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A survey o f  logic synthesis techniques for multilevel combina- 
tional logic is presented. The goal is to provide more in-depth 
background and perspective for people interested in pursuing or 
assessing some o f  the topics in this emerging field. Introductions, 
capsule summaries, and, in some cases, detailed analysis, o f  the 
synthesis methods which have become established as practically 
significant are provided. Also included are some methods which 
have theoretical interest and potential for future impact. 

I .  INTRODUCTION 

A long-term goal for computer-aided design (CAD) sys- 
tems i s  the automatic synthesis from a behavioral descrip- 
tion to silicon, producing near-optimal results that meetthe 
specifications set by the designer and that are competitive 
with or better than manually aided designs. This capability 
will become increasingly important as the application-spe- 
cific integrated circuit (ASIC) market continues to meet its 
rapid growth projections. The quality of such systems and 
the ability to quickly produce correct designs will be crucial 
for competitiveness in this market. 

As various CAD areas have matured, they have provided 
algorithms and programs which then are improved, doc- 
umented, supported, and made commercially available. 
Historically, this has happened with simulation and phys- 
ical design. In physical design, automatic layout tools, 
placement and routing, cell editors, design rule checkers, 
extractors, etc. are widely available and widely used. Logic 
synthesis i s  the next higher level of abstraction. This area 
is at the knee of the commercial development curve; initial 
software offerings are available, and it i s  already evident 
that these are successful. 

Logic synthesis fits between the register transfer level 
(RTL) specification of a digital design and the netlist of gates 
specification. It provides the automatic synthesis of near- 
optimal logic netlists, whether the goal i s  minimum delay, 
minimum area, or some combination. Logic synthesis is 
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usually considered as dealing with all facets of pure com- 
binational logic, including its optimization, design for test- 
ability, and verification. Logic synthesis i s  applied to the 
logic extracted from an RTL language. If the language 
includes storage constructs, these are usually set aside with 
their inputs and outputs being outputs and inputs, respec- 
tively, to combinational logic blocks. The resulting com- 
binational logic blocks are operated on by the logic syn- 
thesis algorithms separately. Finally, the results are 
reconnected to provide a single overall design. During this 
process, information may be extracted about the environ- 
ment in which a logic block i s  to operate. This may include 
signal arrival and required times, parasitics, and don’t-care 
conditions. Logic synthesis i s  the problem of using this 
information to produce a correct implementation which 
meets timing and testabilityconstraints and minimizes area. 

After logic synthesis, the next level of abstraction i s  logic 
that includes memory devices, referred to as sequential 
logic. Although some systems leave elements in the mem- 
ory when manipulating the combinational logic, little has 
been done, besides the application of a few rules, to treat 
memory on an equal basis with logic gates and to develop 
algorithms and theory for these types of networks. How- 
ever, this i s  becoming an extensive research area and, in the 
next few years, we expect to see sophisticated commercial 
offerings for simultaneous synthesis of logic and memory. 

The logic synthesis area i s  usually divided into two-level 
synthesis (PLA) and multilevel synthesis. Two-level logic 
minimization has been used to synthesize PLA’s for control 
logic. Because of the architecture inherent to PLA’s, opti- 
mization methods focus almost exclusively on minimizing 
the number of PLA product terms, which in turn minimizes 
the PLA area. The area of two-level combinational logic min- 
imization has already matured. One can routinely find a 
minimum or near-minimum sum-of-products form for a 
logic function. These functions can be multiple output, 
incompletely specified, and functions with multiple-valued 
input variables. Functions with hundreds of inputs and out- 
puts are within the realm of the algorithms. The optimi- 
zation can also be done in a reasonable amount of com- 
puting time [22]. 

Theother method for implementinglogic,which isuseful 
for both control and data-flow logic, i s  multilevel logic, 
sometimes called random logic. The design of random logic 
has as objectives: 
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minimize overall layout area of the fabricated chip; 
minimize critical path delay time; 
maximize the testability of the synthesized logic, and 
provide a complete set of test vectors as a byproduct 
of the optimization. 

Because of the increased potential for reusing sublogic, 
there are more degrees of freedom in the solution space 
than in the PLAcase. Consequently, it has been much more 
difficult to synthesizethis typeof logicatalevel competitive 
with manual synthesis. 

