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1.1 Introduction

Classification is an important problem in machine learning and data mining. It has been
widely applied in many real-world applications. Traditionally, to build a classifier, a user first
needs to collect a set of training examples/instances that are labeled with predefined classes.
A classification algorithm is then applied to the training data to build a classifier that is
subsequently employed to assign the predefined classes to test instances (for evaluation) or
future instances (for application) [1].

In the past three decades, many classification techniques, such as Support Vector Ma-
chines (SVM) [2], Neural Network (NN) [3], Rule Learning [9], Näıve Bayesian (NB) [5],
K-Nearest Neighbour (KNN) [6], Decision Tree [4], have been proposed. In this chapter, we
focus on rule learning, also called rule-based classification. Rule learning is valuable due to
the following advantages.
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1. Rules are very natural for knowledge representation, as people can understand and
interpret them easily.

2. Classification results are easy to explain. Based on a rule database and input data
from the user, we can explain which rule or set of rules is used to infer the class label
so that the user is clear about the logic behind the inference.

3. Rule-based classification models can be easily enhanced and complemented by adding
new rules from domain experts based on their domain knowledge. This has been
successfully implemented in many expert systems.

4. Once rules are learned and stored into a rule database, we can subsequently use
them to classify new instances rapidly through building index structures for rules and
searching for relevant rules efficiently.

5. Rule based classification systems are competitive with other classification algorithms
and in many cases are even better than them.

Now, let us have more detailed discussions about rules. Clearly, rules can represent
information or knowledge in a very simple and effective way. They provide a very good data
model that human beings can understand very well. Rules are represented in the logic form
as IF-THEN statements, e.g. a commonly used rule can be expressed as follows:

IF condition THEN conclusion.

where the IF part is called the “antecedent” or “condition” and the THEN part is
called the “consequent” or “conclusion” . It basically means that if the condition of the rule
is satisfied, we can infer or deduct the conclusion. As such, we can also write the rule in the
following format, namely, condition → conclusion. The condition typically consists of one
or more feature tests (e.g. feature1 > value2, feature5 = value3) connected using logic
operators (i.e. “and”, “or”, “not”). For example, we can have a rule like: If sex=“female”
and (35 < age <45) and (salary=“high” or creditlimit=“high”), then potential customer
=“yes”. In the context of classification, the conclusion can be the class label, e.g. “yes”
(potential customer =“yes”) or “no” (potential customer =“no”). In other words, rules
can be used for classification if its “consequent” will be one of those predefined classes
and its “antecedent” or “precondition” contains conditions of various features and their
corresponding values.

Many machine learning and data mining techniques have been proposed to automatically
learn rules from data. In computer science domain, rule-based systems have been extensively
used as an effective way to store knowledge and to do logic inference. Furthermore, based
on the given inputs and the rule database, we can manipulate the stored knowledge for
interpreting the generated outputs as well as for decision making. Particularly, rules and
rule based classification systems have been widely applied in various expert systems, such
as fault diagnosis for aerospace and manufacturing, medical diagnosis, highly interactive or
conversational Q&A system, mortgage expert systems etc.

In this chapter, we will introduce some representative techniques for rule-based classi-
fication, which includes two key components, namely 1) rule induction which learns rules
from a given training database/set automatically; and 2) classification, which makes use
of the learned rule set for classification. Particularly, we will study two popular rule-based
classification approaches: (1) rule induction and (2) classification based on association rule
mining.



Rule-based Classification 3

1. Rule induction. Many rule induction/learning algorithms, such as [9], [10], [11],
[12], [13], [14], have adopted the sequential covering strategy, whose basic idea is to
learn a list of rules from the training data sequentially, or one by one. That is, once
a new rule has been learned, it will remove the corresponding training examples that
it covers, i.e. remove those training examples that satisfy the rule antecedent. This
learning process, i.e. learn a new rule and remove its covered training data, is repeated
until rules can cover the whole training data or no new rule can be learned from the
remaining training data.

2. Classification based on association rule mining. Association rule mining [16], is
perhaps the most important model invented by data mining researchers. Many efficient
algorithms have been proposed to detect association rules from large amount of data.
One special type of association rules is called class association rules (CARs). The
consequent of a CAR must be a class label, which makes it attractive for classification
purposes. We will describe Classification Based on Associations (CBA) — the first
system that uses association rules for classification [30], as well as a number of more
recent algorithms that perform classification based on mining and applying association
rules.

1.2 Rule Induction

The process of learning rules from data directly is called rule induction or rule learn-
ing. Most rule induction systems have utilized a learning strategy which is described as
sequential covering. A rule-based classifier built with this strategy typically consists of a
list of discovered rules, which is also called a decision list [8]. Note in the decision list, the
ordering of the rules is very important since it decides which rule should be first used for
classification.

The basic idea of sequential covering is to learn a list of rules sequentially, one at a time,
to cover the whole training data. A rule covering a data instance (either training or test
instance), means that the instance satisfies the conditions of the rule. As such, covering the
whole training data simply means every training instance in the training data satisfies the
conditions of at least one rule in the decision list — it is possible that one training/test
instance satisfies multiple rules and typically each rule can cover multiple instances. A key
learning step using the sequential covering strategy is as follows: after each rule is learned,
the training examples covered by the rule are removed from the training data and only the
remaining training data are used to learn subsequent rules. These key learning steps are
performed repeatedly until the remaining training set becomes empty or no new rule can
be learned from the training data.

In this section, we study two specific algorithms based on the sequential covering strate-
gy. Both of them are well-known and highly cited. The first algorithm is the CN2 induction
algorithm [9] and the second algorithm is based on the ideas from RIPPER algorithm and
its variations such as RIPPER [13], FOIL [10], I-REP [11], and REP [12]. Note some ideas
are also taken from [14].
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1.2.1 Two algorithms for Rule Induction

We now present these two algorithms, namely CN2 and RIPPER (and its variations),
in section 1.2.1.1 and section 1.2.1.2 respectively.

1.2.1.1 CN2 Induction Algorithm (Ordered Rules)

CN2 algorithm learns each rule without pre-fixing a class [9]. That is, in each iteration,
a rule for any class may be learned. As such, rules for different classes may intermix in
the final decision list RULE LIST . As we have mentioned earlier, the ordering of rules is
essential for classification, as rules are highly dependent on each other.

CN2 was designed to incorporate ideas from both the AQ algorithm [18] and the ID3
algorithm [4]. Before presenting CN2, we first introduce several basic concepts that were
introduced in the AQ algorithm as well as later in CN2 algorithm. Each rule is in the form
of “if < cover > then predict < class >”, where < cover > is a Boolean combination of
multiple attribute tests. The basic test on an attribute is called a selector, e.g. < cloudy =
yes >, < weather = wet ∨ stormy >, and < Temperature ≥ 25 >. A conjunction of
selectors is called a complex, e.g. < cloudy = yes > and < weather = wet ∨ stormy >. A
disjunct of multiple complexes is called a cover.

The CN2 rule induction algorithm, which is based on ordered rules, is given below, which
uses sequential covering.

INPUT
Let E be a set of classified (training) examples

Let SELECTORS be the set of all possible selectors

CN2 Induction Algorithm CN2(E)

1. Let RULE LIST be the empty list; // initialize an empty rule set in the beginning

2. Repeat until Best CPX is nil or E is empty;

3. Let Best CPX be Find Best Complex(E)

4. If Best CPX is not nil

5. Then let E′ be the examples covered by Best CPX

6. Remove from E the examples E′ covered by Best CPX

7. Let C be the most common class of examples in E′

8. Add the rule “If Best CPX then the class is C” to the end of RULE LIST .

9. Output RULE LIST .

In this algorithm, we need two inputs, namely, E and SELECTORS. E is the training
data and SELECTORS is the set of all possible selectors that test each attribute and
its corresponding values. Set RULE LIST is the decision list, storing the final output list
of rules, which is initialized as to empty set in step 1. Best CPX records the best rule
detected in each iteration. The function Find Best Complex(E) learns the Best CPX.
We will elaborate the details of this function later in section 1.2.2. Steps 2 to 8 form a
Repeat-loop which learns the best rule and refine the training data. In particular, in each
Repeat-loop, once a non-empty rule is learned from the data (steps 3 and 4), all the training
examples that are covered by the rule are removed from the data (steps 5 and 6). The rule
discovered, consisting of the rule condition and the most common class label of the examples
covered by the rule, is added at the end of RULE LIST (steps 7 and 8).

The stopping criteria for the Repeat-loop (from steps 2–8) can be either E = ∅ (no
training examples left for learning) or Rule Best CPX is nil (there is no new rule learned
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from the training data). After the rule learning process completes (i.e. satisfies one of the
two stopping criteria), a default class c is inserted at the end of RULE LIST . This step is
performed because of the following two reasons: 1) there may still be some training examples
that are not covered by any rule as no good rule can be mined from them, and 2) some test
instances may not be covered by any rule in the RULE LIST and thus we cannot classify
it if we do not have a default-class. Clearly, with this default-class, we are able to classify
any test instance. The default-class is typically the majority class among all the classes in
the training data, which will be used only if no rule learned from the training data can be
used to classify a test example. The final list of rules, together with the default-class, is
represented as follows:

<r1, r2, . . . , rk, default-class>, where ri is a rule mined from the training data.

Finally, using the list of rules for classification is rather straightforward. For a given test
instance, we simply try each rule in the list sequentially, starting from r1, then r2 (if r1
cannot cover the test instance), r3 (if both r1 and r2 cannot cover the test instance) and
so on. The class consequent of the first rule that covers this test instance is assigned as the
class of the test instance. If no rule (from r1, r2, . . . , rk) applies to the test instance, the
default-class is applied.

1.2.1.2 RIPPER Algorithm and its Variations (Ordered Classes)

We now introduce the second algorithm (Ordered Classes), which is based on the RIP-
PER algorithm [13] [51] [71], as well as earlier variations such as FOIL [10], I-REP [11], and
REP [12].

RIPPER algorithm and its variations (D,C)

1. RuleList← ∅; // initialize RuleList as an empty rule set

2. For each class c ∈ C do

3. Prepare data (Pos,Neg), where Pos contains all the examples of class c from D,
and Neg contains the rest of the examples in D;

4. While Pos ̸= ∅ do
5. Rule← learn-one-rule(Pos,Neg, c)

6. If Rule is NULL then

7. exit-While-loop

8. Else RuleList← insert Rule at the end of RuleList;

9. Remove examples covered by Rule from (Pos,Neg)

10. EndIf

11. EndWhile

12. EndFor

13. Output RuleList.

Different from the CN2 algorithm which learns each rule without pre-fixing a class,
RIPPLE learns all rules for each class individually. In particular, only after rule learning
for one class is completed, it moves on to the next class. As such, all rules for each class
appear together in the rule decision list. The sequence of rules for each individual class is
not important, but the rule subsets for different classes are ordered and still important.
The algorithm usually mines rules for the least frequent/minority/rare class first, then the
second minority class, and so on. This process ensures that some rules are learned for rare
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or minority classes. Otherwise, they may be dominated by frequent or majority classes and
we will end up with no rules for the minority classes. The RIPPER rule induction algorithm
is shown as follows, which is also based on sequential covering:

In this algorithm, the data set D is split into two subsets, namely, Pos and Neg, where
Pos contains all the examples of class c from D, and Neg the rest of the examples in D
(see step 3), i.e. in a one-vs-others manner. Here c ∈ C is the current working class of the
algorithm, which is initialized as the least frequent class in the first iteration. As we can
observe from the algorithm, steps 2 to 12 is a For-loop which goes through all the classes
one by one, starting from the minority class. That is why this method is called Ordered
Classes, from the least frequent class to the most frequent class. For each class c, we have
an internal While-loop from steps 4 to 11 which includes the rule learning procedure, i.e.,
perform the Learn-One-Rule() function to learn a rule Rule in step 5; insert the learned
Rule at the end of RuleList in step 8; remove examples covered by Rule from (Pos,Neg)
in step 9. Note two stopping conditions for internal rule learning of each class c are in given
in step 4 and step 6 respectively — we stop the while-loop for the internal rule learning
process for the class c when the Pos becomes empty or no new rule can be learned by
function Learn-One-Rule(Pos,Neg, c) from the remaining training data.

