
Multilevel Logic Synthesis

R. K. BRAYTON, FELLOW, IEEE, G. D. HACHTEL, FELLOW, IEEE, AND
A. L. SANGIOVANNI-VINCENTELLI, FELLOW, IEEE

A survey o f logic synthesis techniques for multilevel combina-
tional logic is presented. The goal is to provide more in-depth
background and perspective for people interested in pursuing or
assessing some o f the topics in this emerging field. Introductions,
capsule summaries, and, in some cases, detailed analysis, o f the
synthesis methods which have become established as practically
significant are provided. Also included are some methods which
have theoretical interest and potential for future impact.

I . INTRODUCTION

A long-term goal for computer-aided design (CAD) sys-
tems i s the automatic synthesis from a behavioral descrip-
tion to silicon, producing near-optimal results that meetthe
specifications set by the designer and that are competitive
with or better than manually aided designs. This capability
will become increasingly important as the application-spe-
cific integrated circuit (ASIC) market continues to meet its
rapid growth projections. The quality of such systems and
the ability to quickly produce correct designs will be crucial
for competitiveness in this market.

As various CAD areas have matured, they have provided
algorithms and programs which then are improved, doc-
umented, supported, and made commercially available.
Historically, this has happened with simulation and phys-
ical design. In physical design, automatic layout tools,
placement and routing, cell editors, design rule checkers,
extractors, etc. are widely available and widely used. Logic
synthesis i s the next higher level of abstraction. This area
is at the knee of the commercial development curve; initial
software offerings are available, and it i s already evident
that these are successful.

Logic synthesis fits between the register transfer level
(RTL) specification of a digital design and the netlist of gates
specification. It provides the automatic synthesis of near-
optimal logic netlists, whether the goal i s minimum delay,
minimum area, or some combination. Logic synthesis is

Manuscript receivedJunel,l989; revised November6,1989.This
work was supported in part by NSFIDARPA grant MlP-8719546 and
in part by DARPA under contract N00039-87C-0182.

R. K. Brayton and A. L. Sangiovanni-Vincentelli are with the
Department of Electrical Engineering and Computer Science, Uni-
versity of California, Berkeley, CA 94720.

C. D. Hachtel is with the Department of Electrical and Computer
Engineering, University of Colorado, Boulder, CO 80309.

IEEE Log Number 9035196.

usually considered as dealing with all facets of pure com-
binational logic, including its optimization, design for test-
ability, and verification. Logic synthesis i s applied to the
logic extracted from an RTL language. If the language
includes storage constructs, these are usually set aside with
their inputs and outputs being outputs and inputs, respec-
tively, to combinational logic blocks. The resulting com-
binational logic blocks are operated on by the logic syn-
thesis algorithms separately. Finally, the results are
reconnected to provide a single overall design. During this
process, information may be extracted about the environ-
ment in which a logic block i s to operate. This may include
signal arrival and required times, parasitics, and don’t-care
conditions. Logic synthesis i s the problem of using this
information to produce a correct implementation which
meets timing and testabilityconstraints and minimizes area.

After logic synthesis, the next level of abstraction i s logic
that includes memory devices, referred to as sequential
logic. Although some systems leave elements in the mem-
ory when manipulating the combinational logic, little has
been done, besides the application of a few rules, to treat
memory on an equal basis with logic gates and to develop
algorithms and theory for these types of networks. How-
ever, this i s becoming an extensive research area and, in the
next few years, we expect to see sophisticated commercial
offerings for simultaneous synthesis of logic and memory.

The logic synthesis area i s usually divided into two-level
synthesis (PLA) and multilevel synthesis. Two-level logic
minimization has been used to synthesize PLA’s for control
logic. Because of the architecture inherent to PLA’s, opti-
mization methods focus almost exclusively on minimizing
the number of PLA product terms, which in turn minimizes
the PLA area. The area of two-level combinational logic min-
imization has already matured. One can routinely find a
minimum or near-minimum sum-of-products form for a
logic function. These functions can be multiple output,
incompletely specified, and functions with multiple-valued
input variables. Functions with hundreds of inputs and out-
puts are within the realm of the algorithms. The optimi-
zation can also be done in a reasonable amount of com-
puting time [22].

Theother method for implementinglogic,which isuseful
for both control and data-flow logic, i s multilevel logic,
sometimes called random logic. The design of random logic
has as objectives:

264
~

PROCEEDINGS OF THE IEEE, VOL. 78, NO. 2, FEBRUARY 1990

minimize overall layout area of the fabricated chip;
minimize critical path delay time;
maximize the testability of the synthesized logic, and
provide a complete set of test vectors as a byproduct
of the optimization.

Because of the increased potential for reusing sublogic,
there are more degrees of freedom in the solution space
than in the PLAcase. Consequently, it has been much more
difficult to synthesizethis typeof logicatalevel competitive
with manual synthesis.

However, in the past fiveyears, the area of multilevel logic
synthesis has blossomed. Not only i s it a very active area
of continuing research, but also the methods and algo-
rithms developed thus far have been successfully adopted
in commercially available products and in software avail-
able internally in the larger companies. CAD enterprises,
such as Synopsys, Silc, Trimeter (now part of Mentor), VLSl
Technology, and Silicon Compilers Systems, offer sophis-
ticated multilevel logic-synthesis capabilities. Large com-
panies, such as IBM, AT&T, NEC, and NTT, have a produc-
tion code that has been used routinely for several years in
chip synthesis.

A capsule history of the more recent developments in
multilevel logic synthesis provides a contrast between two
basic approaches adopted. It starts in the late 1970’s with
the development at IBM of the LSS system [36] using rule-
based local transformations.Thecurrent LSS system, which
has continued to evolve, is used in IBM production for the
synthesis of many chips used in their medium and large
computers. The local-transformation/rule-based methods
use a set of a d hoc rules which are fired when certain pat-
terns are found in the network of logic gates. A rule trans-
forms a pattern for a local set of gates and interconnections
into another equivalent one. Since rules need to be
described, and hence must know about each gate type, the
rule-based approach usually requires that the description
of the logic be confined to a limited number of gate types,
such as AND, OR, and NAND, or to those gates in a technology
library for which the rules have been derived. In addition,
the transformations have limited optimization capability
since they are local in nature and do not have a global per-
spective on the design. Other examples of rule-based sys-
tems are those in use at NEC and Trimeter.

Beginning in about 1981, in parallel with and much influ-
enced by activity in two-level logic synthesis, an approach
evolved based on algorithmic transformations. The algo-
rithmic point of view uses two phases: a technology-inde-
pendent step based on algorithmsfor manipulatinggeneral
Boolean functions [23] and a technology-mapping step
where the design described in terms of generic Boolean
functions i s mapped into a set of gates that can be imple-
mented in the design method of choice (gate-arrays, stan-
dard-cells, macro-cells). Both rule-based approaches and
algorithmic approaches have been successful. Algorithmic
systems are MIS 1161, BOLD [51, 161, [IO], 1501, [221, [241, [931-
[95], and those used at Synopsys, Silc, AT&T, Eindhoven,
and the University of California-Santa Cruz. As shown in
this survey, a distinguishing feature for most of these sys-
tems is the extent to which they are able to exploit the
degrees of freedom of the design problem in the optimi-
zation process.

Most logic synthesis systems divide the technology-inde-

pendent phase of the design problem into two major sub-
problems:

1) create or modify the overall “architecture” of the
given logic to produce a near-optimal “structure”
where common sublogic is identified;

2) “Qptimize” the logic with respect to the structure
obtained in Step I-for example, make logic com-
ponents optimal with respect to two-level minimi-
zation.

In thealgorithmic approach, Step 1 is divided into algebraic
and Boolean approaches. In Step 2, a major confluence
occurs between optimal synthesis and testing.

Recently, there has been a trend toward combining the
technology-independent activity and technology mapping,
using the algorithmic methods in the initial stages of the
synthesis, and the rule-based approach in the final stage
when technology considerations are important. Examples
of this combined approach are SOCRATES [5] and the more
recent versions of LSS [8].

In this paper, we survey the algorithms and alternative
approaches used, the representation of the logic, the qual-
ity of results obtained, the relation to other areas such as
testing, and some of the frontiers of research currently
being pursued. The goal is to provide background and per-
spectivefor people interested in pursuingorassessing some
of the topics in more depth. We provide summaries of syn-
thesis methods which have been established as being prac-
tically significant, as well as those which have theoretical
interest and/or potential for future impact. Even though we
tried to be complete, the description of the techniques of
logic synthesis may be considered uneven at times because
of the importance given to some approaches such as alge-
braic methods versus others such as rule-based methods.
This bias i s mostly due to our own experience in using the
methods, reported in more detail here, for building the
logic-synthesis systems MIS and BOLD.

The paper i s organized as follows: in sections II and Ill
we define basic notation and discuss the representation of
combinational logic by an abstraction known as a Boolean
network. Sections Wand Vare treated at atechnology-inde-
pendent level of abstraction. Section IV treats the “cre-
ative” part of the logic synthesis, that of creating the basic,
overall “architecture” of the multilevel logic. Section V
treats the part most like two-level minimization, the task of
optimizing the logic with respect to the given basic struc-
ture. In section VI we discuss means for defining and deter-
mining equivalence between Boolean networks and the
relation with testing and redundancy removal. Section VI1
focuses on mapping the optimized technology-indepen-
dent representation into a specified target technology. Sec-
tion VI11 gives an overview of the related rule-based meth-
ods.

1 1 . NOTATION AND DEFINITIONS

Logic, or Boolean, variables are denoted by lower case
letters, e.g., x,, x2, . . . or a, b, c . . A Boolean variable
can take on just two values, 0 or 1. This i s denoted by B =
(0, I}. It is common to refer to the statement “x has the
value1”simplyasxand“x has thevalue0”asZThen xand
Yare referred to as”litera1s.” A logic function f i s a function

BRAYTON et al.: MULTILEVEL LOGIC SYNTHESIS 265

of logic variables and has value in {0 , I}; written f:B” + B,
where n i s the number of logic variables.

One way of representing a logic function is as a “sum-of-
products.” A product, or “cube,” i s the product of literals,
e.g., acd. Equivalently, we can think of a cube as a “set” of
literals, e.g., {a, Z, d} . We often use the notation I E c to
mean that the literal I is in the set (cube) of literals c, i.e.,
that I i s one of the literals making up the product term c.
Equivalently, a cube, e.g., aZd, i s the set of all points (some-
times called minterms or vertices) in the input space B”
that satisfy ‘‘a = 1 and c = 0 and d = 1.” This set of points
i s called a cube because of i ts geometrical interpretation
in the Boolean n-cube, B”. Note that if the size of the input
space is n variables, and a cube has k literals in it, then the
number of vertices in the cu be is 2”-k . A “sum-of-products”
is a set of cubes where it is understood that the function
fit represents i s obtained by summing (performing the log-
ical OR) of all the points in all the cubes in the set. Such a
function f is a “completely specified” logic function; it eval-
uates to 1 if the input vertex i s in the set, to 0 otherwise.

Generally, a logic function fcan be thought of as the set
ofall input points(mintermsorverticesof B”),which satisfy
f (v) = 1; this set is referred to as the “on-set”of f. Similarly,
the complement of a function, denoted by 7, i s the set of
vertices which satisfy f (v) = 0; this set i s referred to as the
“off-set” of f. In a more general situation, a logic function
may be “incompletely specified,” in that there i s a set of
vertices for which we do not care if the function has a value
of 1 or 0. These“don’t-care points“can be used to represent
the function in a more compact form. An incompletely
specified function is denoted by the triplet (f, d, r) of com-
pletely specified functions, a partition of B”, where f i s the
on-set, d is the don’t-care set, and r is the off-set. A ”cover
F” of an incompletely specified function i s a completely
specified function (typically in sum-of-products form) such
that f c F E f + d. Said in another way, f E F and F fl r =

9.
Any completely specified logic function can always be

represented as a sum of products. A sum-of-products
expression for a function i s not unique. For example, the
following function whose on-set i s the set of vertices

{ZbZ, ab?, a&, abc, Sbc, ZbF}

can be represented in sum-of-products form as

or as
a 6 + ac + ab + ZF

ab + bc + a?.
The task of two-level logic minimization i s to find a sum-of-
products expression which is a cover for a given incom-
pletely specified logic function and which has the least
number of product terms.

We use the notation fx to denote the logic function
obtained from f by replacing x by 1; said differently, fx i s f
evaluated at x = 1. This new logic function i s called the
“cofactor of fwith respect to x.” Similarly, f? i s obtained by
replacing x by 0 and i s called the “cofactor of fwith respect
to F.” For example, if

f = abx + ZcSi + Z d + ae
then

fx = ab + Fd + ae

fz = Zc + Zd + ae.

Notethat fxand f?arefunctions independent of thevariable
x. In general, a function f i s independent of x if and only
if fx = fz.

An “implicant” of a function i s a product term (cube) q
that iscontainedinf+dandsuchthatq f l r = 0.A”prime”
(alsocalledaprime imp1icant)pof afunction isan implicant
such that all the cubes that contain p have nonzero inter-
section with the off-set of the function, i.e., p cannot be
enlarged as a product term (removing some literals) without
includingsomeof theoff-set.Thus thecubeabcisenlarged
tothe largercube bc by droppingthe Iiterala.This increases
the number of minterms (vertices) in the space that are
included inthecube. lfall such newverticesarestilloutside
the off-set, then the enlarged cube is s t i l l an implicant of
the function. Thus a prime i s a cube that i s not contained
in any other implicant of the function. In the preceding
example, the product term abc is not a prime because it can
be enlarged by expanding it to be bc without including any
vertex in the off-set; the extra vertex included in the
expanded cube isabc, which isalso in theon-set ofthefunc-
tion.

We briefly review some of the heuristics used in a two-
level minimization program such as ESPRESSO [22]. There
are three basic operations repeated in a loop: EXPAND,
IRREDUNDANT-COVER, and REDUCE. EXPAND locates,
with a heuristic process, the largest primecontainingagiven
implicant of the Boolean function. The heuristic process
maximizes the probability that other implicants will be
completely covered by the selected prime. IRREDUNDANT-
COVER removes a maximal set of nonessential primes. Both
EXPAND and IRREDUNDANT-COVER remove literals or
cubes from the logic function. After these two operations,
the Boolean function is prime and irredundant, a local min-
imum in the synthesis process. The REDUCE operation is
an “uphill” move which enables the optimization process
to climb out of a local minimum and move closer to the
global minimum during the next EXPAND and IRREDUN-
DANT-COVER cycle. REDUCE does this by replacing each
prime implicant by a smallest implicant that covers all the
essential vertices of the prime implicant. Since this adds
literals, the associated logic cost of the implicant increases,
but after REDUCE, EXPAND can be called to expand in dif-
ferentdirectionsto possiblydecreasethe numberof cubes.

A “multilevel implementation” of a function or a set of
functions i s one where an unlimited number of interme-
diate signals i s allowed. In a two-level implementation, the
only intermediate signals are product terms formed from
the inputs. In multilevel, an intermediate signal may be the
output of a two-level function whose inputs may also be
outputs of other two-level functions. Generally, we can
think of a multilevel implementation as an arbitrary inter-
connection of two-level functions, with the provision that
the structure has no cycles in its dependency graph.

111. REPRESENTATION OF THE NETWORK AND NODES

A. Network Representation

A “Boolean network“ i s a directed acyclic graph. Asso-
ciated with each node of the graph is a variable, yi, and a
representation of a logic function, fj, A directed arc from
node i to node i i s in the graph if node i uses the variable
y j explicitly in the representation fi. The set of variables that

PROCEEDINGS OF THE IEEE, VOL. 78, NO. 2, FEBRUARY 1990

f,explicitlydependson iscalled the"support of $,"denoted
Sf,. A nodej i s a "fan-in" of i i f there i s an arc from node j
to node i. A node j is a "transitive fan-in" of i if there is a
directed path in the Boolean network connecting j to i. A
nodej i s a "fan-out'' of i if there is an arc from i toj. A node
j is a "transitive fan-out" of i if there is a directed path in
the Boolean network connecting i to j.

Someof the nodes in thegraph are designated as outputs
to the network, called the"primary outputs." Any node that
has an arc directed from it to another node is an inter-
mediate node. A node can be both an output and an inter-
mediate node.

A Boolean network is an implementation or represen-
tation of a set of incompletely specified Boolean functions.
It i s a representation in the same way that a PLA or sum-of-
products form is a representation of a set of logic functions.
The representation is not unique. For multilevel minimi-
zation, we seek a representation with several objectives.
One is to minimize area. A good measure that seems to be
well correlated with this is the total number of literals in all
the function representations $ at the nodes. Another objec-
tive i s the delay through the network. In general, one is
interested in implementing a set of functions which meet
given delay constraints while minimizing area. The number
of cubes in the representation, the primary objective for
two-level minimization, i s of interest for multilevel only as
it correlates with the total number of literals.

Network Don't Cares: Don't cares are extremely impor-
tant in minimizing logic. In minimizing multilevel logic, we
assume (as with PLAs) that we are given an initial repre-
sentation and a set of don't cares for each output ("external
don't cares"). Generally, the don't cares common to all out-
puts are input patterns which will never occur. These may
arise through the digital system specification, e.g., in a
microprocessor design, certain instruction codes may not
be used and therefore will never occur as a valid input.
Another example occurs when one block of combinational
logic i s the input to another. The first block may have output
bit patterns which will never occur because of the type of
logic function being implemented. Since these outputs are
inputs to the next block, the bit patternswhich do not occur
are don't cares for the second block of logic. In both cases,
wecan interpretthe patterns,which neveroccur, as"states"
that are not controllable. Using testing nomenclature, one
says that the state is not "justifiable." In general, these don't
cares occur becau.se of the structure which appears before
the input to a block of logic.

Those don't cares that are specific to the separate output
functions usually arise from the way each output is used.
If, becauseofthecircuitrythatfansoutfrom aset of signals,
the value of this set cannot be observed at prespecified
observation points (trueoutputs), then theconditions under
which the signals cannot be observed are don't cares for
the signals. In theexampleof onecombinational logic block
feeding another, the second block serves as a filter for the
first and can cause nonobservabilityof some of the outputs
under certain input conditions. For example, suppose we
have two blocks of logic, the first computing an arithmetic
function and the second implementing an enable signal
which controls whether or not the arithmetic result i s
latched at the outputs. Clearly the output of the arithmetic
function i s nut observable under the conditions which dis-
able the latch. Thus these are observability don't care con-

ditions for the arithmetic logic block. In the parlance of the
testing literature, one says that under these conditions the
arithmetic logic i s not able to "propagate."

We will see (cf., section V-F1) that a don't care set rep-
resentingoutput usage is, in general, insufficienttocapture
this information completely. Equivalence relations have
been proposed as a more general notion [20], [21]. This leads
to the concept of "Boolean relations" discussed in section
V-F1. However, since the use of don't cares is a much more
developed area, in this paperwe will continue thetradition,
used in PLA synthesis, of using external don't cares to cap-
ture some of this information.

Unfortunately, the full set of don't cares isoften not given.
This i s especially true if the logic has been designed man-
ually, but it has also been true for logic specified in a high-
level language. Recently, more effort has been directed
toward identifying, extracting, and using don't cares in an
environment where the logic i s specified in a high-level lan-
guage and synthesized using multilevel logic. We view this
as a key development for the future.

Extracting don't cares: There are cases where the don't
cares can be extracted automatically from the structure of
the circuit being optimized. For example, if the design is
fully specified at the logic level and consists of intercon-
nected parts of logic which can be optimized separately,
then the set of don't cares arisingfrom the interconnection,
as described in the preceding, can be assembled auto-
matically. However, if the full structure of the design is not
known, don't cares still can beextracted automatically from
a hardware description language representation.

Often, hardware description languages (HDL's) provide
the behavioral descriptions of combinational logic [88].
According to the principles of extracting Boolean networks
equivalent to these HDL specifications, any primary input
minterm should be regarded as a don't care condition if
the primary output variable has not been assigned an
expression during "execution"of the HDL model.This per-
mits the modeler to save time by not having to specify logic
for cases that will not occur, or will occur but will not be
used. This idea permits the derivation of implied don't care
functions associated with all variables in the HDL descrip-
tion. This don't-care set can be conceptually written:

d k = S;,
I

where F,, i s the complement of the condition under which
expression j i s activated during "execution" of the HDL
model. Thus the conditions under which j i s not activated
are implied to be don't cares.

Since this mechanism assumes that the HDL description
is correct, it i s important that the language processor issue
a warning and produce information about the implied
don't cares.

Boolean network equivalence, prime, and irredundant
networks: Let a Boolean network with primary inputs Pland
primary outputs PO be defined as q(P/, PO). Two Boolean
networks q,(PI, PO) and qn(P/, PO) are "equivalent" if for all
valuesof corresponding primary inputs not in thedon't care
sets, the corresponding primary outputs are equal. A cube
of an internal node of a Boolean network i s "prime" if
removal of any of its literals makes the Boolean network so
obtained not equivalent to the original one. A cube of a
cover of an internal node of a Boolean network i s "redun-

BRAYTON et al.: MULTILEVEL LOGIC SYNTHESIS 267

.. ~

dant” if the Boolean network obtained by removing the
cube i s equivalent to the original one. A Boolean network
is said to be prime if all i t s cubes are prime, and irredundant
if all i ts cubes are irredundant. In the case of a network
which consists only of NAND’S, only of NOR’S, or of alter-
nating ANmoRgates, then it is prime and irredundant if and
only if it i s 100-percent testable for all single stuck-faults.

B. Node Representation

Each node of a Boolean network has associated with it a
representation of a logic function. The question of how this
function i s represented i s important. Although any valid
representation i s allowed, some representations may be
preferred because they are

more efficient in memory
more indicative of the complexity of the final imple-
mentation
more efficient to manipulate.

In this section we survey some of the choices available.
In two-level theory, these issues don’t arise since the rep-

resentation and the final implementation are the same,
namely the sum-of-products form. However, for multilevel,
there are a number of choices, and which of these is best
is st i l l debatable.

Merged view-The network is represented so that each
node is a valid “gate” chosen from a library of gates to
be used in the final implementation. Thus represen-
tation and implementation are one. The advantage of
this is that as each change i s made to the network, one
can accurately evaluate i t s effect on the implementa-
tion in terms of area and delay.

Separated view-Two representations are allowed. One i s
technology independent, i.e., it does not have any con-
nection with the final building blocks to be used in the
implementation. The other i s the technology-depen-
dent view which uses only “valid” gates, i.e., those in
a cell library or meeting some criterion.

In the technology-independent view, there are also sev-

General node-Each node can be a representation of an
arbitrary logic function. A possible advantage of this
is that a theory can be developed more easily.

Generic node-Every node in the network i s the same
function, e.g., a two-input NAND gate. The advantage is
that each node i s very simple. There i s no need to store
a general logic function at a node since each node is
the same function and only the inputs are different.
Although there can be many more nodes than required
for the general node description, some manipulations
are much faster using this structure. The disadvantage
is that the network is finely decomposed in a particular
way, and this may obscure some natural structures in
the network.

Discrete node-A node can be one of a small set of logic
functions, such as AND, OR, NOT, DECODE, ADD. Multiple
output nodes are also allowed. Generally, this type of
representation i s used only in rule-based systems. One
advantage i s that complex blocks of logic, like a
DECODE function, can be kept grouped together and
manipulated as a single unit. However, a general the-

eral choices.

oretical basis for such networks seems much more dif-
ficult.

For the majority of this paper, we use the general node rep-
resentation since (except for multiple-output nodes) it
includes all others as special cases. A more complete theory
and body of algorithms has been developed for this point
ot view.

7) Sum-of-froducts:The most obvious representation for
the general node is the sum-of-products form. This is the
one most used as the nominal representation in Boolean
networks, possibly because of the influence from PLA opti-
mization problems. This i s a natural choice mainly because
there are highly developed techniques for manipulating
logic in this form, e.g., two-level minimization, factoring,
decomposition, tautology, and combining logic functions
using logic operations like AND, OR, etc. Even though we
may prefer to have logic represented some other way,
present techniques generally requireconversion to sum-of-
products, manipulation with the developed algorithm, and
conversion back. Thus one can argue that this should be
the nominal representation.

2) Factored Forms: Factored forms are probably a more
natural representation for multilevel synthesis. Roughly, a
factored form is a parenthesized expression, e.g.,

An argument for factored forms i s that they are a natural
multilevel representation. A factored form is isomorphic to
a tree structure, where each internal node is an AND or OR

operator and each leaf is a literal. This leads to a simple and
relatively efficient multilevel implementation of the func-
tion of the node. A representation which accurately mea-
sures complexity is important in guiding the synthesis pro-
cess, since synthesis can be seen as a sequence of
transformations which may or may not be accepted,
depending on the quantity of complexity decrease
obtained. Factored forms have this property while st i l l pro-
viding a technology-independent representation.

