
Quasilinear Time Complexity TheoryAshish V. NaikSUNY Bu�aloavnaik@cs.bu�alo.edu Kenneth W. ReganSUNY Bu�aloregan@cs.bu�alo.edu D. SivakumarSUNY Bu�alosivak-d@cs.bu�alo.eduAugust 20, 1993AbstractThis paper furthers the study of quasi-linear time complexity initiated by Schnorr[Sch76] and Gurevich and Shelah [GS89]. We show that the fundamental properties ofthe polynomial-time hierarchy carry over to the quasilinear-time hierarchy. Whereasall previously known versions of the Valiant-Vazirani reduction from NP to parity runin quadratic time, we give a new construction using error-correcting codes that runs inquasilinear time. We show, however, that the important equivalence between searchproblems and decision problems in polynomial time is unlikely to carry over: if searchreduces to decision for SAT in quasi-linear time, then all of NP is contained in quasi-polynomial time. Other connections to work by Stearns and Hunt [SH86, SH90, HS90]on \power indices" of NP languages are made.Topics. Computational complexity.1. IntroductionThe notion of \feasible" computation has most often been identi�ed with the concept ofpolynomial time. However, an algorithm which runs in time n100 or even time n2 may notreally be feasible on moderately large instances. Quasi-linear time, namely time qlin :=n � (log n)O(1), largely avoids this objection to the size of the exponent of n. Let DQL andNQL stand for time qlin on deterministic and nondeterministic Turing machines. Schnorr[Sch76, Sch78] showed that SAT is complete for NQL under DQL many-one reductions(�qlm). Together with Stearns and Hunt [SH86, SH90], it was shown that many known NP-complete problems also belong to NQL and are complete for NQL under �qlm, so that thequestion NQL ?= DQL takes on much the same shape as NP ?= P. Related classes within Pare studied by Buss and Goldsmith [BG93].One theoretical di�culty with the concept of quasilinear time is that it appears not toshare the degree of independence on particular machine models that makes polynomial timesuch a robust concept. Gurevich and Shelah [GS89] showed that a wide variety of modelsrelated to the RAM under log-cost criterion [CR73] accept the same class of languages inquasilinear time|we call this class DNLT. They also showed that nondeterministic qlin1



time for these machines, namely NNLT, equals NQL. However, currently it appears thatDNLT is larger than DQL, and that for all d > 1, Turing machines with d-dimensionaltapes accept more languages in time qlin than do TMs with (d� 1)-dimensional tapes (cf.[WW86]). Our constructions all work for DQL as well as DNLT.Our main motivation is to ask: How much of the known theory of complexity classesbased on polynomial time carries over to the case of quasilinear time? Section 2 observesthat the basic results for the polynomial hierarchy and PSPACE hold also for the quasilinearhierarchy (QLH) and QLSPACE.Section 3 shows that the randomized reduction from NP to parity given by Valiantand Vazirani [VV86] and used by Toda [Tod91], previously proved by constructions whichrun in quadratic time (see [VV86, Tod89, CRS93, Gup93]), can be made to run in timeqlin . Our construction also markedly improves the number of random bits needed and thesuccess probability, and uses error-correcting codes in an interesting manner �rst noted in[NN90].Section 4 studies what may be the major di�erence between polynomial and quasilineartime: the equivalence between functions and sets seems no longer to hold. It has long beenknown that any function can be computed in polynomial time using some set as an oracle.In contrast, we show that there exists a function f which cannot be computed in quasilineartime using any set as an oracle