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Abstract— Standard TCP is successful at low speeds but it is
unfit for high speed communication due to its slow ramp-up of
congestion window size. Many modern fields of study require
high bandwidth connectivity. Various solutions to this, including
server side modifications of TCP like HighSpeed TCP and Fast
TCP, are being advocated. In this work we study the effectiveness
of these two protocols by comparing and contrasting both of them
with standard TCP.

I. INTRODUCTION

In recent times, new and exciting fields of study, such as
High Energy physics, nuclear physics, and Bioinformatics,
have emerged and call for high speed communication network
links. These applications require communications between
groups that are geographically spread and involve sharing of
large volumes of data. For example, the SLAC (Stanford Liner
Accelerator Center) and Fermilab organizations have data
accumulated to the scale of petabyes [1]. It is estimated that
for effective sharing of data, a throughput of 10Gbps would
have to be sustained on the main links of such systems [1].

Having said that, consider why one needs variations for
TCP in the first place. Network congestion, or times when
the available bandwidth in a link is below that expected
by users, is a common occurrence in networks. Congestion
is a phenomenon that must be carefully considered in all
network and protocol designs. TCP congestion control [2] is
the basic method used in present TCP to combat congestion.
For flow control, TCP relies on end-to-end acknowledgements
and maintains a congestion window, which is an upper bound
on the number of segments that can be sent while still waiting
for an acknowledgment. TCP uses duplicate ACKs and ACK
time out to infer packet loss. In simple terms, for each
acknowledgment received, Reno TCP (which we call standard
TCP) modifies the congestion window size as follows [2], [3]:

w ← w +
a

w
, (1)

where the unit of w is in packets and a is the increase
parameter. Upon detecting congestion in a RTT,

w ← w − bw, (2)

where b is the decrease parameter. For a slow start ACK,

w ← w + c, (3)

where c is the slow start parameter. In standard TCP, a = 1,
b = 0.5, and c = 1 by default.

While this algorithm in standard TCP is successful at low
speeds, it is unfit for high speed communication. Consider the

following popular example. Suppose there is a connection with
a RTT of 200ms and a packet size of 1500 bytes. For a link
with bandwidth 1Gbps, one would have a congestion window
of 17000 packets. When congestion is detected, w reduces to
8500, for a rate of only 500Mbps. For standard TCP, it will
take 8500 RTTs to ramp back up to 1Gbps from 500Mbps.
That translates to 28 minutes, which is totally unacceptable
in present day networks since the duration of typical transfers
are often much smaller. Therefore, TCP is not efficient at high
speeds. The key issue in this problem is that congestion is a
temporary phenomenon and that a faster recovery algorithm is
needed in high speed links. We seek the fastest fair method to
reach the optimal transfer rate which maximizes utilization.

II. LITERATURE REVIEW

The problem of high speed communication with TCP has
been approached in a number of ways. The methods that
we have looked at try to be compatible with standard TCP
for a peaceful coexistence, and require changes only at the
server end for effective use. There are several works on such
modifications of TCP for high speed, including [4], HighSpeed
TCP [5], [6], Fast TCP [1], [7], Westwood TCP [8], and
Scalable TCP (which builds on HighSpeed TCP) [3]. Some
of these protocols make use of TCP Vegas [9], [10] and
variants [11] to use buffer delay as a sign of congestion,
as opposed to drop inference. Reference [4] emulates an
aggregate of N virtual channels opened, but deciding on the
value of N itself can be tricky, making scalability questionable.

A. HighSpeed TCP

In this report, we focus on HighSpeed TCP and Fast TCP.
HighSpeed TCP is a variation of standard TCP and thus very
compatible. Like standard TCP, it uses packet drop inference
to detect congestion (ACK-clocking). Standard TCP has a
sending rate of [12],

T =

√
a(2− b)

2b

1√
p

packets per RTT, (4)

where p is the packet loss rate. To ensure compatibility with
standard TCP, HighSpeed TCP uses standard TCP’s default
congestion window response parameters in (1)–(3) when the
drop rate, p, is above a fixed threshold value P . Typically, P
is set to 0.0015, corresponding to a threshold current window
size of W = 31 [5]. Because HighSpeed TCP is the same as
standard TCP for small congestion window sizes, it does not
affect network behavior in heavy congestion environments.
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However, when p < P (or equivalently, w > W ), High-
Speed TCP allows for variability in the parameters a, b and
c [2]. In this approach, the values of a and b are now viewed as
functions of the current window size, w. For a fixed congestion
window size W1 and target high speed drop rate P1, we choose
a(w) and b(w) to satisfy [5],

W1 =

√
a(w)(2− b(w))

2b(w)
1√
P1

. (5)

For example, the above relation is satisfied by a = 72 and b =
0.1 for W1 = 83000 and P1 = 1e-7, i.e., a congestion window
decrease of 10% for a drop and an increase of 0.1% for a
transmission without drop [5].