The count of the number of literals in a factored form i s
well correlated with the complexityof the function and can
be translated directly into the number of transistors
required for an implementation. Of course, this only indi-
rectly measures area since wiring i s also an important con-
tribution to the total area. It has been suggested that a bet-
ter area estimator would be the number of literals in the
factored form plus a term proportional to the number of
gates or nodes, or the number of terminals in the network.
However, experiments show that literal count st i l l has a
remarkably good correlation with the total layout area.

Another argument favoring factored forms over the sum-
of-products i s that the factored form implicitly represents
both the function and i ts complement. A complement fac-
tored form can be obtained directly by applying
DeMorgan’s law to the factored form. Thus AND’S are con-
verted to OR’S, and vice versa, and literals are negated. This
produces a factored form for the complement which has
the same literal count. This result coincides with the notion
that in a multilevel implementation, afunction and its com-
plement are almost equally complex, separated only by the
cost of an inverter. This i s in contrast with the sum-of-prod-
ucts form, where the number of cubes in a function can be
exponentially larger than in i ts complement. In this regard

268

~

PROCEEDINGS OF THE IEEE, VOL. 78, NO. 2, FEBRUARY 1990

we may think of the factored form as representing both the
function and itscomplement, similarto the binarydecision
diagram discussed in the following.

It was noted that a factored form is an AND/OR tree. Thus,
if each general node is decomposed into an AND/OR tree,
then we have a network in the discrete node representa-
tion. The only distinction i s that the general node serves as
a cluster for a subset of discrete nodes (the tree).

The difficulty with factored forms is that methods for
manipulating them have not been highly developed. How-
ever, this has stimulated the development of factored-form
manipulation methods similar to recent extensions in
methods for sum-of-products manipulation. Three such
efforts have been reported recently. The first [I l l i s moti-
vated by the generic representation point of view, which
leads to more efficient storage as well as possibly faster
methods for manipulation. This representation is basically
a type of factored form. In [I l l , methods for finding com-
mon factors and methods for logic minimization were pro-
posed. In a second effort [97], the standard factored form
representation is used, where a node is either an AND or an
OR, and most of the Boolean function manipulation meth-
ods are extended. However, a method for logic minirni-

' zation ismissing.Athirddevelopment[67]startsfromasum-
of-products form and asks for a minimization procedure
which has as i t s goal a minimal factored form. Here it i s rec-
ognized that the minimal number of cubes, the normal goal
of two-level minimizers (such as ESPRESSO), i s inappro-
priate. A minimizer based on a minimal factored form has
been developed.

Another lack in this area is some notion of optimality. Is
a given factored form optimum? In the case of sum-of-prod-
ucts there is an effective answer via some form of Quine-
McCluskey exact minimization [72]. However, for factored
forms the only known optimality result [65] i s not practical
for functions which depend on more than about six to eight
variables.

3) BDD's: Binary decision diagrams (BDD's) are a rela-
tively new and extremely important contribution to logic
synthesis[29]. BDD's have increased in importance recently
as more applications have been discovered. Generally, one
should think of using a BDD whenever an algorithm is
described in terms of a truth table. Like a truth table, the
BDD is a canonical representation of a completely specified
logic function. Recently, these notions have been extended
to include incompletely specified logic functions [71].

A BDD is a directed acyclic graph (DAG) representation
of a logic function. To help explain the BDD, an example
i s shown in Fig. 1 of a BDD representing the function ab +
c. There i s one root node (labeled a in the figure) and two
leaf nodes, 0 and 1. The root node represents the entire
function and the two leaf nodes represent the functions 0

/=Ub+c

Fig. 1. BDD representing function ab + b using variable
ordering a, b, c.

and 1. Each nonleaf node has a variable associated with it
(shown insideeach node). Each nonleaf has two successors.
The first successor points to a node representing the func-
tion cofactored with respect to the negative phase of the
node variable, the second successor points to the function
cofactored with respect to the positive phase. In the figure,
the branch labeled a = 0 points to a sub-BDD which rep-
resents fa = c and the branch labeled a = 1 represents the
function fa = b + c. All the variables are ordered (thus the
notion of an "ordered" BDD). The ordering imposes the
constraint that each successor node must have a variable
associated with it that i s greater than any of its predecessor
variables. In the example, the order i s a, 6, c. Note that any
path from the root to either leaf visits the nodes whose
variables are in the proper order (although a variable may
be skipped).

Thus each nonleaf node implicitly represents some Bool-
ean function of those variables whose order i s greater than
or equal to the order of the variable at the node. The BDD
is forced to be "reduced" in the sense that if two internal
nodes represent the same function, then they must be the
same node. Of course the number of nodes can be expo-
nential, but it has been observed that if the ordering i s cho-
sen correctly, this exponential explosion rarely occurs in
practical functions. Finding an optimum ordering is
extremely difficult; however, good heuristic orderings have
been given [70]. It has been demonstrated, since BDD's are
canonical given an ordering, that BDD's with good order-
ings provide a very effective way of verifying that two Bool-
ean networks are equivalent.

Bryant [29] has shown how most logic operations on
BDD's can be done in linear or log linear time measured
in terms of the number of nodes in the BDD.
, An improvement of the standard BDD is to use a negative
pointer. A regular (positive) pointer indicates the successor
node function, whereas a negative pointer implies the com-
plement of the indicated successor function. This allows
the combining of a function and its complement into the
same DAG [59]. For example, if one node has a successor
g and another has a successor which is the function E, then
instead of using two different nodes to represent these dif-
ferent functions, only one node is necessary if one of the
predecessors uses a negative pointer. It has been dem-
onstrated that this idea saves substantial storage without
any noticeable penalty in run-time.

BDD's are currently used in verifying if two multilevel
networks are equivalent. The technique is simple since a
BDD is canonical. Each output of a network is reduced to
a BDD over the input variables. Two output functions are
equivalent if and only if their BDD's are isomorphic. Check-
ing isomorphism of BDD's is extremely fast. BDD's have
also been used to provide an initial multilevel decompo-
sition of a network using the one-to-one mapping from a
BDD to a multiplexor decomposition. Each node in a BDD
maps into a multiplexor controlled by the node variable.
Theothertwoinputsaretheoutputsofthesuccessor nodes.
For example, if yx and yji represent the outputs of the suc-
cessor nodes, then the node function i s the multiplexor
function

xyx + 3iyp

In recent work by Muroga [78], an initial decomposition i s
obtained by a procedure similar to this.

BRAYTON et al.: MULTILEVEL LOGIC SYNTHESIS 269

I

4) Multivalued Decision Diagrams a n d Incompletely
SpecifiedFunctions: More recently, BDD’s have been used,
in conjunction with Muroga’s method of transduction (cf.
section V-C), in a logic synthesis system at Fujitsu [71]. Here
it is necessary to extend the BDD so that it has three leaf
nodes, 0,1, and don’t care. The transduction method com-
putes a compatible set of permissible function (CSPF) at
each node, which is an incompletely specified function.
These are used to identify redundancies and to substitute
one function into another.

BDD’s have been extended also to include multivalued
variables and multivalued outputs (MDD’s) [91]. Instead of
each node having two successors, a node associated with
a multivalued variable has up to p successors, where p i s
the number of possible values of the multivalued variable
associated with the node. As before, each node in the MDD
uniquely represents a multivalued logic function. A graph
is reduced if no two nodes represent the same function. It
has been shown that the MDD is a canonical representa-
tion, and that most of Bryant’s resultsfor BDD’sextend quite
easily and naturally. The expectation i s that this extension
of the BDD‘swill gain importanceas multivalued multilevel
functions become more important in future developments

5) If-Then-Else DAG’S: Another generalization of BDD’s
proposed by Karplus [59] is called if-then-else DAG’S. In con-
trast to the BDD, each internal node has three outgoing
pointers. The first, the i f part, i s another if-then-else DAG
and hence represents an arbitrary Boolean expression. The
second, the “true” part, i s the one taken whenever the i f
expression evaluates to true. The third, the else part, is the
one taken whenever the i f expression evaluates to false.
Thus the node test in the BDD is a single variable whereas
in the if-then-else DAG it is an arbitrary Boolean expression.
Karplus gives seven rules for constructing the if-then-else
DAG which will insure that two DAG’S are equal if and only
if their Boolean expressions are also equal (i.e., it i s canon-
ical). This structure isan interesting generalization of BDD’s
and it remains to be seen how effective it i s in various appli-
cations, although the concept has already led to more effi-
cient methods for constructing the regular BDD‘s.

~ 9 1 .

IV. LOGIC DECOMPOSITION/RESTRUCTURING

The objective of multilevel logic synthesis i s to find the
best multilevel structure. Often the logic to be imple-
mented is extracted directly from a register transfer lan-
guage(RTL)and thus hasanatural multilevelform.This may
or may not be the best structure, but it i s important not to
destroy it (e.g., arbitrarily flatten it to two-level) until it i s
assessed. On the other hand, some logic, particularly con-
trol and finite-state-machine logic, i s more naturally
described in two-level form and no initial structure isgiven.
In either case, we have the problem of finding the best mul-
tilevel structure, but in the first casewe may have an advan-
tage in that the user may have given a good multilevel struc-
turebyvirtueof how itwasstructured in theRTLinput.This
section is concerned with various techniques which allow
us to restructure the initial logic description. The methods
are divided into algebraic methods, which are fast, and
Boolean methods, which are slower (at times, much slower)
but have the power to explore the entire restructuring space
in a more general way.

A. Basic Operations

The goal of multilevel logic optimization i s to obtain an
equivalent representation of a given logic function that i s
optimal with respect to a cost function involving area and
delay. In manipulating the initial representation of the logic
function, the following five operations are key.

The “decomposition” operation on a Boolean function
is the process of re-expressing a single function as a col-
lection of new functions. For example, the process of trans-
lating

F = abc + abd + Ea +
to

F = XY+XY

X = ab

Y = c + d

i s decomposition. Note that the fan-in F (the variables on
which F depends explicitly) was altered by this operation.

A related operation, but applied to many functions, is the
“extraction” operation. It is the process of identifying and
creating some intermediate functions and variables, and re-
expressing the original functions in terms of the original as
well as the intermediate variables. There i s significant prac-
tical difference between this and the decomposition oper-
ation. For example, extraction applied to the following three
functions

F = (a + b)cd + e

G = (a + b)F

H = cde

yields
F = X Y + e

G = XF

H = Ye

X = a + b

Y = cd

where multiple-fan-out nodes X and Y have been created.
This operation identifies common subexpressions among

different logic functions forming a network. New nodes are
created, but each of the logic functions in the original net-
work is simplified as a result of the introduction of the new
nodes. The optimization problem associated with the
extraction operation i s to find a set of intermediate func-
tions such that the resulting network i s optimal in an appro-
priate sense.

“Factoring” i s the process of deriving a factored form
from a sum-of-products form of a function. For example,

F = ac + ad + bc + bd + e

can be factored to

F = (a + b)(c + d) + e.

The associated optimization problem i s to find a factored
form with the minimum number of literals. In this case, we
simply change the representation of the function.

“Substitution” (also called “resubstitution”) of a func-
tion G into F i s the process of expressing F as a function of

270 PROCEEDINGS O F T H E IEEE, VOL. 78, NO. 2, FEBRUARY 1990

its original inputs and G. For example, substituting

G = a + b

into

F = a + b c

produces

F = G(a + c).

This operation creates an arc in the Boolean network con-
necting the node of the function being substituted (G) to
the node of the function being substituted into (F).

“Collapsing” (also called “elimination” or “flattening”)
i s the inverse operation of substitution. If G is a fan-in of
F, collapsing G into F re-expresses Fwithout G (undoes the
operation of substituting G into F) . For example, if

F = Ga + c b

G = c + d

then, collapsing G into F results in

F = ac + a d + bZd

G = c + d .

If the node G is not an output, it may be eliminated, result-
ing in a Boolean network with one less node.

All of the operations use techniques that are analogous
to multiplication and division. In fact, “division” plays a key
role in multilevel logic optimization. In this section, the
concept of division as well as effective algorithms for divi-
sion are reviewed. Algorithms for factorization, decom-
position, extraction, substitution, and collapsing, based on
these results, are presented.

B. Division and Common Divisors

Since Boolean algebra does not have additive or multi-
plicative inverses, in mathematical terms there can be no
division operation. However, in optimizing logic functions,
it i s important to define operations which, when given func-
tions f and p, find functions q and r such that f = p q + r.
Every such operation is similar to the division operation in
other algebras and is therefore called, with a little abuse of
mathematical terms, “division” of f by p generating “quo-
tient q“ and “remainder r.”The function p is called a “Bool-
ean divisor” of f if r i s not null and a “Boolean factor” if r
i s null. Such a division operation i s not unique. Even for a
given division operation, the resulting q and r may be
dependent upon the particular representation of f and p.

The number of Boolean factors and divisors of a given
logic function can be very large, as made evident by the
following Propositions:

Proposition I : A logic function g i s a Boolean factor of a
logic function f if and only if f g = 0, i.e., f c g.

Proposition 2: If fg # 0, then g i s a Boolean divisor of f.

The two propositions show that for any logic function f
there are many Boolean divisors and factors; in fact, any
function containing f i s a Boolean factor of f and any func-
tion with at least one rniniterm common with f i s a Boolean
divisor of f. This poses a problem in choosing a best factor
since there are so many factors. If the domain is restricted
toa particular subset of expressions, then thedivision oper-

ation i s unique and much easier and fasterto carry out. This
restricted version of division is called “algebraic division.”
The following definitions make this notion precise.

The “product” of two cubes c and d is a cube defined by
(recall that a cube can be viewed as a set of literals)

0

c U d otherwise

if gx(x E c U d and si E c U d)
c d = [

The “product” of two expressions F and G is a set defined

FC= { c d l c E F a n d d E G a n d c d # 0).

Notice that cd = 0 i f and only if c U dcontains both a literal
and its complement.

We say that F i s an “algebraic expression” if F is a set of
cubes such that no one cube contains another: e.g., a + ab
i s not an algebraic expression since cube a contains cube
ab.’ FC is an “algebraic product” if F and G are algebraic
expressions and have disjoint support (that is, they have no
input variables in common). Otherwise, FG is a “Boolean
product.” For example, (a + b)(c + d) = ac + a d + bc +
b d is an algebraic product ayd both (a +_b)(a + c) = a +
ab + ac + bc and (a + b) (b + c) = ab + ac + bc are
Boolean products.

An operation (OP) is called “division” if, given two func-
tions f and p, it generates q and r(OP(f, p) = (q, r)) such that
f = p q + r. If p q i s an algebraic product, OP is called an
“algebraic division;”otherwisepq isa Boolean product and
OP is therefore called a “Boolean division.” Note that an
algebraic divisor (factor) is also a Boolean divisor (factor).

by

C. Algebraic Methods

Decomposition based on Boolean manipulations can be
quite expensive computationally, but in principle can
achieve optimum results. On the other hand, the algebraic
manipulations can be made much faster and, especially
when iterated with selectivecollapsingoperations, can give
very good results. One task of logic synthesis is to decide
when to use each kind of manipulation in order to obtain
a good combination of run-time efficiency and quality of
results.

This leads to the most often used paradigm for multilevel
logic synthesis [4], [141, [161, [461:

minimize each logic function to obtain an algebraic
expression,
perform algebraic operations, including decomposi-
tion, extraction, factorization, resubstitution, and
elimination, on these expressions,
optionally iterate steps 1 and 2.

Theseoperations may beenriched with afew Booleanoper-
ations that improve the overall result without penalizing
the running-time efficiency of logic optimization.

The next three sections review the basic algorithms used
to perform algebraic operations. Section IV-G covers Bool-
ean operations.

7) Algebraic Division and Its Complexity: In general, we
face two tasks in using either notion of division. The first

’The containment of a cube c, by another cube c2 is confusing
if we view each cube as a set of literals. We shall always refer to
one cube containing another if the set of ”minterms” in one con-
tains the set of minterms in the other.

BRAYTON et al.: MULTILEVEL LOGIC SYNTHESIS 271
-~

I ,

isto find agood candidatedivisor,and thesecond istocarry
out the division, i.e., to determine, given p and f, the quo-
tient q and remainder r so that f = pq + r.

Care should be taken to make this algorithm as fast as
possible since it will be used many times in the inner loops
in a logic synthesis system and is a key subroutine of many
of the other algorithms.

"Weak division" is a specific example of algebraic divi-
sion. As far as we know, it is the only form of algebraic divi-
sion used. It has the virtue of making the result (quotient
and remainder) unique. The name "weak" refers to its
power in relation to Boolean division (also called strong
division). Given two algebraic expressions f and p, a divi-
sion i s called "weak division" i f

1) it generates q and rsuch that pq is an algebraic prod-
uct,

2) r has as few cubes as possible, and
3) pq + rand fare the same expression (having the same

set of cubes).

Given the expressions f and p, it can be shown that q and
r generated by weak division are unique. WEAK-DIV
denotes the operation of weak division. Often, f l p i s used
to denote the quotient of "weak-dividing" f by p. In Fig. 2

WEAKDIV(f, p):

U =Set { U, } of cubes in f with literals not in p deleted

V =Set { U>] of cubes in f with literals in p deleted

I* note that uJu, is one the j-th term off */

v ' = { U J E v : u,=p . } .

q = n vi.

r = f - p q

Fig. 2. Algorithm W E A L D I V .

isasketchofan O(nlogn)(nisthenumberof productterms
in f and p) algorithm proposed for weak division [23]. This
algorithm achieves i ts n logn performance by encoding and
ordering the terms in Uand V. McGeer found a linear algo-
rithm for weak division given that expressions f and p have
their cubes already encoded and sorted [74]. It was shown
that algorithms could be found which are linear and pro-
duce their results as a set of cubes in sorted order. Thus an
initial sorting of the cubes of all functions at the beginning
of the network manipulation would suffice. Thereafter, lin-
ear algorithms could be employed.

D. Kernels and Kernel Intersections

7) Basic Definitions: The notion of a kernel of an alge-
braic expression was introduced in [23] to provide means
for finding subexpressions common to two or more expres-
sions, i.e., to find good candidate divisors. All operations
used to find kernels are algebraic (i.e., algebraic product,
algebraicdivision, etc.), but theword "algebraic" isomitted
for brevity. In particular, algebraic division is done by
WEAK-DIV.

An expression is "cube-free" if no cube divides the
expression evenly (e.g., ab + c is cube-free; ab + ac and
abc are not cube-free). Notice that a cube-free expression
must have more than one cube.

The "primary divisors" of an expression fare the set of
expressions

D (f) = { f l c lc isacube} .

The kernels of an expression fare the set of expressions

X(f) = {glg E a)(f) and g is cube-free}.

In other words, the kernels of an expression fare the cube-
free primary divisors of f.

A cube c used to obtain the kernel k = f lc is called a "co-
kernel"of k, and e(f) is used to denote the set of co-kernels
of f. For example, the kernels and their corresponding co-
kernels of the function

x = ad f + aef + bdf + bef + cdf + cef + g

= (a + b + c)(d + e)f + g

are listed in Table 1, where for convenience we have shown
the kernels in factored form. Notice that a kernel may have

Table 1 Kernels and CO-Kernels of (a + b + c)(d + e)f + g
Kernel CO-Kernel Level

a + b + c df, ef
d + e af, bf, cf
(a + b + c)(d + e)
(a + b + c)(d + e)f + g

f
1

more than one co-kernel even though the kernel of a co-
kernel is unique. A co-kernel can be the trivial cube l if the
original expression i s cu be-free.

For certain operations described in the following sec-
tions, it i s nearly as effective and frequently more efficient
to compute a certain subset of X(f) rather than the full set.
This leads to the following recursive definition. Let

{k E X (f) l X (k) = {k } }

{k E X(f) l vk l E X(k), such that kl # k and

n = 0

K"f = i k, E X"-'(f) } n > O

Using these sets, we define the "level" of a kernel as fol-
lows. If k € Xo(f), then k is a level-0 kernel off . If k E X " (f)
and k X n - l (f), then k is a level-n kernel of f. According
to the definition, a kernel i s said to be of level-0 if it has no
kernels except itself. Similarly, a kernel is of level-n if it has
at least one level n-1 kernel but no kernels (except itself)
of level-n or greater. This gives us a natural partition of the
kernels since

X O (f) c X ' (f) c X 2 (f) c . . . c X " (f) c Wf).

2) Computing the Kerne1s:All the kernels of a given func-
tion f can be found by applying the definition in a straight-
forward way. The kernel-generation algorithm proposed by
Brayton and McMullen [23] makes f cube-free first by find-
ing its largest cube-factor. It then selects the literals of f i n
lexicographical order and divides them into 6 the resulting
quotient is a kernel if it i s cube-free. If it is not, then it i s
made cube-free by selecting its largest cu be-factor. The pro-
cedure is repeated on the resulting functions until func-
tions with no kernels (kernel of level-0 of f) are found. A
majorefficiencycan beobtained by noting that if thelargest
cube factor extracted contains an already selected literal,
then thecurrent branch can beterminated, sinceall kernels

PROCEEDINGS OF THE IEEE, VOL. 78, NO 2, FEBRUARY 1990

that can be found by continuing have already been gen-
erated. This leads to an algorithm in which no co-kernel is
duplicated and which i s quite simple [24].

3) Fundamental Theorem: The following theorem is key.
Theorem 4.3: If two expressions f and g have the property

that any k f e X(f) and any kg E X(g), implies that 1 kg f l kf I
5 1 (kg and kf have at most one term in common), then f
and g have no common nontrivial algebraic divisors. (A non-
trivial divisor has at least two terms).

This theorem I S used for detecting if two or more expres-
sions have any common algebraic divisors other than single
cubes. This can be done by computing the set of kernels
for each logic expression, and forming nontrivial (more than
one term) intersections among kernels from different func-
tions. If this intersection set i s empty, then we need only
look for divisors consisting of single cubes (which is an eas-
ier task). In other words, we need not compute the set of
all algebraic divisors for each expression to determine if
there are common nontrivial algebraic divisors. This leads
to great run-time efficiency since the set of kernels i s much
smaller than the set of all algebraic divisors, and secondly,
in the algorithm for computing kernels, the cube-free prop-
ertyof kernels leads toaveryeffective method fortrimming
the search tree for the kernels. On the other hand, if we find
a nontrivial intersection, then this is a candidate algebraic
divisor common to two or more functions. Knowledge of
whichfunctionsthese kernelscamefromandwhich co-ker-
nelswereused allows us toassess thevalueofthis potential
divisor.

E. Algebraic Methods for Logic Operations

The operations of extraction, decomposition, factoring,
and substitution can be carried out quite effectively in the
algebraic domain using weak-division and kernels. In this
subsection, proceeding in increasing complexity, we pre-
sent algorithms for substitution, then factoring, decom-
position, and finally, extraction.

7) Substitution: ”Algebraic substitution” consists of the
process of dividing the function fl at node i in the network
by the function f , (or by 8) at node j. During substitution,
if f , is an algebraic divisor of fl, then fl i s transformed into

fl = hf, + r;
similarly for 8. In practice, we attempt this for each pair f,,
(in theBoolean network, implyingasmanya~2n~algebraic
divisions, if there are n nodes in the network.

The following observations are trivial but important in
circumventing most of thesedivisions.Thefunction f, is not
an algebraic divisor of f, if

1) f , contains a literal not in fl,
2) f , has more terms than f,,
3) for any literal, the number of times it occurs in f ,

exceeds that in fl,
4) f, is in the transitive fan-in of f,.

In somecases, we are not interested in the result of division
if thequotient f,l f , isonlyasinglecube.Thiscan bedetected
byanother useful filter: iffor any literal thecountforf,equals
the count for f,, then (fl/ f,) is, at most, a single cube.

2) Factorization and Decomposition: The definitions of
factoring and decomposition, as given in section IV-A, show
that the basic operations involved are the identification of

a divisor and division of a function by that divisor. Decom-
position i s basically identical to factoring except that di-
visors yield new nodes in the Boolean network, and as such
can fan-out and be used in their negative phase.

The problem of “optimum” factoring and decomposition
has been the object of intense study in the past, but the
number of proposed techniques which are practical for
large networks (e.g., more than 1000 gates) is limited. The
techniques reviewed here are the optimum NAND-gate
synthesis of Dietmeyer and So [40], and the algebraic
approach of [23] and [15].

One of the first techniques practical for large circuits i s
the factoring technique of Dietmeyer and Su [40]. Their
technique starts with a minimized sum-of-products rep-
resentation of a single-output function. The factors con-
sidered are “single-cube factors.” The single-cube factor i s
identified from the representation of the logic function by
choosing a “common factor subarray” and “common fac-
tor” which maximizes the ”figure-of-merit.” The figure-of-
merit is the width of the cube factor (number of literals)
times the height of the common factor subarray (number
of cubes having these literals as a subset). Three techniques
are given for implementing the common factor and the
common factor subarray using NAND-gates. All three are
evaluated for the common factor which maximizes the fig-
ure-of-merit and the one requiring the fewest gates is cho-
sen. The evaluation function for each implementation
counts the number of inverters and bounded fan-in gates
needed to realize the circuit, assuming this common factor
i s chosen. Dietmeyer and Su proposed two algorithms for
finding the common factor and common factor subarray:
onewhich findsthecommon factorwit ha maximum figure-
of-merit, and a heuristic algorithm which rapidly finds a fac-
tor with a good figure-of-merit.