However, in the past fiveyears, the area of multilevel logic 
synthesis has blossomed. Not only i s  it a very active area 
of continuing research, but also the methods and algo- 
rithms developed thus far have been successfully adopted 
in commercially available products and in software avail- 
able internally in the larger companies. CAD enterprises, 
such as Synopsys, Silc, Trimeter (now part of Mentor), VLSl 
Technology, and Silicon Compilers Systems, offer sophis- 
ticated multilevel logic-synthesis capabilities. Large com- 
panies, such as IBM, AT&T, NEC, and NTT, have a produc- 
tion code that has been used routinely for several years in 
chip synthesis. 

A capsule history of the more recent developments in 
multilevel logic synthesis provides a contrast between two 
basic approaches adopted. It starts in the late 1970’s with 
the development at IBM of the LSS system [36] using rule- 
based local transformations.Thecurrent LSS system, which 
has continued to evolve, is used in IBM production for the 
synthesis of many chips used in their medium and large 
computers. The local-transformation/rule-based methods 
use a set of a d  hoc rules which are fired when certain pat- 
terns are found in the network of logic gates. A rule trans- 
forms a pattern for a local set of gates and interconnections 
into another equivalent one. Since rules need to be 
described, and hence must know about each gate type, the 
rule-based approach usually requires that the description 
of the logic be confined to a limited number of gate types, 
such as AND, OR, and NAND, or to those gates in a technology 
library for which the rules have been derived. In addition, 
the transformations have limited optimization capability 
since they are local in nature and do not have a global per- 
spective on the design. Other examples of rule-based sys- 
tems are those in use at NEC and Trimeter. 

Beginning in about 1981, in parallel with and much influ- 
enced by activity in two-level logic synthesis, an approach 
evolved based on algorithmic transformations. The algo- 
rithmic point of view uses two phases: a technology-inde- 
pendent step based on algorithmsfor manipulatinggeneral 
Boolean functions [23] and a technology-mapping step 
where the design described in terms of generic Boolean 
functions i s  mapped into a set of gates that can be imple- 
mented in the design method of choice (gate-arrays, stan- 
dard-cells, macro-cells). Both rule-based approaches and 
algorithmic approaches have been successful. Algorithmic 
systems are MIS 1161, BOLD [51, 161, [IO], 1501, [221, [241, [931- 
[95], and those used at Synopsys, Silc, AT&T, Eindhoven, 
and the University of California-Santa Cruz. As shown in 
this survey, a distinguishing feature for most of these sys- 
tems is  the extent to which they are able to exploit the 
degrees of freedom of the design problem in the optimi- 
zation process. 

Most logic synthesis systems divide the technology-inde- 

pendent phase of the design problem into two major sub- 
problems: 

1) create or modify the overall “architecture” of the 
given logic to produce a near-optimal “structure” 
where common sublogic is identified; 

2) “Qptimize” the logic with respect to the structure 
obtained in Step I-for example, make logic com- 
ponents optimal with respect to two-level minimi- 
zation. 

In thealgorithmic approach, Step 1 is divided into algebraic 
and Boolean approaches. In Step 2, a major confluence 
occurs between optimal synthesis and testing. 

Recently, there has been a trend toward combining the 
technology-independent activity and technology mapping, 
using the algorithmic methods in the initial stages of the 
synthesis, and the rule-based approach in the final stage 
when technology considerations are important. Examples 
of this combined approach are SOCRATES [5] and the more 
recent versions of LSS [8]. 

In this paper, we survey the algorithms and alternative 
approaches used, the representation of the logic, the qual- 
ity of results obtained, the relation to other areas such as 
testing, and some of the frontiers of research currently 
being pursued. The goal is to provide background and per- 
spectivefor people interested in pursuingorassessing some 
of the topics in more depth. We provide summaries of syn- 
thesis methods which have been established as being prac- 
tically significant, as well as those which have theoretical 
interest and/or potential for future impact. Even though we 
tried to be complete, the description of the techniques of 
logic synthesis may be considered uneven at times because 
of the importance given to some approaches such as alge- 
braic methods versus others such as rule-based methods. 
This bias i s  mostly due to our own experience in using the 
methods, reported in more detail here, for building the 
logic-synthesis systems MIS and BOLD. 