The other parts of the algorithm are very similar to those of the CN2 algorithm. The
Learn-One-Rule() function will be described later in section 1.2.2.

Finally, applying the RuleList for classification is done in a similar way as for CN2
algorithm. The only difference is that the order of all rules within each class is not important
anymore since they share the same class label which will lead to the same classification
results. Since the rules are now ranked by classes, given a test example, we will try the
rules for the least frequent classes first until we can find a single rule that can cover the test
example to perform its classification; otherwise, we have to apply the default-class.

1.2.2 Learn One Rule in Rule Learning

In the two algorithms described above, we have not elaborated on the two important
functions used by them, where the first algorithm uses Find Best Complex() and the sec-
ond algorithm uses learn-one-rule(). In this section, we explain the overall idea of the two
functions that learn a rule from all or partial training data.

First, the rule starts with an empty set of conditions. In the first iteration, only one
condition will be added. In order to find a best condition to add, all possible conditions are
explored, which form a set of candidate rules. A condition is an attribute-value pair in the
form of Ai op v, where Ai is an attribute and v is a value of Ai. Particularly, for a discrete
attribute of v, assuming op is “=”, then a condition will become Ai = v. On the other hand,
for a continuous attribute, op ∈ {>,≤} and the condition becomes Ai > v or Ai ≤ v. The
function then evaluates all the possible candidates to detect the best one from them (all the
remaining candidates are discarded). Note the best candidate condition should be the one
that can be used to better distinguish different classes, e.g. through an entropy function
which has been successfully used in decision tree learning [4].

Next, after the first best condition is added, it further explores to add the second condi-
tion and so on in the same manner until some stopping conditions are satisfied. Note that
we have omitted the rule class here because it implies the majority class of the training
data covered by the conditions. In other words, it means that when we apply the rule, the
class label that we predict should be correct most of the time.

Obviously, this is a heuristic and greedy algorithm in that after a condition is added, it
will not be changed or removed through backtracking [15]. Ideally, we would like to explore
all possible combinations of attributes and values. However, this is not practical as the
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number of possibilities grows exponentially with the increase number of conditions in rules.
As such, in practice, the above greedy algorithm is used to perform rule induction efficiently.

Nevertheless, instead of keeping only the best set of conditions, we can improve the
function a bit by keeping k best sets of conditions (k > 1) in each iteration. This is called
the beam search (k beams), which ensures that a larger space (more attribute and value
combinations) is explored, which may generate better results than the standard greedy
algorithm which only keeps the best set of conditions.

Below, we present the two specific implementations of the functions, namely
Find Best Complex() and learn-one-rule() where Find Best Complex() is used in the CN2
algorithm, and learn-one-rule() is used in the RIPPER algorithm and its variations.

Find Best Complex(D)

The function Find Best Complex(D) uses beam search with k as its number of beams.
The details of the function are given below.

Function Find Best Complex(D)

1. BestCond← ∅; // rule with no condition.

2. candidateCondSet← {BestCond};
3. attributeV aluePairs← the set of all attribute-value pairs in D of the form (Ai op v),

where Ai is an attribute and v is a value or an interval;

4. While candidateCondSet ̸= ∅ do
5. newCandidateCondSet← ∅;
6. For each candidate cond in candidateCondSet do

7. For each attribute-value pair a in attributeValuePairs do

8. newCond← cond
∪
{a};

9. newCandidateCondSet← newCandidateCondSet
∪
{newCond};

10. EndFor

11. EndFor

12. remove duplicates and inconsistencies, e.g., {Ai = v1, Ai = v2};
13. For each candidate newCond in newCandidateCondSet do

14. If evaluation(newCond,D) > evaluation(BestCond,D) then

15. BestCond← newCond

16. EndIf

17. Endor

18. candidateCondSet← the k best members of newCandidateCondSet according to
the results of the evaluation function;

19. EndWhile

20. If evaluation(BestCond,D)− evaluation(∅, D) > threshold then

21. Output the rule: “BestCond→ c” where is c the majority class of the data covered
by BestCond

22. Else Output NULL

23. EndIf
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In this function, set BestCond stores the conditions of a rule to be returned. The class
is omitted here as it refers to the majority class of the training data covered by BestCond.
Set candidateCondSet stores the current best condition sets (which are the frontier beam-
s) and its size is less than or equal to k. Each condition set contains a set of conditions
connected by “and” (conjunction). Set newCandidateCondSet stores all the new candidate
condition sets after adding each attribute-value pair (a possible condition) to every can-
didate in candidateCondSet (steps 5-11). Steps 13-17 update the BestCond. Note that an
evaluation function is used to assess whether each new candidate condition set is better
than the existing best condition set BestCond (step 14). If a new candidate condition set
has been found better, it then replaces the current BestCond (step 15). Step 18 updates
candidateCondSet, which selects k best condition sets (new beams).

Once the final BestCond is found, it is evaluated to check if it is significantly better
than without any condition (∅) using a threshold (step 20). If yes, a rule is formed using
BestCond and the most frequent (or the majority) class of the data covered by BestCond
(step 21). If not, NULL is returned, indicating that no significant rule is found.

Note the evaluation() function shown below employs the entropy function, the same as
in the decision tree learning, to evaluate how good the BestCond is.

Function evaluation(BestCond,D)

1. D′ ← the subset of training examples in D covered by BestCond

2. entropy(D′) = −
∑|C|

j=1 Pr(cj)× log2Pr(cj);

3. Output −entropy(D′) // since entropy measures impurity.

Specifically, in the first step of the evaluation() function, it obtains an example set D′

which consists of a subset of training examples in D covered by BestCond. In its second
step, it calculates an entropy function entropy(D′) based on the probability distribution —
Pr(cj) is the probability of class cj in the data set D′, which is defined as the number of
examples of class cj in D′ divided by the total number of examples in D′. In the entropy
computation, 0 × log0 = 0. The unit of entropy is bit. We now provide some examples to
help understand the entropy measure.

Assume the data set D′ has only two classes, namely positive class (c1=P) and negative
class (c2=N ). Based on the following three different combinations of probability distribu-
tions, we can compute their entropy values as follows:

1. The data set D′ has 50% positive examples (i.e. Pr(P ) = 0.5) and 50% negative
examples (i.e. Pr(N) = 0.5). Then, entropy(D′) = −0.5× log20.5− 0.5× log20.5 = 1.

2. The data set D′ has 20% positive examples (i.e. Pr(P ) = 0.2) and 80% negative
examples (i.e. Pr(N) = 0.8). Then, entropy(D′) = −0.2 × log20.2 − 0.8 × log20.8 =
0.722.

3. The data setD′ has 100% positive examples (i.e. Pr(P ) = 1) and no negative examples
(i.e. Pr(N) = 0). Then, entropy(D′) = −1× log21− 0× log20 = 0.

From the three scenario shown above, we can observe that when the data class becomes
purer and purer (e.g. all or most of examples belong to one individual class), the entropy
value becomes smaller and smaller. As a matter of fact, it can be shown that for this binary
case (only has positive and negative classes), when Pr(P ) = 0.5 and Pr(N) = 0.5, the
entropy has the maximum value, i.e., 1 bit. When all the data in D′ belong to one class,
the entropy has the minimum value, i.e., 0 bit. It is clear that the entropy measures the
amount of impurity according to the data class distribution. Obviously, we would like to
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have a rule which has a low entroy or even 0 bit, since it means that the rule will lead to
one major class and we are thus more confident to apply the rule for classification.

In addition to the entropy function, other evaluation functions can also be applied. Note
that when BestCond = ∅, it covers every example in D, i.e. D = D′.

Learn-One-Rule

In the Learn-One-Rule() function, a rule is first generated and then subjected to a
pruning process. This method starts by splitting the positive and negative training data
Pos and Neg, into growing and pruning sets. The growing sets, GrowPos and GrowNeg,
are used to generate a rule, called BestRule. The pruning sets, PrunePos and PruneNeg
are used to prune the rule because BestRule may overfit the training data with too many
conditions, which could lead to poor predictive performance on the unseen test data. Note
that PrunePos and PruneNeg are actually validation sets, which are used to access the
rule’s generalization. If a rule has 50% error rate in the validation sets, then it does not
generalize well and thus the function does not output it.

Function Learn-One-Rule(Pos, Neg, class)

1. split (Pos, Neg) into (GrowPos, GrowNeg) and (PrunePos, PruneNeg)

2. BestRule ← GrowRule(GrowPos, GrowNeg, class) // grow a new rule

3. BestRule ← PruneRule(BestRule, PrunePos, PruneNeg) // prune the rule

4. If the error rate of BestRule on (PrunePos, PruneNeg) exceeds 50% Then

5. return NULL

6. Endif

7. Output BestRule

GrowRule() function: GrowRule() generates a rule (called BestRule) by repeatedly
adding a condition to its condition set that maximizes an evaluation function until the
rule covers only some positive examples in GrowPos but no negative examples in GrowNeg,
i.e. 100% purity. This is basically the same as the Function Find Best Complex(E), but
without beam search (i.e., only the best rule is kept in each iteration). Let the current
partially developed rule be R:

R: av1, . . . , avk → class

where each avj (j=1, 2, . . . k) in rule R is a condition (an attribute-value pair). By
adding a new condition avk+1, we obtain the rule R+: av1, . . . , avk, avk+1 → class. The
evaluation function for R+ is the following information gain criterion (which is different
from the gain function used in decision tree learning):

gain(R,R+) = p1 × (log2
p1

p1 + n1
− log2

p0
p0 + n0

) (1.1)

where p0 (respectively, n0) is the number of positive (or negative) examples covered by R
in Pos (or Neg), and p1 (or n1) is the number of positive (or negative) examples covered by
R+ in Pos (or Neg). R+ will be better than R if R+ can cover more proportion of positive
examples than R. The GrowRule() function simply returns the rule R+ that maximizes the
gain.

PruneRule() function: To prune a rule, we consider deleting every subset of conditions
from the BestRule, and choose the deletion that maximizes:

v(BestRule, PrunePos, PruneNeg) =
p− n

p+ n
, (1.2)

where p (respectively n) is the number of examples in PrunePos (or PruneNeg) covered by
the current rule (after a deletion).
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1.3 Classification Based on Association Rule Mining

In the last section, we introduced how to mine rules through rule induction systems.
In this section, we discuss Classification Based on Association Rule Mining, which makes
use of the association rule mining techniques to mine association rules and subsequently
to perform classification task by applying the discovered rules. Note that Classification
Based on Association Rule Mining detects all rules in data that satisfy the user-specified
minimum support (minsup) and minimum confidence (minconf) constraints while a rule
induction system detects only a subset of the rules for classification. In many real-world
applications, rules that are not found by a rule induction system may be of high value for
enhancing the classification performance, or for other uses

The basic idea of Classification Based on Association Rule Mining is to first find strong
correlations or associations between the frequent itemsets and class labels based on associa-
tion rule mining techniques. These rules can be subsequently used for classification for test
examples. Empirical evaluations have demonstrated that classification based on association
rules are competitive with the state-of-the-art classification models, such as decision trees,
navie Bayes, and rule induction algorithms.