The primary limitation of Dietmeyer-Su factoring is that
common factors which consist of more than one cube are
not considered. While it is possible to find multiple-cube
factors during common-cube extraction, nothing in the
heuristic cost function for a common factor guides the
selection toward these factors.

The technique proposed in [23] and [I51 is based on ker-
nels and finds multiple-cube factors. There are several
incarnations of this idea; however, they can all be repre-
sented by the generic algorithm shown in Fig. 3. Given a

GFACTOR(F) {

If F has no factor, return

D =DIVISOR(F)

(Q,R) =DIVIDE(F,D)

return GFACTOR(Q)GFACTOR(D)+ GFACTORCR)

1
Fig. 3. Basic factorization algorithm.

function F, procedure DIVISOR(F) finds acandidate divisor,
D, which, when substituted into F, simplifies the expres-
sion.Thequotient Q isfound bydividingD into Faccording
to the division procedure DIVIDE(F, D). Various options for
the procedures DIVISOR and DIVIDE are discussed in the

BRAYTON et al.: MULTILEVEL LOGIC SYNTHESIS 273

following. The function F can thus be represented as a par-
tially factored form

F = Q D + R

where R i s the remainder. The basic algorithm then pro-
ceeds to recursivelyfactor Q and D using the same method.
(This basic procedure can be made “optimal” in the sense
that it will produce “maximally” factored forms if minor
modifications are applied [16], [18], [97]).

The various forms of the algorithm are obtained by
choosing different subalgorithms to implement the rou-
tines DIVISOR and DIVIDE. For DIVIDE, algebraic division
i s often used even though it may not be as effective as Bool-
ean division. Algebraic division is, of course, much faster
than i ts Boolean counterpart.

The DIVISOR routine selects kernels or other divisors of
F. I t s versions differ in the care with which the divisor i s
chosen. The simplest algorithm, QUICK-DIVISOR, or QD
for short, quickly selects just one level-0 kernel. When QD
is substituted for DIVISOR in GFACTOR, the resulting pro-
cedure is called QUICK-FACTOR, or QF. Since QD finds an
arbitrary level-0 kernel, the quality of the final result pro-
duced by QF is suspect. However, this can be improved by
performing a second division by the quotient made cube-
free to obtain the candidate factor [12].

A more careful choice of divisor leads to the algorithm
BEST-KERNEL, which greedily selects the kernel (k) which,
when substituted into F, maximally reduces the total num-
ber of sum-of-product literals of F and k . The procedure
obtained by substituting BEST-KERNEL for DIVISOR in
GFACTOR i s called GOOD-FACTOR, or GF. Since
BEST-KERNEL finds all the kernels, GF represents a trade-
off of speed for obtaining better quality results.

These factoring algorithms are obviously heuristic, since
the procedure cannot be guaranteed to generate optimum
results with respect to the cost function selected. The qual-
ity of the factoring is monitored by computing the literals
in thesum-of-productsform of each factor. Sincethechoice
of common divisor i s restricted to kernels only, the results
of factoring depend largely on the initial sum-of-product
forms.

In multilevel minimization as performed in the system
MIS [15], factoring algorithms are used repeatedly to esti-
mate the cost of a Boolean network, since the cost of the
nodes i s estimated to be the number of literals in the fac-
tored form of the node functions. Here the speed of the
algorithm is essential and QF i s favored. However, toward
the end of the minimization process, when it i s important
to have an accurate evaluation of the cost of the network,
GF i s used.

Note that Dietmeyer-Su’s procedure is a special case of
GFACTOR where the DIVISOR routine searches for single-
cube divisors only.

Other versions of GFACTOR would involve Boolean
operations, which are discussed in section IV-G.

3) Extraction: The extraction operation identifies com-
mon subexpressions and manipulates the Boolean network
accordingly. Algebraic decomposition and substitution can
be combined to provide an effective extraction algorithm.

In particular, procedure QUICK-DECOMPOSITION
applies QF to a given node and creates a new node in the
network, for each new factor of this node provides a very
fast method for breaking down a Boolean network quickly.

QUICK_EXTRACTION(F) {

Fig. 4.

Apply QUICKDECOMPOSITION to each node of the network

Perform all possible pairwise algebraic substitutions

Eliminate all single literal functions

Eliminate all functions with small value

1
Quick extraction algorithm.

It may be combined with algebraic substitution to form a
fast extraction procedure, as shown in Fig. 4.

At the end of the QUICK-DECOMPOSITION step, each
node of the network cannot be factored, so each literal
appears only once. Substitution identifies identical nodes,
and one is substituted into the other, leaving a nodewhose
logic function i s a cube with a single literal. These are elim-
inated along with the nodes that have small value, typically
those which do not fan-out.

The motivation behind this is that QF is very fast but still
identifies good kernels for factoring each single function
well. The kernels become nodes of the Boolean network
and substitution identifies common nodes. Thus common
divisors identified in this way are also near best for fac-
toring. Of course, this i s not always the best choice and not
all common divisors are found, but the method is very fast
and the results are quite good.

F. Rectangle Covering

The key problem in the algebraic operations presented
in the preceding is the identification of a divisor. We have
seen that kernels offer a good set of divisors, both for fac-
toring (or decomposition) and extraction. It i s surprising
that the problem of finding a kernel and, generally, finding
acommon single-and multiple-cubedivisor, can be reduced
to the same mathematical problem [16]-[18], [82]. In addi-
tion to being elegant, this formulation favors the devel-
opment of fast and effective algorithms.

In this subsection, the concepts of rectangles and rect-
anglecovering are introduced. Then the formulation of ker-
nel determination and the common subexpression iden-
tification in terms of rectangles are given. Finally, some
algorithms for rectangle covering are given. In this sub-
section, we closely follow [82].

1) Basic Definitions: A “rectangle” (R, C) of a matrix 13, B,,
E (0, 1, *}’ is a subset of rows R and a subset of columns
C such that B,/ E {I, * } for all i E R, j E C.

A rectangle (Rl, C1) i s said to “strictly contain” rectangle
(R2, C2) if R2 E R1 and C, c C1 or R2 C RI and C, E C,.

A “prime rectangle” (R, C) of B i s a rectangle which i s not
strictly contained in any other rectangle of B.

The “co-rectangle” of a rectangle (R, C) is the pair (R, C) ,
where C’ i s the set of columns not in C.

A set of rectangles { (Rk, C k) } form a “rectangle cover” of
a matrix B if B,, = 1 implies i E Rk, j E Ck for some k. Thus
each 1 in B must be covered by at least one rectangle from
the cover. A covering need not be disjoint, so that a 1 in B

*The *’s in B represent don’t cares and are introduced by some
algorithms in solving the “covering” problem for B.

274 PROCEEDINGS OF THE IEEE, VOL 78, NO 2, FEBRUARY 1990

-~ -

may be covered by more than one rectangle. The points of
6 which are labeled *are not required to be covered by any
rectangle in the cover. These points represent "don't-care''
points in the matrix.

Each rectangle (Rk, Ck) has an associated weight (or cost)
defined by a "weight function w (Rk, Ck),rr The weight of a
rectangle cover { (Rk, Ck)} is,defined as the sum

c W(Rk, Ck).

The "minimum-weighted rectangle-covering problem" i s ,
that of finding a rectangle cover of a matrix with minimum
total weight.

2) Rectangles and Kernels: Rectangles in a matrix provide
an alternate way of representing and interpreting the ker-
nels of a logic function. Consider the expression x = abd
+ acd + bcd but represented as a Boolean matrix B (called
the "cube-literal matrix"), where there i s one row for each
term in the disjunctive form and one column for each dif-
ferent literal. For example, the expression x i s represented
as follows. 7 acd

bcd 1 0

The correspondence between rectangles of the Boolean
matrix for f and kernels for f i s given by the following dis-
cussion and was suggested by an observation of A. Wang:
that intersections of kernels can be obtained by the ker-
neling algorithm.

The expression corresponding to a co-rectangle of the
expression i s determined by the entries in the Boolean
matrix restricted to the rows and columns of this co-rect-
angle. For the rectangle { R, C} = { (2, 3), (3,4)} the co-rect-
angle i s {R, C} = {(2,3), (1,2,5)} in the preceding example,
and the corresponding expression i s a + b. Thus the co-
rectangle corresponds to a kernel. The rectangle itself cor-
responds to the co-kernel, i.e., the cube divisor used to
obtain the kernel. The cube divisor i s the set of literals cor-
responding to the columns C; in the preceding example,
this i s the cube cd.

The following proposition states more precisely the rela-
tionship between kernels and co-rectangles, and co-ker-
nels and rectangles.

Proposition 4.4: c i s a co-kernel of f if and only if it is the
cube corresponding to a prime rectangle of the cube-literal
matrix of fwith at least two rows. A kernel i s the expression
associated with the co-rectangle of a prime rectangle.

From the rectangle interpretation of kernels, it is also pos-
sible to understand more clearly the notion of the level of
a kernel. A level-0 kernel i s the co-rectangle of a prime rect-
angle which has no other rectangle containing i t s column
set. In other words, it corresponds to a prime rectangle of
maximal width. A prime rectangle of maximal height cor-
responds to a kernel of maximal level, i.e., one whose row
set i s not contained in any other rectangle.

3) Common-Cube Extraction: Common-cube extraction
i s the process of finding cubes common to two or more
expressions and extracting the common cube to simplify
each of the expressions [82]. The optimization problem is
to find the particular cubes to introduce into the network
to provide an optimum decomposition.

Common cubes can be identified easily using the cube-
literal matrix. First, the cube-literal matrix for the Boolean
network i s created. A rectangle in the cube-literal matrix
identifies a cube which can be extracted from the network.
Thecolumnsofthe rectangle identifythe literals in thecom-
mon-cube, and the rows identify the cubes (and expres-
sions) where the common cube appears.

The weight function for a rectangle measures the opti-
mization goal for cube extraction, To minimize the total
number of literals in the network, the weight of a rectangle
ischosen sothattheweight ofarectangle-coverofthecube-
literal matrix equals the total number of literals in the net-
work after the new single-cube functions are added to the
network. Hence the minimum-weighted cover corre-
sponds to the optimum "simultaneous" extraction of a col-
lection of cubes.

For cube extraction, the weight of a rectangle i s defined
as

if 1R(= 1

if J R (> 1' + IC1

If a rectangle (R, C) has only a single row, this corresponds
to leaving the cube unchanged in the network (no extrac-
tion); hence theweight of this rectangle counts the number
of literals in the cube. If the rectangle has more than one
row, this corresponds to creating a new single-cube func-
tion (with 1 CI literals), and substituting this new function
into 1 RI other cubes at a cost of 1 R 1 additional literals; hence
the weight of a multiple-row rectangle is 1 RI + I CI.

When searching for a rectangle to extract, it i s useful to
define the "value" of a rectangle. For cube extraction, the
value of a rectangle is defined as

v(R, C) = 1 { (i , j) l B , , = 1, i E R , j E C} I - w(R, C).

The value reflects the desirabilityof choosing the rectangle
and is equal to the number of literals which would be saved
in the network if this rectangle is extracted. This i s simply
the number of 1 points covered by the rectangle minus the
weight of the rectangle. No additional literals are saved for
covering a * in the matrix; hence these are not counted. If
a rectangle contains only points which are 1, then the value
of a rectangle for cube extraction i s the area minus the
perimeter.

4) Kernel-Intersection €xtraction: As discussed in section
IV-D, kernels can be used effectively in obtaining common
subexpressions. The choice of an "optimal" kernel inter-
section, i.e., a kernel intersection that will most reduce the
number of literals in a Boolean network once substituted
into the nodes of the network, i s a complex optimization
problem. However, it can also be expressed as a rectangle
covering problem [82].

The Boolean matrix associated with the optimal kernel-
intersection problem is called the "co-kernel-cube matrix."
Arow in this matrixcorrespondstoaco-kernel (and itsasso-
ciated kernel), and each column corresponds to a cube
present in some kernel. The entry B,, i s set to 1 if the kernel
associated with row icontains the cube associated with col-
umn i.

w(R, C) =

For example, given the equations

F = af + bf + ag + cg + ade + bde + cde
G = a f + b f + ace + bce

H = ade + cde

BKAYTON et al.: MULTILEVEL LOGIC SYNTHESIS 275

-

I

the kernels (associated co-kernels are shown in parenthe-
ses) of Fare {de + f + @a), de + f(b), a + b + c(de), a +
b(f), de + g(c), a + c(g)}. The kernels (and co-kernels) of
G are {ce + f(a, b), a + b(f, ce)}, and the only kernel of H
i s { a + c(de)}. For ease of presentation, the functions F and
G, which themselves are kernels, are not listed in the set
of kernels. The co-kernel cube matrix is easily constructed
from this data. The unique cubes from all of the kernels are
a , b, c, ce, de, f, and g; these cubes are used to label the
columns of the matrix. There are thirteen kernels, and the
corresponding co-kernels are used to label the rows of the
matrix.

The product of a co-kernel for a row and the kernel-cube
for a column yields a cu be of the expression of one or more
of the original functions. For reference, the cubes of the
original expressions are numbered from 1 to 13, e.g., af i s
labeled 1, bf 2, and so on. The number of the cube result-
ing from the product of the co-kernel for row i and the ker-
nel-cube for column j is placed at position B,, in the co-ker-
ne1 cube matrix. For example, the co-kernel a when mul-
tiplied by the kernel de + f + gyields thecubes numbered
5,1, and 3, which areade, af, and ag. Note that there is often
more than oneway to form each cube in an expression. For
example, cube 1 (af) i s created by the co-kernel a multi-
plying the kernel de + f + g, and by the co-kernel f mul-
tiplying the kernel a + b.

The co-kernel cube matrix for the previous example i s as
follows.

a b c c e d e f g

1 2 3 4 5 6 7

F a 1
F b 2
F de 3
F f 4
F c 5

G a 7
G b 8
G ce 9
G f 10
H de 11

F g 6

. 5 1 3

. 6 2 .
5 6 7 . . .
1 2 . . .

. 7 . 4
3 . 4 . . .

. 1 0 . 8 .

. 1 1 . 9 .
10 11 . . .
8 9 . . .

12 . 13 . . .

A rectangle of the co-kernel cube matrix identifies an
intersection of kernels; this kernel intersection i s a com-
mon subexpression in the network. The columns of the
rectangle identify the cubes in the subexpression, and the
rows of the rectangle identify the particular functions that
the subexpression divides. The entries covered by the
matrix correspond to cubes from the original network.

.From the previous example, the prime rectangle ((3 , 4,
9, IO}, {I , 2)) identifies the subexpression a + b which
divides the functions F and G. Cubes numbered 1, 2, 5, 6,
8,9,10,and 11 from theoriginal setof functionsarecovered
by this rectangle. This corresponds to the factorization of
the equations into the form

F = deX + fX + ag + cg + cde

G = ceX + fX

H = ade + cde

X = a + b .

The weight of a rectangle of the co-kernel cube matrix is
chosen to reflectthe number of literals in the network if the
corresponding common subexpression is inserted into the
network. A minimum-weighted rectangle-cover of the co-
kernel cube matrix then corresponds to a “simultaneous”
selection of a set of subexpressions to add to the network
in order to minimize the total number of literals in the net-
work.

As before, weights w:and w:are defined for the rows and
columns of the matrix, and the weight of a rectangle i s
defined in terms of theseweights. Also, values VI/ are defined
for the elements of the matrix, and the value of a rectangle
i s defined in terms of the values of the elements covered
by the rectangle, and the weight of the rectangle.

The value of a rectangle (R, C) of the co-kernel cube matrix
is thus defined as

Notethattheco-kernel cube matrix may bequitelarge.Thus
finding the best kernel intersection may be expensive. It is
sometimes more effective to reduce the number of kernels
to be examined; for example, restricting to the set of all
level-0 kernels.

5) Minimum- Weighted Rectangle Covering Algorithms:
We have seen that an optimum solution to the minimum-
weighted rectangle covering problem yields optimum alge-
braic extraction, including common-cube and kernel-inter-
section extraction, offering a unified approach to the
extraction, factorization, and decomposition problems.
However, the minimum-weighted rectangle covering prob-
lem is NP-complete [82] and an exact solution i s possible
only in limited cases.

In general, a heuristic procedure is preferred to apply
rectangle covering to algebraic extraction. Heuristic pro-
cedures can be divided into two categories:

1) extract the “best” rectangle, substitute it into the
expressions, and then reapply the procedure toa new
modified matrix to take into account the operations
performed;

2) find a “good” rectangle cover by generating a cover
and then refining it; substitute the corresponding
expressions into the Boolean network and repeat on
a new modified matrix to take into account the oper-
ations performed.

The advantage of the first technique i s that it takes into
account immediately common factors between the newly
extracted function and the rest of the logic network. The
disadvantage of this approach i s that it selectsgreedilyonly
one rectangle at a time and does not account easily for the
simultaneous extraction of multiple rectangles.

Both these approaches have been implemented in MIS
[82] by R. Rudell based on a very efficient sparse-matrix rep-
resentation.

6) Simultaneous Selection of Rectangles: An alternate
approach to the greedy nature of the previous approach
i s to find a minimum-weight rectangle cover and then
extract simultaneously all of the rectangles from the matrix.
This algorithm i s shown in Fig. Sand i s analogous to a single
pass of the EXPAND, IRREDUNDANT, REDUCE sequence
of ESPRESSO [22]. This operation can be iterated, as done
in ESPRESSO, by defining an expand procedure to expand

276 PROCEEDINGS OF THE IEEE, VOL. 78, NO. 2, FEBRUARY 1990

COVERINGEXTRACT(B) {

P =RECT-PRIMEXOVER(B)

P =RECTlRREDUNDANT(P, E)

P =RECT-REDUCE(P, E)

extract the rectangles of P

}

Fig. 5. Algorithm COVERING-EXTRACT.

each rectangle from an initial covering into a prime rect-
angle. This is then made irredundant and reduced, with the
reduced rectangles becoming the input to the first part for
reexpansion. Iteration would continue until no decrease in
weight is obtained. As in ESPRESSO, this style of heuristic
algorithm depends on finding good heuristics for choosing
the direction for expansion, and the sequence in which the
rectangles are reduced.

G. Boolean Methods

Thealgebraic methodsarefast becausethe logic function
i s treated as a polynomial, and hence fast methods of
manipulation are available. Although some optimality is
sacrificed, this i s acceptable in multilevel logic synthesis
during the initial phases of the synthesis process. However,
when these methods fail to produce improved results,
stronger methods can be used if further optimization i s
desired. These stronger methods, called Boolean methods,
treat the logic expression as a true logic function using all
the Boolean identities as well as don't cares to achieve a
better answer. While these are slower, they can be very
effective in overcoming a local "algebraic" minimum.
Often, after a Boolean method is used, the algebraic meth-
ods can be repeated, usually with further improvement. In
many cases, this iteration can be repeated with continued
improvement .

7) Boolean Division: Some of the Boolean methods are
,based on replacing algebraic division, in the operations dis-
cussed, by Boolean division. The process of Boolean divi-
sion i s the following. Given afunction fand a divisorp, find
a quotient q and remainder r such that f = gq + r, and such
that q and rare as "simple" as possible. To meet this objec-
tive, we use any of the Boolean identities and don't cares
available. This division i s implemented by introducing an
artificial variable for p, say z = p. Then a "local" don't-care
set i s generated, zp + 2p, i.e., all the values of the variables
in the net that makezdifferent from p can never occur and
hence are don't cares. Then f i s minimized using this, along
with other don't cares that may be available. In addition,
there are several options to this basic procedure depending
on how the result of division i s to be used.

1) we would like z to remain in the answer.
2) we would like 2 not to be in the answer.
3) we would like to control what is "simple."

The reason for z to be in the final result fmin i s that the quo-
tient q obtained by the division is defined as fmin/z. Thus
z must be forced into the final answer. This can be enforced
by modifying the EXPAND procedure of the minimizer;
whenever a cube is to be expanded, z is not expanded until
after expanding al l other variables. If we want to allow the

answer to be expressed in terms of 2, then we can force Z
and define its corresponding quotient as Q = fmin/Z Thus
fmin = zq + ZQ + r. Similarly 2 can be removed from the
result by expanding it first (we knowthat itwil l expand, and
hence 2 will not appear). The requirement that the result
be simple i s related to the discussion in section V-C-2 of
having a minimizer which returns the simplest factored
form. Since such a minimizer is not yet available, several
heuristics have been employed. One is to ask for a result
which has the minimum literal or (minimum variable) sup-
port.

Minimum literals heuristic: This i s a heuristic that can
be added to a two-level minimizer just before cubes in the
cover are expanded to primes. The objective is, given a set
of cubes, to find a prime cover which has the minimum
number of distinct literals in theexpandedcover(minimum
literal support). (A similar objective asks for the minimum
number of variables in the support. However, experiments
have shown that the minimum literal heuristic leads to bet-
ter results.) Note that the literal support of a function is
exactly the set of nets that must be routed to this function,
so a side benefit may be a netlist that i s easier to route.

Finding the minimum set of literals i s relatively simple;
only expand a literal in any cube if it can be expanded from
allcubesinwhich itoccurs.Toobtain theminimumanswer,
the order of expansion i s important. The solution to this is
obtained by using a blocking matrix as defined in [22]: for
each cube in the cover, the "literal" blocking matrix i s a
Boolean matrix with a 1 in position i, j if literal I/ appears in
the cube to be expanded, and appears in the i t h cube of
the off-set. A "super blocking matrix" i s formed by con-
catenating the literal-blocking matrices for all the cubes in
thecover.Thesetof columnsofthe minimum column cover
represents the literals that can be simultaneously removed
from allthecubesofthecover.The minimumcolumncover
for this matrix i s found by an efficient algorithm [22]. After
removing these literals and arriving at a cover with mini-
mum literal support, further expansion of the resulting
cubes i s done in the usual way. The result i s a prime cover
with the guaranteed minimum number of literals in its sup-
port (provided the minimum column cover problem was
solved exactly).

Boolean resubstitution: In BOLD, an operation called
Boolean resubstitution [49] i s used. It can be seen as a gen-
eralization of the ESPRESSO REDUCE operation to the mul-
tilevel context, and adds variables to the support of the
function being minimized. In BOLD, both Boolean resub-
stitution and algebraic decomposition generate the overall
structure of the Boolean network. (A mechanism similar to
Boolean resubstitution is the subset-support filter
described in section V-C-2).

The basic idea for each node function of the Boolean net-
work and for each intermediate variable is

1) reduce each node function with respect to the vari-
able (i.e., REDUCE the sum-of-products representa-
tion of the node function);

2) expand the node function; literals corresponding to
the variable are not expanded;

3) expand with respect to the variable.

This process can be quite effective in some problems by
exploiting already existing logic, although the critical path
length may increase if not controlled during the resubsti-

B R A Y T O N et al.: MULTILEVEL LOGIC SYNTHESIS 277

-

tution process. Also in i ts raw form, this i s an expensive pro-
cedure-in some problems, 90-95 percent (or more) of the
execution time is spent in Boolean resubstitution. Cur-
rently [77l these drawbacks have been almost completely
eliminated by employing filters on the candidate variable
set [84], and by using implication (cf. section V-D-1) infor-
mation todecreasethework in reducingand expanding[85]
the candidate substitution variables. ,

2) Spectral Methods: Spectral methods focus on trans-
forming the input space B" into one represented in a dif-
ferent basis so that the functions to be implemented, as
functions of the new basis, have more obvious and simpler
implementations. For example, if the transformed function
becomes a single AND or XOR, then the logic that must be
implemented requires only one gate plus the logic to per-
form the input transformation. An interesting way to look
at this topic i s to envision the Boolean n-space as a Boolean
cube, and a Boolean function f on this space as a set of ver-
tices on this cube. All vertices where f = 1 are given a black
dot. The objective of the input transformation i s to rotate
sequentially and transform (like a Rubik's cube) the faces
of this cube so that most of the black dots are moved to or
near the same face. The transformations of the faces rep-
resent intermediate logic functions which create an initial
decomposition. After this, the function, as a function of
these intermediate variables, is a simpler function. For
example, if all the black dots occupy, after the transfor-
mation, an entire face or cube of the space, then the func-
tion can be implemented as a single AND term. This point
of view has been proposed by [41]. The main idea is to be
able to transform the input space so that the function
becomes much simpler in the new variables.