whatsoever. Next, we study the property of reducing searchto decision for NP sets. While it is well-known that search reduces to decision for SATin quadratic time (cf. [Sel88, JY90]), we show that search does not reduce to decision forSAT in quasilinear time, unless all of NP is contained in DTIME[2polylogn]. We extendour techniques to show that the quadratic bound on reducing search to decision for SATis optimal, unless SAT can be recognized in subexponential time. Finally, we establishan interesting connection between the time taken for reducing search to decision and thepower index [SH90] of a language.2. Notation and Basic ResultsLet � := f 0; 1 g. Given strings y1; : : : ym 2 ��, each yi of length ni, let y = hy1; : : : ymistand for the binary string of length 2r + 2m obtained by translating 0 to 00, 1 to 11, and`comma' to 01, with an extra 01 at the end. For any language B we often write B(x; y) inplace of `hx; yi 2 B' and consider B as a predicate. For convenience we call q a quasilinearfunction if there are constants k; c; d � 0 such that for all n, q(n) = cn(logk n) + d. Wheren is understood we write q as short for q(n), and also write (9qy) for (9y 2 f 0; 1 gq(n)),(8qy) for (8y 2 f 0; 1 gq(n)). Standard padding lets us ignore the distinction between jyj = qand jyj � q for our present purposes. The notation (#qy : B(x; y)) means \the number ofstrings y 2 f 0; 1 gq(jxj) such that B(x; y) holds."De�nition 2.1. If A 2 NP, B 2 P, and p is a polynomial such that for all x, x 2 A ()(9py)B(x; y), then we callB a witness predicate for A, with the length bound p understood.We use the same terms in the context of NQL and DQL.We note the following provision about oracle Turing machines M made standard in[WW86] (see also [LL76, Wra77, Wra78]): Whenever M enters its query state q? with the2



query string z on its query tape, z is erased when the oracle gives its answer. If the oracleis a function g, we suppose that g(z) replaces z on the query tape in the next step. IfA and B are languages such that L(MB) = A and MB runs in quasilinear time, then wewrite A �qlT B. As usual we may also write A 2 DQLB or A 2 DQL(B), and if M isnondeterministic, A 2 NQLB or A 2 NQL(B). Henceforth our notations and de�nitionsof complexity classes are standard, with `P' replaced by `QL', except that we use squarebrackets for \class operators":De�nition 2.2. For any languages A and B,(a) A 2 NQL[B] if there is a quasilinear function q such that for all x 2 ��, x 2 A ()(9qy)B(x; y).(b) A 2 UQL[B] if there is a q such that for all x 2 ��, x 2 A =) (#qy : B(x; y)) = 1,and x =2 A =) (#qy : B(x; y)) = 0.(c) A 2 �QL[B] if there is a q such that for all x 2 ��, x 2 A () (#qy : B(x; y)) isodd.(d) A 2 BQL[B] if there is a quasilinear function q such that for all x 2 ��, x 2 A =)(#qy : B(x; y))=2q > 2=3, and x =2 A =) (#qy : B(x; y))=2q < 1=3.(e) A 2 RQL[B] if there are q and � > 0 such that for all x 2 ��, x 2 A =) (#qy :B(x; y))=2q > 2=3, and x =2 A =) (#qy : B(x; y)) = 0.For any class C of languages, NQL[C] equals [B2CNQL[B], and similarly for the otheroperators. With C = DQL these classes are simply written NQL, UQL, �QL, BQL, andRQL. It is easy to check that \machine de�nitions" of these classes are equivalent to theabove \quanti�er de�nitions"; e.g. UQL is the class of languages accepted by unambiguousNTMs which run in quasilinear time. By standard \ampli�cation by repeated trials," forany function r = O(logk n), the classes BQL and RQL remain the same if `1=3' is replacedby 2�r(n) and `2=3' by 1 � 2�r(n); and similarly for BQL[C] and RQL[C] provided C isclosed under \polylogarithmic majority truth table reductions." This is also enough togive BQL[BQL[C]] = BQL[C].De�nition 2.3. The quasilinear time hierarchy is de�ned by: �ql0 = �ql0 = �ql0 = DQL,and for k � 1, �qlk = NQL[�qlk�1]; �qlk = co-�qlk ; �qlk = DQL�qlk�1:Also QLH := [1k=0�qlk , and QLSPACE := DSPACE[qlin]. By the results of [GS89], all theseclasses from NQL upward are the same for Turing machines and log-cost RAMs.Next we observe the following concavity property of quasilinear functions:Lemma 2.1. (a) Let q(n) = cn logk n, let n1; : : : nm be nonnegative real numbers, and letPmi=1 ni � r. Then Pmi=1 q(ni) � q(r).