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Abstract

This paper furthers the study of quasi-linear time complexity initiated by Schnorr
[Sch76] and Gurevich and Shelah [GS89]. We show that the fundamental properties of
the polynomial-time hierarchy carry over to the quasilinear-time hierarchy. Whereas
all previously known versions of the Valiant-Vazirani reduction from NP to parity run
in quadratic time, we give a new construction using error-correcting codes that runs in
quasilinear time. We show, however, that the important equivalence between search
problems and decision problems in polynomial time is unlikely to carry over: if search
reduces to decision for SAT in quasi-linear time, then all of NP is contained in quasi-
polynomial time. Other connections to work by Stearns and Hunt [SH86, SH90, HS90]
on “power indices” of NP languages are made.

Topics. Computational complexity.

1. Introduction

The notion of “feasible” computation has most often been identified with the concept of

polynomial time. However, an algorithm which runs in time n'° or even time n? may not
really be feasible on moderately large instances. Quasi-linear time, namely time ¢lin :=
n - (logn)°MW, largely avoids this objection to the size of the exponent of n. Let DQL and
NQL stand for time ¢lin on deterministic and nondeterministic Turing machines. Schnorr
[Sch76, Sch78] showed that SAT is complete for NQL under DQL many-one reductions
(<9, Together with Stearns and Hunt [SH86, SH90], it was shown that many known NP-

complete problems also belong to NQL and are complete for NQL under <% so that the
question NQL = DQL takes on much the same shape as NP = P. Related classes within P
are studied by Buss and Goldsmith [BG93].

One theoretical difficulty with the concept of quasilinear time is that it appears not to
share the degree of independence on particular machine models that makes polynomial time
such a robust concept. Gurevich and Shelah [GS89] showed that a wide variety of models
related to the RAM under log-cost criterion [CR73] accept the same class of languages in

quasilinear time—we call this class DNLT. They also showed that nondeterministic glin



time for these machines, namely NNLT, equals NQL. However, currently it appears that
DNLT is larger than DQL, and that for all d > 1, Turing machines with d-dimensional
tapes accept more languages in time ¢lin than do TMs with (d — 1)-dimensional tapes (cf.
[WW86]). Our constructions all work for DQL as well as DNLT.

Our main motivation is to ask: How much of the known theory of complexity classes
based on polynomial time carries over to the case of quasilinear time? Section 2 observes
that the basic results for the polynomial hierarchy and PSPACE hold also for the quasilinear
hierarchy (QLH) and QLSPACE.

Section 3 shows that the randomized reduction from NP to parity given by Valiant
and Vazirani [VV86] and used by Toda [Tod91], previously proved by constructions which
run in quadratic time (see [VV86, Tod89, CRS93, Gup93]), can be made to run in time
glin. Our construction also markedly improves the number of random bits needed and the
success probability, and uses error-correcting codes in an interesting manner first noted in
[NN90].

Section 4 studies what may be the major difference between polynomial and quasilinear
time: the equivalence between functions and sets seems no longer to hold. It has long been
known that any function can be computed in polynomial time using some set as an oracle.
In contrast, we show that there exists a function f which cannot be computed in quasilinear
time using any set as an oracle whatsoever. Next, we study the property of reducing search
to decision for NP sets. While it is well-known that search reduces to decision for SAT
in quadratic time (cf. [Sel88, JY90]), we show that search does not reduce to decision for
SAT in quasilinear time, unless all of NP is contained in DTIME[2P?YI°8"] We extend
our techniques to show that the quadratic bound on reducing search to decision for SAT
is optimal, unless SAT can be recognized in subexponential time. Finally, we establish
an interesting connection between the time taken for reducing search to decision and the
power index [SHIO0] of a language.

2. Notation and Basic Results

Let ¥ := {0,1}. Given strings y1,...ym € X%, each y; of length n;, let y = (y1,...ym)
stand for the binary string of length 2r 4+ 2m obtained by translating 0 to 00, 1 to 11, and
‘comma’ to 01, with an extra 01 at the end. For any language B we often write B(x,y) in
place of ‘(x,y) € B’ and consider B as a predicate. For convenience we call ¢ a quasilinear
function if there are constants k,c,d > 0 such that for all n, ¢(n) = en(log® n) + d. Where
n is understood we write ¢ as short for ¢(n), and also write (3%y) for (3y € {0,1}4"),
(V) for (Yy € {0,1}2). Standard padding lets us ignore the distinction between |y| = ¢
and |y| < ¢ for our present purposes. The notation (#% : B(x,y)) means “the number of
strings y € {0,1}902D such that B(z,y) holds.”