The paper i s  organized as follows: in sections II and Ill 
we define basic notation and discuss the representation of 
combinational logic by an abstraction known as a Boolean 
network. Sections Wand Vare treated at atechnology-inde- 
pendent level of abstraction. Section IV treats the “cre- 
ative” part of the logic synthesis, that of creating the basic, 
overall “architecture” of the multilevel logic. Section V 
treats the part most like two-level minimization, the task of 
optimizing the logic with respect to the given basic struc- 
ture. In section VI we discuss means for defining and deter- 
mining equivalence between Boolean networks and the 
relation with testing and redundancy removal. Section VI1 
focuses on mapping the optimized technology-indepen- 
dent representation into a specified target technology. Sec- 
tion VI11 gives an overview of the related rule-based meth- 
ods. 

1 1 .  NOTATION AND DEFINITIONS 

Logic, or Boolean, variables are denoted by lower case 
letters, e.g., x,, x2, . . . or a, b, c . . A Boolean variable 
can take on just two values, 0 or 1. This i s  denoted by B = 
(0, I}. It is common to refer to the statement “x has the 
value1”simplyasxand“x has thevalue0”asZThen xand 
Yare referred to as”litera1s.” A logic function f i s  a function 
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of logic variables and has value in {0 ,  I}; written f:B” + B, 
where n i s  the number of logic variables. 

One way of representing a logic function is as a “sum-of- 
products.” A product, or “cube,” i s  the product of literals, 
e.g., acd. Equivalently, we can think of a cube as a “set” of 
literals, e.g., {a, Z, d} .  We often use the notation I E c to 
mean that the literal I is  in the set (cube) of literals c, i.e., 
that I i s  one of the literals making up the product term c. 
Equivalently, a cube, e.g., aZd, i s  the set of all points (some- 
times called minterms or vertices) in the input space B” 
that satisfy ‘‘a = 1 and c = 0 and d = 1.” This set of points 
i s  called a cube because of i ts  geometrical interpretation 
in the Boolean n-cube, B”. Note that if the size of the input 
space is  n variables, and a cube has k literals in it, then the 
number of vertices in the cu be is 2”-k .  A “sum-of-products” 
is a set of cubes where it is understood that the function 
fit represents i s  obtained by summing (performing the log- 
ical OR) of all the points in all the cubes in the set. Such a 
function f is a “completely specified” logic function; it eval- 
uates to 1 if the input vertex i s  in the set, to 0 otherwise. 

Generally, a logic function fcan be thought of as the set 
ofall input points(mintermsorverticesof B”),which satisfy 
f ( v )  = 1; this set is referred to as the “on-set”of f. Similarly, 
the complement of a function, denoted by 7, i s  the set of 
vertices which satisfy f ( v )  = 0; this set i s  referred to as the 
“off-set” of f. In a more general situation, a logic function 
may be “incompletely specified,” in that there i s  a set of 
vertices for which we do not care if the function has a value 
of 1 or 0. These“don’t-care points“can be used to represent 
the function in a more compact form. An incompletely 
specified function is denoted by the triplet ( f, d, r) of com- 
pletely specified functions, a partition of B”, where f i s  the 
on-set, d is the don’t-care set, and r is  the off-set. A ”cover 
F” of an incompletely specified function i s  a completely 
specified function (typically in sum-of-products form) such 
that f c F E f + d. Said in another way, f E F and F fl r = 

9. 
Any completely specified logic function can always be 

represented as a sum of products. A sum-of-products 
expression for a function i s  not unique. For example, the 
following function whose on-set i s  the set of vertices 

{ZbZ, ab?, a&, abc, Sbc, ZbF} 

can be represented in sum-of-products form as 

or as 
a 6  + ac + ab + ZF 

ab + bc + a?. 
The task of two-level logic minimization i s  to find a sum-of- 
products expression which is a cover for a given incom- 
pletely specified logic function and which has the least 
number of product terms. 

We use the notation fx to denote the logic function 
obtained from f by replacing x by 1; said differently, fx i s  f 
evaluated at x = 1. This new logic function i s  called the 
“cofactor of fwith respect to x.” Similarly, f? i s  obtained by 
replacing x by 0 and i s  called the “cofactor of fwith respect 
to F.” For example, if 

f = abx + ZcSi + Z d  + ae 
then 

fx = ab + Fd + ae 

fz = Zc + Zd + ae. 