B. Fast TCP

The Fast TCP protocol is based on Vegas TCP instead of
Reno TCP. Thus, it differs fundamentally from HighSpeed
TCP in that it primarily makes use of queuing delay, rather
than packet loss, to estimate congestion. This may be ad-
vantageous in high speed networks where queuing delay can
be measured more reliably. Furthermore, by monitoring both
queuing delay and packet loss, Fast TCP has the potential to
give a more complete picture of congestion in the network.

Fast TCP uses an equation based algorithm that paces the
sender, rather than alternating between “testing” the network
with more packets and backing-off dramatically in the event of
a packet loss, thereby reducing oscillatory behavior [1]. This
effect appears in simulations of Fast TCP for large buffers.
Furthermore, it is claimed that Fast TCP can maintain stability
and equilibrium by only modifying the sending hosts [1], and
that it is highly scalable with link capacity [1], [13].

One draw back of Fast TCP is that detailed information is
not as accessible as in the other protocols, primarily because
the work is commercial in nature. In our understanding, Fast
TCP is less friendly to standard TCP than HighSpeed TCP.

III. IMPLEMENTATION

In this work we study HighSpeed TCP and Fast TCP and try
to analyze their effectiveness. To compare and contrast these
protocols, we simulated them over various network parameters
using ns-2.26 1 on cygwin 1.5.5 2.

We used the HighSpeed TCP implementation build in the
latest version of ns2. Since an ns2 implementation of Fast TCP
has not been released, we used a Fast TCP code written by
Xiaoqiao Meng of UCLA (not available in public domain).
The code adheres to the published Fast TCP standards [1].

The standard TCP, HighSpeed TCP, and Fast TCP pro-
tocols were simulated under various network conditions in
the “dumbbell” network topology illustrated in Fig. 1. To
compare each of these protocols, we vary the number of
nodes, bottleneck bandwidth, error probability in the channel,
queue buffer size, and queue type (DropTail or RED). Our
default values for these parameters are 1 flow, 100 Mbps, 0

1Available at http://www.sims.berkeley.edu/ christin/ns-cygwin.shtml.
2Available at http://www.cygwin.com/.

src 1
src 2

src n

R Mbps, 10 ms

10 Gbps, 2 ms

dst 1
dst 2

dst n

Fig. 1. Topology of all simulations. Default is R = 100 Mbps.

TABLE I

PERFORMANCE UNDER VARIOUS TOPOLOGY CONFIGURATIONS.

Flows Protocol Average BW (Mbps) Average cwnd
1 Standard TCP 63.8687 227.944
1 HighSpeed TCP 84.3331 305.051
1 Fast TCP 73.4996 264.939
2 Standard TCP 76.1065 137.59
2 HighSpeed TCP 82.9526 156.471
2 Fast TCP 75.421 140.412
4 Standard TCP 74.5453 69.0467
4 HighSpeed TCP 81.182 79.9547
4 Fast TCP 75.4806 70.8203

error probability, 50 packet buffer size, and DropTail queuing,
respectively. We also tested these protocols with reverse traffic.

IV. SIMULATION RESULTS

A. Effect of Multiple Nodes

Simulation results for the standard, HighSpeed, and Fast
TCP protocols are shown in Fig. 2 and 3 for n = 1 and
4 flows, respectively. A summary of the average bandwidth
and congestion window size is presented in Table I. Fig. 2 is
considered the standard network condition and will be used
for comparison in later sections.

In all cases, HighSpeed TCP performs the best in terms
of average achieved bandwidth. In the default case of Fig. 2,
Fast TCP performs better than standard TCP. However, when
multiple nodes are added, Fast TCP and standard TCP achieve
similar performance. This observation was also reported in [4].
Thus, the advantage of Fast TCP over HighSpeed TCP is
questionable based on our observation in these simulations.
We believe that the aggressive windowing technique used in
Fast TCP may be too excessive and negatively affecting Fast
TCP’s performance.

Notice that in some cases, as the number of flows increases
the total bandwidth utilized in the channel also increases. This
is because we essentially divide the 100 Mbps channel into
several smaller sub-channels, and due to this smaller effective
bandwidth, each sub-channel can capture a higher percentage
of its total allocated resources.