The transformations considered by the spectral methods
have some similarity with Fourier transforms and can be
computed in O(N log N), but here N i s the number of min-
terms in the space. Thus the direct approach to imple-
mentingthe spectral methods has until recently found little
practical application. We discuss some of the classic
approachestothisand pointtosome recent literaturewhich
attempts to lower the computational complexity.

X O R decomposition: XOR'S functions are examples of
Boolean factors that are difficultto identify. Algebraic meth-
ods do not perform well on functions that have good XOR

decompositions.
The idea of XOR decomposition is to implement a Boolean

function as two logic blocks. The first block consists com-
pletely of XOR gates and the second block consists of unre-
stricted combinational logic. The problem i s defined as fol-
lows. Given a function f with n inputs and k outputs, find
a decomposition of f into two blocks of logic, U and fo, such
that uconsists completely of XOR gates and has n inputs and
n outputs, fc consists of unrestricted combinational logic
and has n inputs and k outputs, and the "simplicity" of fo
i s maximized (simplicity i s defined below). U i s called the
linear block, and f,, the nonlinear block. The block U can be
viewed as a linear transformation of the input space which
effects a change of basis.

To find the XOR decomposition of a k-output function f
= { fa, r , . * fk-'}, an autocorrelation function B is used:

k - I k - 1

Bf(7) = c Bf'"(7) = c c f'"(x)f'"(x Q 7)
r = O , =o X € (O , l) "

V T E (0 , I}".

In general, if we translate a function f by 7(f(x) f(x e T)) ,

then theautocorrelation function,Bf(7), isameasureof how
well the function fcorrelates with i t s translated image. For
this particular problem, we may visualize the autocorre-
lation function as follows. Picture the Boolean n-cubeof the
input space 8". Given a single output Boolean function f")
defined on this space, put markers over every point in the
n-cubein theon-setoff"'. Nowpicksomepoint~~B".With-
out moving the markers, rotate the Boolean n-cube in place
so that T and the point (0 . . . 0) E B" switch places. The auto-
correlation Br,, , (7) is a measure of the number of points
in B" that are covered by markers both before and after the
rotation.

In [96] it i s proposed to measure the simplicity of a func-
tion as the sum over all the function's outputs of the num-
ber of miniterms in the on-set that are distance 1 from each
other. This can be defined in terms of the autocorrelation
function for special ~ ' s , i.e., any of then miniterms that are
distance 1 from the origin. (Note that when an input x i s
xoRed with a constant 7, the effect i s to translate x by 7(x e
7).) Now tho problem i s to compute the autocorrelation
function.

Special methods are applicable to this because they pro-
vide an elegant method of computing Bf(7) using the Wei-
ner-Khinchin theorem [76]. One such transform i s the Reed-
Muller transformation:

R"F = S

where F and S are the truth tables of the function before
and after the transformation, respectively, and

where

R' = [: :].
Each rowkof R" isthetruth tablefortheso-calledkth Reed-
Muller function +".This setof functionsforms the new basis
for the transformed space. The elements Sk of S are the
spectral coefficients. (Note that the functions fcan now be
expressed as f = a kSkr(k)which represents fas an XOR sum.)
Sk can be interpreted as the correlation between the given
function vector f and b k) [54]. A drawback of this approach
is that a truth table representation i s needed to compute
the spectral coefficients, and thus the overall complexity is
exponential.

In place of using a single linear decomposition, a decom-
position into a linear block U followed by a nonlinear block
fo(f(x) = f,(ux)) can be accomplished by constructing a
matrix U as follows. Let T be an n x n matrix with columns
T, , T = [70r 71, . . . , 7n-1], where

1) 70 = argrna~,,~B~(.r)
2) L, is the linear space spanned by (0, r0, . . . , 7 ,)

3) 7, = argmaxrcL,.,BA7)
4) U = 7-I.

Then a direct implementation of the linear part U i s

ZI = @0~,5m- l~ I / x / .

The nonlinear part is implemented in the usual way as a
function of z, i.e., each miniterm in the on-set of f i s trans-

278 PROCEEDINGS OF THE IEEE, VOL. 78, NO. 2, FEBRUARY 1990

lated into another miniterm by U. The set of all these mini-
terms represents a new function f(z), which is then imple-
mented by some multilevel synthesis process (MIS,
ESPRESSO, etc.).

Of course, if one implements this procedure directly, the
complexity i s s t i l l exponential since the basis of the trans-
formations involves truth-table-like manipulations. Varma
and Trachtenberg [96], in an attempt at making spectral
methods more practical, suggest a method of using a sum-
of-products cover of a function to calculate autocorrelation
coefficients. They introduce the concept of an “arithmetic”
cover, which is a redundant cover produced by a sequence
of pair-wise intersections of cubes in the cover. Each iter-
ation in the sequence has a different sign associated with
its resultant cubes. The idea is that alternating signs of each
iteration in a prescribed manner will properly count the
cube intersections and thus properly count the total num-
ber of minterms covered by the function. They give heu-
ristics to generate a reduced set of autocorrelation coef-
ficients from the arithmetic cover and propose to calculate
the autocorrelation coefficients approximately by arbitrar-
ily truncating the sequence of pair-wise intersections that
produces the arithmetic cover. This corresponds to approx-
imating a Fourier series by its lower order components.

Mixed generalized Reed-Muller form: A Reed-Muller
form is simply an XOR sum-of-products where every variable
appears in its positive phase only, and where the OR oper-
ator i s replaced by the XOR operator. It can be easily derived
from the regular sum-of-products by replacing any com-
plemented variable Ti by x e 1 and multiplying out the
resulting expression using the distributive law. For exam-

a6ca = a(b e l)c(d e 1) = abcd e abc e acd e ac.

The mixed generalized Reed-Muller form allows both
polarities of a variable to occur. In [53], a program (EXOR-
CISM) i s described in which heuristic minimization of logic
functions in this form are performed. It i s claimed that this
i s useful for circuits such as arithmetic and communication
circuits, encrypting schemes, coding for error control, etc.
It i s also claimed that Reed-Muller forms are candidates for
easily testable circuits with “function independent” testing
[791.

3) Methods ofAshenhurst and Curtis: These methods aim
at re-expressing a logic function as a function of other func-
tions, i.e., as a multilevel network. Ashenhurst [3], in a fun-
damental paper, stated the simple disjunctive decompo-
sition theorem: a function f(A, B) is decomposable with
“bound set” A and “free set” B (i.e., f(A, B) = F(+(A), B))
if and only if its 21’1 x 2IAl Karnaugh map, with the variables
Bdefiningthe rowsandA definingthecolumns, hasat most
four distinct kinds of columns:

ple,

1) all 0’s
2) all 1’s
3) a fixed pattern of 0’s and 1‘s
4) the complement of (3).

Curtis [34] extended Ashenhurst’s results to include a
multiple decomposition. as follows: a function f(A, B) is
expressible as a composite function F(&(A), * , 4k(A), B)
if and only if its 2l’’ x 2IAl Karnaugh map has, besides 0 and
I,atm0st2~di~tinctcolumnvectors. Fork = 1,thistheorem
reduces to Ashenhurst’s theorem. Curtis also stated that a

switching function f(A, B) i s expressible as a composite
function

F(41(A), . . . 4pM)t ql(B), . . . r qq(B))

if and only if the 21’1 x 2IA1 and 2IAl x 21’1 Karnaugh maps
have at most 2 P and 29 distinct columns, respectively.

To see how this works, imagine the truth table for f
reshaped into a matrix where each row is indexed by a
minterm in the B space. Let m be a minterm of the B
variables. Then f,,,, the cofactor of fwith respect tom, i s the
rnth row of this matrix. Now, by the generalized Shannon
expansion,

f = c mf,,,(A).

If besides 0 and 1 there are at most k distinct functions
among the f,,,(A), then f can be written

k

f = gI(B)4,(A) +
,=1

where g,(B) is a logic function consisting of all miniterms
in the B space with the common row +,(A). In addition,
instead of implementing each of the k functions g , (B)
(which are mutually exclusive), one can encode them with
9 = log2k functions q, for a simpler implementation. Then
f can be written as

k

,=1
f = c ((ql(B), * , q q W) = e M , W

where e, i s the encoding for g,(B). Of course, the choice of
this encoding i s important to obtain functions q, that are
as simple as possible.

Roth and Karp [80] presented a procedure for Boolean
function decomposition which operates on the on-set and
off-set covers, rather than on the truth table, for the func-
tion. However, their algorithm still requires exponential
time to find the minimum cost decomposition.

Periodically, these methods have been rediscovered and
some implementations have been attempted but with no-
table lack of success on practical problems. Some other
interesting methods of decomposition to be mentioned are
Muroga’s method for decomposition into a minimum num-
ber of negative gates [55] and Davidson‘s NAND decom-
position [37l.

H . Output Phase Assignment

In minimizing logic for PLA’s, it i s well known that the
phase assigned to each output can make a substantial dif-
ference in the final area. However, for multilevel logic, this
should not be a factor, since one can obtain either phase
of an output by simply inserting an inverter. Thus it i s sur-
prising that methods for finding an output phase assign-
ment for multilevel logic have been developed, and sub-
stantial improvement in the area has been reported in some
examples [98]. A possible explanation i s that the algorithms
currently used in multilevel synthesis are relatively weak,
especially if only algebraic operations are used, and cannot
examine all possible optimizations. For example, the alge-
braic algorithms perform cube and kernel extraction only
on the positive phasesofthefunctionsatthenodes. In addi-
tion, the cube or kernel i s selected on the basis of its value.
Current implementations make this value judgement only
on the basis of the positive phase of all the node functions

BRAYTON et al.: MULTILEVEL LOGIC SYNTHESIS 279

present, and miss the good algebraic kernels of the com-
plement functions.

Thus there are possibly two choices for obtaining better
results. One is to start with a two-level version of the logic
and apply phase assignment techniques similar to that done
for PLA implementations [98]. After selecting a phase
assignment, regular multilevel synthesis is invoked. The
second choice i s to ignore phase assignment and to extend
the cube- and kernel-finding algorithms to ones which
examine both phases in order to extract and evaluate cubes
and kernels. To date, a comparison between these two
approaches has not been done. ltwould beof interest if the
results obtained are st i l l substantially different, thus sug-
gesting other mechanisms at work.

1. Restructuring for Timing

ing, and delay-driven placement. This phase is character-
ized by its dependence on a particular target technology
and on the existence of fast and relatively accurate timing
simulators.

A third and last phase of timing optimization may be per-
formed when actual designs are available. There, much
moreaccuratetiming analyzer scan be used to fine-tunethe
circuit parameters. This phase serves both theoptimization
and verification purposes.

There have been several previous attempts to solve the
timing restructuring problem. SOCRATES [5] uses a rule-
based approach and tries to achieve global restructuring
through a sequenceof local transformations. More recently,
an algorithmic-based restructuring technique was devel-
oped in the Yorktown Silicon Compiler [I31 and in [89]. In
thissection we reviewthealgorithmic-based techniquesfor
restructuring for timing, while the rule-based techniques
are reviewed in section VIII.

7) Basic Definitions: The "arrival time" of a signal is the
time at which the signal settles to its steady-state value. A,
i s used to denote the arrival time of signal s. (All times are
relative to an arbitrary, but common, reference point). The
"required time" of a signal i s the time at which the signal
i s required to be stable. R, is used to denote the required
time of signal s.

The "slack" of a signal is the difference between i ts
required time and arrival time. S, is used to denote the slack
of signal s and is defined as

Being able to meet performance requirements is abso-
lutelyessential in synthesizing logiccircuits. As circuitcom-
plexity increases, manual methods for performance
improvement become impractical and must be replaced
with automatic performance-optimization systems. These
must work with different of circuit hierarchy and at
various steps of the design process (e.g., retiming, reducing
delay in combinational logic, delay-driven layout, etc.).

Timing optimization of combinational circuits can be
viewed as a three-phase process. In the first phase, circuits
are globally restructured to have better "timing proper-
ties." As a simple example, Fig. 6 shows two equivalent cir-

X Y ' U

X Y

(a) (b)
Fig. 6. Equivalent circuits with different timing property.

cuits. If the arrival times of all the inputs are the same, cir-
cuit (b) I S preferred over circuit (a), for it reduces the output
arrival time. On the other hand, if input U i s the critical sig-
nal,circuit(a) becomes superior.Thus,even though thetwo
circuits have the same area, one i s better than the other
when speed is important. Here the quality of the circuits
i s judged not by the detailed timing diagrams, but rather
by the circuit structure. A more sophisticated example of
global restructuring is the conversion from a carry-ripple
adder to a carry-look-ahead adder. The restructuring-for-
timing phase ischaracterized by i t s independence from the
target technology. The objective here is to look for global
structural changes of circuits to achieve delay reductions
that cannot be obtained by lower-level techniques such as
transistor sizing or buffering.

Asecond phaseof timing optimization may be performed
during the physical-design process. Here the target tech-
nology i s known and more accurate timing information i s
available. Optimization involves transistor sizing, buffer-

s, = R, - A,.

It i s clear that the slack value of a signal measures its crit-
icality, i.e., signals with negative slacks are considered to
be critical. Unlike arrival times and required times, slacks
have no reference point; hence slacks are sometimes more
convenient to use.

One method of timing optimization uses the approach
of mapping the network into two-input NAND gates and
inverters and then uses a unit delay model. It is specifically
designed to be used in conjunction with technology map-
ping in MIS [16]. The general approach i s first to minimize
the area of a network without concern for the delay (e.g.,
all the global common factors have been extracted out).
Next, the network is decomposed into two-input NAND gates
and inverters, which i s the input format for the technology
mapping algorithms. At this point, timing optimization is
invoked to restructure the circuit into an alternative two-
input NAND-gate and inverter form in which critical paths
are reduced at the possible expense of area. The output of
timing optimization i s then fed directly to the technology-
mapping stage.

Timing constraints are specified as input-arrival times of
primary inputs and output-required times of primary out-
puts. The goal of timing optimization i s to meet the timing
constraintswhile keeping thearea increaseto i t s minimum.

2) Restructuring Algorithm: The critical section of a Bool-
ean network i s composed of critical paths from primary
inputs to primary outputs. Given a critical path, the total
delay on the path can be reduced if any section of the path
is sped up. For example, Fig. 7(a) shows a critical path, a -
x - y. The critical path can be reduced by first collapsing
xandyand then redecomposingyinadifferentwayto min-
imize the critical path, as shown in Fig. 7(b). This method
(first collapsing along a critical path and then redecom-

280 PROCEEDINGS OF THE IEEE, VOL. 78, NO. 2, FEBRUARY 1990

a b
(a)

b C

(b)
Fig. 7. Reducing delay by collapsing and redecomposition.

posing to shorten the critical path) i s the basic step taken
in restructuring. The nodes along the critical paths chosen
to be collapsed and resynthesized form the "resynthesis
region."

Since a critical section usually consists of several over-
lapping critical paths, the algorithm selects a minimum set
of subsections, "resynthesis points," which when sped up
will reduce the delays on all the critical paths. A weight i s
assigned to each candidate resynthesis point to account for
possible area increase and for the total number of resyn-
thesis points required. The goal i s to select a set of points
which cuts all the critical paths and has minimum total
weight; this set is called "minimum-weighted node cut-set."

Once the resynthesis points are chosen, they are sped up
by the collapsing-decomposing procedure. The simplified
delay model is then used to find the new critical section of
the network. The algorithm proceeds iteratively until the
timing requirement i s satisfied or no improvement can be
made. The following i s an outline of the algorithm.

SPEED-UP (7)

Compute the arrival and required times for all the
nodes in 7, using the supplied arrival times at the pri-
mary inputs and the required times at the primary
outputs.
Find all the critical nodes in 7.
Compute a weight for each critical node.
Find the minimum weighted cut-set of all the critical
paths.
Partially collapse along the critical path at each node
on the cut-set. The length of section along each crit-
ical path to be collapsed is controlled by a parameter
d.
Redecompose each collapsed node into two-input
NAND gates and inverters.
If the timing requirement i s satisfied, done.
If the circuit improved from the previous iteration, go
to step 1.

Computing weights of critical nodes: The weight
assigned to each node in the critical section must reflect 1)
its potential for speed-up and 2) an area penalty incurred
if the node is chosen. Some critical nodes are easier to speed
up than others. For example, in Fig. 8(a), all the nodes are
critical. If node y is selected, collapsing its critical fan-in into
y will result in a node with one critical input x and two
noncritical inputs. So, it is easy to decompose it such that
the critical path is reduced, as indicated in Fig. 8(b). If, on
the other hand, x i s chosen, collapsing its critical fan-ins
intoxwill result in a nodewith all of its fan-ins being critical.

t Y

(a)

Fig. 8. Node y is easier to speed up than x.

So, there is no decomposition that can reduce the critical
paths inthiscase.Theweightof acritical nodeshould reflect
how easy it i s to resynthesize at the node.

It i s also possible that, to reduce a critical path, certain
nodes have to be duplicated. For example, Fig. 9(a) is part

(C)

Fig. 9. Area increase during resynthesis.

of a network with critical signals b - x - g. If g i s chosen
as a resynthesis point, x needs to be collapsed into g and
redecomposed in a different way. Since f also depends on
x, x needs to be duplicated before the collapsing, as indi-
cated in Fig. 9(b). Now the critical path becomes b - x2 -
gand can then be reduced as shown in Fig. 9(c). This increase
in area should be reflected in the weight of g. Also, it may
be that x existed initially because it had good area value.
Now, however, its fan-out has been reduced, so it should
be examined again for its area value and eliminated if prof-
itable.

Both the potential for speed-up and the area increase of
a critical node depend on the size of the "resynthesis
region" at the node. The resynthesis region of a node con-
sists of a set of critical nodes within a distance d from the
node. d i s a parameter for the global restructuring algo-
rithm and can be used to control the amount of speed-up
to be made in each iteration.

To find the minimum weighted cut-set of a Boolean net-

BRAYTON et al.: MULTILEVEL LOGIC SYNTHESIS 281

~-

I,

work, a flow network [64] i s constructed and the max-flow
min-cut algorithm is used.

3) Resynthesis: Once the minimum weighted node cut-
set i s found, each node on the cut-set is then resynthesized.
The resynthesis of a node x involves collapsing all the crit-
ical fan-ins of x, within a distance dfrom x, into x, and then
decomposing x back to two-input NAND gates and inverters
such that the critical path i s minimized.The objective of the
redecomposition is to minimize A,, the arrival timeof x. For
this, timing-driven decomposition algorithms are used.

“Timing-driven decomposition” refers to decomposing
a single-output logic function, given the arrival times of all
the inputs and a delay model, into a tree of two-input NAND

gates and inverters such that the output arrival time is min-
imized. Existing methods include rule-based approaches
[35], [SI and tree-balancing techniques [62]. These tech-
niques work on an existing decomposition and incremen-
tally modify the decomposition to reduce the output arrival
time. A direct constructive algorithm is described in [89].
Given a function and arrival times of all the inputs, the algo-
rithm decomposes ”optimally” the function into two-input
 gatesand sand inverterswith minimum output arrival time.
Exact conditions are given, under which the algorithm pro-
duces optimum results.

4) lncremental Delay Trace: Global timing optimization
depends heavily on the delay information, such as slacks
or arrival times, derived using a chosen delay model. Most
procedures perform a complete delay trace over the entire
network each time the network i s restructured. However,
restructuring algorithms modify at each iteration only a
small section of the network. It is unnecessary and quite
wasteful to recompute all the timing information. A simple
example i s in Fig. 10. The numbers at the nodes are the cur-

Fig. 10. When A, changes from l to 2, only A, is affected.

rent arrival times. The underlying delay model i s “unit-
delay.” Suppose that during the resynthesis, the arrival time
of x changes from 1 to 2. The only node whose arrival time
is affected i s y. Thus only a few nodes were affected.

In [97, Boolean networks are abstracted as directed
acyclic graphs (DAG’s) and several graph theoretical results
are developed concerning the properties of DAG’s and the
ordering of the nodes in DAG’s. Using the notion of topo-
logical ordering, efficient incremental delay trace algo-
rithms are given which provide greatly improved efficiency
during the restructuring for timing process.

V. LOGIC OPTIMIZATION/MINIMIZATION

This section i s concerned with techniques which, given
a restructured multilevel network, try to optimize the node
functions and, to some extent, improve incrementally the
structure. The result may lead to additional possibilities for
restructuringwhich in turn may allow further optimization.

The key to optimization i s the use of don’t cares. These may
come from many sources and an understanding of the role
they play i s fundamental. As we will see, basically all the
techniques presented in this section make use of don’t
cares, some directly and some implicitly. The topic of sec-
tion V-E on node invariance shows that by understanding
which don‘t cares are used by the various network trans-
formations, one can make definitive statements about the
preservation of testability and the test sets for a network.

A. Internal Don’t Cares

In section I l l-A-I, we discussed external don’t cares and
their several sources. Internal don’t cares arise in multilevel
logic because of the structure of the Boolean network. The
internal don’t cares must be deduced from the given net-
work structure. They are divided into satisfiability and
observability don’t cares.

Satisfiability don’t cares: These don‘t cares are a result
of the existence of the additional intermediate variables yi
introduced at the intermediate nodesof a Boolean network.
As an example, consider the network

x = a6
y = cd
f = x y

which implements f = (a + b) (c + d). For any node that
uses the intermediate variablesx and y, we have the option
of eliminating x and y or expanding the Boolean space to
include these variables. If we do the latter, there are com-
binations of variables which will never occur. For example,
the combination x = 0, a = 0, b = 0 will never occur, and
in general, since x = Z6, then x z a6 will never occur. This
i s expressed by the logic function

x(a + b) + 2%.

The intermediate nodes of a Boolean network impose the
relation

where x i s the set of primary inputs and y the set of inter-
mediate variables. Of course, since the Boolean network i s
acyclic, fj depends on only a subset of they variables. In the
space Blxl+lYl , the “satisfiability don‘t-care (SDC) set” i s
given by

SDC = c (y, 5 + y/ f,).
Sometimes it i s appropriate to leave out the don’t care con-
tribution from node i. This i s denoted as

SDC, = c (y, ?, + 7, 6).

The SDC gives all the internal patterns of signals that will
never occur, due to the network structure, and is called the
satisfiability don’t-care set because each of the relations

/ + ‘

y/ = f/k y)

must be satisfied during the correct operation of the net-
work. The part in the SDC contributed by the function f,,
(y/ 3 + 7, f,) i s called the ”local satisfiability don’t-care set.”

An alternative view of SDC can also be given as follows.
In general, a Boolean function f,(v) i s defined on the space
of primary inputs B”. However, multilevel functions are

282 PROCEEDINGS OF THE IEEE, VOL. 78, NO. 2, FEBRUARY 1990

.

represented using intermediate variables, and hence lead
to the definition of the function on a space of combined
intermediate variables and primary inputs B""". However,
this latter description i s incomplete if the topology of the
Boolean network i s not considered, since mutual depen-
dencies among the variables guarantee that a large set of
points on this extended space can never occur (the SDC
set). Forexample,thecubecorrespondingtof = xyisshown
in Fig. 11. The black dots correspond to the elements of the
SDC set.

X

Fig. 11. Cube representation of f = xy.

In some sense, the SDC really i s not a don't care set at
all, since it i s trivial (the empty set) when viewed as a set in
the primary input space. Also, the size of the SDC set i s
uniquely determined given only the number of primary
inputs (n) and the number of intermediate and output
variables (m) in the network (1 SDC 1 = 2"+"' - 2"). This is
based on the observation that the number of care points
(2") in the space remains constant independent of m.

Observability don't cares: These don't cares occur
becauseateach nodethereisanetworkstructurethat limits
the observability of the value of the node as seen at a pri-
mary output. In discussing this, we need to extend the
notion of a cofactor of a function to that of a Boolean net-
work q with respect to a literal x. This results in the cofac-
tored network denoted by qx. This i s obtained simply by
cofactoring each node function f, of q with respect to the
literal x. However, there is a subtle distinction to be made
here. Note that each fan-out of x, f,, becomes f,x, a function
independent of x. Thus the network qx can be seen as q with
a signal x stuck at 1. A node in the network i s defined not
only by a logic function f,, but also by its interrelation with
the other nodes in the Boolean network. Thus a node j
whose node function f , does not depend explicitly on x is
unaltered in the new networkqx, i.e., f , = f,x, but if it depends
implicitly on x in q , then cx, as a function of the primary
inputs, is changed.

The observability of a node j at an output k of a network
is the notion that fk i s implicitly dependent on y,. This i s
given by the function

where e isthexoRoperator.The meaningofthisisthatafkI
ay, gives the input conditions under which the output fk

differs in the two networks qyJ and qy,, i.e., the conditions
under which the value of y, can be observed at output fk.
The preceding expression is called the Boolean difference
of fk with respect to y,.