Definition 2.1. If A € NP, B € P, and p is a polynomial such that for all z, v € A <—
(F*y) B(x,y), then we call B a witness predicate for A, with the length bound p understood.
We use the same terms in the context of NQL and DQL.

We note the following provision about oracle Turing machines M made standard in

[WWS86] (see also [LL76, Wra77, WraT78]): Whenever M enters its query state ¢» with the



query string z on its query tape, z is erased when the oracle gives its answer. If the oracle
is a function g, we suppose that g(z) replaces z on the query tape in the next step. If
A and B are languages such that L(MP) = A and MP runs in quasilinear time, then we
write A Squ B. As usual we may also write A € DQL? or A € DQL(B), and if M is
nondeterministic, A € NQL” or A € NQL(B). Henceforth our notations and definitions
of complexity classes are standard, with ‘P’ replaced by ‘QL’, except that we use square
brackets for “class operators”:

Definition 2.2. For any languages A and B,

(a) A € NQL[B] if there is a quasilinear function ¢ such that for all € ¥*, 2 € A «<—
(3'y) B(z,y).

(b) A € UQL[B] if there is a ¢ such that for all « € ¥*, x € A = (#%y : B(x,y)) =1,
and v ¢ A = (#% : B(z,y)) = 0.

(c) A € BQL[B] if there is a ¢ such that for all x € ¥*, x € A < (#% : B(x,y)) is
odd.

(d) A € BQL[B] if there is a quasilinear function ¢ such that for all + € ¥*, v € A =
(#0y: Blay))/2 > 23, and o ¢ A= (% : Blz,y))/2 < 1/3.

(e) A € RQL[B] if there are ¢ and ¢ > 0 such that for all x € ¥*, « € A = (#%y :
B(x,y))/29 > 2/3, and * ¢ A = (#% : B(x,y)) = 0.

For any class C of languages, NQL[C] equals UgecNQL[B], and similarly for the other
operators. With C = DQL these classes are simply written NQL, UQL, ©QL, BQL, and
RQL. It is easy to check that “machine definitions” of these classes are equivalent to the
above “quantifier definitions”; e.g. UQL is the class of languages accepted by unambiguous
NTMs which run in quasilinear time. By standard “amplification by repeated trials,” for
any function r = O(log" n), the classes BQL and RQL remain the same if ‘1/3” is replaced
by 277" and ‘2/3’ by 1 — 27" and similarly for BQL[C] and RQL[C] provided C is
closed under “polylogarithmic majority truth table reductions.” This is also enough to

sive BQL[BQL[C]] = BQL[C].

Definition 2.3. The quasilinear time hierarchy is defined by: Z%l = Hgl = Agl = DQL,
and for £ > 1,

wi' = NQL[IY ], ¥ = cox?, AY = DQL%-,

Also QLH := U2 %% and QLSPACE := DSPACE[¢lin]. By the results of [(S89], all these
classes from NQL upward are the same for Turing machines and log-cost RAMs.
Next we observe the following concavity property of quasilinear functions:

Lemma 2.1. (a) Let ¢(n) = cnlog®n, let ny,...n,, be nonnegative real numbers, and let
Yming <. Then Y7 q(ng) < q(r).

(b) If g(n) = enlog®n + d, each n; > 1, and r = r(n) is another quasilinear function,
then -7, q(n;) is bounded by a quasilinear function.



Proof. (a) True for m = 1. By the induction hypothesis for m — 1, 37", ¢(n;) < ¢(r —
nm) + ¢(ny). The second derivative of ¢(r — ) + ¢(x) with respect to = is positive for
0 < & < r, so the maxima on [0,r] are with n,, = 0 or n,, = r, giving the upper bound
q(r).

(b) By (a), >, q(n:) < g(r(n))+dm. Since each n; > 1, m < r(n), and so the additive
term dm is quasilinear. If r(n) = ¢n logk/ n+d', then substituting gives a quasilinear bound
of the form ¢'n logk+k/ n + d”, for some constants ¢’ and d”. O

Corollary 2.2. The relation Squ is transitive.