In section 1.3.1, we will present the concepts of association rule mining and an algorithm
to automatically detect rules from transaction data in an efficient way. Then, in section 1.3.2,
we will introduce mining class association rules, where the class labels or target attributes)
are on the right-hand side of the rules. Finally, in section 1.3.3, we describe some techniques
for performing classification based on discovered association rules.

1.3.1 Association Rule Mining

Association rule mining, formulated by Agrawal et al. in 1993 [16], is perhaps the most
important model invented and extensively studied by the database and data mining com-
munities. Mining association rules is a fundamental and unique data mining task. It aims
to discover all co-occurrence relationships (or associations, correlations) among data items,
from very large data sets in an efficient way. The discovered associations can also be very
useful in data clustering, classification, regression and many other data mining tasks.

Association rules represent an important class of regularities in data. Over the past t-
wo decades, data mining researchers have proposed many efficient association rule mining
algorithms, which have been applied across a wide range of real-world application domain-
s, including business, finance, economy, manufacturing, aerospace, biology, and medicine
etc. One interesting and successful example is Amazon book recommendation. Once asso-
ciation rules are detected automatically from the book purchasing history database, they
can be applied to recommend users those relevant books based on other people/community
purchasing experiences.

The classic application of association rule mining is the market basket data analysis,
aiming to determine how items purchased by customers in a supermarket (or a store/shop)
are associated or co-occurring together. For example, an association rule mined from a
market basket data could be:

Bread→Milk [support = 10%, confidence = 80%].

The rule basically means we can use Bread to infer Milk or those customers who buy
Bread also frequently buy Milk. However, it should read together with two important
quality metrics, namely support and confidence. Particularly, the support of 10% for this
rule means that 10% customers buy Bread and Milk together, or 10% of all the transactions
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under analysis show that Bread and Milk are purchased together. In addition, A confidence
of 80% means that those who buy Bread also buy Milk 80% of the time. This rule indicates
that item Bread and item Milk are closely associated. Note in this rule, these two metrics are
actually used to measure the rule strength, which will be defined in section 1.3.1.1. Typically,
association rules are considered interesting or useful if they satisfy two constraints, namely
their support is larger than a minimum support threshold and their confidence is larger
a minimum confidence threshold. Both thresholds are typically provided by users and
good thresholds may need users to investigate the mining results and vary the threholds
multiple times.

Clearly, this association rule mining model is very generic and can be used in many
other applications. For example, in the context of the Web and text documents, it can be
used to find word co-occurrence relationships and Web usage patterns. It can also be used
to find frequent substructures such as subgraphs, subtrees, or sublattices etc [19], as long
as these substructures are frequently occurred together in the given dataset.

Note standard association rule mining, however, does not consider the sequence or tem-
poral order in which the items are purchased. Sequential pattern mining takes the sequential
information into consideration. An example of a sequential pattern is “5% of customers buy
bed first, then mattress and then pillows”. The items are not purchased at the same time,
but one after another. Such patterns are useful in Web usage mining for analyzing click
streams in server logs [20].

1.3.1.1 Definitions of Association Rules, Support and Confidence

Now we are ready to formally define the problem of mining association rules. Let I =
{i1, i2, . . . , im} be a set of items. In the market basket data analysis scenario, for example,
set I contains all the items sold in a supermarket. Let T = (t1, t2, . . . , tn) be a set of
transactions (the database), where each transaction ti is a record, consisting of a set of
items such that ti ⊆ I. In other words, a transaction is simply a set of items purchased
in a basket by a customer and a transaction database includes all the transactions which
record all the baskets (or the purchasing history of all customers). An association rule is
an implication of the following form: X → Y , where X ⊂ I, Y ⊂ I, and X

∩
Y = ∅. X (or

Y ) is a set of items, called an itemset.

Let us give a concrete example of a transaction: ti = {Beef,Onion, Potato}, which
indicates that a customer purchased three items, i.e. Beef, Onion and Potato, in his/her
basket. An association rule could be in the following form:

Beef, Onion → Potato,

where {Beef,Onion} is X and {Potato} is Y . Note brackets “{” and “}” are usually
not explicitly included in both transactions and rules for simplicity.

As we mentioned before, each rule will be measured by its support and confidence. Next,
we define both of them to evaluate the strength of rules.

A transaction ti ∈ T is said to contain an itemset X if X is a subset of ti.
For example, itemset {Beef,Onion, Potato} contains the following 7 itemsets:

{Beef}, {Onion}, {Potato}, {Beef,Onion}, {Beef, Potato}, {Onion, Potato}, and
{Beef,Onion, Potato}.

Below, we define the support of an itemset and a rule respectively.
Support of an itemset: The support count of an itemset X in T (denoted by X.count)

is the number of transactions in T that contain X.
Support of a rule: The support of a rule, X → Y where X and Y are non-overlapping

itemsets, is defined as the percentage of transactions in T that contains X ∪ Y . The rule
support thus determines how frequent the rule is applicable in the whole transaction set T .
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TABLE 1.1: An example of a transaction database

t1 Beef, Chicken, Milk
t2 Beef, Cheese
t3 Cheese, Boots
t4 Beef, Chicken, Cheese
t5 Beef, Chicken, Clothes, Cheese, Milk
t6 Chicken, Clothes, Milk
t7 Chicken, Milk, Clothes

Let n be the number of transactions in T . The support of the rule X → Y is computed as
follows:

support =
(X ∪ Y ).count

n
(1.3)

Note that support is a very important measure for filtering out those non-frequent rules
that have a very low support since they occur in a very small percentage of the transactions
and their occurrences could be simply due to chance.

Next, we define the confidence of a rule.
Confidence of a rule: The confidence of a rule, X → Y , is the percentage of transac-

tions in T that contain X also contain Y , which is computed as follows:

Confidence =
(X ∪ Y ).count

X.count
(1.4)

Confidence thus determines the predictability and reliability of a rule. In other words,
if the confidence of a rule is too low, then one cannot reliably infer or predict Y given X.
Clearly, a rule with low predictability is not very useful in practice.

Given a transaction set T , the problem of mining association rules from T is to discover
all association rules in T that have support and confidence greater than or equal to the
user-specified minimum support (represented by minsup) and minimum confidence
(represented by minconf).

Here we emphasize the keyword “all”, i.e., association rule mining requires the complete-
ness of rules. The mining algorithms should not miss any rule that satisfies both minsup
and minconf constraints.

Finally, we illustrate the concepts mentioned above using a concrete example, shown in
the Table 1.1.

We are given a small transaction database, which contains a set of seven transactions
T = (t1, t2, . . . , t7). Each transaction ti (i= 1, 2, . . ., 7) is a set of items purchased in a basket
in a supermarket by a customer. The set I is the set of all items sold in the supermarket,
namely, {Beef,Boots, Cheese, Chicken,Clothes,Milk}.

Given two user-specified constraints, i.e. minsup = 30% and minconf = 80%, we aim
to find all the association rules from the transaction database T . The following is one of
association rules that we can obtain from T , where sup= 3/7 is the support of the rule,
and conf= 3/3 is the confidence of the rule.

Chicken, Clothes →Milk [sup = 3/7,conf = 3/3]

Let us now explain how to calculate the support and confidence for this transaction
database. Out of the 7 transactions (i.e. n = 7 in equation 1.3), there are three of them,
namely, t5, t6, t7 contain itemset {Chicken, Clothes} ∪ {Milk} (i.e. (X ∪ Y ).count=3 in
equation 1.3). As such, the support of the rule, sup=(X ∪Y ).count/n=3/7=42.86%, which
is larger than the minsup =30% (i.e. 42.86% > 30%).
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On the other hand, out of the 3 transactions t5, t6, t7 containing the condition item-
set {Chicken, Clothes} (i.e. X.count=3), they also contain the consequent item {Milk},
i.e.{Chicken, Clothes} ∪ {Milk}= (X ∪ Y ).count = 3. As such, the confidence of the rule,
conf = (X ∪ Y ).count/X.count = 3/3 = 100%, which is larger than the minconf = 80%
(100% > 80%). As this rule satisfies both the given minsup and minconf, it is thus valid.

We notice that there are potentially other valid rules. For example, the following one
has two items as its consequent, i.e.

Clothes →Milk, Chicken [sup = 3/7,conf = 3/3].

Over the past 20 years, a large number of association rule mining algorithms have been
proposed. They mainly improve the mining efficiency since it is critical to have an efficient
algorithm to deal with large scale transaction databases in many real-world applications.
Please refer to [49] for detailed comparison across various algorithms in terms of their
efficiencies.

Note that no matter which algorithms are applied, the final results, i.e. association
rules minded, are all the same based on the definition of association rules. In other words,
given a transaction data set T , as well as a minimum support minsup and a minimum
confidence minconf, the set of association rules occurring in T is uniquely determined. All
the algorithms should find the same set of rules although their computational efficiencies
and memory requirements could be different. In the next session, we introduce the best
known mining algorithm, namely the Apriori algorithm, proposed by Agrawal in [17].

1.3.1.2 The Introduction of Apriori Algorithm

The well-known Apriori algorithm consists of the following two steps:

1. Generate all frequent itemsets: A frequent itemset is an itemset that has a transaction
support sup above minsup, i.e. sup>=minsup.

2. Generate all confident association rules from the frequent itemsets: A confident asso-
ciation rule is a rule with a confidence conf above minconf, i.e. conf >= minconf.

Note that the size of an itemset is defined as the number of items occurred in it —
an itemset of size k (or k-itemset) contains k items. Following the example in Table 1.1,
{Chicken,Clothes,Milk} is a 3-itemset, containing 3 items, namely, Chicken,Clothes, and
Milk. It is a frequent 3-itemset since its support sup = 3/7 is larger than minsup = 30%.
From the 3-itemset, we can generate the following three confident association rules
since their confidence conf = 100% are greater than minconf = 80%:

Rule 1: Chicken, Clothes →Milk [sup = 3/7, conf = 3/3]

Rule 2: Clothes, Milk → Chicken [sup = 3/7, conf = 3/3]

Rule 3: Clothes → Milk, Chicken [sup = 3/7, conf = 3/3].

Next, we discuss the two key steps of Apriori Algorithm, namely 1) Frequent Itemset
Generation and 2) Association Rule Generation, in details.

STEP1: Frequent Itemset Generation

In the first step of Apriori algorithm, it generates all frequent itemsets efficiently by
taking advantage of the following important property, i.e. apriori property or downward
closure property.

Downward Closure Property: If an itemset has minimum support (or its support
sup is larger than minsup), then its every non-empty subset also has minimum support.
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The intuition behind this property is very simple because if a transaction contain-
s a set of itemset X, then it must contain any non-empty subset of X. For example,
{Chicken,Clothes,Milk} is a frequent 3-itemset (sup=3/7). Any non-empty subset of
{Chicken,Clothes,Milk}, say {Chicken,Clothes} is also a frequent itemset since out
of the 3 transactions containing {Chicken,Clothes,Milk}, they all contain its subset
{Chicken,Clothes}. This property and a suitable minsup threshold have been exploit-
ed to prune a large number of itemsets that cannot be frequent. In the Apriori algorithm, it
assumes that the items in I as well as all the itemsets are sorted in the lexicographic order
to ensure efficient frequent itemset generation. For example, suppose we have a k-itemset
w = {w1, w2, . . . , wk} which consists of the items w1, w2, . . . , wk, where w1 < w2 < . . . < wk

according to the lexicographic order.
Apriori algorithm for frequent itemset generation [16] is a bottom-up based approach

and uses level-wise search, which starts from 1-itemset and expand to higher level bigger
itemsets, i.e. 2-itemset, 3-itemset and so on. The overall algorithm is shown in Algorithm 3.
It generates all frequent itemsets by making multiple passes over the transaction database.
In the first pass, it counts the supports of individual items, i.e. Level 1 items or 1-itemset
in C1 (as shown in step 1, C1 is candidate 1-itemset) and determines whether each of them
is frequent (step 2) where F1 is the set of frequent 1-itemsets. After this initialization step,
each of the subsequent pass k (k ≥ 2), consists of the following three steps:

1. It starts with the seed set of itemsets Fk−1 found to be frequent in the (k-1)-th
pass. It then uses this seed set to generate candidate itemsets Ck (step 4), which are
potential frequent itemsets. This step used the candidate-gen() procedure, as shown
in Algorithm 4.