Notethat fxand f?arefunctions independent of thevariable 
x. In general, a function f i s  independent of x if and only 
if fx = fz. 

An “implicant” of a function i s  a product term (cube) q 
that iscontainedinf+dandsuchthatq f l  r =  0.A”prime” 
(alsocalledaprime imp1icant)pof afunction isan implicant 
such that all the cubes that contain p have nonzero inter- 
section with the off-set of the function, i.e., p cannot be 
enlarged as a product term (removing some literals) without 
includingsomeof theoff-set.Thus thecubeabcisenlarged 
tothe largercube bc by droppingthe Iiterala.This increases 
the number of minterms (vertices) in the space that are 
included inthecube. lfall such newverticesarestilloutside 
the off-set, then the enlarged cube is s t i l l  an implicant of 
the function. Thus a prime i s  a cube that i s  not contained 
in any other implicant of the function. In the preceding 
example, the product term abc is not a prime because it can 
be enlarged by expanding it to be bc without including any 
vertex in the off-set; the extra vertex included in the 
expanded cube isabc, which isalso in theon-set ofthefunc- 
tion. 

We briefly review some of the heuristics used in a two- 
level minimization program such as ESPRESSO [22]. There 
are three basic operations repeated in a loop: EXPAND, 
IRREDUNDANT-COVER, and REDUCE. EXPAND locates, 
with a heuristic process, the largest primecontainingagiven 
implicant of the Boolean function. The heuristic process 
maximizes the probability that other implicants will be 
completely covered by the selected prime. IRREDUNDANT- 
COVER removes a maximal set of nonessential primes. Both 
EXPAND and IRREDUNDANT-COVER remove literals or 
cubes from the logic function. After these two operations, 
the Boolean function is prime and irredundant, a local min- 
imum in the synthesis process. The REDUCE operation is 
an “uphill” move which enables the optimization process 
to climb out of a local minimum and move closer to the 
global minimum during the next EXPAND and IRREDUN- 
DANT-COVER cycle. REDUCE does this by replacing each 
prime implicant by a smallest implicant that covers all the 
essential vertices of the prime implicant. Since this adds 
literals, the associated logic cost of the implicant increases, 
but after REDUCE, EXPAND can be called to expand in dif- 
ferentdirectionsto possiblydecreasethe numberof cubes. 

A “multilevel implementation” of a function or a set of 
functions i s  one where an unlimited number of interme- 
diate signals i s  allowed. In a two-level implementation, the 
only intermediate signals are product terms formed from 
the inputs. In multilevel, an intermediate signal may be the 
output of a two-level function whose inputs may also be 
outputs of other two-level functions. Generally, we can 
think of a multilevel implementation as an arbitrary inter- 
connection of two-level functions, with the provision that 
the structure has no cycles in its dependency graph. 

111. REPRESENTATION OF THE NETWORK AND NODES 

A. Network Representation 

A “Boolean network“ i s  a directed acyclic graph. Asso- 
ciated with each node of the graph is  a variable, yi, and a 
representation of a logic function, fj, A directed arc from 
node i to node i i s  in the graph if node i uses the variable 
y j  explicitly in the representation fi. The set of variables that 
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f,explicitlydependson iscalled the"support of $,"denoted 
Sf,. A nodej  i s  a "fan-in" of i i f  there i s  an arc from node j 
to node i. A node j is a "transitive fan-in" of i if there is a 
directed path in the Boolean network connecting j to i. A 
nodej i s  a "fan-out'' of i if there is an arc from i toj. A node 
j is a "transitive fan-out" of i if there is a directed path in 
the Boolean network connecting i to j. 

Someof the nodes in thegraph are designated as outputs 
to the network, called the"primary outputs." Any node that 
has an arc directed from it to another node is  an inter- 
mediate node. A node can be both an output and an inter- 
mediate node. 

A Boolean network is an implementation or represen- 
tation of a set of incompletely specified Boolean functions. 
It i s  a representation in the same way that a PLA or sum-of- 
products form is  a representation of a set of logic functions. 
The representation is not unique. For multilevel minimi- 
zation, we seek a representation with several objectives. 
One is to minimize area. A good measure that seems to be 
well correlated with this is the total number of literals in all 
the function representations $ at the nodes. Another objec- 
tive i s  the delay through the network. In general, one is 
interested in implementing a set of functions which meet 
given delay constraints while minimizing area. The number 
of cubes in the representation, the primary objective for 
two-level minimization, i s  of interest for multilevel only as 
it correlates with the total number of literals. 