Proof. Let A = L(MP) and B = L(M®), where M runs in time g(n) and My in time r(n).
Define M; on any input « to simulate My(x) but use M to answer the queries y1,...,¥n
made by My. For each query y; let n; := max{|y;[,1}. Then Y, n; is bounded by r(n),
¢(n;) bounds the runtime of M on input y;, and Lemma 2.1(b) bounds the total runtime
of M. O

With this in hand it is straightforward to show that the most fundamental properties of
the polynomial hierarchy (from [Sto77, Wra77]) carry over to QLH.

Theorem 2.3.
(a) (Equivalence of oracles and quantifiers): For all k > 1, ZZZ = NQLEZZ—L
(b) (Downward separation): For all k >0, if ©% = 11¢ then QLH = X'

(¢) (Turing closure): For all k > 0, S¥ N11Y is closed downward under <. In particular,
DQL and NQL N co-NQL are closed under Squ.

(d) For each k > 1, the language By of quantified Boolean formulas in prenex form with
at most k alternating quantifier blocks beginning with ‘1’ is complete for ZZZ under
DQL many-one reductions.

(e) QLI C QLSPACE.

The case k =1 of (d) is Schnorr’s seminal result, and the higher cases follow quickly from
this and (a). It is worth sketching Schnorr’s construction (see also [BG93]): Take a time-
t(n) DTM M which decides a witness predicate B(x,y) for the given language A € NQL.
Convert M into O(t(n)logt(n))-sized circuits C,, of fan-in 2 in variables xq,..., 2, and
Y1,...,Yq such that for all v, € A <= (Jy1,...,y,) Colx1, ... 20y Y1,...,y,) = 1. Then
assign a dummy variable to each of the O(nlogn) wires in C,, and write a 3-CNF formula
which expresses that each output wire has the correct value given its input wires. This
reduces A to SAT and is computable in time O(nlogn).

Let @BF stand for Ui Bi. While Q)BF' is in alternating ¢lin space, it is not known
to be in deterministic glin space. Moreover, the standard reduction from a language
A € PSPACE to @BF in [HU79] has a quadratic blowup in size (if A is in linear
space). These apparent differences from PSPACE are connected to the issue of whether



Savitch’s simulation of nondeterministic space s(n) = Q(logn) by deterministic space
O(s(n)?) must have quadratic blowup. By the same token, the familiar “one-line proof”

NP“BF C NPSPACE = PSPACE = P9 is not valid for QL. However, the result (a)

below is still true:

Proposition 2.4. (a) NQLY" = DQL9?",
(b) There is an oracle B such that NQL® is not contained in DTIME[2°(")].

The proof of (a) uses Schnorr’s construction and Lemma 2.1, and in fact gives NQL%?" =
DQL[QBF]. Statement (b) holds for the standard oracle B separating NP? from P in
[HUT79].

The result of [PZ83] that #P*" = &P also carries over because of the quasilinear
bound on the total length of all queries in an oracle computation: HQLYY = SQL.
However, it is unclear whether the theorem BPPPFY = BPP [Ko82] carries over, because
the amplification of success probability to 1 —27P°W1°8 ghtainable for BQL seems insufficient.
For similar reasons we do not know whether Toda’s lemma ©P[BP[C]] € BP[®PI[C]] (for
C closed under polynomial-time majority truth-table reductions), which was instrumental
in proving PH C BP[®P] [Tod91], carries over in the form ©QL[BQLIC]] € BQL[®QL[C]].
However we are able to show, in the next section, that the other instrumental lemma,
namely NP C BP[®&P] [VV86], does carry over by a new construction, where all previous
known constructions were quadratic or worse.