There may be conditions under which the value of y, can-
not be observed at any of the outputs. Assume for the
moment that the external don't-care sets DXk are empty.
(This restriction will be removed in the following.) Then

these conditions are given precisely by
-
a fk ODC = n (fky, = fkyl) = n -. - kanoutput kanoutput ay,

This is called the "observability don't-care (ODC) set" for
the signal y,. Note that, unlike SDC, which is common for
the entire network, the ODC, is specific tg, the node y,.

We can now make a precise connection with testing3. A
signal y, can be tested for, say, "stuck-at-I," by finding an
input test vector v such that

a) (m7,,), # 4, and
b) (am,), # 4.

The first condition says that, when we evaluate the network
at v, the value of y, is 0 and the other values of the inter-
mediate variables y, satisfy the compatibility relations y, =
f,(v, y). The second condition says that the value of vis such
that it allows the value of y, to be observed, at least at one
output;

(rn,), = kan;tp"t ($), * 4.

Thus SDC and am, contain the precise conditions under
which y, can be combinationally tested for stuck-at-I or
stuck-at-0. These conditions are associated respectively with
the ability to justify the fault and to propagate it to an out-
put.

Generally, a f / ay, i s not easy to compute. There is a chain
rule that can be used; however, this becomes complex
quickly. For example, assume that f depends explicitly on
g,, g2, * * . , g,, which in turn depend implicitly on y,. Then,
according to the chain rule,

a f agn - af - af ag1 e af ag2 ~ . . . e
ay, %I ay, ag2 ay, agn ay,

e a2f ag1 ag2 ~ a2f ag1 ag3 e . . .
ag1g2 ay, ay/ ag1 ag3 ay, ay,

The terms ag, / ay, can be obtained by recursive application
of the chain rule. The high-order terms in the preceding
expression can be associated with self-sensitizing recon-
vergent paths from y, to an output [73].

The relation between logic minimization and testing i s
straightforward. If a signal y, is not combinationally testable
for, say, stuck-at-I, then the Boolean network will be
unaffected4 if y, i s replaced by 1, thereby simplifying the

31n this discussion, when we speak of testing we mean testing
the block of combinational logic assuming that all inputs are con-
trollableand all outputsareobservable.This"combinationa1" test-
ingdoes nottake intoaccounttheactual testing environmentwhich
may exist. For example, the outputs may not be scan latches, so
observability of the outputs may be reduced by how the outputs
are used. This, of course, is related to the external don't cares.

41t will be unaffected "statically," but it may have an effect on
its timing behavior [73].

BRAYTON er al.: MULTILEVEL LOGIC SYNTHESIS 283

network. Indeed, not only can the node j be eliminated, but
those nodes which are the immediate fan-outs of can be
replaced by fly,, which is a simpler function. The signal y,
i s said to be redundant, and the methods of optimization
which exploit this connection are referred to as “redun-
dancy removal” techniques [9].

One of the transformations made on a network during
logic synthesis isto replacethe node function f, byasimpler
equivalent one. An important consequence that can be
derived using the preceding don’t care sets i s as follows.

Theorem V-anyfu function 6 that can replace (in 7, result-
ing in an equivalent combinational network, i s a cover of
the incompletely specified function derived from f, and the
don’t-care sets SDC,, ODC,.

This i s important because all possible simplifications of (
can be obtained by ”two-level minimization” using a
uniquely derived don’t-care set of node j . In practice, the
don’t-care set used is usually a small subset of this, but the
theory displays what i s possibleand makes the precise rela-
tion with testing clear. Thus redundancy removal as just
discussed can be seen as a special case of the more pow-
erful node minimization based on don’t cares.

The observability don’t-care set ODC, may be obtained
by exhaustive search, by computing, for each primary out-
put i in the transitive fan-out of j , the sets

This requires 2“ “fault simulations” if applied in a straight-
forward way (x E ODC, if no difference is observed at any
primary output node). An efficient approximation [481 may
be obtained by the following.

For i in the “immediate” fan-out of j , let

If G i s a sum-of-products cover and j an intermediate
node, RESTRlCT(j, G) i s a sum-of-products cover G’,
constructed from G by deleting all cubes containing
variables in the transitive fan-out of node j .

A subset of ODC, can be defined recursively as follows. If
j i s a primary output, then DO, = 0 else

DO, = rI RESTRICT Cj, E,,, + DO,).

The recursion proceeds backwards from theoutputs, depth
first. (A similar recursive approximation i s discussed in [19],
but the RESTRICT operation was missing and the approx-
imation was not always a valid subset.) This approximation
is related to the ”observability cover” used by Brglez et al.
in [26], [30], and [31]. The following result states the relation
between DO, and ODC,.

Theorem V-2 (Approximation of ODC,): For all interme-
diate nodes j

I E FO (I)

D O , E , C ODC,m,.

If no reconvergent paths exist from a nodej to the primary
outputs of 7, then

More recently, other valid approximations to ODC, have
been proposed (cf. section V-C).

7) Effect of External Don’t Cares: The conditions under
which a node can be simplified should be augmented by
the use of the external don’t-care sets DXk. This can be done
by adding these to the definitions of ODC, and DO, as fol-
lows:

D O , = RESTRICT (j , + D O ,)

where DOk = OXk if k is a primary output. The extensions
of Theorems V - I and V-2 to include these external don’t
cares i s straightforward.

B. Node Minimization

IEFO(/)

One of the most powerful techniques used in multilevel
logic synthesis i s node minimization. Node minimization
is particularly effective when a Boolean network is partially
collapsed around agiven node. Usuallythis isdone byelim-
inating nodes which have little fan-out. In this collapsing
process, nodes with large logic functions are created. The
hope is these can be effectively simplified. This is done using
a two-level minimizer (such as ESPRESSO). The objective i s
to utilize the implicit don’t care conditions, which exist at
each node of a Boolean network, to perform two-level logic
minimization on the Boolean function associated with the
node. Unfortunately, since the entire don’t-care set i s
extremelylarge, this ideal is prohibitivelyexpensivefor most
practical circuits. Consequently, approximation of this sub-
problem becomes necessary, and two alternative heuristic
approaches have been studied [4], [49], [77], [161, 1681, [851.

The first heuristic, the tautology-based approach, uses
mu I ti level eq u ivalence and tau tology-c hec ki ng algorithms
directly, adapting ideas from the testing literature. The
advantage of this approach i s that all don’t-care conditions
are automatically accounted for, so the optimizer has the
opportunity to account for all optimization degrees of free-
dom. Implementations [4], [49], [50], [77l to date include
most, but not all, ESPRESSO heuristics [22]; hence the power
of the two-level logic minimization i s somewhat diluted. In
particular, the option of exact minimization [83] i s lost.
Although area-minimalitymaynot beachieved, 100-percent
testability of single stuck faults is guaranteed.

The second approach, the don’t-care approach [16], [681,
employs the complete power of the ESPRESSO minimiza-
tion heuristics. However, the don’t-care sets are approxi-
mated, and hence some of the optimization degrees of free-
dom are sacrificed, so again a suboptimal solution i s
obtained. Both of these approaches have their virtues.
Comparisons to date favor the first in optimization quality
and testability, and the second in execution time; however,
continued improvements in both approaches [33], [85] may
alter these observations.

7) The Tautology-BasedApproach: In [4], an algorithm for
node minimization is described, based on the EXPAND,
REDUCE, and IRREDUNDANT-COVER operations of
ESPRESSO [22]. However, these operations do not use the
off-set and two-level tautology as in ESPRESSO, but are
based on tautology checking [51]. Tautology checking i s a
method to verify that two logic functions are equivalent.

PROCEEDINGS OF THE IEEE, VOL. 78, NO. 2, FEBRUARY 1990

This method can be applied to check whether a literal or
a cube is redundant by removing the literal or cube and
checking whether the remaining function is equivalent to
the original one.

When applied to multilevel logic synthesis, the EXPAND,
REDUCE, and IRREDUNDANT-COVER operations can be
based on multilevel tautology to check whether a given lit-
eral or cube is redundant. In concert, these procedures are
referred to as the "ESPRESSO loop." The efficiency of this
approach is determined by the quality of the implemen-
tation of the algorithms which form the basis for multilevel
tautology, e.g., test pattern generation and logic implica-
tion (see section VI).

In [4], a procedure called ESPRESSO-MLT is described
which generalizes this to multilevel logic. It takes a Boolean
network, and proceeds with a number of optimization
passes over all node functions. In each pass, every node is
visited and the following steps are applied:

constant-function check
ESPRESSO loop
Boolean resubstitution
special-case flattening.

When an entire pass is completed without change, the
Boolean network can be guaranteed to be prime, irredun-
dant, and 100-percent testable for single-input stuck faults.
The tests for all the input stuck faults are automatically sup-
plied as a byproduct of the minimization.

The idea of constant-function check i s that if the function
i s a constant, then at most two equivalence checks (check
for constant zero and check for constant one) are required.

Boolean resubstitution, as implemented in BOLD, i s a
generalization of the REDUCE operation to the multilevel
context. Not only does it add literals, but also variables to
the support of the function being minimized. Since Bool-
ean resubstitution can discover Boolean factors, it can mod-
ify the overall structure of the Boolean network.

The idea of special-case flattening is to save computation
time and improve solution quality by eliminating certain
trivial functions. Typical moves are to

1) eliminate buffers (trivial) and inverters by referring to
the negative phase of the fan-in of the inverter,

2) substitute multilevel "AND" functions into a single-
cube "AND" function, '

3) substitute multilevel "OR" functions into single-cube
functions which reference the negative phase vari-
able, and

4) collapse any intermediate function into any fan-out
that has only one literal.

These special cases are chosen because the improvement
i s known a priori and no additional processing i s required
to realize improvement.

To motivate this approach to multilevel minimization,
consider

fl = x1 x 2 + y3
y2 = f2 = x1x2 + F1x2

y3 = f3 = X lX& + x1x2.
Here x1 and x2 are primary inputs and fl and f2 are primary
outputs. This representation has three functions (functions
correspond roughly to gates in a standard cell netlist),

twelve literals (corresponding roughly to transistors), and
seven inputs (corresponding to the amount of intercon-
nect). From a delay viewpoint, the circuit has three levels
of logic, and from a testability viewpoint, there are three
nontestable input stuckfaults, namelyy2stuck-at-0 in f3,and
x1 and x 2 stuck-at-I in f3.

Given this initial representation, applications of the sub-
procedures EXPAND, IRREDUNDANT-COVER, and BOOL-
EAN-RESUB lend to the following changes.

EXPAND: x l x 2 y 2 i s in SDC3, which implies thatq2 can
be dropped from the first cube of f3.
IRREDUNDANT-COVER:FlZ2 is in SDC3, which implies
that the second cube of f3 i s redundant.
BOOLEAN-RESUB: JilX2y2 is in SDC1, which implies lit-
eral v2 can be added to the first cube of fl. The original
literals of this cube are removed by the next EXPAND
step, and the second cube of fl i s removed by the next
IRREDUNDANT-COVER step. Note that f3 itself
becomes redundant, leading to the final (optimal) rep-
resentation.

In this example, the ESPRESSO-MLT procedure derives
the optimum mu Iti level representation

fl = 7 2

f2 = x1x2 + 21x2

which has two functions, five literals, and three inputs. It
has only two levels of logic and is 100-percent testable, with
a complete test set 00,01,10 provided.

2) The Don't-Care-Based Approach: A second approach
to node minimization i s based on a more direct application
of two-level minimization. Partial collapsing of the network
usually precedes this in order to obtain larger functions at
each node with more hope of significant minimization. As
afurther aid in the minimization process, don't cares in the
form of a subset of the SDC and ODC are gathered. After
the two-level form is minimized, it i s factored and decom-
posed.

There are several problems with this approach.

1) The two-level minimizer has as i ts prime objective the
number of cubes in the sum-of-products form.

2) The don't-care set i s large, so when a minimizer like
ESPRESSO, which computes the off-set, is used, the
off-set produced may be huge.

Recently, several attempts have been made to overcome
both these difficulties.

New methods for two-level minimization in the rnulti-
level environment: The first idea i s that the off-set should
not be computed. One way of avoiding the off-set is to use
tautology-based algorithms. Although these methods may
lose some quality in the final cover, tautology-based meth-
ods can be used and can be quite effectivewhen additional
information about the typical case encountered in the mul-
tilevel application [85] i s available. Pertinent information is
that

the don't-care set i s usually represented mostly by
primes,
the initial cover of a node function is usually small, and
there are many variables, due to the presence of many
intermediate nodes.

BRAYTON e? al.: MULTILEVEL LOGIC SYNTHESIS 205

I

The existence of many variables means that during the
reduce operation, one creates cubes with many literals.
Thus many trials must be attempted during tautological
expansion. Since the final expanded cubes usually have a
small number of literals, most of these expansions are suc-
cessful. This leads to the idea of attempting to expand sev-
eral variables at once. Generally, this speeds up the expan-
sion in two ways. First, on the average, less tautology calls
are tried, and second, more tautologies are unsuccessful
(negative tautologies (NP complete) are faster than positive
tautologies (CO-NPcomplete)). Finally, in addressing the first
problem of the preceding, one can choose heuristics which
are directed toward few literals rather than few primes [85].

A second method of avoiding the off-set computation is
to use a new concept called the reduced off-set [68]. This
idea is the recognition that when expanding any one cube
to a prime, the entire off-set is not required or useful. An
example i s the problem:

on-set: Z6Z + Z6c + abc

off-set: ab + bZ + ab.

Note that in expanding the term %Z, the point abc in the
on-set i s of no use and may as well be included in the off-
set during the expansion of ZE?. This leads to the reduced
off-set a + b for this expansion. The interesting points here
are that the reduced off-set can be obtained without ever
computing the off-set, and even though the reduced off-set
i s special for each cube to be expanded, only a few reduced
off-sets will suffice for expanding the entire on-set. The
reduced off-set concept can be combined with the normal
ESPRESSO algorithms to produce a version based on
reduced off-set [68] or can be used in a special reduction/
expansion process aimed at multilevel applications [85].

Filtering the don’t cares: Similar to the idea behind the
reduced off-set, there are parts of the don‘t-care set which
will not be useful in obtaining a minimum representation.
In addition, there are parts which most probablywill never
be useful. Don’t-care filters [84] are based on

- the form of the matrix representation of don‘t-care
cubes, and
the topology of the multilevel network.

In most applications so far, the don’t-care set i s derived
entirely from the SDC. Suppose the SDC or a subset i s rep-
resented in “cube-matrix form.” The cube-matrix form is
a matrix with rows corresponding to cubes, and columns
corresponding to variables. An entry is 0 if the variable
occurs in negative phase in that cube, 1 if in positive phase,
and 2 if the variable does not occur in the cube. One can
show that if the sum-of-products form of the current rep-
resentation of the function plus the don’t-care matrix has
the block form

where (e, f) i s a single column and 2 i s a submatrix of all
2’s; and if the rows associated with f, C, are all don’t care,
then at least one minimum solution remains when the sec-
ond block of rows (2, f, C) are eliminated from the don‘t-
care set. This i s called an “exact filter” since no optimality
i s lost by i t s use. Since it i s easy to detect the specified form

of M given in the preceding, the exact filter should always
be used.

Many “inexact filters” have been tried, and several have
been found to be quite effective. One is the “subset-sup-
port filter” based on topological ideas [84]. This filter i s
applied when a node in the network i s to be minimized. A
don’t-care set i s generated based on the local SDC of only
the nodes which have their support contained in the sup-
port of the node to be minimized. This greatly reduces the
don’t-care set and the run-time of the node-minimization
process without much lossof qualitycompared to usingthe
entire SDC. Using this filter, a more robust logic-minimi-
zation process can be built, since large off-sets are then
rarely encountered. These filters can also becombined with
the reduced off-set for further advantage. Currently, the
subset-support method is the default process used in the
M I S system when a node is simplified.

C. Transduction

The “transduction“ (transformation and reduction)
methods originated with Muroga and students [55] in the
middle 1970’s. The ideas are intimately related to observ-
ability don’t-care sets. Although transduction was given
originally for NOR networks, it has been generalized recently
to networks with different operators at the nodes (AND’S OR’S

NAND’S NOR‘S) [78]. The key idea behind transduction is that
each node in the network i s an incompletely specified func-
tion of the primary inputs. This is the same incompletely
specified function discussed in section V-A, except that in
the latter the functions are represented as functions of the
intermediate variables also. The satisfiability don’t-care set
effectively relates these intermediate variables to the pri-
mary inputs. In transduction, these incompletely specified
functions are called the ”maximum set of permissible func-
tions” (MSPF). The interpretation i s that each function rep-
resents all possible permissible implementations at that
node. As with other versions of this same concept, these
functions are too expensive to compute in practice, so a
subset i s obtained (cf. section V-A). However, in transduc-
tion the subset obtained (called the CSPF) has some addi-
tional interesting properties.

I) Compatible Set of Permissible Functions: The subset
of most interest is called the “compatible set of permissible
functions” (CSPF). The word ”compatible” is the important
operative here. A CSPF at a node is a cleverly chosen subset
of the MSPF. It i s constructed so that a choice of repre-
sentation of the CSPF at a node allows the already com-
puted CSPF’s at the other nodes to remain valid, in the sense
that they are still a subset of the MSPF (which may be
changed). The advantage of the CSPF is that a node or signal
identified to be redundant (essentially a CSPF representing
a function of only 0’s or don’t care) can be set to 0, i.e.,
removed from the network. Hence redundancy removal can
be performed simultaneously by computing all the CSPF’s
and removing all signals identified as redundant.This is dif-
ferent from other methods of redundancy removal, which
require that onceone signal is removed, all other indicated
redundancies must beverified to be redundant before they
can be removed.

The computation of the CSPF’s was given originally for
NOR circuits only; it is based on ordering the inputs to a NOR

gate. The highest ordered input is chosen to be the dom-

PROCEEDINGS OF THE IEEE, VOL. 78, NO. 2, FEBRUARY 1990

inating or controlling input, so that when it i s 1, the other
inputs can be don’t care. Hence, for each input minterm,
searching from highest to lowest order among the inputs
of the NOR, the first input with a 1 is found. For that input
signal, it i s required that it compute a 1, but for all other
inputs, for that miniterm, a 1 or 0 is permissible. Starting
at the outputs, the external don’t cares OXk for the output
are put in the permissible function. The computation pro-
ceeds from outputs to inputs. A CSPF is computed for each
fan-out and each node. If a node has a don‘t care at a min-
term, then each of i ts NOR inputs is also don’t care. A node‘s
output CSPF iscomputed astheANDof all its fan-out CsPF’s.
Note that even though these computations are stated in
terms of minterms, which implies a truth-table-like inspec-
tion, they can be formulated using BDD’s, as done recently
at Fujitsu [71].

Like BDD’s, the order imposed for the CSPF computation
i s important. The observation that the signal with the least
order will inherit the most don’t cares motivates an order-
ing heuristic which ranks the signals in increasing order of
the probabilityof being redundant. These probabilities can
be estimated by random simulation. Another heuristic
assigns highest order to signals with the greatest number
of miniterms in the on-set of the function. Since 1’s are the
controlling value for NOR gates, this heuristic attempts to
introduce more don‘t cares in connections with lower order
signals and hence increases the likelihood of these signals
being removed.

2) Transformations and Reductions: The transduction
method is based on the following CSPF-based transfor-
mations and reductions:

1) redundant circuits pruning,
2) connection addition and deletion,
3) connection substitution,
4) gate substitution,
5) gate merging.

We illustrate the general ideas by discussing two of these.
Gate Merging: Gate merging is illustrated with NOR

gates. Two gates g, and g, can be replaced with one gate
g by the following computation.

1) Find two gates such that CSPF(gl) r l CSPF(g2) # 4.
2) Form a new gate g which i s the NOR of all the inputs

of g, and g,.
3) Remove g, and g, from the Boolean network.
4) Make g fan out to all fan-out points of both g, and g,.

Connection/disconnection: This transformation is sim-
ilar to the REDUCE process in two-level minimization (cf.
section V-B-1). “Connection” i s simply concerned with add-
ing an extra input to a NOR gate. This can be done if the new
function of the NOR gate, with the extra input, remains with
the CSPF after connection. It is relatively easy to make this
calculation using BDD’s. Disconnection i s simply redun-
dancy removal.

The objective of the connectionldisconnection transfor-
mation isto makeaparticulargategredundant.This isdone
by making all possible direct connections from the tran-
sitive fan-in of g to gates in the transitive fan-out of g. The
hope is that these connections will effectively bypass g and
thus make g redundant.

D. Global Flow

”Global flow” [95], [9], [IO], [93] is a technique that has
been employed extensively in the LSS system [35] and is
based on compiler optimization methods. In contrast to
transduction, global flow tries to minimize the fan-out of
a chosen gate, using a more global view via cut-sets of a
derived graph. Also, the connections ade by global flow

7) Implications: Global flow analysis collects information
(implications) of the form y; = b; * y; = b,, where y; and y,
are inputs or internal signals in a Boolean network, and b;,
b, E {0, I } . This information i s collected in sets, called forc-
ing sets, denoted by Sij(x), where i , j E (0, I } and x i s a signal
in the network. For example, if y E Slo(x), then x = 1 * y
= 0.

2) Relation to Don’t Cares: The sets Sij(x) are directly
related to two-literal cubes of the SDC set.

Theorem V-3: In a Boolean networkLyi = bl ayi = bZ, bk

E (0, I } if and only if (y; = b,)(y, = bZ) is an implicant of
the SDC of the network.

Thus, y; = 1 =. y, = 1 can be expressed equivalently as:
yjvj i s a don’t care. The cube yjvj is part of the SDC of the
network. In some cases, yivi may not appear explicitly as a
term in the summation of the individual local SDC’s; SDC
= C(yj$ +vi 4). However, this implicantwill result from the
(possibly iterated) consensus of cubes belonging to differ-
ent terms of the SDC. Since iterated consensus produces
all primes, either yivi results, or one of the literals yi or vi
is a prime of the SDC. In the latter case, the associated gate
i s completely redundant, since its output value is a don’t
care.

3) Computing Approximations to the Forcing Sets: Since
computing the complete forcing sets Sij(x) i s too expensive
in general the subsets eij(x) E Sij(x) are used.

These subsets can be computed using recurrence rela-
tions and are defined to be the least fixed point of these
relations. An important feature i s that these subsets can be
computed simultaneously for all x.

In [93], the functions 4 at the nodes in a network are
restricted to NOR’S. The recurrence relations defined for
subsets elo(x) and e,,(x) of Sl0(x) and Sll(x), respectively,
are given for NOR gates only, by the following equations,
where the relation (y, s) means that y is an input to the gate
with output signal labelled s.

are derived from implications instead ? o CSPF‘s.

elo(x) = elo(x) U {s:3(y, s)[y E el l (x) l }

e;,cx, = e,,cx, U {s:v(y, s)[y E elo(x)l}

U {s:3(s , y), y E elow, V(t, y)

* [t # s * t E e,o(x)]} U { x } .

U {s:3(s , y)[yE el l (x) l } U {s:x E elo(s)}

(2)

These relations can be solved for their least (smallest set)
fixed point by iteration until no change in any set occurs.
Additionally, subsets of these can be computed even more
efficiently if some of the clauses in (1) and (2) are omitted.
Indeed, part of the computation, (1) and (21, of the sets eij(x)
for all x amounts to a kind of restricted iterated consensus.
For future reference, we remark that the fourth clause in
(1) is called the “contrapositive” implication.

BRAYTON et al.: MULTILEVEL LOGIC SYNTHESIS 287

~~

4) The Global Flow Method-Reduction and Expansion:
The process descri bed in [95] focuses on a signal x and mod-
ifies its fan-out in such a way that it preserves the behavior
but reduces the network in some way, e.g., wiring, area, or
timing. This process i s described as a reduction-expansion
iteration, in analogywith theway that two-level logic is min-
imized heuristically [22].

The first process i s a reduction which shows how any sig-
nal y in 3 , , (x) , j E (0, I } can be altered to include x. More
precisely, this i s as follows.

Theorem V-4. The following transformations on a Bool-
ean network are valid.

1) If y, E Tll(x), then replace f, with x + f,.
2) If y, E 5,,,(x), then replace f, with Yf,.

This process is called “reduction,” since it adds literals
to the network and is analogous to the REDUCE operation
in [22].

Definition 7: The I-frontier of a signal x i s defined as the
set of signals s such that

1) s E el,(x), i E (0, I} ,
2) there i s a path (s, j,, j2 , . , OUTPUT) such that no

j k is in e,,,
3) in the directed graph of the network, s i s reachable

from x, i.e., s i s in the transitive fan-out of x.

Definition 2: Let G1 (x) be the graph consisting of nodes
j E e,,(x), j in the transitive fan-out of x, and edges (j, k), j
E Sn, k E e,,(x). In addition, add edges (j , k) if there is a path
from j to k, where the only nodes along the path in e,, are
j and k. A I-cut-set of a signal x i s a set of signals in any of
the C,,(X), i E (0, I } , which in Gl(x) separates x from its 1-
frontier. For example, the I-frontier itself is such a cutset.