Finally, note as the number of nodes increases, the con-
gestion window size of the standard and HighSpeed TCP
protocols appears to decay slowly to an equilibrium, whereas
Fast TCP behaves very erratically for the first 4 seconds and
afterwards converges rapidly to equilibrium.

B. Effect of Bottleneck bandwidth Size

Results for the standard, HighSpeed, and Fast TCP protocols
are shown in Fig. 4 with bottleneck bandwidth R = 1000
Mbps. For comparison, refer to Fig. 2 for R = 100 Mbps.
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Fig. 2. Flow 0 congestion window size for n = 1 flows.
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Fig. 3. Flow 0 congestion window size for n = 4 flows.

A summary of the average bandwidth and congestion window
size for all relevant cases is presented in Table II.

At low bandwidths, all protocols nearly achieve the capacity
of the channel. For extremely high bandwidths, HighSpeed
TCP is vastly superior to the other protocols, and curiously,
standard TCP performs significantly better than Fast TCP.

C. Effect of Channel Errors

Simulation results for the standard, HighSpeed, and Fast
TCP protocols are shown in Fig. 5 with channel error proba-
bility p = 1e-4. Refer to Fig. 2 with channel error probability
p = 0 for comparison. A summary of the average bandwidth
and congestion window size is presented in Table III.

For moderately high error probabilities (p = 1e-4), which
may be used to model congestion, performance is nearly
unchanged for HighSpeed and Fast TCP, but begins to degrade
significantly for standard TCP. In extremely noisy conditions
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Fig. 4. Congestion window size for R = 1000 Mbps.

TABLE II

PERFORMANCE UNDER VARIOUS BOTTLENECK BANDWIDTHS.

Rate (Mbps) Protocol Average BW (Mbps) Average cwnd
1 Standard TCP 0.962132 39.5112
1 HighSpeed TCP 0.967863 41.5263
1 Fast TCP 0.964731 47.2552

100 Standard TCP 63.8687 227.944
100 HighSpeed TCP 84.3331 305.051
100 Fast TCP 73.4996 264.939

1000 Standard TCP 425.292 1489
1000 HighSpeed TCP 783.266 2748.68
1000 Fast TCP 250.648 858.913

(p = 1e-2), all protocols suffer dramatically, with Fast TCP
performing the best, followed by HighSpeed TCP and then
standard TCP. HighSpeed TCP exhibited extremely erratic
behavior here, and at certain time instants momentarily set
the congestion window size to an extremely high level.

D. Effect of Queue Buffer Size with DropTail

Results for the standard, HighSpeed, and Fast TCP protocols
with DropTail queuing are shown in Fig. 6 with buffer size
B = 500 packets. Refer to Fig. 2 with buffer sizes B = 50
for comparison. A summary of the average bandwidth and
congestion window size is presented in Table IV.

In all cases regarding queue buffer size, HighSpeed TCP

TABLE III

PERFORMANCE UNDER VARIOUS CHANNEL ERROR PROBABILITIES.

p Protocol Average BW (Mbps) Average cwnd
0 Standard TCP 63.8687 227.944
0 HighSpeed TCP 84.3331 305.051
0 Fast TCP 73.4996 264.939

1e-4 Standard TCP 32.8905 115.032
1e-4 HighSpeed TCP 84.2535 304.665
1e-4 Fast TCP 71.9742 259.745
1e-2 Standard TCP 2.58479 8.97549
1e-2 HighSpeed TCP 3.69619 -
1e-2 Fast TCP 5.6098 20.2149
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Fig. 5. Congestion window size for p = 1e-4.
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Fig. 6. Congestion window size with DropTail for B = 500.

performs the best. For small buffer sizes (below 50), Fast TCP
performs better than standard TCP. However, Fast TCP is the
worst protocol for larger buffer sizes (above 100).

E. Effect of Queue Buffer Size with RED

Simulation results for the standard, HighSpeed, and Fast
TCP protocols with RED queuing are shown in Fig. 7 with
buffer size B = 500. A summary of the average bandwidth
and congestion window size is presented in Table IV.

As with DropTail queuing, HighSpeed TCP is superior in
all cases with RED queuing, Fast TCP is worst for high buffer
sizes (above 100), and standard TCP is the worst for low buffer
sizes (below 50). DropTail and RED queuing appear to have
nearly identical performance for small window sizes. However,
for the largest buffer size of 500, the HighSpeed and Fast TCP
protocols behave very differently for RED queueing with an
abrupt change around 40 seconds into the simulation.