(b) If q(n) = cn logk n + d, each ni � 1, and r = r(n) is another quasilinear function,then Pmi=1 q(ni) is bounded by a quasilinear function.3



Proof. (a) True for m = 1. By the induction hypothesis for m � 1, Pmi=1 q(ni) � q(r �nm) + q(nm). The second derivative of q(r � x) + q(x) with respect to x is positive for0 < x < r, so the maxima on [0; r] are with nm = 0 or nm = r, giving the upper boundq(r).(b) By (a),Pmi=1 q(ni) � q(r(n))+dm. Since each ni � 1, m � r(n), and so the additiveterm dm is quasilinear. If r(n) = c0n logk0 n+d0, then substituting gives a quasilinear boundof the form c00n logk+k0 n+ d00, for some constants c00 and d00.Corollary 2.2. The relation �qlT is transitive.Proof. Let A = L(MB0 ) and B = L(MC), whereM runs in time q(n) andM0 in time r(n).De�ne M1 on any input x to simulate M0(x) but use M to answer the queries y1; : : : ; ymmade by M0. For each query yi let ni := maxf jyij; 1 g. Then Pi ni is bounded by r(n),q(ni) bounds the runtime of M on input yi, and Lemma 2.1(b) bounds the total runtimeof M1.With this in hand it is straightforward to show that the most fundamental properties ofthe polynomial hierarchy (from [Sto77, Wra77]) carry over to QLH.Theorem 2.3.(a) (Equivalence of oracles and quanti�ers): For all k � 1, �qlk = NQL�qlk�1.(b) (Downward separation): For all k � 0, if �qlk = �qlk then QLH = �qlk .(c) (Turing closure): For all k � 0, �qlk \�qlk is closed downward under �qlT . In particular,DQL and NQL \ co-NQL are closed under �qlT .(d) For each k � 1, the language Bk of quanti�ed Boolean formulas in prenex form withat most k alternating quanti�er blocks beginning with `9' is complete for �qlk underDQL many-one reductions.(e) QLH � QLSPACE.The case k = 1 of (d) is Schnorr's seminal result, and the higher cases follow quickly fromthis and (a). It is worth sketching Schnorr's construction (see also [BG93]): Take a time-t(n) DTM M which decides a witness predicate B(x; y) for the given language A 2 NQL.Convert M into O(t(n) log t(n))-sized circuits Cn of fan-in 2 in variables x1; : : : ; xn andy1; : : : ; yq such that for all x, x 2 A () (9y1; : : : ; yq)Cn(x1; : : : ; xn; y1; : : : ; yq) = 1. Thenassign a dummy variable to each of the O(n log n) wires in Cn and write a 3-CNF formulawhich expresses that each output wire has the correct value given its input wires. Thisreduces A to SAT and is computable in time O(n log n).Let QBF stand for [kBk. While QBF is in alternating qlin space, it is not knownto be in deterministic qlin space. Moreover, the standard reduction from a languageA 2 PSPACE to QBF in [HU79] has a quadratic blowup in size (if A is in linearspace). These apparent di�erences from PSPACE are connected to the issue of whether4



Savitch's simulation of nondeterministic space s(n) = 