2. The transaction database is then passed over again and the actual support of each
candidate itemset c in Ck is counted (steps 5-10). Note that it is not necessary to load
the entire data into memory before processing. Instead, at any time point, only one
transaction needs to reside in memory. This is a very important feature of the Apriori
algorithm as it makes the algorithm scalable to huge data sets that cannot be loaded
into memory.

3. At the end of the pass, it determines which of the candidate itemsets are actually
frequent (step 11).

Algorithm 3: The Apriori algorithm for generating frequent itemsets

1. C1 ← init-pass(T ); // the first pass over T

2. F1 ← {f |f ∈ C1, f.count/n ≥ minsup}; // n is the no. of transactions in T ;

3. For (k = 2; Fk−1 ̸= ∅; k++) do

4. Ck ← candidate-gen(Fk−1);

5. For each transaction t ∈ T do

6. For each candidate c ∈ Ck do

7. If c is contained in t then

8. c.count++;

9. EndFor

10. EndFor

11. Fk ← {c ∈ Ck|c.count/n ≥ minsup}
12. EndFor

13. Output F ←
∪

k Fk.
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The final output of the algorithm is the set F of all frequent itemsets (step 13) where
set F contains frequent itemsets with different sizes, i.e. frequent 1-itemsets, frequent 2-
itemsets, . . . , frequent k-itemsets (k is the highest order of the frequent itemsets).

Next, we elaborate the key candidate-gen() procedure which is called in step 4.
Candidate-gen () generates candidate frequent itemsets in two steps, namely the join step
and the pruning step. Join step (steps 2-6 in Algorithm 4): This step joins two frequent
(k -1)-itemsets to produce a possible candidate c (step 6). The two frequent itemsets f1 and
f2 have exactly the same k − 2 items (i.e. i1, . . . , ik−2) except the last one (ik−1 ̸= i′k−1 in
steps 3-5). The joined k-itemset c is added to the set of candidates Ck (step 7). Pruning
step (steps 8-11 in Algorithm 4): A candidate c from the join step may not be a final fre-
quent item-set. This step determines whether all the k -1 subsets (there are k of them) of c
are in Fk−1. If anyone of them is not in Fk−1, then c cannot be frequent according to the
downward closure property, and is thus deleted from Ck.

Finally, we will provide an example to illustrate the candidate-gen() procedure.
Given a set of frequent itemsets at level 3, F3 = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {1, 3, 5}, {2, 3, 4}},

the join step (which generates candidates C4 for level 4) produces two candidate itemsets,
{1, 2, 3, 4} and {1, 3, 4, 5}. {1, 2, 3, 4} is generated by joining the first and the second item-
sets in F3 as their first and second items are the same {1, 3, 4, 5} is generated by joining the
third and the fourth itemsets in F3, i.e. {1, 3, 4} and {1, 3, 5}. {1, 3, 4, 5} is prund because
{3, 4, 5} is not in F3.

Procedure candidate-gen() is shown in the following Algorithm 4:

Algorithm 4: Candidate-gen(Fk−1)

1. Ck = ∅; // initialize the set of candidates

2. For all f1, f2 ∈ Fk−1 // find all pairs of frequent itemsets

3. with f1 = {i1, . . . , ik−2, ik−1} // that differ only in the last item

4. with f2 = {i1, . . . , ik−2, i
′
k−1}

5. and ik−1 < i′k−1 do // according to the lexicographic order

6. c← {i1, . . . , ik−1, i
′
k−1}; // join the two itemsets f1 and f2

7. Ck ← Ck

∪
{c}; // add the new itemset c to the candidates

8. For each (k - 1)-subset s of c do

9. If (s /∈ Fk−1) then

10. delete c from Ck; // delete c from the candidates

11. EndFor

12. EndFor

13. Output Ck.

We now provide a running example of the whole Apriori algorithm based on the trans-
actions shown in Table 1.1. In this example, we have used minsup = 30%.

Apriori algorithm first scans the transaction data to count the supports of individual
items. Those items whose supports are greater than or equal to 30% are regarded as frequent
and are stored in set F1, namely frequent 1-itemsets.

F1: {{Beef}:4, {Cheese}:4, {Chicken}:5, {Clothes}:3, {Milk}:4}

In F1, the number after each frequent itemset is the support count of the corresponding
itemset. For example, {Beef}:4 means that the itemset {Beef} has occurred in 4 transactions,
namely t1, t2, t4, and t5. A minimum support count of 3 is sufficient for being frequent (all
the itemsets in F1 have sufficient supports ≥ 3).

We then perform the Candidate-gen procedure using F1, which generates the following
candidate frequent itemsets C2:
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C2: {{Beef, Cheese}, {Beef, Chicken}, {Beef, Clothes}, {Beef, Milk},
{Cheese, Chicken}, {Cheese, Clothes}, {Cheese, Milk},
{Chicken, Clothes}, {Chicken, Milk}, {Clothes, Milk}}

For each itemset in C2, we need to determine if it is frequent by scanning the database
again and storing the frequent 2-itemsets in set F2:

F2: {{Beef, Chicken}:3, {Beef, Cheese}:3, {Chicken, Clothes}:3,
{Chicken, Milk}:4, {Clothes, Milk}:3}

We now complete the level-2 search (for all 2-itemsets). Similarly, we generate the can-
didate frequent itemsets C3 via Candidate-gen procedure:

C3: {{Chicken, Clothes, Milk}}

Note that in C3, itemset {Beef, Cheese, Chicken}, is also produced in step 6 of the
Candidate-gen procedure. However, as its subset {Cheese, Chicken} is not in F2, it is pruned
and not included in C3, according to downward closure property.

Finally, we count the frequency of {Chicken, Clothes, Milk} in database and it is stored
in F3 given that its support is greater than the minimal support.

F3: {{Chicken, Clothes, Milk}:3}.

Note that since we only have 1 itemset in F3, the algorithm stops since we need at least
2 itemsets to generate a candidate itemset for C4. Apriori algorithm is just a representative
of a large number of association rule mining algorithms that have been developed over the
20 years. For more algorithms, please see [19].

STEP2: Association Rule Generation As we mention earlier, the Apriori algorithm

can generate all frequent itemsets as well as all confident association rules. Interestingly,
generating association rules is fairly straightforward compared with frequent itemset gen-
eration. In fact, we generate all association rules from frequent itemsets. For each frequent
itemset f , we use all its non-empty subsets to generate association rules. In particular, for
each such subset β, β ⊆ f , we output a rule 1.5 if the confidence condition in equation 1.6
is satisfied.

(f − β)→ β, (1.5)

confidence =
f.count

(f − β).count
≥ minconf (1.6)

Note the f.count and (f − β).count are the supports count of itemset f and itemset
(f − β) respectively. According to equation 1.3, our rule support is f.count/n, where n is
the total number of transactions in the transaction set T . Clearly, if f is frequent, then
any of its non-empty subsets is also frequent according to the downward closure property.
In addition, all the support counts needed for confidence computation in equation 1.6, i.e.
f.count and (f−β).count, are available as we have recorded the supports for all the frequent
itemsets during the mining process, e.g. using the Apriori algorithm. As such, there is no
additional database scan needed for association rule generation.
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1.3.2 Mining Class Association Rules

The association rules mined using Apriori algorithm are generic and flexible. An item
can appear as part of the conditions or as part of the consequent in a rule. However, in
some real-world applications, users are more interested in those rules with some fixed target
items (or class labels) on the right-hand side. Obviously, such kind of rules are very useful
for our rule-based classification models.

For example, banks typically maintain a customer database which contains demographic
and financial information of individual customers (such as gender, age, ethnicity, address,
employment status, salary, home ownership, current loan information, etc) as well as the
target features such as whether or not they repaid the loans or defaulted. Using association
rule mining technique, we can investigate what kind of customers are likely to repay (good
credit risks) or to default (bad credit risks) — both of them are target feature values, so
that banks can reduce the rate of loan defaults if they can predict those customers who are
likely to default in advance based on their personal demographic and financial information.
In other words, we are interested in a special set of rules whose consequents are only those
target features — these rules are called class association rules (CARs) where we require
only target feature values to occur as consequent of rules, although the conditions can be
any items or their combinations from financial and demographic information.

Let T be a transaction data set consisting of n transactions. Each transaction in T has
been labeled with a class y (y ∈ Y ; Y is the set of all class labels or target features/items).
Let I be the set of all items in T , and I

∩
Y = ∅. Note here we treat the label set Y

differently from the standard items in I and they do not have any overlapping. A class
association rule (CAR) is an implication of the following form:

X → y, where X ⊆ I, and y ∈ Y. (1.7)

The definitions of support and confidence are the same as those for standard associ-
ation rules. However, a class association rule is different from a standard association rule in
the following two points:

1. The consequent of a CAR has only a single item, while the consequent of a standard
association rule can have any number of items.

2. The consequent y of a CAR must be only from the class label set Y , i.e., y ∈ Y . No
item from I can appear as the consequent, and no class label can appear as a rule
condition. In contrast, a standard association rule can have any item as a condition
or a consequent.

Clearly, the main objective of mining CARs is to automatically generate a complete
set of CARs that satisfy both the user-specified minimum support constraint (minsup) and
minimum confidence (minconf) constraint.

Intuitively, we can mine the given transaction data by first applying the Apriori algo-
rithm to get all the rules and then perform a post-processing to select only those class
association rules, as CARs are a special type of association rules with a target as its con-
sequent. However, this is not efficient due to combinatorial explosion. Now, we present an
efficient mining algorithm specifically designed for mining CARs.

This algorithm can mine CARs in a single step. The key operation is to find all ruleitems
that have support above the given minsup. A ruleitem is a pair which has a condset and a
class label y, namely, (condset, y), where condset ⊆ I is a set of items, and y ∈ Y is a class
label. The support count of a condset (called condsupCount) is the number of transactions
in T that contain the condset. The support count of a ruleitem (called rulesupCount) is the
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number of transactions in T that contain the condset and are associated with class y. Each
ruleitem (condset, y) represents a rule:

condset→ y,

whose support is (rulesupCount/n), where n is the total number of transactions in T,
and whose confidence is (rulesupCount/condsupCount).

Ruleitems that satisfy the minsup are called frequent ruleitems, while the rest are called
infrequent ruleitems. Similarly, ruleitems that satisfy the minconf are called confident ruleit-
ems and correspondingly the rules are confident.

The rule generation algorithm, called CAR-Apriori, is given in Algorithm 5. The CAR-
Apriori algorithm is based on the Apriori algorithm, which generates all the frequent ruleit-
ems by passing the database multiple times. In particular, it computes the support count
in the first pass for each 1-ruleitem which contains only one item in its condset (step 1). All
the 1-candidate ruleitems, which pair one item in I and a class label, are stored in set C1.

C1 = {({i}, y)|i ∈ I, and y ∈ Y } (1.8)

Then, step 2 chooses the frequent 1-ruleitems (and stores into F1) whose support count
is greater than or equal to the given minsup value. From frequent 1-ruleitems, we generate
1-condition CARs — rules with only one condition in step 3. In a subsequent pass, say
k (k ≥ 2), it starts with the seed set Fk−1 of (k − 1) frequent ruleitems found in the
(k− 1)-th pass, and uses this seed set to generate new possibly frequent k-ruleitems, called
candidate k-ruleitems (Ck in step 5). The actual support counts for both condsupCount
and rulesupCount, are updated during the scan of the data (steps 6-13) for each candidate
k-ruleitem. At the end of the data scan, it determines which of the candidate k-ruleitems
in Ck are actually frequent (step 14). From the frequent k-ruleitems, step 15 generates
k-condition CARs, i.e. class association rules with k conditions.