Network Don't Cares: Don't cares are extremely impor- 
tant in minimizing logic. In minimizing multilevel logic, we 
assume (as with PLAs) that we are given an initial repre- 
sentation and a set of don't cares for each output ("external 
don't cares"). Generally, the don't cares common to all out- 
puts are input patterns which will never occur. These may 
arise through the digital system specification, e.g., in a 
microprocessor design, certain instruction codes may not 
be used and therefore will never occur as a valid input. 
Another example occurs when one block of combinational 
logic i s  the input to another. The first block may have output 
bit patterns which will never occur because of the type of 
logic function being implemented. Since these outputs are 
inputs to the next block, the bit patternswhich do not occur 
are don't cares for the second block of logic. In both cases, 
wecan interpretthe patterns,which neveroccur, as"states" 
that are not controllable. Using testing nomenclature, one 
says that the state is not "justifiable." In general, these don't 
cares occur becau.se of the structure which appears before 
the input to a block of logic. 

Those don't cares that are specific to the separate output 
functions usually arise from the way each output is used. 
If, becauseofthecircuitrythatfansoutfrom aset of signals, 
the value of this set cannot be observed at prespecified 
observation points (trueoutputs), then theconditions under 
which the signals cannot be observed are don't cares for 
the signals. In theexampleof onecombinational logic block 
feeding another, the second block serves as a filter for the 
first and can cause nonobservabilityof some of the outputs 
under certain input conditions. For example, suppose we 
have two blocks of logic, the first computing an arithmetic 
function and the second implementing an enable signal 
which controls whether or not the arithmetic result i s  
latched at the outputs. Clearly the output of the arithmetic 
function i s  nut observable under the conditions which dis- 
able the latch. Thus these are observability don't care con- 

ditions for the arithmetic logic block. In the parlance of the 
testing literature, one says that under these conditions the 
arithmetic logic i s  not able to "propagate." 

We will see (cf., section V-F1) that a don't care set rep- 
resentingoutput usage is, in general, insufficienttocapture 
this information completely. Equivalence relations have 
been proposed as a more general notion [20], [21]. This leads 
to the concept of "Boolean relations" discussed in section 
V-F1. However, since the use of don't cares is a much more 
developed area, in this paperwe will continue thetradition, 
used in PLA synthesis, of using external don't cares to cap- 
ture some of this information. 

Unfortunately, the full set of don't cares isoften not given. 
This i s  especially true if the logic has been designed man- 
ually, but it has also been true for logic specified in a high- 
level language. Recently, more effort has been directed 
toward identifying, extracting, and using don't cares in an 
environment where the logic i s  specified in a high-level lan- 
guage and synthesized using multilevel logic. We view this 
as a key development for the future. 

Extracting don't cares: There are cases where the don't 
cares can be extracted automatically from the structure of 
the circuit being optimized. For example, if the design is 
fully specified at the logic level and consists of intercon- 
nected parts of logic which can be optimized separately, 
then the set of don't cares arisingfrom the interconnection, 
as described in the preceding, can be assembled auto- 
matically. However, if the full structure of the design is not 
known, don't cares still can beextracted automatically from 
a hardware description language representation. 

Often, hardware description languages (HDL's) provide 
the behavioral descriptions of combinational logic [88]. 
According to the principles of extracting Boolean networks 
equivalent to these HDL specifications, any primary input 
minterm should be regarded as a don't care condition if 
the primary output variable has not been assigned an 
expression during "execution"of the HDL model.This per- 
mits the modeler to save time by not having to specify logic 
for cases that will not occur, or will occur but will not be 
used. This idea permits the derivation of implied don't care 
functions associated with all variables in the HDL descrip- 
tion. This don't-care set can be conceptually written: 

d k  = S;, 
I 

where F,, i s  the complement of the condition under which 
expression j i s  activated during "execution" of the HDL 
model. Thus the conditions under which j i s  not activated 
are implied to be don't cares. 

Since this mechanism assumes that the HDL description 
is correct, it i s  important that the language processor issue 
a warning and produce information about the implied 
don't cares. 