3. Quasilinear-Time Reduction to Parity

Let A € NP with witness predicate B(x,y) and length bound ¢ = ¢(n), and for any « let
Sy:={y€{0,1}: B(x,y)} be the corresponding witness set, so that + € A < 5, #
. Valiant and Vazirani [VV86] constructed a probabilistic NTM N which on any input
z of length n first flips ¢*many coins to form ¢-many vectors wy,...,w, each of length
g. N also flips coins to form a number j, 0 < j < ¢. Then N guesses y € {0,1}? and
accepts iff B(x,y) and for each ¢, 1 < <y, y-w; = 0, where - is inner product of vectors
over GF(2). Let N, ; stand for the NTM N with w = wy,...,w, and j fixed. Clearly
whenever « ¢ A, for all w and ¢, the number #acc(N, j,x) of accepting computations
of Ny ; on input x is zero. The basic lemma of [VV86] states that whenever © € A,
Pr,[(37)#ace(Ny j,x) = 1] > 1/4. In particular, Pr,, j[#acc(Ny ;, x) is odd] > 1/4(q + 1).
A “product construction” yields an N’ which flips coins to form just w, guesses strings
Yo, - - -, Yg, and achieves for all z,

rEeA—= l:;r[#acc(NZU,x) is odd] > 1/4,

r ¢t A= l:;r[#acc(NZU,x) is odd] = 0.

In symbols, this implies that NP C RP[®P] (cf. [Tod91]).

However, in the case A = SAT addressed by [VV86], with ¢(n) = n, N’ runs in
quadratic time—in fact, N’ flips quadratically many coins and makes quadratically many
nondeterministic moves. It was well known that by using small families H = { Hy } of



universaly hash functions [CW79, BCGL89] Ay, : {0,1}% — {0,1}F (1 <k < g+ 1) cuts
the number r(n) of random bits used to 2¢(n). A related construction of [CRS93] achieves
the same effect, still with quadratic runtime when ¢(n) = n. Gupta [Gup93] gives a
randomized reduction to parity which achieves constant success probability 3/16 with only
v(n) = q(n) nondeterministic moves, but still using ¢*>many random bits and quadratic
time. The first construction of Naor and Naor [NN90, NN93] boils down to the following
idea in this setting: N flips 2¢g + 2 coins to determine functions hy; € Hy for all k, and
then flips ¢ + 1 more coins to form u € {0,1}?*'. Then N nondeterministically guesses
y€{0,1}7and k, 1 <k < g+ 1, and accepts iff B(a,y) A hi(y) =0 A u, = 1. This
uses 3¢ 4+ 3 random bits, achieves success probability at least 1/8, and runs in the time to
compute hy, which is O(qlog gloglog ¢). Our construction achieves better constants than
this, and is better by an order of magnitude in (randomness or number of nondeterministic
moves) and running time than all of the previous ones.

The idea of using error-correcting codes is mentioned by Naor and Naor [NN93] and
ascribed to Bruck, referring the reader to [ABN192] for details. However, the construction
in [ABN192] uses a code of Justesen (see [Jus72, MST7] whose implementation in our
setting seems to require exponentiation of field elements of length polynomial in n, which
is not known to be computable in (randomized) quasilinear time (cf. [AMVS88, Sti90]). Our
point is that by scaling down the size of the field used for basic arithmetic, and using
multi-variable polynomials, one can achieve quasi-linear runtime. Our code is similar to
those used in recent improvements of “holographic proof systems” [BFLS91, Sud92], and
is only inferior to that of [ABN192] in the number of random bits.

Let 7 be an alphabet of size 2!. We can give 7 the structure of the field F' = GF(2');
then 7" becomes an n-dimensional vector space over F. An [N, K, D] code over F is a
set €' C 7" which forms a vector subspace of dimension K (so |C|| = 2¥), such that for
all distinet «,y € C, dy(x,y) > D, where dy is Hamming distance. Since C' is closed
under addition (i.e., a linear code), the minimum distance D equals the minimum weight
(i.e., number of non-zero entries over F') of a non-zero codeword. The rate of the code is
R = K/N, and the density is given by 6 = D/N. Any basis for C forms a K x N generator
matriz for the code. If F' = GF(2) we speak of a binary code.

The basic idea is to take a 27 x 2"(") generator matrix G for a binary code (' of constant
density 6 = 1/2 — ¢, and have the probabilistic NTM N work as follows:

1. Flip r(n) coins to choose a column j.
2. Guess a row ¢, 1 <1 <27 identified with a possible witness string y; € {0, 1 }9.
3. Accept iff B(z,y;) A G(i,5) = 1.