(log n) by deterministic spaceO(s(n)2) must have quadratic blowup. By the same token, the familiar \one-line proof"NPQBF � NPSPACE = PSPACE = PQBF is not valid for QL. However, the result (a)below is still true:Proposition 2.4. (a) NQLQBF = DQLQBF .(b) There is an oracle B such that NQLB is not contained in DTIME[2o(n)].The proof of (a) uses Schnorr's construction and Lemma 2.1, and in fact gives NQLQBF =DQL[QBF ]. Statement (b) holds for the standard oracle B separating NPB from PB in[HU79].The result of [PZ83] that �P�P = �P also carries over because of the quasilinearbound on the total length of all queries in an oracle computation: �QL�QL = �QL.However, it is unclear whether the theorem BPPBPP = BPP [Ko82] carries over, becausethe ampli�cation of success probability to 1�2�polylog obtainable for BQL seems insu�cient.For similar reasons we do not know whether Toda's lemma �P[BP[C]] � BP[�P[C]] (forC closed under polynomial-time majority truth-table reductions), which was instrumentalin proving PH � BP[�P] [Tod91], carries over in the form �QL[BQL[C]] � BQL[�QL[C]].However we are able to show, in the next section, that the other instrumental lemma,namely NP � BP[�P] [VV86], does carry over by a new construction, where all previousknown constructions were quadratic or worse.3. Quasilinear-Time Reduction to ParityLet A 2 NP with witness predicate B(x; y) and length bound q = q(n), and for any x letSx := f y 2 f 0; 1 gq : B(x; y) g be the corresponding witness set, so that x 2 A () Sx 6=;. Valiant and Vazirani [VV86] constructed a probabilistic NTM N which on any inputx of length n �rst 
ips q2-many coins to form q-many vectors w1; : : : ; wq each of lengthq. N also 
ips coins to form a number j, 0 � j � q. Then N guesses y 2 f 0; 1 gq andaccepts i� B(x; y) and for each i, 1 � i � j, y � wi = 0, where � is inner product of vectorsover GF(2). Let Nw;j stand for the NTM N with w = w1; : : : ; wq and j �xed. Clearlywhenever x =2 A, for all w and i, the number #acc(Nw;j; x) of accepting computationsof Nw;j on input x is zero. The basic lemma of [VV86] states that whenever x 2 A,Prw[(9j)#acc(Nw;j ; x) = 1] � 1=4. In particular, Prw;j[#acc(Nw;j ; x) is odd] � 1=4(q + 1).A \product construction" yields an N 0 which 
ips coins to form just w, guesses stringsy0; : : : ; yq, and achieves for all x,x 2 A =) Prw [#acc(N 0w; x) is odd] � 1=4;x =2 A =) Prw [#acc(N 0w; x) is odd] = 0:In symbols, this implies that NP � RP[�P] (cf. [Tod91]).However, in the case A = SAT addressed by [VV86], with q(n) = n, N 0 runs inquadratic time|in fact, N 0 
ips quadratically many coins and makes quadratically manynondeterministic moves. It was well known that by using small families H = fHk g of5



universal2 hash functions [CW79, BCGL89] hk : f 0; 1 gq ! f 0; 1 gk (1 � k � q + 1) cutsthe number r(n) of random bits used to 2q(n). A related construction of [CRS93] achievesthe same e�ect, still with quadratic runtime when q(n) = n. Gupta [Gup93] gives arandomized reduction to parity which achieves constant success probability 3/16 with only�(n) = q(n) nondeterministic moves, but still using q2-many random bits and quadratictime. The �rst construction of Naor and Naor [NN90, NN93] boils down to the followingidea in this setting: N 
ips 2q + 2 coins to determine functions hk 2 Hk for all k, andthen 
ips q + 1 more coins to form u 2 f 0; 1 gq+1. Then N nondeterministically guessesy 2 f 0; 1 gq and k, 1 � k � q + 1, and accepts i� B(x; y) ^ hk(y) = 0 ^ uk = 1. Thisuses 3q + 3 random bits, achieves success probability at least 1=8, and runs in the time tocompute hk, which is O(q log q loglog q). Our construction achieves better constants thanthis, and is better by an order of magnitude in (randomness or number of nondeterministicmoves) and running time than all of the previous ones.The idea of using error-correcting codes is mentioned by Naor and Naor [NN93] andascribed to Bruck, referring the reader to [ABN+92] for details. However, the constructionin [ABN+92] uses a code of Justesen (see [Jus72, MS77] whose implementation in oursetting seems to require exponentiation of �eld elements of length polynomial in n, whichis not known to