Boolean network equivalence, prime, and irredundant 
networks: Let a Boolean network with primary inputs Pland 
primary outputs PO be defined as q(P/,  PO). Two Boolean 
networks q,(PI, PO) and qn(P/, PO) are "equivalent" if for all 
valuesof corresponding primary inputs not in thedon't care 
sets, the corresponding primary outputs are equal. A cube 
of an internal node of a Boolean network i s  "prime" if 
removal of any of its literals makes the Boolean network so 
obtained not equivalent to the original one. A cube of a 
cover of an internal node of a Boolean network i s  "redun- 
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dant” if the Boolean network obtained by removing the 
cube i s  equivalent to the original one. A Boolean network 
is said to be prime if all i t s  cubes are prime, and irredundant 
if all i ts  cubes are irredundant. In the case of a network 
which consists only of NAND’S, only of NOR’S, or of alter- 
nating ANmoRgates, then it is prime and irredundant if and 
only if it i s  100-percent testable for all single stuck-faults. 

B. Node Representation 

Each node of a Boolean network has associated with it a 
representation of a logic function. The question of how this 
function i s  represented i s  important. Although any valid 
representation i s  allowed, some representations may be 
preferred because they are 

more efficient in memory 
more indicative of the complexity of the final imple- 
mentation 
more efficient to manipulate. 

In this section we survey some of the choices available. 
In two-level theory, these issues don’t arise since the rep- 

resentation and the final implementation are the same, 
namely the sum-of-products form. However, for multilevel, 
there are a number of choices, and which of these is  best 
is st i l l  debatable. 

Merged view-The network is represented so that each 
node is  a valid “gate” chosen from a library of gates to 
be used in the final implementation. Thus represen- 
tation and implementation are one. The advantage of 
this is that as each change i s  made to the network, one 
can accurately evaluate i t s  effect on the implementa- 
tion in terms of area and delay. 

Separated view-Two representations are allowed. One i s  
technology independent, i.e., it does not have any con- 
nection with the final building blocks to be used in the 
implementation. The other i s  the technology-depen- 
dent view which uses only “valid” gates, i.e., those in 
a cell library or meeting some criterion. 

In the technology-independent view, there are also sev- 

General node-Each node can be a representation of an 
arbitrary logic function. A possible advantage of this 
is that a theory can be developed more easily. 

Generic node-Every node in the network i s  the same 
function, e.g., a two-input NAND gate. The advantage is 
that each node i s  very simple. There i s  no need to store 
a general logic function at a node since each node is 
the same function and only the inputs are different. 
Although there can be many more nodes than required 
for the general node description, some manipulations 
are much faster using this structure. The disadvantage 
is that the network is finely decomposed in a particular 
way, and this may obscure some natural structures in 
the network. 

Discrete node-A node can be one of a small set of logic 
functions, such as AND, OR, NOT, DECODE, ADD. Multiple 
output nodes are also allowed. Generally, this type of 
representation i s  used only in rule-based systems. One 
advantage i s  that complex blocks of logic, like a 
DECODE function, can be kept grouped together and 
manipulated as a single unit. However, a general the- 

eral choices. 

oretical basis for such networks seems much more dif- 
ficult. 

For the majority of this paper, we use the general node rep- 
resentation since (except for multiple-output nodes) it 
includes all others as special cases. A more complete theory 
and body of algorithms has been developed for this point 
ot view. 

7) Sum-of-froducts:The most obvious representation for 
the general node is the sum-of-products form. This is the 
one most used as the nominal representation in Boolean 
networks, possibly because of the influence from PLA opti- 
mization problems. This i s  a natural choice mainly because 
there are highly developed techniques for manipulating 
logic in this form, e.g., two-level minimization, factoring, 
decomposition, tautology, and combining logic functions 
using logic operations like AND, OR, etc. Even though we 
may prefer to have logic represented some other way, 
present techniques generally requireconversion to sum-of- 
products, manipulation with the developed algorithm, and 
conversion back. Thus one can argue that this should be 
the nominal representation. 