A similar set of definitions holds for a signal’s 0-frontier
and corresponding 0-cut-set.

Theorem V-5: If all the gates of a chosen I-cut-set (O-cut-
set) of x are reduced according to Theorem V-4, then any
gate k E G1, k 6 I-cutset (0-cutset) may be expanded by

This process is called “expansion” since it removes lit-
erals from the network, analogous to the EXPAND opera-
tion for two-level minimization. As seen from Theorem
V-3, the e, sets are related to the SDC. The I-cutset and 1-
frontier are related to ODC,.

replacing Fk by F k F (f k x) .

The global flow algorithm i s as follows.

1) Compute the sets e,(x) for al l x in the network.
2) Choose a signal x and value i E (0, I } .
3) Using the e,,(x) set, find the i-frontier of x.
4) Find a minimum weighted i-cutset in C1 of signalssep-

arating x and its i-frontier.
5) Reduce the i-cutset according to Theorem V4(reduc-

tion).
6) Cofactor the remaining fan-out of x in G1 according

to Theorem V-5 (expansion).

The contrast between the reducelexpand process of
global flow, and the reducelexpand process of two-level
minimization is illuminating. In two-level minimization, we
expand or reduce by selecting a cube and then expand or
reduce for all literals of that cube. In global flow, we select

one literal and expand or reduce many cubes in the Boolean
network associated with that literal.

One needs good heuristics to choose which signal x to
use, and which criterion to use in finding the minimum cut-
set. After a network has been changed, it i s also necessary
to recompute the sets eii(x). It is more efficient to do this
incrementally, but no efficient incremental update pro-
cedure is known.

5) Free Nodes: A recent improvement on these ideas [8]
i s the observation that certain nodes, called “free nodes,“
can be deleted from the graph of implied nodes. This
reduces the size of the cutset and helps simplify the net-
work even further. A free node z is one that is implied by
a node y in the forcing set of x, but y is not in the transitive
fan-out of x. Since the free node z may be in the transitive
fan-out of x, deleting it in the graph G, makes G1 smaller.
Thus the cutset of G1 is potentially reduced, which means
that the expansion process can be more effective. Note that
only the free nodes that are also in the frontier are omitted
from the graph. This may reduce the size of the cutset by
reducing the size of the “cone” of implications in the tran-
sitive fanout of the signal x. Leaving the other free nodes
in the graph cannot increase the size of the cutset.

E. Node Invariance

The use of various satisfiability and observability con-
ditions in networks in multilevel synthesis[6]wasdiscussed
in section V-A. Use of don’t-care sets which arise from the
topological structure of the network has been the focus of
several algorithms. Further, implications through the use
of e-sets and 5-sets have been shown to be equivalent to
a subset of the SDC set (cf. section V-D-1). However, the use
of these various forms of don‘t-care sets has been impeded
historically by the feeling that transformations on the net-
work invalidated them, and so recomputation was essential
after each transformation. Since recomputation is fairly
expensive, interest has centered on incremental updates.
The focus of invariance research [75] has been to discern
which transformations affect these sets and how they are
affected.

The general process of logic synthesis can be viewed as
a sequence of well-defined “transformations” of the net-
work which yields a network realizing the same function.
The transformations of the network may be divided into
thosethatchangethedimensionalityoftheextended space
and thosethatdonot. Clearly, transformswhichchangethe
space change the SDC set, but they do so in such away that
the set over the expanded (or contracted) space can be eas-
ily derived. For example, the addition of a dimension
requirestheaddition totheSDCsetof preciselythosepoints
contained in the “local SDC” of the function being added;
hence we can write

SDC’ = SDC + (y , f,).
The effect of deleting a variable is similar and can be
expressed as

SDC’ = SDC, SDCy,.

Thequestion “when does atransformation leave the SDC
set fixed?” can be rephrased as “what information permits
a transformation to change the ‘global functionr5 at a node,

*The global function at a node is the function viewed as a func-
tion of the primary inputs.

288 PROCEEDINGS OF THE IEEE, VOL. 78, NO. 2, FEBRUARY 1990

and so to change the SDC set?" The answer i s that the only
information which permits a transformation to change the
global function of the node is precisely the don't-care set
for the node defined over the primary inputs. In general,
besides the SDC, which i s the null set as seen from the pri-
mary inputs, there are external and observability don't-care
sets. However, many transformations in practice do not use
them. Formally, a transformation does not use a don't-care
set if the transformation remains invariant when the don't-
caresetsare reduced to$. In such acase,thetransformation
must leave the SDC invariant.

Since the don't-care sets for a Boolean network q are
specifications of a circuit, we can formally define a"circuit"
as an ordered pair (q , D), where q is a Boolean network and
D i s a vector of don't-care sets; D, is the don't-care set for
node f, on a network. D, i s equal to the union of the external
and observability don't-care sets of node f,.

A "transformation" 3 i s a mapping from a circuit (q , D)
to a new circuit (q', D'). In general, q f q' and D $ D'. In
this discussion, we consider only transformations where
the set of nodes i s preserved by the transformation.

A transformation 3 : (q , D) * (q', D') i s said to be "in-
variant" if for each node y,, the global function $of y, i s pre-
served. If the global function of each node is preserved,
then the SDC must be preserved. The key result on the pres-
ervation of these sets i s as follows.

Theorem V-6: Let 3(q, D) = (q', D') be any transformation
of a network. 3 is invariant iff for every 0 , 3 (q , 0) = (q', D")
(i.e., q' i s obtained independent of D).

Interestingly, this theorem implies that all the transfor-
mations within the MIS-II [I61 synthesis system, with the
sole exception of "node-simplify," do not change the SDC.
In particular, the forcing sets, used in global flow and other
applications, remain invariant under these transforma-
tions. Further, "node-simplify" does not change the SDC
unless external or observability don't-cares are used.

F. Hierarchy of Networks

Although don't cares are a powerful source of degrees
of freedom for optimizing a network, they do not and can-
not capture all the degrees of freedom. This observation [20]
has led to research on additional methods for describing
and using this flexibility.

1) Insufficiency of Don't Cares and Boolean Relations: In
a logic network specified by a hierarchy where one block
of logic feeds another, it has been observed that don't cares
are not sufficient for representing all the flexibility with
which each block can be simplified. An example is shown
in Fig. 12, where the first block, an adder, feeds its output

Comparator ,@,
Fig. 12. Hierarchical networr.

BRAYTON et al.: MULTILEVEL LOGIC SYNTHESIS

to a comparator. We consider the effect on the minimi-
zation of the adder due to the filtering effect of the com-
parator.

The function of the comparator i s given by

z = 01

z = 00

z = 10

a + b c 3

(a + b = 3) v (a + b = 4)

a + b > 4.

Input values 000,001, and 010 are not distinguished by the
comparator; thus (000,001,010) formsan equivalenceclass.
Theother equivalenceclasses are (011,100) and (101,110,

This leads to a specification for the adder that takes
Ill).

account of this additional flexibility:

alaoblbo
0000
0001
0010
01 00
1000
001 1
0101
0110
1001
1010
1100
0111
1011
1101
1110
1111

x2x1 xn

{ 000,001,010)
(000, 001,010)
(000, 001, 010)
(000,001,010)
(000,001,010)
(011,100)
(000,001,010)
(011,100)
(011, 100)
(011, 100)
(011, 400)
(011,100)
(101,110,111)
(011,100)
(101,110,111)
(101,110,111)

This table is interpreted as a truth table where the set listed
to the right of an input miniterm is a l i s t of acceptable out-
puts of the implementation. This i s an exampleof a Boolean
relation which i s a generalization of a Boolean function. In
general, a "Boolean relation" is a one-to-many mapping; for
each input miniterm there can be more than oneacceptable
output pattern. A don't care on an output is a special case
of this. For example, for the miniterm 0000 in the example,
we could express one set of choices for the outputs as
00-, which says that the outputs could be either 000 or 001;
we don't care if output xo i s 0 or 1. However, this don't care
does not express that the output could also be 010. In fact,
there is no way to express the set (000,001,010) with only
output don't cares. In theexample, ifwe useonlydon'tcares
in the outputs, the best choice of don't cares, constrained
to include the normal adder as an acceptable implemen-
tation, leads to the minimized two-level function, as fol-
lows.

alaoblbo
11-0
-110
10-1
-01 1
-111
11-1
111-
1-1-

XZXlXO

01 1
01 1
01 1
01 1
100
100
01 0
100

289

On the other hand, a special minimizer [g o] , which is
based on an extension of the Quine-McCluskey method to
Boolean relations, produces a much simpler minimum
solution.

alaob&o ~ ~ ~ 1 x 0

0-1- 01 0
1-0- 01 0
1-1- 100
---I 001
-I-- 001

2) Minimizing Boolean Relations: The key observation in
minimizing a Boolean relation (denoted a) i s the notion of
compatible functions. A Boolean function f i s compatible
with @ (f < a) if

f (x) E (R(x), Vx E B'

where @(x) denotes the set of all output patterns accept-
able for the input miniterm x. The minimum implemen-
tation i s some function compatible with a.This leads to the
notion of a c-prime, which i s a prime of any function com-
patible with a. By a slight modification of the consensus
operation, it is possible to generate all c-primes of @ with-
out having to generate the set of all functions fcompatible
with a, a much larger set. After the set of c-primes is gen-
erated, the selection of an optimum set of c-primes is done
by solving a binate-covering problem [g o] . Although this
procedure is expensive, there i s hope that a suitable heu-
ristic minimizer, based on the ESPRESSO expandlirredun-
dantlreduce paradigm, can be constructed.

Another context in which Boolean relations arise is a
finite-state machine with sets of equivalent states. In any
implementation of the FSM, it is not important which state
among an equivalent set is used, and in fact, all the equiv-
alent states may be useful in constructing a minimum
implementation. In the machine, the condition (input, old-
state) =) (newstate, output) may be implemented by using
any one of the states equivalent to newstate. This gives rise
to "symbolic" Boolean relations [66].

VI. LOGIC SYNTHESIS AND TESTING

Today, when a designer implements a combinational
logic design, consisting of a collection of primitive (e.g.,
NAND, NOR) or more complex logic gates, the designer is
working toward a multivariate objective-to meet area,
speed, reliability, and technology constraints while also
trying to ensure the design is testable with a small set of
patterns. This latter task requires that the designer elimi-
nate redundancy during the test phase and perhaps add
additional test points to the circuit. Needless to say, it is
almost impossible for thedesigner to find an optimal trade-
off of all of these competing objectives for anything but the
most simple circuits, or when one or more of these con-
straints i s very loose (e.g., when circuit delay is not an

and design for testability. In fact, as we have seen previ-
ously, the optimization process carried out during logic
synthesis yields a circuit that, ideally, has no redundancy,
and as such is 100-percent testable. Some techniques, such
as multilevel tautology, also yield test vectors as byprod-
ucts. Conversely, automatic test pattern generation (ATPG)
identifies redundant faults and hence can be used to elim-
inate redundant logic.

In this section, we take a close look at the relationships
between logic optimization and testing, and evaluate the
effect that logic synthesis transformations have on the test-
ability of a combinational circuit.

A. Equivalence, Logic Minimization, and Testing

The problem of verifying that two Boolean networks are
equivalent, without regard to their internal structure, will
be referred to as the"genera1 equivalence" problem (some-
times called "formal verification"). This problem often
arises in the context of checking whether the overall effect
of some logic synthesis tool has altered the behavior of a
given network. However, in some cases, like ATPG (auto-
matic test pattern generation) or logic minimization, it i s
known that the two networks differ only in one literal of one
cubeof onefunction. In thiscase theequivalencequestion
i s referred to as the "constrained equivalence problem."
This latter problem is much simpler and can be solved effi-
ciently in practical cases. However, both problems are co-
NP complete. ATPG, being related to the negation of con-
strained equivalence, is NP complete.

All formal methods for multilevel equivalence are
exhaustive in the sense that if a primary input variable
assignment exists which causes a primary output variable
to evaluate to a zero, then this assignment will be discov-
ered. Often a form of binary recursion is employed to sys-
tematically search all possible primary input variable
assignments; and both the general and constrained equiv-
alence algorithms employ a framework based on recursive
binary partitioning of the Boolean n-cube €3". At each step
in this partitioning, the representation i s duplicated, a new
(single) variable assignment i s made to effect the partition-
ing, and the logic of each partition is simplified with an eval-
uation (simulation) procedure. The heuristic for selecting
this variable i s very important, since efficiency rests on
pruning the binary recursion through identification of spe-
cial cases.

There are techniques, for example, subtree matching [57],
for solving the constrained problem that are definitely not
applicable to the general problem. In addition, techniques
for constrained equivalence, such as unique sensitization
and multiple path backtrace [33], may not be applicable to
thegeneral problem. Generally, noone method or program
written for general or constrained equivalence is appro-
priate for all problems. Thus a different set of tools i s
required for these two classes of problems.

important factor). For this reason, it has been the case that
designers will first attempt to find a feasible solution that
meets performance and area goals and later modify the
design, if necessary, to meet test requirements. Testing,
even for combinational circuits, has been a post-design
activity.

Logic synthesis will impact in a significant way on testing

B. The A TPG Process

In the context of this paper, we view ATPG as a specific
caseof theconstrained equivalence process in which afault
is asserted (that is, a change is made to one node of the Bool-
ean network) and a contradiction i s sought, proving the

290
- .. - _

PROCEEDINGS OF THE IEEE, VOL 78, NO. 2, FEBRUARY 1990
~

modified network is not equivalent to the original. The
satisfiability don't-care set, which has already been shown
to play a major role in logic minimization (cf. section
V-6-2; also [85]), i s also very significant in the ATPG context.
In this context, which i s dominated by simulation tech-
niques, satisfiability don't cares are identified when impli-
cations of logical assertions are contradictory. When this
situation occurs, it may be referred to as a "satisfiability
contradiction." Classical work on using implications in
ATPG [44] exploited the forward implications that could be
derived from simulation, but backward, or contrapositive,
implications were basically ignored. FAN [43] improved on
this by accounting for the contrapositive implications indi-
rectly in its"multip1e path backtrace" procedure. However,
until recently, ATPG work appears to have lagged behind
techniques such as the work on global flow (section V-D),
which accounted for all implications, including the con-
trapositive. Schulz changed that by pioneering the use of
contrapositive implications in the ATPG context, and
referred to his technique as "learning," since the contra-
positive implications could not be deduced during simu-
lation but had to be "remembered" from the results of pre-
vious simulations.

Based on improved unique sensitization, and on his
learning technique, Schulz discovered an ATPG approach
[87l, [86] modeled after FAN [43] which obtained remarkable
results. Namely, tests for all irredundant faults could be
obtained with a backtracklimitoften and noabortedfaults,
while identifying all the redundant faults. Empirical evi-
dence (remember that ATPG is NP complete) i s that the fol-
lowing can be true even for "industrial strength" circuits
such as the ones in the ISCAS benchmark set.

Constrained equivalence checking for redundant
faults can be performed in time linear in the sizeof the
network.
Constrained equivalence checking for irredundant
faults can be performed in time linear in the size of the
network.
Fault simulation can drastically reduce the time
required for constrained equivalence checking.

Schulz obtained his results with a three-pass methodology
for ATPG. Each succeeding pass would invoke more pow-
erful methods for the ATPG process. Random test pattern
generation followed by fault simulation was applied prior
to invoking any of the deterministic ATPG algorithms, and
a parallel fault simulator was invoked after each testable
fault was identified. Similar results were obtained in [33].

Since there were no aborted faults in these experiments
using the ISCAS benchmarks, and the backtrack limit was
fixed at ten, the binary recursion tree had not more than
eleven leaves on any individual constrained equivalence
check. Since, on any given leaf of the recursion tree the sim-
ulationlimplication work i s of linear complexity, and since
fault simulation itself is of linear complexity, it is clear that,
for these examples, this type of equivalence checking is,
effectively, of linear complexity. It was observed that in
cases where there are no redundant faults, fault simulation
dominates the overall CPU time consumption (ISCAS exam-
ples c880, c499, ~6288). It is interesting that for c6288 (a 16-
bit multiplier), all faults but one are detected by fault sim-
ulation of the 2000 random patterns, so the constrained
equivalence checker is called only once.

BRAYTON et al.: MULTILEVEL LOGIC SYNTHESIS

C. Redundancy Identification and Removal

In a sense, ATPG can be thought of as "redundancy iden-
tification" (RI). ATPG technology can also be easily har-
nessed to the task of "redundancy removal." In this meth-
odology, ATPG tools identify redundancies one at a time
and put them into a list. Note that a redundant fault implies
that part of the logic is redundant and can be removed.
However, only the logic corresponding to the first fault in
the list can be removed safely. In fact, other faults may not
be redundant any more because of the change in the logic.
All the other faults have to be retested after the first fault
has been removed, although in practice we observe much
independence between the redundant faults. Once the
entire list has been rechecked, the entire ATPG/RI process
can be repeated. These two steps are iterated until all
redundancies are removed. In this way, prime and irre-
dundant networkscould beobtained in times rangingfrom
secondstotensof minuteson aSun41280. Possible heuristic
improvements on this basic approach are numerous,
including those suggested in [28].

An alternative redundancy removal approach was pro-
posed by Brand [9]. In this approach, local topological
searcheswere used to identify redundant nodes in the logic.
However, this method was not exact in the sense that it did
not identify all redundant nodes.

It is of special interest to speculate on the "optimality"
of acircuit that has been designed bythe following two-step
process.

1) Determine an initial overall structure, perhaps using
the algebraic decomposition methods of section IV.

2) Use ATPG techniques like those discussed in the pre-
ceding to identify and remove all discovered redun-
dancies [28], [33].

Some initial results on this subject are presented in [33]:
all of the ISCAS benchmarks can be reduced to prime and
irredundant form in less than 1 hour, overall, on a Sun 4l
280. Compared to MIS optimization results reported on
these ISCAS benchmarks [84], the redundancy removal pro-
gram obtained roughly similar optimization quality overall.
A speed advantage of more than 20 was observed favoring
simple redundancy removal. On the other hand, the full
MIS script includes restructuring as well, and it has been
observed that restructuring has very little effect on the
ISCAScircuits. Thusasecond experimentwasdone recently
where the MIS operations were restricted to those analo-
gous to the ones performed in [33], essentially node min-
imization and cube extraction. Similar results, in terms of
quality, were obtained. The time comparisons varied from
a factor of 50 favoring redundancy removal, to a factor of
4favoring node minimization. Qualityvaried from 121 fewer
literals favoring redundancy removal to 807 fewer literals
favoring node minimization. The speed comparisons show
that redundancy removal is surprisingly fast in some cases,
making this an effective technique for logic minimization.
The literal comparison also shows that redundancy removal
i s quite effective; however, it should be cautioned that the
ISCAS examples are known to be special and to represent
only a subclass of circuits. At the time of this writing, more
examples need to be done to fully position redundancy
removal, using the efficient techniques presented in [33],
within the other operations available for multilevel logic
synthesis.

291

I

D. Synthesis for Testability

Acomplete system for "easily" testable logic was reported
in [27]. With regard to testability which i s guaranteed com-
plete in one sense or another, several papers have appeared.
One approach [4] for area optimization i s guaranteed to
produce logic that is prime, irredundant, and 100-percent
testable for single stuck faults. Further, in this approach, .
the tests are provided as a byproduct of the optimization.
Obviously, the procedures for performing such optimi-
zation efficiently have a strong correlation with ATPG algo-
rithms [42], [87, [86].

More recently [47], [39], [63], [81] logic synthesis has begun
to focus on testability itself as an optimization criterion.
These papers pursue the ideal of optimizing for complete
testability while still striving to reduce network area through
algebraic transformations. The methods discussed in [4],
[4 7 , [39], and [63] all produce logicwhich is 100-percent test-
able for single stuck faults. The method of [39] does this for
finite-state machine logic. References [47] and [63] produce
logic which i s 100-percent testable for multiple stuck faults
as well, but [63] i s restricted to a class of three-level CMOS
circuitsand [4 7 i s restricted toageneral classofcircuitsthat
can be synthesized by the class of algebraic transforma-
tions discussed in section IV-C. The methods in [63] and [81]
produce logic which is 100-percent testable for path delay
faults as well. In the finite-state machine context, [32] gives
a method for state assignment which produces an initial-
izable reset state and overcomes many of the problems
associated with sequential testing.

I) 100-Percent Multifault Testable Networks: In [52], [47],
a theory was outlined for relating 100-percent testability for
two-level prime and irredundant Boolean networks to 100-
percent multifault testability for these same networks.
Much is known about this subject from early research (see
[25, p. 651 and its references), but since then new possi-
bilities arose with the advent of algebraic decomposition
as a primary tool for area optimized synthesis of multilevel
logic. In [47, it was shown that for networks derived by a
suitable class of algebraic decomposition operations, all
tests needed for 100-percent multifault testability can be
derived from the underlying equivalent two-level structure.
A procedure was given that can produce area-optimized
(but not necessarily optimum) multilevel networks which
are 100-percent multifault testable when this two-level
structure either is given or can be computed. Also, iden-
tification was made of classes of algebraic and topological
optimization operations under which the 100-percent mul-
tifault testability property i s invariant.

A testability property called SPI (simultaneously prime
and irredundant) was defined in [52], and it was shown that
asetof prime and irredundant two-level single-outputfunc-
tions was SPI. Briefly, if a network i s SPI, removal of any set
of nodes, literals, or cubes produces a nonequivalent net-
work. Obviously, if a network i s SPI, it i s multifaulttestable.
For NAND networks, SPI and multifault testability are equiv-
alent concepts. Thus SPI can be thought of as the appro-
priate generalization of the classical multifault testability
property to the case where an individual node in the Bool-
ean network can have an arbitrarily complex Boolean func-
tion associated with it. Thus faults internal to these func-
tions need to be accounted for as well.

In [47, it was shown that the SPI property was invariant

under a large class of algebraic and technology mapping
transformations; hence a path was established for produc-
ing multilevel, technology mapped, 100-percent multifault
testable networks which have had the benefit of algebraic
minimization operations.

2) Testability Invariance: In [4 7 , it i s demonstrated that
algebraic methods preserve testability. This result is then
applied to networks that start as single-output optimized
two-level functions. Under these conditions, the initial net-
work i s completely multifault testable. Hence if only alge-
braic procedures are used, the complete multifault test-
ability will be preserved in the derived multilevel network.
However, it makes sense to ask under which general con-
ditions transformations used in logic synthesis preserve
testability.

We discuss first the condition that the output of a node
i s testable for stuck-at-faults. (This can be made equivalent
to edge testability by artificially inserting a buffer on each
edge; the testability of the output of the buffer becomes
equivalent to the testability of the edge.)

As discussed in section V-A, the observability function of
a node x at a node with function f i s defined as

a f
- = fx @ f,
ax

(assuming the external don't-care sets are empty); and the
observabilityfunction of a nodex over a network is the sum
of i ts observability at each primary output:

a 4 mx= c -.
ooipuis 4 ax

The set of tests - for stuck-at-I and stuck-at-0 are therefore,
respectively, FODC, and xODC,. Thus, to determine when
the observability of node x i s unaffected, it is sufficient to
determinewhen thecofactorsof (with respecttoxare unaf-
fected. For this, it i s useful to have a geometric picture of
the cofactor of f with respect to a node y, in a network.

The cofactor of f with respect to y, is the set of possible
points-that is, points outside the SDC-where f = 1 and
y, = 1; in other words, the s e t m + , . However, it i s not quite
correct. A point on the quarter-space fy, may be impossible
becausey, = 1 may be impossibleforthatvertex. Ingeneral,
the "semantics" of cofactor is that y, is stuck to 1 without
regard to the value of (.-Therefore we must exclude from
SDC the set of points y,f, when considering the cofactors
with respect to y,, and the set (7, when considering the
cofactors with respecttoy,.This can bedone by considering
the set defined in section V-A:

k f /

-

SDC, = c Yk @ fk.

Theorem VI-7: The cofactor of f with respect to y, i s the
set of vertices on the extended space in the set

It would seem that every transformation of any strength
at all would affect the test set of at least some node, so the
problem is not to characterize the transforms which leave
the entire set of tests invariant but, rather, to characterize
for a given transform which don't-care sets are left in-
variant. Fortunately, these are easily characterized.

Theorem VI-2: Let 3(7, D) be an invariant transform. If SDC,
i s left unchanged by 3, then the observability function of
y, i s unchanged.

292 PROCEEDINGS OF THE IEEE, VOL. 78, NO. 2, FEBRUARY 1990

To determine which transforms leave SDC, unchanged,
we observed that a) an invariant transform preserves the
cofactors with respect to every primary input, and b) if the
function attached to node y, i s ignored by the transform,
then y, is indistinguishable from a primary input and so its
cofactors, and hence its observability function, are pre-
served by the transform.