Algorithm 5: Algorithm CAR-Apriori(T)

1. C1 ← init-pass(T ); // the first pass over T

2. F1 ← {f |f ∈ C1, f.rulesupCount/f.condsupCount ≥ minsup}; // n is the no. of
transactions in T ;

3. CAR1 ← {f |f ∈ F1, f.rulesupCount/n ≥ minconf}; // n is the no. of transactions
in T ;

4. For (k = 2; Fk−1 ̸= ∅; k++) do

5. Ck ← CARcandidate-gen(Fk−1);

6. For each transaction t ∈ T do

7. For each candidate c ∈ Ck do

8. If c.condset is contained in t then // c is a subset of t

9. c.condsupCount++;

10. if t.class = c.class then

11. c.rulesupCount++;

12. EndFor

13. EndFor

14. Fk ← {c ∈ Ck|c.rulesupCount/n ≥ minsup}
15. CARk ← {f |f ∈ Fk, f.rulesupCount/f.condsupCount ≥ minconf};
16. EndFor

17. Output CAR←
∪

k CARk.
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TABLE 1.2: A loan application data set

ID Age Has job Own house Credit rating Class
1 young false false fair No
2 young false false good No
3 young true false good Yes
4 young true true fair Yes
5 young false false fair No
6 middle false false fair No
7 middle false false good No
8 middle true true good Yes
9 middle false true excellent Yes
10 middle false true excellent Yes
11 old false true excellent Yes
12 old false true good Yes
13 old true false good Yes
14 old true false excellent Yes
15 old false false fair No

One important observation regarding ruleitem generation is that if a ruleitem/rule has a
confidence of 100%, then extending the ruleitem with more conditions, i.e. adding items to
its condset, will also result in rules with 100% confidence although their supports may drop
with additional items. In some applications, we may consider these subsequent rules with
more conditions redundant because these additional conditions do not provide any more
information for classification. As such, we should not extend such ruleitems in candidate
generation for the next level (from k − 1 to k), which can reduce the number of generated
rules significantly. Of course, if desired, redundancy handling procedure can be added in
the CAR-Apriori algorithm easily to stop the unnecessary expanding process.

Finally, the CARcandidate-gen() function is very similar to the candidate-gen() function
in the Apriori algorithm, and it is thus not included here. The main difference lies in that in
CARcandidate-gen(), ruleitems with the same class label are combined together by joining
their condsets.

We now give an example to illustrate the usefulness of CARs. Table 1.2 shows a sample
loan application dataset from a bank, which has four attributes, namely Age, Has job,
Own house and Credit rating. The first attribute Age has three possible values, i.e. young,
middle and old. The second attribute Has Job indicates whether an applicant has a job, with
binary values: true (has a job) and false (does not have a job). The third attribute Own house
shows whether an applicant owns a house (similarly, it has true and false two values).
The fourth attribute Credit rating has three possible values: fair, good and excellent. The
last column is the class/target attribute, which shows whether each loan application was
approved (denoted by Yes) or not (denoted by No) by the bank.

Assume the user-specified minimal support minsup = 2/15 = 13.3% and the minimal
confidence minconf = 70%, we can mine the above dataset to find the following rules that
satisfy the two constraints:

Own house = false,Has job = true→ Class = Y es [sup=3/15, conf=3/3]
Own house = true→ Class = Y es [sup=6/15, conf=6/6]
Own house = false,Has job = true→ Class = Y es[sup=3/15, conf=3/3]
Own house = false,Has job = false→ Class = No [sup=6/15, conf=6/6]
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Age = young,Has job = true→ Class = Y es[sup=2/15, conf=2/2]

Age = young,Has job = false→ Class = No[sup=3/15, conf=3/3]

Credit rating = fair → Class = No[sup=4/15, conf=4/5] .....

1.3.3 Classification Based on Associations

In this section, we discuss how to employ the discovered class association rules for
classification purposes. Since the consequents of CARs are the class labels, it is thus logical
to infer the class label of any test transaction, i.e., to do classification. CBA (Classification
Based on Associations) is the first system that uses association rules for classification [30].
Note classifiers built using association rules are often called associative classifiers.

Following the above example, after we detect CARs, we intend to use them for learning
a classification model to classify or automatically judge future loan applications. In other
words, when a new customer visits the bank to apply for a loan, after providing his/her
age, whether he/she has a job, whether he/she owns a house, and his/her credit rating, the
classification model should predict whether his/her loan application should be approved
so that we can use our constructed classification model to automate the loan application
approval process.

1.3.3.1 Additional Discussion for CARs Mining

Before introducing how to build a classifier using CARs, we first give some additional
discussions about some important points for mining high quality CARs.

Rule Pruning: CARs could be redundant and some of them are not statistically sig-
nificant which make our classifier overfit the training examples and does not have good
generalization capability. As such, we need to perform rule pruning to address these issues.
Specifically, we can remove some conditions in CARs so that they are shorter, and have
higher supports to be statistically significant. In addition, pruning some rules may cause
some shorten/revised rules become redundant — we thus need to remove these repeated
rules. Generally speaking, pruning rules could lead to a more concise and accurate rule set
as shorter rules are less likely to overfit the training data and potentially perform well on
the unseen test data. Pruning is also called generalization as it makes rules more general
and more applicable to test instances. Of course, we still need to maintain high confidences
of CARs during the pruning process so that we can achieve more reliable and accurate
classification results once the confident rules are applied. Readers can refer to papers [31],
[30] for details of some pruning methods.

Multiple Minimum Class Supports: in many real-life classification problems, the
datasets could have uneven or imbalanced class distributions, where majority classes cover a
large proportion of the training data, while other minority classes (rare or infrequent classes)
only cover a very small portion of the training data. In such a scenario, a single minsup may
be inadequate for mining CARs. For example, we have a fraud detection dataset with two
classes C1 (represents “normal class”) and C2 (denotes for “fraud class”). In this dataset,
99% of the data belong to the majority class C1, and only 1% of the data belong to the
minority class C2, i.e. we do not have many instances from“fraud class”. If we set minsup
= 1.5%, we may not be able to find any rule for the minority class C2 as this minsup is still
too high for minority class C2. To address the problem, we need to reduce the minsup, say
set minsup = 0.2% so that we can detect some rules for class C2. However, we may find a
huge number of overfitting rules for the majority class C1 because minsup = 0.2% is too
low for class C1. The solution for addressing this problem is to apply multiple minimum
class supports for different classes, depending on their sizes. More specifically, we could
assign a different minimum class support minsupi for each class Ci, i.e., all the rules of
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class Ci must satisfy corresponding minsupi. Alternatively, we can provide one single total
minsup, denoted by total minsup, which is then distributed to each class according to the
class distribution:

minsupi = total minsup× Number of Transactions in Ci

Total Number of Transactions in Database
(1.9)

The equation sets higher minsups for those majority classes while sets lower minsups for
those minority classes.

Parameter Selection: The two parameters used in CARs mining are the minimum
support and the minimum confidence. While different minimum confidences may also be
used for each class, they do not affect the classification results much because the final
classifier tends to use high confidence rules. As such, one minimum confidence is usually
sufficient. We thus are mainly concern with how to determine the best support minsupi for
each class Ci. Similar to other classification algorithms, we can apply the standard cross-
validation technique to partition the training data into n folds where n−1 folds are used for
training and the remaining 1 fold is used for testing (we can repeat this n times so that we
have n different combinations of training and testing sets). Then, we can try different values
for minsupi in the training data to mine CARs and finally choose the value for minsupi
which gives the best average classification performance on the test sets.

1.3.3.2 Building a Classifier Using CARs

After all CARs are discovered through the mining algorithm, a classifier is built to
exploit the rules for classification. We will introduce five kinds of approaches for classier
building.

Use the Strongest Rule: This is perhaps the simplest strategy. It simply uses the
most strongest/powerful CARs directly for classification. For each test instance, it first
finds the strongest rule that covers the instance. Note that a rule covers an instance only
if the instance satisfies the conditions of the rule. The class label of the strongest rule is
then assigned to the test instance. The strength of a rule can be measured in various ways,
e.g., based on rule confidence value only, χ2 test, or a combination of both support and
confidence values etc.

Select a Subset of the Rules to Build a Classifier: This method was used in the
CBA system. This method is similar to the sequential covering method, but applied to class
association rules with additional enhancements. Formally, let D and S be the training data
set and the set of all discovered CARs respectively. The basic idea of this strategy is to
select a subset L (L ⊆ S) of high confidence rules to cover the training data D. The set of
selected rules, including a default class, is then used as the classifier. The selection of rules
is based on a total order defined on the rules in S. Given two rules, ri and rj , we say ri ≻ rj
or ri precedes rj or ri has a higher precedence than rj if

1. the confidence of ri is greater than that of rj , or

2. their confidences are the same, but the support of ri is greater than that of rj , or

3. both the confidences and supports of ri and rj are the same, but ri is generated earlier
than rj .

A CBA classifier C is of the form:

C =< r1, r2, . . . , rk, default− class > (1.10)

where ri ∈ S, ri ≻ rj if j > i. When classifying a test case, the first rule that satisfy the case
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will be used to classify it. If there is not a single rule that can be applied to the test case,
it takes the default class, i.e. default− class, in equation 1.10. A simplified version of the
algorithm for building such a classifier is given in the following algorithm 6. The classifier
is the RuleList.

Algorithm 6: Algorithm CBA (T )

1. S = sort(S); // sorting is done according to the precedence ≻
2. RuleList = ∅ ; // the rule list classifier is initialized as empty set

3. For each rule r ∈ S in sequence do

4. If (D ̸= ∅) AND r classifies at least one example in D correctly Then

5. delete from D all training examples covered by r;

6. add r at the end of RuleList

7. EndIf

8. EndFor

9. add the majority class as the default class at the end of RuleList

In algorithm 6, we first sort all the rules in S according to their precedence defined
above. Then we then go through the rules one by one, from the highest precedence to the
lowest precedence, during the for-loop. Particularly, for each rule, we will perform sequential
covering from step 3 to 8. Finally, we construct our RuleList by appending the majority
class so that we can classify any test instance.

Combine Multiple Rules: Like the first method Use the Strongest Rule, this method
does not take any additional step to build a classifier. Instead, at the classification time, for
each test instance, the system first searches a subset of rules that cover the instance.

1. If all the rules in the subset have the same class, then the class is assigned to the test
instance.

2. If the rules have different classes, then the system divides the rules into a number
of groups according to their classes, i.e., all rules of from same class are in the same
group. The system then compares the aggregated effects of the rule groups and finds
the strongest group. Finally, the class label of the strongest group is assigned to the
test instance.

To measure the strength of each rule group, there again can be many possible ways. For
example, the CMAR system uses a weighted χ2 measure [31].

Class Association Rules as Features In this method, rules are used as features to
augment the original data or simply form a new data set, which is subsequently fed to a
traditional classification algorithm, e.g., Support Vector Machines (SVM), Decision Trees
(DT), Näıve Bayesian (NB), K-Nearest Neighbour (KNN), etc.

