3.2(i) that γ∗ is the image
of the quadric Σ3

j=1ξ
2
j and hence p = const Σ3

j=1z
2
j .
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solution d’un opérateur elliptique, Bull. Sci. Math. 114 (2) (1990), 329-336.

[S] I.R. Shavarevic, Basic algebraic geometry, Gundlehren d. math. Wissenschaften Bd.

213, Springer Verlag, 1974.

[SW] E.M. Stein, G. Weiss, Fourier Analysis on Euclidean Spaces, Princeton University

Press, Princeton, 1971.



19

[Y] S.T. Yau, Open problems in geometry, Proc. Symp. Pure Math. 54,1 (1993), 1-28,

problem 43.
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Institute for Mathematical Physics, Pasteurgasse 6/7, A-1090 Wien, Austria

E-mail address: thoffman@esi.ac.at

N. Nadirashvili: International Erwin Schr ödinger Institute for Mathematical
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