Suppose S = 5, is nonempty. Then to S there corresponds the unique non-zero code-
word wg = Y ,e5G(y,-), where the sum is over GI'(2). Then #acc(N;,x) is odd iff
the jth entry of wg is a ‘1’. Since the proportion of non-0 entries of wg is at least
6, Prj[#ace(Nj,x)is odd] > é; that is, N reduces A to parity with success probability
at least 6. And if S is empty, NV has no accepting computations at all. Thus to show
NQL C RQL[®QL], we need to construct C' so that G/(7,j) is computable in quasilinear
time. Qur code C' is the concatenation of two simpler codes:



e The Hadamard code Hy, over { 0,1} of length n = 2* has n codewords. The codewords
can be arranged into an n xn array with rows and columns indexed by strings u,v € {0,1 }*,
and entries u-v, where - is inner product over GF(2). H}, has distance dy = 2571 s0 8, = 1/2
is constant.

e The full g-ary generalized Reed-Muller code R,(r,m) of order r, where r < m(q—1),
has length N = ¢™ over the field ' = GF(¢).! Each polynomial f(z1,...2,), in m

variables over F' of degree at most r, defines the codeword with entries f(aq,...,a,,), where
d = (a,...,an) ranges over all sequences of arguments in F'. When r < ¢ — 1 a generator
matrix for this code is easy to describe: it has one row for each monomial x}'zy --- aim

such that 1 + 23+ ... 412, < r. Since r < ¢ — 1 these monomials are all distinct, and they
are all linearly independent, so the dimension is K = (™" ). By the so-called Schwartz
inequality [Sch80] (cf. [BFLS91, Sud92]), for every two distinct polynomials f and ¢ over
F of degree at most r, and for every I C F,

{delm™: f(a@)=gl@)} <rlI|"". (1)

With I = F, it follows that every two distinct codewords have distance over F' at least
|F|™ — r|F|™"!, and some achieve this, so the density A equals 1 —r/|F|.

If with ¢ = 2% we simply regarded R,(r,m) as a binary code of length kN, we would
only be able to assert that the density is at least 1/2k, because two distinct elements
ay,ay € GF(2%) might differ in only one out of k places as binary strings. But if we apply
the Hadamard code to a; and ay, the two resulting strings, though of length 2%, differ in
at least 1/2 their places, yielding our code C' of length 2* N and density 1/2 — ¢, where
¢ = r/2|F|. This is done by step 11. of our construction of V:

L. Input @ and €; n := |z|, ¢ := g(n)

2. b:=[logyq] /*block length for exponents™/

3. d:=2"—1 /*maximum degree in each variable*/

4. m:=[q/b] [ number of variables®/

5. k := [log, d + log, m + log,(1/€) — 1]

6. Calculate an irreducible polynomial « of degree k over GF(2)

7. Flip mk + k coins to form j = {(ay,...,a,,v), where v € {0,1 }*.
8. Guess y € {0,1}¢

9. Taking b bits of y at a time, form integers i1,%2,...%,-1,0m € {0,...,d}. It is OK
for 7,, to be truncated.

e g, 02 i
10. Compute v :=af' - af ---am

'Here ¢ and r are different from their use above; we take ¢ = 2% and r = 2° — 1 below.



11. Compute G(y,j):=u-v
12. Accept iff B(x,y) A G(y,7) = 1.

Let 5 be the time to compute the witness predicate B(x,y), and let log* n abbreviate
log n loglog n log loglog n.

Theorem 3.1. For any fixed ¢ < 1/2, the probabilistic NTM N accepts A with success
probability 1/2—¢, making ¢ nondeterministic moves and running in time O(qlog™ ¢) (apart
from the time to recognize B), and uses a number of random bits bounded by

r =2q — qloglog ¢/ log ¢ + (1 + log(1/¢))q/ log ¢ + O(log ¢).

Proof Sketch. Step 10 dominates the running time. To multiply two polynomials of
degree k — 1 over GF(2) and reduce them modulo « in the field GF(2%) takes time
t1 = O(klog kloglog k) on standard Turing machine models (see [AHUT74] and [Rab80]).
The time to compute a’ in GF(2*) where 1 < n is t; = O(logn - 2k log kloglog k) via re-
peated squaring. Hence the time to evaluate the monomial is at most O(mty + mty) =

O(mlog(n)klog kloglog k) = O(nlog™ n), since m = O(n/logn) and k = O(logn). O
Corollary 3.2. NQL C RQL[®QL]. O

The first open problem is whether two or more alternations can be done in quasilinear time;
that is, whether NQLN?" C BQL[®QL). The obstacle is the apparent need to amplify the
success probabilities of the second level to 1 —27¢, for which straightforward “amplification
by repeated trials” takes time ¢?. The second is whether the code can be improved and still
give quasi-linear runtime. Our codes have rate R = K/N = 27/224=) which tends to 0 as
q increases. Families of codes are known for which R (as well as §) stays bounded below by a
constant; such (families of ) codes are called good. Good codes require only ¢+ O(1) random
bits in the above construction. The codes in [Jus72, TV91, ABN*92 JLJH92, She93] are
good. However, we do not know of any good codes which give quasi-linear runtime in the
above construction.