TABLE IV

PERFORMANCE UNDER VARIOUS QUEUE BUFFER SIZES WITH DROPTAIL

AND RED QUEUING.

B Protocol Average BW (Mbps) Average cwnd (pac.)
DropTail RED DropTail RED

10 Standard 43.0001 50.336 152.279 176.965
10 HighSpeed 76.0341 76.0968 268.394 268.785
10 Fast 67.8116 67.6661 240.32 240.147
50 Standard 63.8687 64.0865 227.944 229.075
50 HighSpeed 84.3331 85.2966 305.051 308.919
50 Fast 73.4996 73.8282 264.939 267.08

100 Standard 84.3251 84.4709 319.54 320.818
100 HighSpeed 91.3422 91.4583 351.197 352.326
100 Fast 84.3043 81.586 320.565 307.142
500 Standard 94.7585 85.6263 630.356 331.991
500 HighSpeed 95.9727 71.5531 690.53 377.017
500 Fast 69.4632 65.5129 498.665 370.366
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Fig. 7. Congestion window size with RED for B = 500.

F. Effect of Reverse Traffic

To test the robustness of these protocols in the presence of
reverse traffic, we used the same topology and reversed the
flow direction for half of the links. A summary of the average
bandwidth and congestion window size for the standard,
HighSpeed, and Fast TCP protocols with reverse traffic is
presented in Table V.

In the congestion window plots, we saw that both standard
TCP and HighSpeed TCP appear stable, with flows in both
directions behaving almost identically. However, Fast TCP,
shown in Fig. 8, had a slightly diminished overall bandwidth
and seemed to oscillate between favoring flows in the forward
and reverse directions, especially when the number of flows
was low. Because reverse traffic causes ACK packets to be
delayed and returned in bursts, resulting in ACK compression,
protocols such as TCP Vegas and Fast TCP that use RTT to
measure the state of the network receive a misleading picture
of congestion and tend to perform poorly. Fast TCP was also
reported to have problems with reverse traffic in [14].
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TABLE V

PERFORMANCE UNDER VARIOUS REVERSE FLOW CONFIGURATIONS.

Flows Reverse Protocol Avg. BW (Mbps) Avg. cwnd
2 1 Standard TCP 85.6852 156.0924
2 1 HighSpeed TCP 93.4708 171.5883
2 1 Fast TCP 83.7556 153.7652
4 2 Standard TCP 83.9058 77.4082
4 2 HighSpeed TCP 91.9685 84.6614
4 2 Fast TCP 84.2136 77.8559
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Fig. 8. Congestion window size with 1 forward and 1 reverse flow.

V. CONCLUSION

On the whole, our simulation results seem to match
with [14] but differs with [7]. To summarize our results:

• Fast TCP behaves the most erratically.
• In the default case: HighSpeed >>> Fast > standard.
• With multiple nodes: HighSpeed >>> Fast = standard.
• At low BW: HighSpeed = Fast = standard = capacity.
• At high BW: HighSpeed >>> standard > Fast.
• For middle error prob.: HighSpeed = Fast > standard.
• For high error prob.: Fast > HighSpeed = standard.
• For small buffer sizes: HighSpeed > Fast > standard.
• For large buffer sizes: HighSpeed > standard > Fast.
• RED and DropTail perform the same.
• Fast is unstable in the presence of reverse links.

Both new protocols require only changes at the server
side. Thus they can be implemented and the gains observed
irrespective of what protocols the linking routers are running.
HighSpeed TCP only requires a simple change to the conges-
tion window update logic to improve the throughput in high
speed WAN.

Except in the case of extremely high channel error prob-
abilities, HighSpeed TCP is the best protocol. In the default
network scenario, HighSpeed TCP performs 32% better than
standard TCP, achieving 84.3% of the capacity of the link. Fast
TCP is best in high noise, and consistently performs better than
standard TCP, except in the cases of extremely high BW and
large buffer sizes. Since Fast TCP seems to be the most robust

at high error rates, it might be worth exploring how it would
fare in a wireless setup.

VI. FUTURE WORK

As an extension of this work, we propose to study other
promising high-speed protocols such as Scalable TCP [3]
and Westwood TCP [8]. Fairness, compatibility, scalability,
and stability will also be considered for a more complete
comparison. We also hope to simulate more complex networks,
subject to dynamic flows and network changes, to better
understand the behavior of these protocols under more realistic
conditions.
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