To make use of CARs as features, only the conditional part of each rule is needed. For
each training and test instance, we will construct a feature vector where each dimension
corresponds to a specific rule. Specifically, if a training or test instance in the original data
satisfies the conditional part of a rule, then the value of the feature/attribute in its vector
will be assigned 1; 0 otherwise. The reason that this method is helpful is that CARs capture
multi-attribute or multi-item correlations with class labels. Many classification algorithms,
like Näıve Bayesian (which assumes the features are independent), do not take such correla-
tions into consideration for classifier building. Clearly, the correlations among the features
can provide additional insights on how different feature combinations can better infer the
class label and thus they can be quite useful for classification. Several applications of this
method have been reported [32], [33], [34], [35].
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Classification Using Normal Association Rules

Not only can class association rules be used for classification, but also normal association
rules. For example, normal association rules are regularly employed in e-commerce Web sites
for product recommendations, which work as follows: When a customer purchases some
products, the system will recommend him/her some other related products based on what
he/she has already purchased as well as the previous transactions from all the customers.

Recommendation is essentially a classification or prediction problem. It predicts what
a customer is likely to buy. Association rules are naturally applicable to such applications.
The classification process consists of the following two steps:

1. The system first mines normal association rules using previous purchase transactions
(the same as market basket transactions). Note, in this case, there are no fixed classes
in the data and mined rules. Any item can appear on the left-hand side or the right-
hand side of a rule. For recommendation purposes, usually only one item appears on
the right-hand side of a rule.

2. At the prediction (or recommendation) stage, given a transaction (e.g., a set of items
already purchased by a given customer), all the rules that cover the transaction are
selected. The strongest rule is chosen and the item on the right-hand side of the rule
(i.e., the consequent) is then the predicted item and is recommended to the user.
If multiple rules are very strong, multiple items can be recommended to the user
simultaneously.

This method is basically the same as the “use the strongest rule” method described
above. Again, the rule strength can be measured in various ways, e.g., confidence, χ2 test,
or a combination of both support and confidence [42]. Clearly, the other methods, namely,
Select a Subset of the Rules to Build a Classifier, and Combine Multiple Rules, can be
applied as well.

The key advantage of using association rules for recommendation is that they can predict
any item since any item can be the class item on the right-hand side.

Traditional classification algorithms, on the other hand, only work with a single fixed
class attribute, and are not easily applicable to recommendations.

Finally, in recommendation system, multiple minimum supports can be of significant
help. Otherwise, rare items will never be recommended, which causes the coverage prob-
lem. It is shown in [43] that using multiple minimum supports can dramatically increase
the coverage. Note that rules from rule induction cannot be used for this recommendation
purpose because each rule is not independent to each other.

1.3.4 Other Techniques for Association Rule Based Classification

Since CBA was proposed to use association rules for classification [30] in 1998, many
techniques in this direction have been proposed. We introduce some of the representative
ones, including CMAR [31], XRules [44]. Note XRules is specifically designed for classifying
semi-structured data, such as XML.

1. CMAR

CMAR, stands for classification based on multiple association rules CMAR [31]. Like
CBA, CMAR also consists of two phases, namely rule generation phase and classification
phase. In rule generation phase, CMAR mines the complete set of rules in the form of
R : P → c, where P is a pattern in the transaction training data set, and c is a class
label, i.e. R is a class association rule. The support and confidence of the rule R, namely
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sup(R) and conf(R) satisfy the user pre-defined minimal support and confidence thresholds
respectively.

CMAR used an effective and scalable association rule mining algorithm based on the
FP-growth method [21]. As we know, existing association rule mining algorithms typically
consist of two steps: 1) detect all the frequent patterns and 2) mine association rules that
satisfy the confidence threshold based on the mined frequent patterns. CMAR, on the other
hand, has no separated rule generation step. It constructs a class distribution-associated
FP-tree and for every pattern it maintains the distribution of various class labels among ex-
amples matching the pattern, without any overhead in the procedure of counting database.
As such, once a frequent pattern is detected, rules with regard to the pattern can be gener-
ated straight away. In addition, CMAR makes use of the class label distribution to prune.
Given a frequent pattern P , let us assume c is the most dominant/mojority class in the set
of examples matching P . If the number of examples having class label c and matching P , is
less than the support threshold, then there is no need to search any superpattern (superset)
P ′ of P . This is very clear as any rule in the form of P ′ → c cannot satisfy the support
threshold either as superset P ′ will have no larger support than pattern P .

Once rules are mined from given the transaction data, CMAR builds a CR-tree to save
space in storing rules as well as to search for rules efficiently. CMAR also performs a rule
pruning step to remove redundant and noise rules. In particular, three principles were used
for rule pruning, including 1) use more general and high-confidence rules to prune those
more specific and lower confidence ones; 2) select only positively correlated rules based on
χ2 testing; 3) prune rules based on database coverage.

Finally, in the classification phase, for a given test example, CMAR extracts a subset of
rules matching the test example and predicts its class label by analyzing this subset of rules.
CMAR first groups rules according to their class labels and then finds the strongest group
to perform classification. It uses a weighted χ2 measure [30] to integrate both information
of intra-group rule correlation and popularity. In other words, if those rules in a group are
highly positively correlated and have good support, then the group has higher strength.

2. XRules

Different from CBA and CMAR which are applied to transaction data sets consisting
of multi-dimensional records, XRules [44] on the other hand builds a structural rule-based
classifier for semi-structured data, e.g., XML. In the training stage, it constructs structural
rules which indicate what kind of structural patterns in an XML document are closely
related to a particular class label. In the testing stage, it employs these structural rules to
perform the structural classification.

Based on the definition of structural rules, XRules performed the following three steps
during the training stage. 1) Mine frequent structural rules specific to each class using its
proposed XMiner (which extends TreeMiner to find all frequent trees related to some class),
with sufficient support and strength. Note that users need to provide a minimum support
πmin
i for each class ci. 2) Prioritize or order the rules in decreasing level of precedence as well

as remove unpredictive rules. 3) Determine a special class called default-class which will be
used to classify those test examples when none of the mined structural rules is applicable.
After training, the classification model consists of an ordered rule set, and a default-class.

Finally, the testing stage performs classification on the given test examples without class
labels. Given a test example S, there are two main steps for its classification, includingi.e.,
the rule retrieval step which finds all matching rules (stored in set R(S)) for S, as well
as class prediction step which combines the statistics from each matching rule in R(S) to
predict the most likely class for S. Particularly, if R(S) = ∅, i.e. there are no matching
rules, then default class is assigned to S; otherwise, R(S) ̸= ∅. Assume Ri(S) represent
the matching rules in R(S) with class ci as their consequents. XRules used an average
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confidence method, i.e. for each class ci, it computes the average rule strength for all the
rules in Ri(S). If the average rule strength for class ci is big enough, the algorithm assigns
the class ci to the test example S. If the average rule strengths for all the classes are all
very small, then the default class is used again to assign to S.

1.4 Applications

In this section, we briefly introduce some applications of applying rule based classification
methods in text categorization [51], intrusion detection [74], diagnostic data mining [25], as
well as gene expression data mining [50]

1.4.1 Text Categorization

It is well-known that Support Vector Machines (SVM) [57], Näıve Bayesian (NB) [58],
and Rocchio’s algorithm [60] are among the most popular techniques for text categorization,
also called text classification. Their variations have also been applied to different types of
learning tasks, e.g., learning with positive and unlabeled examples (PU learning) [64] [59]
[61], [62], [63]. However, these existing techniques are typically used as black-boxes. Rule
based classification techniques, on the other hand, can explain their classification results
based on rules, and thus have also drawn a lot of attention. RIPPER [13], sleeping-experts
[56], and decision tree-based rule induction systems [52] [53] [54] [55], have all been employed
for text categorization.

Features used in the standard classification methods (such as SVM, Näıve Bayesian
(NB), and Rocchio) are usually the individual terms in the form of words or word stems.
Given a single word w in a document d, w ’s influence on d ’s predicted class is assumed to
be independent of other words in d [70].

This assumption does not hold since w ’s context, encoded by the other words present
in the document d, typically can provide more specific meanings and better indications on
the d ’s classification, than w itself. As such, rule based systems, such as RIPPER [13] and
sleeping-experts [56], have exploited context information of the words for text categorization
[51]. Both techniques performed very well across different data sets, such as AP title corpus,
TREC-AP corpus, and Reuters etc, outperforming classification methods, like decision tree
[4] and Rocchio algorithm [60].

Next, we will introduce how RIPPER and sleeping-experts (or specifically sleeping-
experts for phrases) make use of context information for text categorization, respectively.

RIPPER for text categorization

In RIPPER, the context of a word w1 is a conjunction of the form

w1 ∈ d and w2 ∈ d . . . and wk ∈ d

Note that the context of a word w1 consists of a number of other words w2, . . ., and
wk, that need to co-occur with w1, but they may occur in any order, and in any location
in document d.

Standard RIPPER algorithm was extended in the following two ways so that it can be
better used for text categorization.

1. Allow users to specify a loss ratio [65]. A loss ratio is defined as the ratio of the cost
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of a false negative to the cost of a false positive. The objective of the learning is to
minimize misclassification cost on the unseen or test data. RIPPER can balance the
recall and precision for a given class by setting a suitable loss ratio. Specifically, during
the RIPPER’s pruning and optimization stages, suitable weights are assigned to false
positive errors and false negative errors respectively.

2. In text classification, while a large corpus or a document collection contains many
different words, a particular document will usually only contain quite limited words.
To save space for representation, a document is represented as a single attribute a,
with its value as the set of words that appear in the document or a word list of the
document, i.e. a = {w1, w2, ..., wn}. The primitive tests (conditions) on a set-valued
attribute a are in the form of wi ∈ a.

For a rule construction, RIPPER will repeatedly adding conditions to rule r0 which is
initialized as an empty antecedent. Specifically, at each iteration i, a single condition is
added to the rule ri, producing an expanded rule ri+1. The condition added to ri+1 is the
one that maximizes information gain with regards to ri. Given the set-valued attributes,
RIPPER will carry out the following two steps to find a best condition to add:

1. For the current rule ri, RIPPER will iterate over the set of examples/documents S
that are covered by ri and record a word list W where each word wi ∈ W appears
as an element/value of attribute a in S. For each wi ∈ W , RIPPER also computes
two statistics, namely pi and ni, which represent the number of positive and negative
examples in S that contain wi respectively.

2. RIPPER will go over all the words wi ∈ W , and use pi and ni to calculate the
information gain for its condition wi ∈ a. We can then choose the condition which
yields the largest information gain and added it to ri to form rule ri+1.

The above process of adding new literals/conditions continues until the rule does not
cover negative examples or until no condition has a positive information gain. Note the
process only requires time linear in the size of S, facilitating its applications to handle large
text corpora.

RIPPER has been used to classify or filter personal e-mails [69] based on a relatively
small sets of labeled messages.

Sleeping-experts for phrases for text categorization

Sleeping-experts [56] is an ensemble framework which builds a master algorithm to
integrate the “advice” of different “experts” or classifiers [76] [51]. Given a test example,
the master algorithm uses a weighted combination of the predictions of the experts. One
efficient weighted assignment algorithm is the multiplicative update method where weights
for each individual experts are updated by multiplying them by a constant. Particularly,
those “correct” experts that make right classification will be able to keep their weights
unchanged (i.e. multiplying 1) while those “bad” experts that make wrong classification
have to multiply a constant (less than 1) so that their weights will become smaller.

In the context of text classification, the experts correspond to all length-k phrases that
occur in a corpus. Given a document that need to be classified, those experts are “awake”
and make predictions if they appear in the document; the remaining experts are said to be
“sleeping” on the document. Different from the context information used in the RIPPER,
the context information in sleeping-experts (or sleeping-experts for phrases), is defined in
the following phrase form

wi1 , wi2 . . . wij
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where i1 < i2 < . . . < ij−1 < ij and ij − i1 < n.
Note that there could be some “holes” or “gaps” between any two words in the context

/phrase.
The detailed sleeping-experts for phrases algorithm is as follows.