be computable in (randomized) quasilinear time (cf. [AMV88, Sti90]). Ourpoint is that by scaling down the size of the �eld used for basic arithmetic, and usingmulti-variable polynomials, one can achieve quasi-linear runtime. Our code is similar tothose used in recent improvements of \holographic proof systems" [BFLS91, Sud92], andis only inferior to that of [ABN+92] in the number of random bits.Let � be an alphabet of size 2l. We can give � the structure of the �eld F = GF(2l);then �n becomes an n-dimensional vector space over F . An [N;K;D] code over F is aset C � �n which forms a vector subspace of dimension K (so kCk = 2k), such that forall distinct x; y 2 C, dH(x; y) � D, where dH is Hamming distance. Since C is closedunder addition (i.e., a linear code), the minimum distance D equals the minimum weight(i.e., number of non-zero entries over F ) of a non-zero codeword. The rate of the code isR = K=N , and the density is given by � = D=N . Any basis for C forms a K�N generatormatrix for the code. If F = GF(2) we speak of a binary code.The basic idea is to take a 2q�2r(n) generator matrixG for a binary code C of constantdensity � = 1=2 � �, and have the probabilistic NTM N work as follows:1. Flip r(n) coins to choose a column j.2. Guess a row i, 1 � i � 2q, identi�ed with a possible witness string yi 2 f 0; 1 gq.3. Accept i� B(x; yi) ^ G(i; j) = 1.Suppose S = Sx is nonempty. Then to S there corresponds the unique non-zero code-word wS := Py2S G(y; �), where the sum is over GF(2). Then #acc(Nj ; x) is odd i�the jth entry of wS is a `1'. Since the proportion of non-0 entries of wS is at least�, Prj[#acc(Nj; x) is odd] > �; that is, N reduces A to parity with success probabilityat least �. And if S is empty, N has no accepting computations at all. Thus to showNQL � RQL[�QL], we need to construct C so that G(i; j) is computable in quasilineartime. Our code C is the concatenation of two simpler codes:6



� The Hadamard code Hk over f 0; 1 g of length n = 2k has n codewords. The codewordscan be arranged into an n�n array with rows and columns indexed by strings u; v 2 f 0; 1 gk,and entries u�v, where � is inner product over GF(2). Hk has distance dk = 2k�1, so �k = 1=2is constant.� The full q-ary generalized Reed-Muller code Rq(r;m) of order r, where r < m(q� 1),has length N = qm over the �eld F = GF(q).1 Each polynomial f(x1; : : : xm), in mvariables over F of degree at most r, de�nes the codeword with entries f(a1; : : : ; am), where~a = (a1; : : : ; am) ranges over all sequences of arguments in F . When r � q� 1 a generatormatrix for this code is easy to describe: it has one row for each monomial xi11 xi22 � � � ximmsuch that i1+ i2+ : : :+ im � r. Since r � q� 1 these monomials are all distinct, and theyare all linearly independent, so the dimension is K = (m+rr ). By the so-called Schwartzinequality [Sch80] (cf. [BFLS91, Sud92]), for every two distinct polynomials f and g overF of degree at most r, and for every I � F ,jf~a 2 Im : f(~a ) = g(~a ) gj � rjIjm�1: (1)With I = F , it follows that every two distinct codewords have distance over F at leastjF jm � rjF jm�1, and some achieve this, so the density � equals 1� r=jF j.If with q = 2k we simply regarded Rq(r;m) as a binary code of length kN , we wouldonly be able to assert that the density is at least 1=2k, because two distinct elementsa1; a2 2 GF(2k) might di�er in only one out of k places as binary strings. But if we applythe Hadamard code to a1 and a2, the two resulting strings, though of length 2k, di�er inat least 1=2 their places, yielding our code C of length 2kN and density 1=2 � �, where� = r=2jF j. This is done by step 11. of our construction of N :1. Input x and �; n := jxj, q := q(n)2. b := dlog2 qe /*block length for exponents*/3. d := 2b � 1 /*maximum degree in each variable*/4. m := dq=be /*number of variables*/5. k := dlog2 d + log2m+ log2(1=�) � 1e6. Calculate an irreducible polynomial � of degree k over GF(2)7. Flip mk + k coins to form j = ha1; : : : ; am; vi, where v 2 f 0; 1 gk .8. Guess y 2 f 0; 1 gq9. Taking b bits of y at a time, form integers i1; i2; : : : im�1; im 2 f 0; : : : ; d g. It is OKfor im to be truncated.10. Compute u := ai11 � ai22 � � � aimm1Here q and r are di�erent from their use above; we take q = 2k and r = 2b � 1 below.7



11. Compute G(y; j) := u � v12. Accept i� B(x; y) ^ G(y; j) = 1.Let tB be the time to compute the witness predicate B(x; y), and let log+ n abbreviatelog n loglog n log loglog n.Theorem 3.1. For any �xed � < 1=2, the probabilistic NTM N accepts A with successprobability 1=2��, making q nondeterministicmoves and running in timeO(q log+ q) (apartfrom the time to recognize B), and uses a number of random bits bounded byr = 2q � q loglog q= log q + (1 + log(1=�))q= log q +O(log q):Proof Sketch. Step 10 dominates the running time. To multiply two polynomials ofdegree k � 1 over GF(2) and reduce them modulo � in the �eld GF(2k) takes timet1 = O(k log k loglog k) on standard Turing machine models (see [AHU74] and [Rab80]).The time to compute ai in GF(2k) where i � n is t2 = O(log n � 2k log k loglog k) via re-peated squaring. Hence the time to evaluate the monomial is at most O(mt2 + mt1) =O(m log(n)k log k loglog k) = O(n log+ n), since m = O(n= log n) and k = O(log n).Corollary 3.2. NQL � RQL[�QL].The �rst open problem is whether two or more alternations can be done in quasilinear time;that is, whether NQLNQL � BQL[�QL]. The obstacle is the apparent need to amplify thesuccess probabilities of the second level to 1�2�q, for which straightforward \ampli�cationby repeated trials" takes time q2. The second is whether the code can be improved and stillgive quasi-linear runtime. Our codes have rate R = K=N = 2q=2(2q�:::), which tends to 0 asq increases. Families of codes are known for whichR (as well as �) stays bounded below by aconstant; such (families of) codes are called good . Good codes require only q+O(1) randombits in the above construction. The codes in [Jus72, TV91, ABN+92, JLJH92, She93] aregood. However, we do not know of any good codes which give quasi-linear runtime in theabove construction.4. Search Versus Decision in Quasilinear TimeThe classical method of computing partial, multivalued functions using sets as oracles isthe pre�x-set method (cf. [Sel88] ). To illustrate, let f be an arbitrary length-preserving,partial function from �� to ��. De�ne:Lf = fx#w j w is a pre�x of some value of f(x)g:Clearly f is computable in quadratic time using Lf as an oracle. First we observe that for\random" functions f , quadratic time is best possible.Theorem 4.1. There exist length-preserving functions f : �� ! �� with the propertythat there does not exist an oracle set B relative to which f is computable in less thann2 � n steps. 8



Proof. Let B and an OTM M such that MB(x) = f(x) on all strings x 2 f 0; 1 gn begiven, and suppose MB runs in time g(n). Then the following is a description of f onf 0; 1 gn:� The �nite control of M , plus �nite descriptions of the function g(n) and \this discus-sion" (see [LV90]). This has total length some constant C.� A look-up table for all the strings of length < n which belong to B|this is speci�ableby a binary string of length Pn�1i=0 2i = 2n � 1 < 2n.