4. Search Versus Decision in Quasilinear Time

The classical method of computing partial, multivalued functions using sets as oracles is
the prefiz-set method (cf. [Sel88] ). To illustrate, let f be an arbitrary length-preserving,
partial function from ¥* to ¥*. Define:

Ly = {a#w | wis a prefix of some value of f(x)}.

Clearly f is computable in quadratic time using Ly as an oracle. First we observe that for
“random” functions f, quadratic time is best possible.

Theorem 4.1. There exist length-preserving functions f : ¥* — ¥* with the property

that there does not exist an oracle set B relative to which f is computable in less than

n? — n steps.



Proof. Let B and an OTM M such that MP(x) = f(z) on all strings = € {0,1}" be

given, and suppose M® runs in time g(n). Then the following is a description of f on

{0,1}"

e The finite control of M, plus finite descriptions of the function ¢g(n) and “this discus-
sion” (see [LV90]). This has total length some constant C'.

o A look-up table for all the strings of length < n which belong to B—this is specifiable
by a binary string of length 377 28 = 27 — 1 < 27,

o For ecach 2 € {0,1}", the answers given by B to those queries z made by M on input
x such that |z| > n. There are at most g(n)/n such queries. All of this is specifiable
by a binary string of length 2"g(n)/n.

Now let K; be the Kolmogorov complexily of f, relative to some fixed universal Turing
machine. Then C' + 2" +2"g(n)/n < K¢, so g(n) > nK;/2" —n —nC/2". Since functions
f:{0,1}" — {0,1}" are in 1-1 correspondence with binary strings of length n2", and a
simple counting argument shows that some such strings have Kolmogorov complexity at
least n2", there exist f with Ky > n2". Then ¢g(n) > n* —n. O

(Remarks: The n? —n is close to tight—an upper bound of g(n) < n?+2nlog n is achievable
by a modification of L;. By diagonalization one can also construct such functions f which
are computable in exponential time.)

Hence the equivalence between functions and sets does not carry over to quasilinear
time complexity in general. Theorem 4.1 can be read as saying that Kolmogorov-random
functions have so much information that large query strings are needed to encode it. We are
interested in whether natural functions in NP, such as witness functions for NP-complete
problems, pack information as tightly.

Let L be a language in NP and let B be some polynomial-time witness predicate for
L. Define the partial multivalued function fg by:

[B(x) = y,if |y| = q(|z]) and B(z,y).

Then fg is called a search function for L. The following is a straightforward extension of
the standard notion of search reducing to decision in polynomial time [BD76, BBFG91,
NOS93, HNOS93] to other time bounds #(n).

Definition 4.1. Let . € NP and a time bound #(n) be given. Then we say that search
reduces to decision for L in time t(n) if there exists a witness predicate B for L and a t(n)
time-bounded deterministic oracle TM M such that for all inputs z, if + € L then ML(z)
outputs some y such that fg(x) — y, and if + ¢ L then M (x) = 0.

Let polylogn abbreviate (logn)°®) as before. Then DTIME[2P°¥°87] is often referred to
as quasi-polynomial time (cf. [Bar92]).

Theorem 4.2. Let L € NP. If search reduces to decision for L in quasilinear time, then
L € DTIME[2polvlogn],



Proof. Let M be the oracle TM from Definition 4.1, and let ¢ and &k be constants such that
M runs in time enlog® n. We may suppose that M itself verifies that its output y satisfies
B(x,y). Let f(n):=n/logn. Let ng be a fixed constant whose value we determine later;
on inputs z of length < ng, whether x € L is looked up in a table.