The sleeping-experts algorithm for phrases

Input Parameters: β ∈ (0, 1), θC ∈ (0, 1), number of labeled documents T Initialize:

Pool← ∅

Do for t=1, 2, . . . , T

1. Receive a new document wt
1, w

t
2, . . ., w

t
l , and its classification ct

2. Define the set of active phrases:

W t = {w̄|w̄ = wt
i1
, wt

i2
, . . . , wt

ij
, 1 ≤ i1 < i2 < . . . < ij−1 < ij < l, ij − i1 < n}

3. Define the set of active mini-experts:

Et = {w̄k|w̄ ∈W t, k ∈ {0, 1}}
4. Initialize the weights of new mini-experts:

∀w̄k ∈ Et s.t. w̄k /∈ Pool : ptw̄k
= 1

5. Classify the document as positive if

yt =
∑

w̄∈Wt pt
w̄1∑

w̄∈Wt
∑

k=0,1 pt
w̄k

> θC

6. Update weights:

l(w̄k) =

{
0, if ct =k

1, if ct ̸= k
⇒ pt+1

w̄k
= ptw̄k

× βl(w̄k) =

{
ptw̄k

, if ct =k

β × ptw̄k
, if ct ̸= k

7. Renormalize weights:

(a) Zt =
∑

w̄
′
k∈Et ptw̄′

k

(b) Zt+1 =
∑

w̄
′
k∈Et p

t+1

w̄
′
k

(c) pt+1

w̄
′
k

= Zt

Zt+1
pt+1

w̄
′
k

8. Update: Pool← Pool ∪ Et.

In this algorithm, the master algorithm maintains a pool, recording the sparse phrases
appeared in the previous documents and a set p, containing one weight for each sparse
phrase in the pool.

This algorithm iterates over all the T labeled examples to update the weight set p.
Particularly, at each time step t, we have a document wt

1, w
t
2, . . ., w

t
l with length l, and its

classification label ct (step 1). In step 2, we search for a set of active phrases, denoted by
W t from the given document. Step 3 defines two active mini-experts w̄1 and w̄0 for each
phrase w̄ where w̄1 (w̄0) predicts the document belongs to the class (does not belong to the
class). Obviously, given the actual class label, only one of them is correct. In step 4, this
algorithm initializes the weights of new mini-experts (not in the pool) as 1. Step 5 classifies
the document by calculating the weighted sum of the min-experts and storing the sum into
the variable yt — the document is classified as positive (class 1) if yt > θC ; otherwise the
negative (class 0). θC = 1

2 has been set to minimize the errors and get a balanced precision
and recall. After performing classification, Step 6 updates weights to reflect the correlation
between the classification results and the actual class label. It first computes the loss l(w̄k)
of each mini-expert w̄k — if the predicted label is equal to the actual label, then the loss
l(w̄k) is zero; 1 otherwise. The weight of each expert is then multiplied by a factor βl(w̄k)
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where β < 1 is called the learning rate, which controls how quickly the weights are updates.
The value for β is in the range [0.1,0.5]. Basically, this algorithm keeps the weight of the
correctly classified mini-expert unchanged but lower the weight of the wrongly classified
mini-expert by multiplying β. Finally, step 7 normalizes the active mini-experts so that the
total weight of the active mini-experts does not change. In effect, this re-normalization is
to increase the weights of the mini-experts that were correct in classification.

1.4.2 Intrusion Detection

Nowadays, network-based computer systems play crucial roles in the society. However,
criminals have attempted to intrude into and compromise these systems in various manners.
According to Heady [72], an intrusion is defined as any set of actions that attempt to
compromise the integrity, confidentiality or availability of a resource, e.g. illegally accessing
administrator or superuser privilege, attacking and rendering a system out of services etc.
While some intrusion prevention techniques, such as user authentication by using passwords
or biometrics as well as information protection by encryption, have been applied, they are
not sufficient enough to address this problem as these systems typically have weaknesses due
to their designs and programming errors [73]. As such, intrusion detection systems are thus
imperative to serve as an additional shield to protect these computer systems from malicious
activities or policy violations by closely monitoring the network and system activities.

There are some existing intrusion detection systems, which are manually constructed
to protect a computer system based on some prior knowledge, such as known intrusion
behaviors and the current computer system information. However, when facing new com-
puter system environments and newly designed attacking/intruding methods, these types
of manual and ad hoc intrusion detection systems are not flexible enough and will not be
effective any more due to their limited adaptability.

We introduce a generic framework for building an intrusion detection system by ana-
lyzing the audit data [74], which refers to time-stamped data streams that can be used for
detecting intrusions. The system first mines the audit data to detect the frequent activity
patterns which are in turn used to guide the selection of system features as well as con-
struction of additional temporal and statistical features. Classifiers can then be built based
on these features and served as intrusion detection models to classify whether an observed
system activity is legitimate or intrusive. Compared with those methods with hand crafted
intrusion signatures to represent the intrusive activities, the approach has more generalized
detection capabilities.

In general, there are two types of intrusion detection techniques, namely, anomaly de-
tection and misuse detection. Anomaly detection determines whether deviation from an
established normal behavior profile is an intrusion. In particular, a profile typically com-
prises of a few statistical measures on system activities, e.g. frequency of system commands
during a user login session and CPU usage. Deviation from a profile can then be calculated
as the weighted sum of the deviations of the constituent statistical measures. Essentially,
this is an unsupervised method as it does not need users to provide known specific intru-
sions to learn from, and it can detect unknown, abnormal, and suspicious activities. The
challenging issue for anomaly detection is how to define and maintain normal profiles —
improper definition, such as lack of sufficient examples to represent different types of normal
activities, could lead to high level false alarms, i.e. some non-intrusion activities are flagged
as intrusions.

Misuse detection, on the other hand, exploits known intrusion activities/patterns (e.g.
more than 3 consecutive failed logins within a few minutes is a penetration attempt) or
weak spots of a system (e.g. system utilities that have the “buffer overflow” vulnerabilities)
as training data to identify intrusions. Compared with anomaly detection, misuse detection
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is a supervised learning method, which can be used to identify those known intrusions
effectively and efficiently as long as they are similar to the training intrusions. However, it
can not detect unknown or newly invented attacks which could lead to unacceptable false
negative error rates, i.e. some real intrusions are not able to be detected.

In order to perform intrusion predictions, we need to access those rich audit data which
record system activities/events, the evidence of legitimate and intrusive user, as well as
program activities. Anomaly detection searches for the normal usage patterns from the
audit data while misuse detection encodes and matches intrusion patterns using the audit
data [74].

For example, anomaly detection was performed for system programs [74], such as send-
mail, as intruders use them to perform additional malicious activities. From the sequence
of run-time system calls (e.g. open, read, etc), the audit data were segmented into a list
of records and each of which has 11 consecutive system calls. RIPPER has been employed
to detect rules which serve as normal (execution) profile. In total, 252 rules are mined to
characterize the normal co-occurrences of these system calls and to identify the intrusions
that deviate from the normal system calls.

In addition, another type of intrusions, where intruders aim to disrupt network services
by attacking the weakness in TCP/IP protocols, has also been identified [74]. By processing
the raw packet-level data into a time series of connection-level records which capture the
connection information such as duration, number of bytes transferred in each direction,
and the flag which specifies whether there is an error according to the protocol etc. Once
again, RIPPER has been applied to mine 20 rules which serve as normal network profile,
characterizing the normal traffic patterns for each network service. Given that the temporal
nature of activity sequences [75], the temporal measures over features and the sequential
correlation of features are particularly useful for accurate identification. Note the above
anomaly detection methods need sufficient data which can cover as much variation of the
normal behaviors as possible. Otherwise, given insufficient audit data, the anomaly detection
will not be successful as some normal activities will be flagged as intrusions.

1.4.3 Using Class Association Rules for Diagnostic Data Mining

Liu et al [25] reported a deployed data mining system for Motorola, called Opportunity
Map, that is based on class association rules mined from CBA [30]. The original objective
of the system was to identify causes of cellular phone call failures. Since its deployment in
2006, it has been used for all kinds of applications.

The original data set contained cellular phone call records, and has more than 600
attributes and millions of records. After some pre-processing by domain experts, about 200
attributes are regarded as relevant to call failures. The data set is like any classification data
set. Some of the attributes are continuous and some are discrete. One attribute indicates
the final disposition of the call such as failed during setup, dropped while in progress, and
ended successfully. This attribute is the class attribute in classification with discrete values.
Two types of mining are usually performed with this kind of data:

1. Predictive data mining: The objective is to build predictive or classification models
that can be used to classify future cases or to predict the classes of future cases. This
has been the focus of research of the machine learning community.

2. Diagnostic data mining: The objective here is usually to understand the data and
to find causes of some problems in order to solve the problems. No prediction or
classification is needed.

In the above example, the problems are failed during setup and dropped while in
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progress. A large number of data mining applications in engineering domains are of this
type because product improvement is the key task. The above application falls into the
second type. The objective is not prediction, but to better understand the data and to find
causes of call failures or to identify situations in which calls are more likely to fail. That is,
the user wants interesting and actionable knowledge. Clearly, the discovered knowledge has
to be understandable. Class association rules are suitable for this application.

It is easy to see that such kind of rules can be produced by classification algorithms such
as decision trees and rule induction (e.g., CN2 and RIPPER), but they are not suitable for
the task due to three main reasons:

1. A typical classification algorithm only finds a very small subset of the rules that exist
in data. Most of the rules are not discovered because their objective is to find only
enough rules for classification. However, the subset of discovered rules may not be
useful in the application. Those useful rules are left undiscovered. We call this the
completeness problem.

2. Due to the completeness problem, the context information of rules are lost, which
makes rule analysis later very difficult as the user does not see the complete informa-
tion.

3. Since the rules are for classification purposes, they usually contain many conditions
in order to achieve high accuracy. Long rules are, however, of limited use according
to our experience because the engineers can hardly take any action based on them.
Furthermore, the data coverage of long rules is often so small that it is not worth
doing anything about them.

Class association rule mining [30] is found to be more suitable as it generates all rules.
The Opportunity Map system basically enables the user to visualize class association rules
in all kinds of ways through OLAP operations in order to find those interesting rules that
meet the user needs.

1.4.4 Gene Expression Data Analysis

In recent years, association rule mining techniques have been applied in bioinformatics
domain, e.g. detecting patterns, clustering or classifying gene expression data [66] [39] [50].
Microarray technology enables us to measure the expression levels of tens of thousands
of genes in cell simultaneously [66] and has been applied in various clinical research [39].
The gene expression datasets generated by microarray technology typically contain a large
number of columns (corresponding to tens of thousands of human genes) but much small-
er number of rows (corresponding to only tens or hundreds of conditions), which can be
considered as tens or hundreds of very high-dimensional data. This is in contrast to those
typical transaction databases, which have much more rows (e.g. millions of transactions)
than columns (tens or hundreds of features).

The objective of microarray dataset analysis is to detect important correlations between
gene expression patterns (genes and their corresponding expression value ranges) and disease
outcomes (certain cancer or normal status) which are very useful biomedical knowledge and
can be utilized for clinical diagnostic purposes [67] [68].