� For each x 2 f 0; 1 gn, the answers given by B to those queries z made byM on inputx such that jzj � n. There are at most g(n)=n such queries. All of this is speci�ableby a binary string of length 2ng(n)=n.Now let Kf be the Kolmogorov complexity of f , relative to some �xed universal Turingmachine. Then C + 2n + 2ng(n)=n < Kf , so g(n) > nKf=2n � n� nC=2n. Since functionsf : f 0; 1 gn ! f 0; 1 gn are in 1-1 correspondence with binary strings of length n2n, and asimple counting argument shows that some such strings have Kolmogorov complexity atleast n2n, there exist f with Kf � n2n. Then g(n) > n2 � n.(Remarks: The n2�n is close to tight|an upper bound of g(n) � n2+2n log n is achievableby a modi�cation of Lf . By diagonalization one can also construct such functions f whichare computable in exponential time.)Hence the equivalence between functions and sets does not carry over to quasilineartime complexity in general. Theorem 4.1 can be read as saying that Kolmogorov-randomfunctions have so much information that large query strings are needed to encode it. We areinterested in whether natural functions in NP, such as witness functions for NP-completeproblems, pack information as tightly.Let L be a language in NP and let B be some polynomial-time witness predicate forL. De�ne the partial multivalued function fB by:fB(x) 7! y; if jyj = q(jxj) and B(x; y):Then fB is called a search function for L. The following is a straightforward extension ofthe standard notion of search reducing to decision in polynomial time [BD76, BBFG91,NOS93, HNOS93] to other time bounds t(n).De�nition 4.1. Let L 2 NP and a time bound t(n) be given. Then we say that searchreduces to decision for L in time t(n) if there exists a witness predicate B for L and a t(n)time-bounded deterministic oracle TM M such that for all inputs x, if x 2 L then ML(x)outputs some y such that fB(x) 7! y, and if x =2 L then ML(x) = 0.Let polylog n abbreviate (log n)O(1) as before. Then DTIME[2polylogn] is often referred toas quasi-polynomial time (cf. [Bar92]).Theorem 4.2. Let L 2 NP. If search reduces to decision for L in quasilinear time, thenL 2 DTIME[2polylogn]. 9



Proof. LetM be the oracle TM from De�nition 4.1, and let c and k be constants such thatM runs in time cn logk n. We may suppose that M itself veri�es that its output y satis�esB(x; y). Let f(n) := n= log n. Let n0 be a �xed constant whose value we determine later;on inputs x of length < n0, whether x 2 L is looked up in a table.Now we create a non-oracle TM M 0 which operates as follows on any input x of lengthn � n0: M 0 simulates M . Whenever M makes a query z and jzj < n0, M 0 answers fromthe table. If jzj > f(n), we call z a \large query." Here M 0 branches, simulating both a\yes" and a \no" answer to z. Finally, if n0 � jzj � f(n), then M 0 calls itself recursivelyon input z to answer the query. The above is a recursive description of what M 0 does. Theactual machine M 0 simulates both the recursion and the branching on large queries usinga stack, and halts and accepts i� at some point M outputs a string y such that B(x; y)holds. Clearly M 0 accepts L.Let tM 0(n) stand for the worst-case running time ofM 0 on inputs of length n. We showthat for all n, tM 0(n) � 2c logk+2 n. Since table-lookup takes only linear time, this holds forn < n0. Now consider the binary tree T whose nodes are large queries made by M , andwhose edges represent computation paths by M 0 between large queries. Then T has depthat most c logk+1 n and at most 2c logk+1 n branches. The number of small queries on eachbranch is at most c logk n, and each such query has length at most n= log n. Hence the timetaken by M 0 to traverse all branches, namely tM 0(n), meets the bound:tM 0(n) � 2c logk+1 n � cn logk n � tM 0(n= log n): (2)By induction hypothesis, tM 0(n= log n) � 2c(logn�loglogn)k+2. Elementary calculation showsthat there is a �xed n0 such that for all n � n0,2c logk+1 n � cn logk n � 2c(logn�loglogn)k+2 � 2c logk+2 n:Thus tM 0(n) � 2c logk+2 n.The result also holds if L belongs to nondeterministic quasi-polynomial time. Our nextcorollary follows immediately from the NP-completeness of SAT .Corollary 4.3. If search reduces to decision for SAT is quasilinear time, thenNP � DTIME[2polylogn]:Now we observe that the proof technique of Theorem 4.2 can be used to give some evidencethat the quadratic bound on the search to decision reduction for SAT is optimal.Corollary 4.4. If there exists an � > 0 such that search reduces to decision for SAT inDTIME[n1+�], then SAT 2 DTIME[2n�], and also NP � DTIME[2n� ].Stearns and Hunt [SH90] de�ne a language L 2 NP to have power index � if � is the in�mumof all � such that L 2 DTIME[2n� ]. They classify familiar NP-complete problems accordingto known bounds on their power indices, and conjecture that SAT has power index 1. Inthis setting, Corollary 4.4 can be restated as :10



Corollary 4.5. If there exists an � > 0 such that search reduces to decision for SAT inDTIME[n1+�], then SAT has power index at most �.This establishes a relation between reducing search to decision and the power index of anNP language. However, it is not necessarily the case that having a low power index impliesthat search reduces to decision e�ciently, or even in polynomial time at all. Let EE standfor DTIME[22O(n)], and NEE for its nondeterministic counterpart. The classes EE and NEEwere recently considered by Beigel, Bellare, Feigenbaum, and Goldwasser [BBFG91], andthere are reasons for believing it unlikely that NEE = EE.Theorem 4.6. Suppose NEE 6= EE. Then for all k > 0 there is a tally language in NPwhose power index is at most 1=k, but for which search does not reduce to decision inpolynomial time.Proof Sketch. We use the techniques developed by [BBFG91]. Let T be the tally setconstructed in [BBFG91] such that search does not reduce to decision for T in polynomialtime, unless NEE = EE. There exists a polynomial p such that for all x 2 T \ �n, somewitness for x is of length p(n). Now, de�ne:T k = f0p(n)k j 0n 2 Tg:It is easy to see that T 2 has power index at most 1=k, since an exhaustive search forwitnesses recognizes T k in time 2n1=k . However if search reduces to decision in polynomialtime for T k, then the same holds for T , which is a contradiction.Finally, it is interesting to ask whether there are length-preserving 1-1 functions f whichare computable in qlin time but not invertible in qlin time. Homer and Wang [HW89]construct, for any k � 1, functions computable in quadratic time which are not invertiblein time O(nk), but their methods seem not to apply for qlin time or f length-preserving. IfDQL 6= UQL, then such \quasilinear one-way" functions exist, but unlike the polynomialcase (assuming P 6= UP), the converse is not known to hold. We look toward furtherresearch which might show that length-preserving functions with certain \pseudorandom"properties cannot be inverted in qlin time, unless unlikely collapses of quasilinear classesoccur.References[ABN+92] N. Alon, J. Bruck, J. Naor, M. Naor, and R. Roth. Construction of asymptoticallygood low-rate error-correcting codes through pseudo-random graphs. IEEE Trans.Info. Thy., 38(2):509{512, March 1992.[AHU74] A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis of Computer Algorithms.Addison-Wesley, Reading, Mass., 1974.[AMV88] G. Agnew, R. Mullin, and S. Vanstone. Fast exponentialtion in GF (2n). In Proceedings,Advances in Cryptology: Eurocrypt '88, volume 330 of LNCS, pages 251{255, 1988.[Bar92] D. Mix Barrington. Quasipolynomial size circuit classes. In Proc. 7th Structures, pages86{93, 1992. 11
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