Now we create a non-oracle TM M’ which operates as follows on any input « of length
n > ng: M’ simulates M. Whenever M makes a query z and |z| < ng, M' answers from
the table. If |z| > f(n), we call z a “large query.” Here M’ branches, simulating both a
“yes” and a “no” answer to z. Finally, if ng < |z| < f(n), then M’ calls itself recursively
on input z to answer the query. The above is a recursive description of what M’ does. The
actual machine M’ simulates both the recursion and the branching on large queries using
a stack, and halts and accepts iff at some point M outputs a string y such that B(z,y)
holds. Clearly M’ accepts L.

Let tp(n) stand for the worst-case running time of M’ on inputs of length n. We show
that for all n, tan(n) < 2¢log™™* n Gince table-lookup takes only linear time, this holds for
n < ng. Now consider the binary tree T" whose nodes are large queries made by M, and
whose edges represent computation paths by M’ between large queries. Then T has depth
at most clogh™!
branch is at most clog® n, and each such query has length at most n/log n. Hence the time

k41 .
n and at most 2°1°8"" ™ branches. The number of small queries on each

taken by M’ to traverse all branches, namely tj/(n), meets the bound:

tar(n) < gelog"*in logk n-ty(n/logn). (2)

k42

By induction hypothesis, ¢y (n/logn) < 2¢(esn=loglogn)
that there is a fixed ng such that for all n > ng,

. Elementary calculation shows

k41 _ k42 k42
2clog " en logk n - 2c(logn loglogn) < 2clog n

k2

Thus ty(n) < clog O

The result also holds if I belongs to nondeterministic quasi-polynomial time. Our next
corollary follows immediately from the NP-completeness of SAT.

Corollary 4.3. If search reduces to decision for SAT is quasilinear time, then
NP C DTIME[2polosn],

Now we observe that the proof technique of Theorem 4.2 can be used to give some evidence
that the quadratic bound on the search to decision reduction for SAT' is optimal.

Corollary 4.4. If there exists an € > 0 such that search reduces to decision for SAT in
DTIME[n'*¢], then SAT € DTIME[2"], and also NP C DTIME[2"].

Stearns and Hunt [SH90] define a language L € NP to have power index € if € is the infimum
of all 6 such that L € DTIME[Z”(S]. They classify familiar NP-complete problems according
to known bounds on their power indices, and conjecture that SAT has power index 1. In
this setting, Corollary 4.4 can be restated as :
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Corollary 4.5. If there exists an € > 0 such that search reduces to decision for SAT in
DTIME[r'*¢], then SAT has power index at most e.

This establishes a relation between reducing search to decision and the power index of an
NP language. However, it is not necessarily the case that having a low power index implies
that search reduces to decision efficiently, or even in polynomial time at all. Let EE stand
for DTIME[ZZOW], and NEE for its nondeterministic counterpart. The classes EE and NEE
were recently considered by Beigel, Bellare, Feigenbaum, and Goldwasser [BBFG91], and
there are reasons for believing it unlikely that NEE = EE.

Theorem 4.6. Suppose NEE # EE. Then for all k > 0 there is a tally language in NP
whose power index is at most 1/k, but for which search does not reduce to decision in
polynomial time.

Proof Sketch. We use the techniques developed by [BBFG91]. Let T' be the tally set
constructed in [BBFGI1] such that search does not reduce to decision for 7' in polynomial
time, unless NEE = EE. There exists a polynomial p such that for all x € T'N X", some
witness for x is of length p(n). Now, define:

T% = {0*™" | 0" € T}.

It is easy to see that 72 has power index at most 1/k, since an exhaustive search for

witnesses recognizes 1% in time 27" However if search reduces to decision in polynomial
time for T*, then the same holds for 7', which is a contradiction. O

Finally, it is interesting to ask whether there are length-preserving 1-1 functions f which
are computable in ¢lin time but not invertible in ¢lin time. Homer and Wang [HW&9]
construct, for any & > 1, functions computable in quadratic time which are not invertible
in time O(n*), but their methods seem not to apply for ¢lin time or f length-preserving. If
DQL # UQL, then such “quasilinear one-way” functions exist, but unlike the polynomial
case (assuming P # UP), the converse is not known to hold. We look toward further
research which might show that length-preserving functions with certain “pseudorandom”
properties cannot be inverted in ¢lin time, unless unlikely collapses of quasilinear classes
occur.
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