As an example, consider the transformation given by the
algebraic division procedure [74], [16]. Algebraic division
examines only two functions, those of the divisor and the
dividend. Hence it follows that at most the testability of the
divisor and the dividend are affected. This observation also
holdsforthe Boolean division algorithm in Fig. 13[16], since

bool-divide(f, g)

Fig. 13.

q, r + alg-divide(f, g)

minimize r with respect to the DC set (x @ g) t qx

(quotient, remainder) e alg-divide(r, x)

return (quotient + q, remainder)

Boolean division.

the only functions referred to in this procedure are those
of f and g. Hence this Boolean division procedure has no
greater or lesser effect on testability than does the algebraic
procedure. Although this result seems counterintuitive, the
fact that this Boolean division procedure uses onlythe local
SDC associated with the divisor means that in some sense
it has no more information than the algebraic procedure.

More powerful Boolean division procedures (cf. section
IV-GI) expand the don’t-care set somewhat to gain more
information. Hence these revised procedures can affect
testabilityand redundancy more globally. However, a trans-
formation can only affect the observability of those nodes
y, such that the effect of the transformation i s dependent
upon the function f,.

Theeffect ofvarious transformationson theobservability
of various nodes are stated in the following. The informal
proof of each result is that the named transformation is
dependent only upon the functions of the named nodes.

Corollary VI-3: Algebraic division and the Boolean divi-
sion of Fig. 13 affect the observability function of (at most)
the divisor and dividend.

Corollary VI-4: Collapsing node f into node g affects the
observability function of (at most) f and g.

Corollary VI-5: Adding node f to or deleting node f from
the network does not affect the observability function of
any node g # f.

Further, if one attempts to simplify a node using the sub-
set-supportfiIter[84](cf. sectionV-B-2)on theSDCand using
no external or observability don’t-cares, one can use these
results to make strong statements concerning the preser-
vation of testability of most of the network. Finally, using
the duality of node and edge testability, if the observability
function for each fan-out edge of a node is preserved, then
the observability for the node i s obviously preserved. Thus
the following i s known.

Theorem VI-6: Algebraic and the Boolean division of Fig.
13 do not affect the observability function of the dividend,
f. Similarly, collapsing node g into node f does not affect
the observability function of f.

This theorem has an interesting and counterintuitive
consequence. Only the observabilityof the nodeg(respec-
tively, the divisor or the node being collapsed) i s affected
by the division or collapsing transformation. This runs
deeply counter to one’s intuition, which suggests that the
inputs to g are similarly affected, since these inputs have
paths through g to the output. However, if g in fact divides
into f i n a nontrivial way, then every input of g i s already
an input of f. Hence the paths from the inputs of g to pri-
mary outputs are neither created nor destroyed.

VII. TECHNOLOGY MAPPING

After a technology-independent optimization of a set of
logic equations, the result must be mapped into a feasible
circuit which i s optimum with respect to area and satisfies
a maximum critical-path delay. The rble of technology map-
ping is to finish the synthesis of the circuit by performing
the final gate selection from a particular library. The algo-
rithms chosen for technology mapping are made less com-
plex because they can be constrained by the structure pro-
duced by the technology-independent optimizations. It i s
not the role of technology mapping to change the structure
of the circuit radically; for example, by finding common
subexpressions between two or more parts of the circuit.
Likewise, it is not the role of technology mapping to reduce
the numberof levelsof logicalongthecritical path.The role
of technology mapping is the actual gate choice to imple-
ment theequations-for example,choosingthefastest gates
along the critical path and using the most area-efficient
combination of gates off the critical path.

There are several characteristics which are desirable for
a technology mapping algorithm: it should

1) adapt easily to different libraries,
2) support irregular collections of logic functions,
3) handle detailed technology-dependent cost func-

tions,
4) be efficient in execution time.

First, it i s desirable that the technology mapping algo-
rithm be able to adapt to a variety of different libraries with
minimal effort. This is difficult because many libraries have
an irregular collection of logic functions available as prim-
itives. An algorithm which depends on characteristics of a
particular library (for example, availabilityof acomplete set
of CMOS and-or invert gates) is of limited use. Also, an algo-
rithm which is geared to a subset of the gates in a library
i s limited in its optimization potential. To achieve the goal
of library adaptability, technology mapping should be
“user-programmable,” i.e., the user should be able to pro-
vide new gates to the technology mapper without under-
standing its detailed operation, and these gates should be
used effectively.

During technology mapping, simple cost functions such
as transistor count or levels of logic will not provide high-
quality circuits. Instead, it i s necessary to consider more
detailed models for the cost of a gate in the actual target
technology. This detailed level of modeling, coupled with

BRAYTON et al.: MULTILEVEL LOGIC SYNTHESIS 293

gates which have irregular area and delay cost functions,
greatly complicates the technology mapping process.

Therefore, to provide high-quality results for different
libraries and circuits, a technology mapping algorithm must
make few assumptions about the relative cost and perfor-
mance of the gates in a library, and must be prepared to
model accurately the cost functions which are to be opti-
mized.

While it is always desirable to have an efficient algorithm,
generally the execution performance of the technology
mapping algorithm is less important than the qualityof the
final result. This i s true for the last optimization of a circuit
before fabrication. However, the steps of technology-inde-
pendent optimization and technology mapping are often
iterated by a logic synthesis system if the performance goals
are not initially met. Technology mapping in this caseoper-
ates as an accurate predictor of the qualityof a technology-
independent representation. These results are fed back to
the technology-independent optimization to improve the
final implementation. Therefore it i s desirable that a tech-
nology mapping algorithm support a fast execution mode
as well as a higher-quality optimization.

The two basic approaches used for technology mapping
are

1) rule-based techniques [351, [461, [561;
2) graph covering techniques [60], [16].

Rule-based techniques have the same structure as rule-
based techniques for technology-independent optimiza-
tion [35]. These are discussed in section VIII. It is important
to mention that a rule-based system can combine the tech-
nology-independent and technology mapping stages, pro-
viding, in principle, a more global view of logic optimiza-
tion. However, the nature of rule-based systems i s to
perform local optimization. Thus the rule-based method
provides an interesting contrast with the two-phase
approach which separates the technology-independent and
dependent phases but which offers a more global view
within each of the phases.

The local-transformationhle-based techniques have suf-
fered historically from inflexibility and large execution
times; however, they have demonstrated the ability to pro-
duce high-quality results.

In this section, we focus on techniques based on graph
covering. These techniques match quite well the require-
ments discussed above.

A. Graph Covering and Technology Mapping

The approach of using directed-acyclic-graph (DAG) cov-
ering for technology mapping in logic synthesis was first
proposed by K. Keutzer of AT&T Bell Laboratories in
DAGON [60]. His thesis was that technology mapping for
logic synthesis is closely related to the problem of code gen-
eration for software compilers, and hence the advanced
techniques that have been developed for code generation
should be applicable to technology mapping.

The problem of code generation in a compiler is to map
a set of expressions onto a set of machine instructions for
the target machine. Extensive research into compilers has
led to efficient ways of formulating and solving this prob-
lem [2]. Each machine instruction i s decomposed into a
directed acyclic graph (DAG) of atomic operations, called

294

~ -

apattern. Each instruction hasacostassociatedwith itwhich
represents the relative cost, in execution time, of choosing
that instruction. The sequence of high-level expressions i s
also represented by a DAG of atomic operations. The opti-
mum code generation problem is equivalent to finding an
optimum cost cover of the subject DAG by the pattern
DAG‘S.

A similar approach is taken for the technology mapping
problem. A set of base functions i s chosen such as a two-
input NAND-gate and an inverter. The logic equations are
optimized in a technology-independent manner and then
converted into agraph where each node i s restricted to one
of the base functions. This graph is called the “subject
graph.” The logic function for each library gate i s also rep-
resented by a graph where each node is restricted to one
of the base functions. Each graph for a library gate i s called
a “pattern graph.” For any given logic function there are
many different representations of the function using the
base function set. Therefore each library gate i s repre-
sented by many different pattern graphs.

The technology mapping problem i s viewed as the opti-
mization problem of finding a minimum cost covering of
the subject graph by choosing from the collection of pat-
tern graphs for all gates in the library. A “cover” i s a col-
lection of pattern graphs such that every node of the subject
graph is contained in one (or more) of the pattern graphs.
Thecover i s furtherconstrained sothateach input required
by a pattern graph i s actually an output of some other pat-
tern graph. For area optimization, the cost of a cover i s
defined as the sum of the areas of the individual gates. For
minimum delay optimization, the cost of a cover i s defined
as the critical path delay of the resulting circuit using an
appropriate delay model. For the more typical problem of
optimizing for minimum area under a given timing con-
straint, any coverwhich results in acircuit with critical path
delay greater than that allowed for any output i s considered
an illegal cover; thus the minimum-area legal cover i s the
optimization goal. If there are no legal covers, the cover of
minimum delay is considered the desired solution.

The critical parts of the procedure are the selection of the
set of base functions and the optimization technique used
to solve the covering problem.

B. Choice of Base Functions

The choice of a set of base functions i s arbitrary as long
as the base function set is functionally complete. However,
this decision does influence the number of patterns needed
to representthegatesinalibraryand thequalityofthesolu-
tion provided by DAG-covering. Thegoal is to find the base-
function set which provides the highest level of optimi-
zation and produces a small set of patterns. In M I S [16], [38],
a base-function set of a two-input NAND-gate and an inverter
i s used. This set can be proved [82] to be as good in terms
of optimization potential as any other set containing two-
input NOR-, AND-, OR-gates and inverters.

When both aNAND-gateand NOR-gateare used in the base-
function set, the number of patterns required to represent
some functions increases. For example, using both a two-
input NAND-gate and a two-input NOR-gate, a large number
of pattern graphs are required for all representations of the
gate f = ab + cd. Variations such as three NAND-gates (with
inverters), three NOR-gates (with inverters), and other rep-

PROCEEDINGS OF THE IEEE, VOL. 78, NO. 2, FEBRUARY 1990

resentations using both NAND-gates and NOR-gates are pos-
sible patterns. Using only the two-input NAND-gate reduces
the number of patterns to one.

Thecovering paradigm implies that each nodeof the sub-
ject graph is covered by a pattern but cannot be split and
partially covered by two patterns. Therefore the granularity
of the base function set affects the optimization potential.
Thus a fine resolution base-function set allows for more
covers, and hence better quality solutions. However, this
has a price-more patterns are required to represent the
logic function for somegates. In DAGON, two-input, three-
input and four-input NAND-gates are used as the base-func-
tion set. With this approach, the logic function

f = abcd + efgh + ijkl + mnop

requires only one pattern-a tree of five four-input NAND-

gates. Representing all patterns for this same function using
two-input NAND-gates and inverters requires 18 patterns.
However, given the possibility for improved optimization,
the finer resolution base function appears to be the better
approach.

C. Creating the Subject Graph

A logic network has many representations as graphs of
components from the base-function set, and each repre-
sentation i s a potential subject graph for DAG-covering.
Each starting point leads to a graph cover of different cost.
Even if the covering problem is solved exactly, every one
of these starting points should be considered for an opti-
mum solution.

Therefore heuristics are used to find a near-optimal form
for the subject graph. As mentioned in the introduction,
these optimizations include algebraic decomposition and
Boolean simplification techniques using technology-inde-
pendent costfunctions.The number of nodes in thesubject
graph is used as a technology-independent estimate of the
area of the circuit. The total number of literals in the sum-
of-products form is effectively the same area estimator. The
longestpathfroman inputtoanoutput in thesubjectgraph
is used to estimate the delay of the circuit.

The goal of technology-independent optimization should
be to find a circuit representation which provides a good
starting point for DAG-covering. The optimized equations
are then transformed into two-input NAND-gate and inverter
form in a straightforward manner.

This transformation i s the same used for restructuringfor
timing [89]. In fact, the starting point provided bythe timing
restructuring algorithm is a good one for technology map-
ping [82]. However, it still remains an open problem to
determinewhich ofthe possible subject graphsoftwo-input
NAND’S and inverters yields the optimum solution when an
optimum covering algorithm is applied.

7) The DAG-Covering Problem: DAG-covering-by-DAG’S
is NP-hard even with only three pattern graphs (inverter,
two-input NAND, two-input NOR) and if each subject graph
node has no more than two incoming and outgoing edges
K11.

An exact covering algorithm has been proposed in [82],
based on a branch-and-bound procedure. However, the
complexityof the algorithm is so large that only trivial prob-
lems could be solved. On the other hand, it is debatable
whether this problem needs to be solved exactly since the

subject graph is already the result of a heuristic mapping
and hence does not reflect the most general optimization
problem that needsto be solved. A moreeffectiveapproach
would be to develop a heuristic DAG-covering algorithm.
However, this is still an open problem. (L. Lavagno at Berke-
ley has experimented with a number of heuristicwith some
degree of success, where XOR’S and multiplexors are allowed
in the gate library. This has been implemented in MIS2.1.)

An alternative approach to the DAG-covering problem is
to simplify it so that the simplified problem could be solved
effectively(for example, in linear time). Of course, the qual-
ity of the final solution will depend on the reduction of the
search space.

Keutzer in DAGON [60] has proposed reducing the DAG-
covering problem to a set of tree-covering-by-trees prob-
lems. His procedure is based on the following steps:

1) partition the subject graph into trees;
2) cover each tree optimally;
3) piece the tree-covers into a cover for the subject

graph.

This approach has proved quite effective. In particular, it
can be shown that if the cost function i s additive, such as
area, the tree-covering problem can be solved with a linear
complexity algorithm based on dynamic programming.
DAGON is a technology mapping program written by
Keutzer on top of the tree manipulation tool “twig” [92].
Twig was originally developed to provide a flexible frame-
work for building efficient algorithms fortree matchingand
for solving the tree-covering problem. Twig uses the Aho-
Corasick [I] string-matching algorithm for matching and
the Aho-Johnson [2] dynamic programming algorithm for
optimum tree covering.

Its weak points are in the loss of global view due to the
step of partitioning into trees. Covers across partition
boundaries are not allowed. It will be interesting to see
whether different partitioning algorithms can substantially
improve the results obtained with this procedure.

The approach followed in M I S [16], [38] i s patterned after
DAGON. To improve the quality of the solution, additional
covers are exposed by replacing any straight interconnec-
tion between gates with a pair of inverters. This augments
the search space substantially at little cost.

D. Delay Optimization and Graph Covering

Synthesis for performance is increasingly important due
to the competitive pressures for electronic systems with
maximum performance. Thus a solution for technology
mapping must consider timing in a direct way. If the delay
were independent of the gate driven (i.e., a constant load
model i s used), then a dynamic-programming algorithm of
linear complexity could be applied as well. Thus far, even
though this model i s not accurate, graph-covering-style
technology mapping for delay has been carried out under
this assumption. The results obtained are reasonable but
by no means optimum. In fact, for a general delay cost func-
tion,theoptimum cover dependson the forward partof the
tree, and hence the dynamic-programming algorithm may
not find the optimum result.

Keutzer and Vancura [62] use tree-height reduction to
reduce the number of gates in a critical path and then do

BRAYTON et al.: MULTILEVEL LOGIC SYNTHESIS 295

drive buffering by placing a constraint on the amount of
drive a gate must have to be used at a fan-out point of the
network. Berman and Carter [7l investigate the problem of
optimally powering up a node with a powering tree to min-
imize the required time at the source node. They prove that
the problem is NP-complete and propose a heuristic algo-
rithm which gives good results.

Rudell[82] has suggested a method to solve the minimum
delay optimization problem for trees and the constrained-
by-timing area optimization problem. His idea is based on
a binning technique for the pin-loads as follows.

1) The unique set of pin-loads i s determined and bin-
ning functions are constructed.

2) An array of solutions at each node of the subject tree
is obtained, one per bin.

3) The arrival time for each cover for each load value i s
com puted.

4) At each input of the cover, the optimum solution for
driving the corresponding pin-load i s selected.

5) The final cover i s chosen based on the external load
at the root of the tree.

The cover obtained by this technique is a minimum-delay
cover. Note that this approach subsumes all technology
mapping-related problems such as phase assignment and
discrete sizing. It can also be generalized to solve the prob-
lem of technology mapping for optimum area cover with
delay constraints.

The complexity of the algorithm i s still linear, but it
depends on the number of load-pins and arrival-time bins.
For a reasonable library, we can have as many as 100 dif-
ferent pin-loads and 10 000 arrival bins (0.01 ns for 100 ns)
yielding 1 000 000 solutions per node! Hence, to make this
algorithm practical, Rudell devised an approximate tech-
nique that uses only a fixed number of bins. A clustering
algorithm provides a good value for the bins so that the
approximation due to the insufficient number of bins i s
minimized. A straightforward implementation of the algo-
rithm runs only four times slower than the standard algo-
rithm.

l a t e :mf
Fig. 14. Example rules from SOCRATES.

296

~

VIII. RULE-BASED METHODS

A popular technique for logic optimization uses “local
transformations” or “rule-based systems.” This includes
the logic synthesis systems LSS [35], SOCRATES [46], and
LORES [56]. LSS uses local transforms; where both tech-
nology-independent transformations and technology map-
pings are addressed uniformly [58]. Both LSS and SOC-
RATES use rule-based techniques as a part of a larger
optimization system. For example, SOCRATES uses two-
level minimization and algebraic decomposition as part of
its Optimization strategy, and LSS uses cube-factoring,
global-flow, and other high-level transformations.

A rule-based system i s a collection of rules and tech-
niques for selecting when and where to apply a rule to
improve the circuit quality. Each rule is expressed as a pair
(“target graph,” “replacement graph”). A rule i s applied by
identifying a portion of the circuit which contains a
subgraph isomorphic to the target graph, and replacing the
subgraph with the replacement graph. Each rule applica-
tion preserves the circuit functionality. Technology map-
ping from Boolean equations starts with a straightforward
translation of the equations into gates in the library (for
example, using only AND-gates and OR-gates) or into a
generic gate (e.g., NAND’S). The circuit quality is improved
through the iterative application of rules. Example rules
from SOCRATES are shown in Fig. 14.

The operation of a rule-based system can be understood
by viewing the optimization as a search on a “state-space
graph.” The state-space graph is a directed graph, where
the nodes represent legal circuit configurations with the
desired functionality, and a directed edge exists from node
v, to v/ if a rule application can transform the circuit of node
v, into the circuit of node v/. Each node in this graph has an
associated cost based on the area and delay of the corre-
sponding circuit. The optimization starts from an arbitrary
node in the state-space graph, and each application of a
rule i s a move to an adjacent node. The goal i s to find the
minimum cost node in the state-space graph.

The difficulty in applying rule-based techniques for opti-
mization i s in solving the problem of searching the state-

:-‘

PROCEEDINGS OF T H E IEEE, VOL. 78, NO. 2, F E B R U A R Y 1990

space graph for the minimum cost node. The approach
reported in LSS and LORES is a greedy strategy. The edges
from the current node are examined in a predetermined
order, and the first edge which improves the value of the
cost function i s selected. The new node is taken as the cur-
rent node, and the process i s repeated until a local mini-
mum is reached. A local-minimum node has no outgoing
edge that improves the value of the cost function.

In SOCRATES, a search technique replaces the greedy
strategy. The search starts from the current node and exam-
inesafixed number of adjacent nodes(the"breadth"0fthe
search). For each of these adjacent nodes, the search is
repeated up to a fixed distance from the current node (the
"depth" of the search). The best move seen in this set of
nodes surrounding the current node defines a sequence of
transformations. The next /transformations are taken as the
next set of moves, and the search i s continued. The param-
eter I controls the amount of look-ahead actually taken. A
sequence of rule applications i s accepted if the cost func-
tion at the end of the sequence i s improved. This allows
intermediate rule applications to temporarily increase the
cost function. A state-space search i s very expensive in
terms of execution time unless the search parameters are
controlled. In SOCRATES , a "meta-level rule-based expert
system" [46] controls the breadth and depth of the search
at each step and chooses the rules to apply. Results show
a 12-percent improvement in area optimization for the par-
tial state-space search over the greedy approach men-
tioned earlier. Typical values for the parameters are / = 1,
depth = 2, and breadth = 4.

The primary advantages of a rule-based system are a) its
flexibility in the types of rules and cost-functions that can
be considered during the optimization, and b) the relative
ease with which the core transformation system can be
developed. The primarydrawbacks of this approach are the
difficulty in creating, maintaining, and modifying the rule-
base, and the difficulty of incorporating new gates into a
library. Also, unless artfully controlled, rule-based systems
tend to be expensive in terms of execution time and offer
an unpredictable quality of the result. These points are
elaborated next.

The execution time of a rule-based system is determined
bythe numberof nodesexamined in thestate-spacegraph.
Examining each node requires a computation of the cost
function, includingtheareaanddelayof thecorresponding
circuit. Even using incremental techniques, computation of
the delay cost function i s expensive (on the order of sec-
onds for a 1-MIP computer on a large circuit [45]). This prob-
lem is aggravated by a bounded state-space search, where
the number of cost function evaluations grows exponen-
tially in the depth of the search. Therefore the cost of a rule-
based approach is especially expensive if searching i s used
to provide high-quality results.

The quality of the circuits produced by a rule-based sys-
tem depends on the completeness of the set of rules, and
the quality of the heuristics which guide the walk in the
search space graph. If the rules are not complete, the state-
space graph may not be connected, leading to the impos-
sibility of reaching particular solutions. Using a greedy
search and a predetermined order to evaluate adjacent
nodes has the problem of becoming stuck in a local opti-
mum which i s far from the global optimum. It i s not clear
if a limited state-space search adequately avoids subop-
timal local minima.

.

Another problem with rule-based systems is that it i s dif-
ficult to incorporate new gates into a library. A technique
which provides technology portability i s to define a master
gate library, and to write all rules in terms of this library.
It is then assumed that all libraries will be a subset of this
master library. If a library has agate which is not in the mas-
ter library, it cannot be involved in theoptimization process
unless additional rules are added. This difficulty is com-
pounded further bythe interaction between the set of rules
and the heuristics which control the rule application. For
this reason, rule sets are handcrafted with a particular tech-
nology and design style in mind. Adding a new rule i s not
simply a matter of adding the rule to the set of transfor-
mations; it is also necessary to consider how the new rule
will interact with the other rules in the system. In the limit,
it may be necessary to rewrite the heuristics which control
the order in which the rules are applied. For this reason,
there i s a significant effort to port the system to new librar-
ies and technologies.

A final problem is the large number of transformations
required to provide high-quality optimization. Writing,
managing, and verifyingall of these rules i s a nontrivial pro-
cess.

Despite these problems, local transformation techniques
have demonstrated the ability to produce high-quality
results. For example, LSS, SOCRATES, and LORES all report
optimization results competitive with human designers [35],
[46], [56]. An interesting recent development is the use of
global flow in the LSS system. It is reported that this allows
the elimination of eight out of nine rewrite rules aimed at
reducing connections, and speeds up the program by one-
third. Considering these discussions, we may consider this
development as a merging of the algorithmic technology-
independent methods with the local transformation meth-
ods.

IX. CONCLUSION

Multilevel logic synthesis i s a powerful technique for the
automatic generation of high-quality combinational cir-
cuits. Multilevel logic synthesis consists of a sequence of
transformations on a multilevel logic network. These can
be applied in an arbitrary sequence; however, the final
result may depend heavily on the sequence chosen. The
operations can be repeated to improve the results. We have
discussed a number of different operations that can be per-
formed on a multilevel logic network. We have attempted
to survey as many techniques as possible, although more
emphasis and detail have been given to those operations
which, in our experience, have proven the most practical.
It should be noted that such experience is biased toward
the kind ofdecisionswe madeatthe beginning of thedesign
of the logic synthesis systems MIS and BOLD. Our approach
has been heavily tilted toward the use of algorithms with
proven properties, and thus we may not have represented
fairly the rule-based approach. We will have to leave a thor-
ough treatment of this approach to other authors and refer
the reader to the existing literature [361, [351, [581, [51, [461.

Even in discussing various algorithmic approaches, there
are many choices, such as spectral methods, transduction,
Boolean minimization, and functional decomposition.
Again, space considerations made it difficult to treat each
of these methods uniformly, so we have chosen to provide
more detail for those methods which we believe to be more

BRAYTON er al.: MULTILEVEL LOGIC SYNTHESIS 297

relevant for the design communi ty and to relegate some of
the other, perhaps promising, methods to a brief summary
w i t h references to papers fu l ly describing t h e approach.

Mul t i leve l logic synthesis, us ing all the techniques that
have been described, can prov ide logic designs wh ich are
competit ive o r better than most manual designs, even
though optimali ty results are still mostly lacking. W e expect,
as the research continues in this area, that t h e algori thms
will cont inue to improve and more theoretical understand-
ing wi l l produce n e w algorithms, thereby leading to ever-
improv ing capabilities.