The rules that can be detected from gene expression data are in the following form:

gene1[a1, b1], . . . , genen[an, bn]→ class (1.11)

where genei is the name of a gene and [ai, bi] is its expression value range or interval.
In other words, the antecedent of the rule in equation 1.11 consists of a set of conjunctive
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TABLE 1.3: Example of gene expression data and rule groups

Rows/conditions Discretized gene expression data Class label
r1 a, b, c, d, e C
r2 a, b, c, o, p C
r3 c, d, e, f, g C
r4 c, d, e, f, g ¬C
r5 e, f, g, h, o ¬C

gene expression level intervals and the consequent is a single class label. For example,
X95735[−∞, 994]→ ALL is a rule that was discovered from the gene expression profiles of
ALL/AML tissues [50]. It has only 1 condition for geneX95735 whose expression value is less
than 994. We have two classes for the dataset where class ALL stands for Acute Lymphocytic
Leukemia cancer and AML stands for Acute Myelogenous Leukemia cancer. Obviously,
association rules are very useful in analyzing gene expression data. The discovered rules, due
to their simplicity, can be easily interpreted by clinicians and biologists, which provide direct
insights and potential knowledge that could be used for medical diagnostic purpose. This
is quite different from other machine learning methods, such as Support Vector Machines
(SVM), which typically serve as a black box in many applications. Although they could
be more accurate in certain datasets for classification purposes, it is almost impossible to
convince clinicians to adopt their predictions for diagnostic in practice, as the logics behind
the prediction are hard to explain compared with rule based methods.

RCBT [50], Refined Classification Based on Top-k covering rule groups (TopkRGS), was
proposed to address two challenging issues in mining the gene expression data. Firstly, huge
number of rules can be mined from the high-dimensional gene expression dataset, even with
rather high minimum support and confidence thresholds. It will be extremely difficult for
biologists/clinicians to dig out clinically useful rules or diagnostic knowledge from large
amount of rules. Secondly, the high dimensionality (tens of thousands of genes) and the
huge number of rules lead to extremely long mining process.

To address the above challenging problems, RCBT discovers the most significant Top-
kRGS for each row of a gene expression dataset. Note that TopkRGS can provide a more
complete description for each row, which is different from existing interestingness measures
that may fail to discover any interesting rules to cover some of the rows if given a higher
support threshold. As such, the information in those rows that are not covered will not be
captured in the set of rules. Given that gene expression datasets have a small number of
rows, RCBT will not lose important knowledge.

Particularly, the rule group conceptually clusters rules from the same set of rows. We
use the example in Table 1.3 to illustrate the concept of a rule group [50]. Note the gene
expression data in Table 1.3 have been discretized. It consists of 5 rows, namely, r1, r2, . . .,
r5 where the first three rows have class label C while the last two have label ¬C. Given a
item set I, its Item Support Set, denoted R(I), is defined as the largest set of rows that
contain I. For example, given item set I = {a, b}, its Item Support Set, R(I) = {r1, r2}. In
fact, we observe that R(a) = R(b) = R(ab) = R(ac) = R(bc) = R(abc) = {r1, r2}. As such,
they make up a rule group {a→ C, b→ C, . . . , abc→ C} of consequent C, with the upper
bound abc→ C and the lower bounds a→ C, and b→ C.

Obviously all rules in the same rule group have the exactly same support and confidence
since they are essentially derived from the same subset of rows [50], i.e. {r1, r2} in the above
example. We can easily identify the remaining rule members based on the upper bound and
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all the lower bounds of a rule group. In addition, the significance of different rule groups
can be evaluated based on both their confidence and support scores.

In addition, RCBT has designed row enumeration technique as well as several pruning
strategies which make the rule mining process very efficient. A classifier has been constructed
from the top-k covering rule groups. Given a test instance, RCBT also aims to reduce the
chance of classifying it based on the default class by building additional stand-by classifiers.
Specifically, given k sets of rule groups RG1, . . . , RGk, k classifiers CL1, ..., CLk are built
where CL1 is the main classifier and CL2, . . . , CLk are stand-by classifiers. It makes a final
classification decision by aggregating voting scores from all the classifiers.

A number of experiments have been carried out on real bioinformatics datasets, showing
that RCBT algorithm is orders of magnitude faster than previous association rule mining
algorithms.

1.5 Discussion and Conclusion

In this chapter, we discussed two types of popular rule-based classification approaches,
i.e., rule induction and classification based on association rules. Rule induction algorithms
generate a small set of rules directly from the data. Well-known systems include AQ by
Michalski et al. [36], CN2 by Clark and Niblett [9], FOIL by Quinlan [10], FOCL by Pazzani
et al. [37], I-REP by Furnkranz and Widmer [11], and RIPPER by Cohen [13]. Using
association rules to build classifiers was proposed by Liu et al. in [30], which also reported
the CBA system. CBA selects a small subset of class association rules as the classifier.
Other classifier building techniques include combining multiple rules by Li et al. [31], using
rules as features by Meretakis and Wthrich [38], Antonie and Zaiane [32], Deshpande and
Karypis [33], and Lesh et al. [35], generating a subset of rules by Cong et al. [39], Wang et
al. [40], Yin and Han [41], and Zaki and Aggarwal [44]. Additional systems include those
by Li et al. [45], Yang et al. [46], etc.

Note well-known decision tree methods [4], such as ID3 and C4.5, build a tree structure
for classification. The tree has two different types of nodes, namely decision nodes (internal
nodes) and leaf nodes. A decision node specifies a test based on a single attribute while a leaf
node indicates a class label. A decision tree can also be converted to a set of IF-THEN rules.
Specifically, each path from the root to a leaf forms a rule where all the decision nodes along
the path form the conditions of the rule and the leaf node forms the consequent of the rule.
The main differences between decision tree and rule induction are in their learning strategy
and rule understandability. Decision tree learning uses the divide-and-conquer strategy. In
particular, at each step, all attributes are evaluated and one is selected to partition/divide
the data into m disjoint subsets, where m is the number of values of the attribute. Rule
induction, however, uses the separate-and-conquer strategy, which evaluates all attribute-
value pairs (conditions) and selects only one. Thus, each step of divide-and-conquer expands
m rules, while each step of separate-and-conquer expands only one rule. On top of that, the
number of attribute-value pairs are much larger than the number of attributes. Due to these
two effects, the separate-and-conquer strategy is much slower than the divide-and-conquer
strategy. In terms of rule understandability, while if-then rules are easy to understand by
human beings, we should be cautious about rules generated by rule induction (e.g. using the
sequential covering strategy) since they are generated in order. Such rules can be misleading
because the covered data are removed after each rule is generated. Thus the rules in the
rule list are not independent of each other. In addition, A rule r may be of high quality in
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the context of the data D′ from which r was generated. However, it may be a very weak
rule with a very low accuracy (confidence) in the context of the whole data set D (D′ ⊆ D)
because many training examples that can be covered by r have already been removed by
rules generated before r. If you want to understand the rules generated by rule induction
and possibly use them in some real-world applications, you should be aware of this fact.
The rules from decision trees, on the other hand, are independent of each other and are
also mutually exclusive. The main differences between decision tree (or a rule induction
system) and class association rules (CARs) are in their mining algorithms and the final
rule sets. CARs mining detects all rules in data that satisfy the user-specified minimum
support (minsup) and minimum confidence (minconf) constraints while a decision tree or
a rule induction system detects only a small subset of the rules for classification. In many
real-world applications, rules that are not found in the decision tree (or a rule list) may be
able to perform classification more accurately. Empirical comparisons have demonstrated
that in many cases, classification based on CARs performs more accurately than decision
trees and rule induction systems.

The complete set of rules from CARs mining could also be beneficial from a rule usage
point of view. For example, in a real-world application for finding causes of product prob-
lems (e.g. for diagnostic purposes), more rules are preferred to fewer rules because with
more rules, the user is more likely to find rules that indicate the causes of the problems.
Such rules may not be generated by a decision tree or a rule induction system. A deployed
data mining system based on CARs is reported in [25]. Finally, CARs mining, like standard
association rule mining, can only take discrete attributes for its rule mining, while deci-
sion trees can deal with continuous attributes naturally. Similarly, rule induction can also
use continuous attributes. But for CARs mining, we first need to apply an attribute dis-
cretization algorithm to automatically discretize the value range of a continuous attribute
into suitable intervals [47], [48], which are then considered as discrete values to be used for
CARs mining algorithms. This is not a problem as there are many discretization algorithms
avalable.
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In Proceedings of ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD-1999), pages 165–174, 1999.

[39] Cong G., Tung AKH, X. Xu, Pan F., and Yang J. Farmer: Finding interesting rule
groups in microarray datasets. In Proceedings of ACM SIGMOD Conference on Man-
agement of Data (SIGMOD-2004), pages 143–154, 2004.

[40] Wang, K., Zhou S., and He Y. Growing decision trees on support-less association rules.
In Proceedings of ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD-2000), pages 265-269, 2000.

[41] Yin X. and Han J. CPAR: Classification based on predictive association rules. In
Proceedings of SIAM International Conference on Data Mining (SDM-2003), pages
331-335, 2003.

[42] Lin W., Alvarez S., and Ruiz C. Efficient adaptive-support association rule mining for
recommender systems. Data mining and knowledge discovery, 6(1): 83-105, 2002.

[43] Mobasher, B., Dai H., Luo T., and Nakagawa M. Effective personalization based on
association rule discovery from web usage data. In Proceedings of ACM Workshop on
Web Information and Data Management, pages 9–15, 2001.

[44] Zaki, M. and Aggarwal C. XRules: an effective structural classifier for XML data. In
Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD-2003), pages 316–325, 2003.

[45] Li J., Dong G., Ramamohanarao K., and Wong L. DeEPs: A new instance-based lazy
discovery and classification system. Machine learning, 54(2): p. 99-124, 2004.

[46] Yang Q., Li T., and Wang K. Building association-rule based sequential classifiers for
web-document prediction. Data mining and knowledge discovery, 8(3): 253–273, 2004.



38 Data Classification: Algorithms and Applications

[47] Dougherty, J., Kohavi R., and Sahami M. Supervised and unsupervised discretization of
continuous features. In Proceedings of International Conference on Machine Learning
(ICML-1995), 194–202, 1995.

[48] Fayyad, U. and Irani K. Multi-interval discretization of continuous-valued attributes for
classification learning. In Proceedings of the Intl. Joint Conf. on Artificial Intelligence
(IJCAI-1993), pages 1022–1028, 1993.

[49] Zheng Z., Kohavi R., and Mason L. Real world performance of association rule al-
gorithms. In Proceedings of ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD-2001), pages 401-406, 2001.

[50] Cong G., Tan K.-L., Tung AKH, and Xu X. Mining top-k covering rule groups for gene
expression data. In Proceeding of the 2005 ACM-SIGMOD international conference on
management of data (SIGMOD–05), pages 670-681, 2005.

[51] William W. Cohen and. Yoram S. Context-sensitive learning methods for text catego-
rization. ACM Transactions on Information Systems, 17(2): 141–173, 1999.

[52] Johnson D. , Oles F. , Zhang T., and Goetz T. A Decision Tree-based Symbolic Rule
Induction System for Text Categorization. IBM Systems Journal, 41(3), pp. 428–437,
2002.

[53] Apte C. , Damerau F. , and Weiss S. Automated Learning of Decision Rules for Text
Categorization. ACM Transactions on Information Systems, 12(3), pp. 233–251, 1994.

[54] Weiss S. M., Apte C. , Damerau F., Johnson D., Oles F., Goetz T., and Hampp T.
Maximizing text-mining performance. IEEE Intelligent Systems, 14(4), pp. 63–69,
1999.

[55] Weiss S. M., and Indurkhya N. Optimized Rule Induction. IEEE Exp., 8(6), pp. 61–69,
1993.

[56] Freund, Y., Schapire, R., Singer, Y., and Warmuth, M. Using and combining predictors
that specialize. In Proceedings of the 29th Annual ACM Symposium on Theory of
Computing, pages 334-343, 1997.

[57] Joachims T. Text Categorization with Support Vector Machines: Learning with Many
Relevant Features. In Proceedings of the European Conference on Machine Learning
(ECML), pages 137–142, 1998.

[58] Andrew M., and Nigam K. A comparison of event models for Näıve Bayes text classi-
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