ACKNOWLEDGMENT

This paper cou ld not have been wr i t ten w i thout the he lp
of Reily Jacoby, Rick McGeer, Chris Morr ison, Rick Rudell,
and Albert Wang, whose Ph.D. theses prov ided well-writ-
ten summariesof manyof thesect ionsof thissurvey,aswell
as extensive bibliographies. W e also thank the reviewers
whose comments made t h e paper a bit more balanced in
the treatment of some ideas and pointed o u t areas needing
more clarification.

REFERENCES

A. Aho and M. Corasick, "Efficient string matching: An aid to
bibliographic search," Commun. ACM, pp. 333-340, June
1975.
A. Aho and S. Johnson, "Optimal code generation for expres-
sion trees,"). ACM, pp. 488-501, July 1976.
R. L. Ashenhurst, "The decomposition of switching func-
tions," in Proc. lnt. Symp. Theory ofSWitching Functions, Apr.
1959.
K. Bartlett, D. Bostick, G. Hachtel, R. Jacoby, M. Lightner, P.
Moceyunas, C. Morrison, and D. Ravenscroft, "Bold: A mul-
tiple-level logic optimization system," in Proc. l €€€ lnt. Conf.
on Computer Aided Design, 1987.
K. Bartlett, W. Cohen, A. de Geus, and G. Hachtel, "Synthesis
and optimization of multilevel logic under timing con-
straints," /€€€ Trans. CAD IC, vol. CAD-5, Oct. 1986.
K. A. Bartlett, R. Brayton, G. Hachtel, R. Jacoby, C. Morrison,
R. Rudell, A Sangiovanni-Vincentelli, and A. Wang, "Multi-
level logic minimization using implicit don't cares," /€€€
Trans. Comput. Aided Design lntegr. Circuits Syst. vol. CAD-
7, no. 6, pp. 723-740, June 1988.
C. L. Berman and J. L. Carter, "The fanout problem: From the-
ory to practice," in Advanced Research in VLSl: Proceeding
ofthe 7989DecennialCaltech Conference, C. L. Seitz, Ed. MIT
Press, May 1989, pp. 69-99.
L. Berman and L. Trevillyan, "Aglobal approach to circuit size
reduction," in Advanced Research in VLSl, 5th MlT Confer-
ence. MIT Press, 1988, pp. 203-214.
D. Brand, "Redundancy and don't cares in logic synthesis,"
I€€€ Trans. Comput., vol. C-32, no. I O , pp. 947-952, Oct. 1983.
D. Brand, "Logic synthesis," in NATOASI on Logic Synthesis
andSilicon Compilation for VLSl, P. Antognetti, G. DeMicheli,
and A. Sangiovanni-Vincentelli, Eds. The Netherlands: Klu-
wer and Dordrecht, 1987.
D. Brand, "PLA-based synthesis without PLA'S," in Proc. lnt.
Workshop on Logic Synthesis, May 1989.
R. Brayton, "Factoring logic functions," ISM). Res. Develop.,
vol. 31, no. 2, pp. 187-198, Mar. 1987.
R. Brayton, N. Brenner, C. Chen, G. Hachtel, C. McMullen,
and R. Otten, "The Yorktown silicon compiler," in Proc. lnt.
Symp. Circ. Syst. (ISCAS-85), pp. 391-394, June 1985.
R. Brayton, R. Camposano, G. De Micheli, R. Otten, and J. van
Eijndhoven, "The Yorktown silicon compiler," in Silicon
Complication, D. Gajski, Ed. Addison-Wesley, 1988.
R. Brayton and C. McMullen, "Synthesis and optimization of
multistage logic," in Proc. lnt. Conf. Comp. Des. (lCCD-84),

R. Brayton, R. Rudell,A. Sangiovanni-VincenteIli,andA. Wang,
pp. 23-28,1984.

"MIS: Multiple-level interactive logic optimization system,"
/€E€ Trans. Comput. Aided Design lntegr. Circuits Syst., vol.
CAD-6, no. 6, pp. 1062-1081, Nov. 1987.

[I71 R. Brayton, R. Rudell,A. Sangiovanni-VincenteIli,andA. Wang,
"Multi-level logic optimization and the rectangular covering
problem," in Proc. / E € € lnt. Conf. on CAD(lCCAD), Nov. 1987.
R. Brayton, R. Rudell,A. Sangiovanni-VincenteIli,andA. Wang,
"Multi-level logic synthesis," notes for lectures at Oxford/
Berkeley Summer Engineering Programme, July 1989.

[I91 R. Brayton, E. Sentovich, and F. Somenzi, "Don't-cares and
global flow analysis of Boolean networks," in Proc. lnt. Conf.

R. Brayton and F. Somenzi, "Boolean relations and incom-
plete specification of logic networks," in lnt. Conference on
Very Large Scale Integration, Aug. 1989.

[21] R. Brayton and F. Somenzi, "Minimization of Boolean rela-
tions," in Proc. lnt. Symp. Circ. Syst. (lSCAS-89), May 1989.

[22] R. K. Brayton, G. D. Hachtel, C. McMullen, and A. Sangio-
vanni-Vincentelli, Logic Minimization Algorithms for VLSl
Synthesis. Boston: Kluwer Academic Publishers, 1984.

[23] R. K. Brayton and Curt McMullen, "The decomposition and
factorization of Boolean expressions," in Proc. Int. Symp. Clrc.
Syst. (ISCAS-82), Rome, May 1982.

[24] R. K. Brayton, "Algorithms for multilevel logic synthesis and
optimization," in NATO AS/ on Logic Synthesis and Silicon
Compilation for VLSl, G. DeMicheli et al., Eds. Dordrecht,
The Netherlands: Kluwer, 1987.

[25] M. A. Breuer and A. D. Friedman, Diagnosis and Reliable
Design of Digital Systems. Woodland Hills, CA: Computer
Science Press, 1976.
F. Brglez,"Testabilitycharacterization of embedded modules
via logic minimization," in Proc. lnt. Workshop on Logic Syn-
thesis, Research Triangle Park, May 1987.

[27] F. Brglez, D. Bryan, J. Calhoun, G. Kedem, and R. Lisanke,
"Automated synthesis for testability," / € E € Trans. Ind. Elec-
tron. vol. IE-56, May 1989.
D. Bryan, F. Brglez, and R. Lisanke, "Redundancy identifi-
cation and removal," in Proc. lnt. Workshop on Logic Syn-
thesis, Research Triangle Park, May 1989.

[29] R. E. Bryant, "Symbolic manipulation of boolean functions
using a graphical representation," in Proc. 22ndDesign Auto-
mation Conf., July 1985.

[30] J . Calhoun and F. Brglez, "A framework for hierarchical test
generation: Version 1.0,'' technical report 89-06, Microelec-
tronics Center of North Carolina, P.O. Box 12889, Research
Triangle Park, NC 27709, Jan. 1989.

[31] J. Calhoun, D. Bryan, and F. Brglez, "Automatic test pattern
generation (ATPG) for scan-based digital logic: Version 1.0,''
technical report 17, Microelectronics Center of North Car-
olina, P.O. Box 12889, Research Triangle Park, NC 27709, Dec.
1987.

[32] K-T. Cheng and V. D. Agrawal, "State assignment for initial-
izable synthesis," in Proc. lnt. Conf. Computer Aided Design

[33] H. Cho, G. Hachtel, R. Jacoby, and P. Moceyunas, "Test pat-
tern generation in logic optimization," in Proc. lnt. Conf.
Computer Aided Design (lCCAD-89), Nov. 1989.
H.Curtis,"Generalized treecircuit-The basic building block
of an extended decomposition theory," /. ACM, vol. 8, pp.
562-581, 1961.

[35] J . Darringer, D. Brand, J . Gerbi, W. Joyner, and L. Trevillyan,
"LSS: A system for production logic synthesis," ISM 1. Res.
Develop., vol. 28, no. 5, pp. 537-545, Sept. 1984.

[36] J. Darringer, W. Joyner, L. Berman, and L. Trevillyan, "Logic
synthesis through local transformations," ISM /. Res.
Develop., vol. 25, no. 4, pp. 272-280, July 1981.

[37] Edwards S. Davidson," An algorithm for NANDdecOmpOSition
under network constraints," / € E € Trans. Computers, vol.
C-18, Dec. 1969.

[38] E. Detjens, G. Cannot, R. Rudell, A. Sangiovanni-Vincentelli,
and A. Wang, "Technology mapping in MIS," in Proc. lnt.
Conf. CAD (lCCAD-87), Nov. 1987, pp. 116-119.

[39] S. Devadas and K. Keutzer, "Boolean minimization and alge-
braic factorization procedures for fully testable sequential
machines," in Proc. lnt. Conf. Computer Aided Design
(lCCAD-89), Nov. 1989.

[40] D. Dietmeyer and Y. Su, "Logic design automation of fan-in

[I81

CAD (lCCAD-88), NOV. 1988, pp. 98-101.
[ZO]

[26]

[28]

(lCCAD-89), NOV. 1989.

[34]

PROCEEDINGS OF THE IEEE, VOL. 78, NO. 2, FEBRUARY 1990

limited nand networks,” l€EE Trans. Comp., vol.,C-18, no. 1,
pp. 11-22, Jan. 1969.
D. M. Du, “Variable transformation-A new approach to syn-
thesizing combinational switching circuits,” in froc. Work-
shop on Microelectronic and lnformation Syst., Dec. 1986, pp.

H. Fujiwara, Logic Testing and Design for Testability, M.I.T.
Press Series in Computer Systems. Cambridge, MATheM.1.T.
Press, 1985.
H. Fujiwara and T. Shimono, “On the acceleration of test gen-
eration algorithms,” /€E€ Trans. Computers, pp. 1137-1144,
Dec. 1983.
P. Goel, “An implicit enumeration algorithm togenerate tests
for combinational logic circuits,” /€E€ Trans. Computers, vol.
C-30, no. 3, pp. 215-222, 1981.
D. Gregory, personal communication, Apr. 1988.
D. Gregory, K. Bartlett, A. de Geus, and G. Hachtel, “Socrates:
A system for automatically synthesizing and optimizing com-
binational logic,” in froc. 23th Design Automation Conf., June

G. Hachtel, R. Jacoby, K. Keutzer, and C. Morrison, “On the
relationship between area optimization and multifault test-
abilityof multilevel logic,” in froc. Int. Conf. ComputerAided
Design (ICCAD-89), Nov. 1989.
G. Hachtel, R. Jacoby, and P. Moceyunas, “On computingand
approximating the observability don‘t care set,” in Proc. lnt,
Workshop on Logic Synthesis, Research Triangle Park, May
1989.
G. Hachtel, M. Lightner, R. Jacoby, C. Morrison, and P. Moce-
yunas, “A tutorial on combinational logic synthesis,” in froc.
Int. Conf. on Computer Aided Design (lCCAD-88), 1988.
G. Hachtel, M. Lightner, R. Jacoby, C. Morrison, P. Moce-
yunas, and D. Bostick, “Bold: The boulder optimal logic
design system,” in Hawaii Int. Symp. on Systems Sciences,
1988.
G. D. Hachtel and R. M. Jacoby, “Algorithms for multi-level
tautology and equivalence,” in Proc. I f € € Int. Symp. on Cir-
cuits and Systems, June 1985.
C. D. Hachtel, R. M. Jacoby, and C. R. Morrison, “Techmap:
Technology mapping with area and delay optimization,” in
hoc. lnt. Workshop on Logic and Architecture Synthesis for
Silicon Compilers, Grenoble, France, May 1988.
M. Helliwell and M. Perkowski, “Afast algorithm to minimize
multi-output mixed-polarity generalized Reed-Muller forms,
in Design Automation Conf., June 1988, pp. 427-432.
S. L. Hurst, D. M. Miller, and J . C. Muzio, SpectraITechniques
in Digital Logic. New York: Academic Press, 1985.
T. lbaraki and S. Murago, “Synthesis of networks with a min-
imum number of negative gates,” /€E€ Trans.€omputers, vol.
C-20, pp. 49-58, Jan. 1971.
J . Ishikawa, H. Sato, M. Hiramine, K. Ishida, S. Oguri, Y.
Kazuma, and S. Murai, “A rule-based reorganization system
LoreslEX,” in froc. Int. Conf. Comp. Des. (ICCD-88), Oct.

R. Jacoby,”On thecomparisonof Boolean functions,”Ph.D.
thesis, University of Colorado, May 1989.
W. Joyner, L. Trevillyan, D. Brand, T. Nix, and S. Gundersen,
”Technology adaptation in logic synthesis,” in froc. 23th
Design Automation Conf., June 1986, pp. 94-100.
K. Karplus, “Using if-then-else DAG’S for multi-level min-
imization,” in Decennial Caltech Conference on VLSl, May
1989.
K. Keutzer, “DACON: Technology binding and local optimi-
zation by DAG matching,” in froc. 24th Design Automation
Conf., June 1987, pp. 341-347.
K. Keutzer, personal communication, Feb. 1989.
K. Keutzer and M. Vancura, “Timing optimization in a logic
synthesis system,” in froc. lnt. Workshop on Logic and
Architectural Synthesis, May 1987.
S. Kundu and S. M. Reddy, “On thedesign of robust multiple
fault testable cmos combinational logic circuits,” in froc.
/€E€ lnt. Conf. Computer Aided Design, Nov. 1988, pp. 240-
243.
Eugene Lawler, Combinatorial Optimization. Holt Rinehart
Winston, 1976.
Eugene L. Lawler, “An approach to multilevel boolean min-
imization, 1. Assoc. Comput. Machinery, vol. 11, July 1964.

441 -461.

1986, pp. 79-85.

1988, pp. 262-266.

1721

[731

1751

1821

1831

[841

B. Lin and A. R. Newton, ”Restructuring state machines and
state assignment: Relationship to minimizing logic across
latch boundaries,“ in lnt. Workshop on Logic Synthesis, May
1989.
A. Malik, R. Brayton, and A. Sangiovanni-Vincentelli, “Logic
minimization for factored forms,” in lnt. Workshop on Logic
Synthesis, May 1989.
Abdul A. Malik, Robert K. Brayton, A. Richard Newton, and
Alberto L. Sangiovanni-Vincentelli, “A modified approach
to two-level logic minimization,” in froc. Int. Conf. on CAD

S. Malik, R. Brayton, and A, Sangiovanni-Vincentelli,
“Encoding symbolic inputs for multi-level logic implemen-
tation,” in lnt. Conf. Very Large Scale Integration, Aug. 1989.
S. Malik, A. Wang, R. Brayton, and A. Sangiovanni-Vincen-
telli, “Logic verification using binary decision diagrams in
a logic synthesis environment,” in froc. Int. Conf. Computer
Aided Design (lCCAD-88), 1988, pp. 6-9.
Y. Matsunaga and M. Fujita, “Multi-level logic optimization
using binary decision diagrams,” in I€€€ Int. Conf. on Com-
puter-Aided Design, Nov. 1989.
E. 1. McCluskey, “Minimization of boolean functions,” Bell
Lab. Tech. I., vol. 35, Nov. 1956.
P. McGeer, “On the interaction of functional and timing
behavior in combinational circuits,” Ph.D. thesis, University
of California, Berkeley, 1989.
P. McGeer and R. Brayton, “Efficient, stable algebraic oper-
ations on logic expressions,” in froc. Int. Conf. on Very Large
Scale Integration, Aug. 1987.
P. C. McCeer and R. K. Brayton, ”Consistency and observ-
ability invariance in multilevel logic synthesis,” in lnt. Conf.
on Computer-Aided Design (lCCAD-89), 1989.
C. Moraga, “Comments on a method of Karpovsky,”Inform.
Control, vol. 35, no. 3, pp. 243-246, 1977.
C. R. Morrison, “Multilevel logic minimization,” Ph.D. the-
sis, University of Colorado, Aug. 1989.
S. Muroga,Y. Kambayashi, H. C. Lai, and J. N. Culliney,”The
transduction method-design of logic networks based on
permissible functions,” /€E€ Trans. Computers, 1989.
S. M. Reddy, “Easily testable realization for logic functions,”
I€€€ Trans. Computers, vol. C-21, pp. 1183-1188, Nov. 1972.
P. J. Roth and R. M. Karp, “Minimization over Boolean
graphs,” IBM 1. Res. Develop., vol. 6, Apr. 1962.
K. Roy, K. De, J. A. Abraham, and S. Lusky, “Synthesis of delay
fault testable combinational logic,” in froc. lnt. Conf. Com-
puter Aided Design (lCCAD-89), Nov. 1989.
R. Rudell, “Logic synthesis for VLSl design,” Ph.D. thesis,
University of California, Berkeley, 1989.
R. Rudell and A. Sangiovanni-Vincentelli, “Exact minimi-
zation of multiple-valued functions for pla optimization,“ in

A. Saldanha, A. Wang, R. Brayton, and A. Sangiovanni-Vin-
centelli, “Multilevel logic simplification using don’t cares
and filters,” in Roc. I€€€ Design Automation Conf., June
1989.
H. Savoj, A. A. Malik, and R. Brayton, “Fast two-level min-
imizers for multilevel logic synthesis,” in froc. Int. Conf. on
Computer Aided Design (lCCAD-89), Nov. 1989.
M. Schulz and E. Auth, “Advanced automatic test pattern
generation and redundancy identification techniques,” in
froc. 18th Int. Symp. on Fault-Tolerant-computing, 1988.
M. Schulz, E. Trischler, and T. Sarfert, “Socrates: A highly
efficient ATPG system,” /€E€ Trans. Comput. Aided Design
Integrat. Circuits Syst., vol. CAD-7, no. 1, pp. 126-137, Jan.
1988.
R. Segal, “BDSYN: Logic description translator; BDSIM:
Switch-level simulator,” master’s thesis, University of Cal-
ifornia, Berkeley, May 1987; memorandum UCB/ERL M87/33.
K. Singh, A. Wang, R. Brayton, and A. Sangiovanni-Vincen-
telli, “Timing optimization of combinational logic,” in froc.

F. Somenzi and R. K. Brayton, “An exact minimizer for bool-
ean relations,” in lnt. Conf. Computer-Aided Design (ICCAD-
89), Nov. 1989.
A. Srinivasan, “Muroga’s transduction methods and multi-
valued decision diagrams,” EE290LS Class Project, EECS
Dept., University of California at Berkeley, May 1989.

(ICCAD-88), NOV. 1988.

/‘roc. lnt. COnf. On CAD (ICCAD-86), pp. 352-355, 1986.

Int. Conf. CAD (ICCAD-88), NOV. 1988, pp. 282-285.

BRAYTON et al.: MULTILEVEL LOGIC SYNTHESIS 299

[92] S. Tjiang, “Twig reference manual,” technical report, AT&T
Bell Laboratories, 1985.

[93] L. Trevillyan and L. Berman, “A global flow approach to cir-
cuit optimization,” in Proc. Fifth MIJ Conf. on VLSI, Mar.

[94] L. Trevillyan and L. Berman, “Improved logic optimization
using global flow analysis,” in Proc. Int. Conf. Computer
Aided Design (/CqD-88), pp. 102-,105, Nov. 1988.

[95] L. Trevillyan, W. Joyner, and L. Berman, “Global flow anal-
ysis in automated logic design,” /€€€ Trans. Computers, vol.
C-35, no. 2, pp. 77-81, Jan. 1986.

[96] D. Varma and E. A. Trachtenberg, “Design automation tools
for efficient implementation of logic by decomposition,” I€€€
Trans. Comput. Aided Design Integr. Circuits Syst., 1989.

[97] A. Wang, “Algorithms for multi-level logic optimization,”
Ph.D. thesis, University of California, Berkeley, 1989.

[98] C-L. Wey, 5-M Chang, and J-Y Jo, “An efficient output phase
assignment for multilevel logic minimization,” in Int. Work-
shop on Logic Synthesis, May 1989.

1988, pp. 203-214.

Robert K. Brayton (Fellow, IEEE) received the
B.S.E.E. degree from Iowa State University
in 1956 and the Ph.D. degree in mathe-
matics from MIT in 1961.

From1961 tol987hewasamemberofthe
Mathematical Sciences Department of the
IBM Thomas J. Watson Research Center at
Yorktown Heights, NY. From 1970 to 1972,
he was Assistant Director of the depart-
ment, and in recent years he was a second
level Manager for mathematical algo-

rithms. HewasaVisiting ProfessoratMlTin 1965-1966;atthe Impe-
rial College, London, in 1975-1976, and at the University of Cali-
fornia, Berkeley, in 1985-1986. In 1987 he joined the Department
of Electrical Engineering and Computer Sciences at the University
of California, Berkeley, where he is presentlya Professor. His inter-
ests and contributions have been in the areas of nonlinear net-
works, stability theory, numerical methods for differential equa-
tions, sparse matrices, simulation of electrical circuits, optimization
methods for circuit design, logic synthesis and minimization, sil-
icon compilers, and general CADlVLSl issues.

Dr. Brayton has authored or coauthored more than 80 technical
papers and is the coauthor of two books: Logic Minimization Algo-
rithms for VLSlSynthesis (with G. D. Hachtel, C. T. McMullen, and
A. Sangiovanni-Vincentelli) and Computer Aided Design: Sensitiv-
ity and Optimization (with R. Spence). He has served on various
IEEE committees, including the Circuits and Systems ADCOM,
CANDE, and Large Scale Systems. He i s a fellow of the AAA5 He
shared (with G. D. Hachtel and F. G. Gustavson) the Best Paper
Award of the IEEE Circuits and Systems Society in 1971 for “The
SparseTableau Approach to Network Analysisand Design.“ In 1988,
he received the Darlington Award of the IEEE Circuits and Systems
Society. In addition, he has received two IBM Outstanding Inno-
vation Awards and two IBM patent awards.

Gary D. Hachtel (Fellow, IEEE) received the
B.S. degree from the California Institute of
Technology in 1959 and the Ph. D. degree
from the University of California, Berkeley,
in 1965, all in electrical engineering.

He has taught at U.C. Berkeley, at New
York University, at U.C.L.A., where he was
Regents Lecturer in 1974, and at the Uni-
versity of Denver. From 1965 to 1981 he was
with IBM at theThomas). Watson Research
Center at Yorktown Heights, NY, where he

was Manager of Modeling and Systems Design in the Mathematical
Sciences Department. Since 1981 he has been Professor of Elec-
trical and Computer Engineering at the University of Colorado,
Boulder. His current research i s on algorithms for computer-aided
design, including logic synthesis, simulation, testing, layout, sparse
matrices, and optimization.

Dr. Hachtel was Associate Editor for the International Journal for
Numerical Methods in Engineering and for the IEEE TRA~SACTIONS
ON CIRCUITS AND SYSTEMS. He i s now Associate Editor for the Inter-
national Journal for Mathematics and Computation in Electronics
and Electrical Engineering. He received an IBM Outstanding Con-
tribution Award for integrated circuit modeling in 1968 and an IBM
Outstanding Invention Award for the tableau approach to network
design. In 1971 he was co-recipient of the best paper award from
the Circuits and Systems Society, and in 1979 he received the W.R.C.
Baker award for the best IEEE PROCEEDING or TRANSACTIONS article to
appear in calendar year 1978. In 1981 he was a distinguished lec-
turer of the Circuits and Systems Society.

Albert0 Sangiovanni-Vincentelli (Fellow, IEEE)
received the Dr. Eng. degree (summa cum
laude) from the Politecnico d i Milano, Italy,
in 1971.

From 1971 to 1977, he was with the Isti-
tuto di Elettrotecnica ed Elettronica, Poli-
tecnico d i Milano, Italy, where he held the
positions of Research Associate, Assistant,
and Associate Professor. In 1976, he joined
the Department of Electrical Engineering
and Computer Sciences of the University of

California at Berkeley,where he i s presently Professor. He i s a Con-
sultant in the area of computer-aided design to several industries.
His research interests are in various aspects of computer-aided
design of integrated circuits. He was Associate Editor of the IEEE
TRANSACTIONSON CIRCUITSAND SYSTEMS, and i s Associate Editor Of the
IEEE TRANSACTIONSON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS
AND SYSTEMS and a member of the Large-scale Systems Committee
of the IEEE Circuits and Systems Society and of the Computer-Aided
Network Design (CANDE) Committee. He was Executive Vice-Pres-
ident of the IEEE Circuits and Systems Society in 1983.

In 1981, Dr. Sangiovanni-Vincentelli received the Distinguished
Teaching Award of the University of California. At the 1982 IEEE-
ACM Design Automation Conference, he was given a Best Paper
and a Best Presentation Award. In 1983, he received the Guillemin-
Cauer Award for the best paper published in the IEEETRANSACTIONS
ON CAS and CAD in 1981-1982. At the 1983 Design Automation Con-
ference, he received a Best Paper Award. In 1988, he received the
Darlington Award of the IEEE Circuits and Systems Society. He is
a member of ACM and Eta Kappa Nu.

300 PROCEEDINGS OF THE IEEE, VOL. 78, NO. 2, FEBRUARY 1990