2) Factored Forms: Factored forms are probably a more 
natural representation for multilevel synthesis. Roughly, a 
factored form is a parenthesized expression, e.g., 

An argument for factored forms i s  that they are a natural 
multilevel representation. A factored form is isomorphic to 
a tree structure, where each internal node is an AND or OR 

operator and each leaf is a literal. This leads to a simple and 
relatively efficient multilevel implementation of the func- 
tion of the node. A representation which accurately mea- 
sures complexity is important in guiding the synthesis pro- 
cess, since synthesis can be seen as a sequence of 
transformations which may or may not be accepted, 
depending on the quantity of complexity decrease 
obtained. Factored forms have this property while st i l l  pro- 
viding a technology-independent representation. 

The count of the number of literals in a factored form i s  
well correlated with the complexityof the function and can 
be translated directly into the number of transistors 
required for an implementation. Of course, this only indi- 
rectly measures area since wiring i s  also an important con- 
tribution to the total area. It has been suggested that a bet- 
ter area estimator would be the number of literals in the 
factored form plus a term proportional to the number of 
gates or nodes, or the number of terminals in the network. 
However, experiments show that literal count st i l l  has a 
remarkably good correlation with the total layout area. 

Another argument favoring factored forms over the sum- 
of-products i s  that the factored form implicitly represents 
both the function and i ts  complement. A complement fac- 
tored form can be obtained directly by applying 
DeMorgan’s law to the factored form. Thus AND’S are con- 
verted to OR’S, and vice versa, and literals are negated. This 
produces a factored form for the complement which has 
the same literal count. This result coincides with the notion 
that in a multilevel implementation, afunction and its com- 
plement are almost equally complex, separated only by the 
cost of an inverter. This i s  in contrast with the sum-of-prod- 
ucts form, where the number of cubes in a function can be 
exponentially larger than in i ts  complement. In this regard 
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we may think of the factored form as representing both the 
function and itscomplement, similarto the binarydecision 
diagram discussed in the following. 

It was noted that a factored form is  an AND/OR tree. Thus, 
if each general node is  decomposed into an AND/OR tree, 
then we have a network in the discrete node representa- 
tion. The only distinction i s  that the general node serves as 
a cluster for a subset of discrete nodes (the tree). 

The difficulty with factored forms is  that methods for 
manipulating them have not been highly developed. How- 
ever, this has stimulated the development of factored-form 
manipulation methods similar to recent extensions in 
methods for sum-of-products manipulation. Three such 
efforts have been reported recently. The first [ I l l  i s  moti- 
vated by the generic representation point of view, which 
leads to more efficient storage as well as possibly faster 
methods for manipulation. This representation is basically 
a type of factored form. In [ I l l ,  methods for finding com- 
mon factors and methods for logic minimization were pro- 
posed. In a second effort [97], the standard factored form 
representation is used, where a node is either an AND or an 
OR, and most of the Boolean function manipulation meth- 
ods are extended. However, a method for logic minirni- 

' zation ismissing.Athirddevelopment[67]startsfromasum- 
of-products form and asks for a minimization procedure 
which has as i t s  goal a minimal factored form. Here it i s  rec- 
ognized that the minimal number of cubes, the normal goal 
of two-level minimizers (such as ESPRESSO), i s  inappro- 
priate. A minimizer based on a minimal factored form has 
been developed. 

Another lack in this area is some notion of optimality. Is  
a given factored form optimum? In the case of sum-of-prod- 
ucts there is an effective answer via some form of Quine- 
McCluskey exact minimization [72]. However, for factored 
forms the only known optimality result [65] i s  not practical 
for functions which depend on more than about six to eight 
variables. 

3) BDD's: Binary decision diagrams (BDD's) are a rela- 
tively new and extremely important contribution to logic 
synthesis[29]. BDD's have increased in importance recently 
as more applications have been discovered. Generally, one 
should think of using a BDD whenever an algorithm is 
described in terms of a truth table. Like a truth table, the 
BDD is a canonical representation of a completely specified 
logic function. Recently, these notions have been extended 
to include incompletely specified logic functions [71]. 

A BDD is  a directed acyclic graph (DAG) representation 
of a logic function. To help explain the BDD, an example 
i s  shown in Fig. 1 of a BDD representing the function ab + 
c. There i s  one root node (labeled a in the figure) and two 
leaf nodes, 0 and 1. The root node represents the entire 
function and the two leaf nodes represent the functions 0 

/=Ub+c 

Fig. 1. BDD representing function ab + b using variable 
ordering a, b, c. 

and 1. Each nonleaf node has a variable associated with it 
(shown insideeach node). Each nonleaf has two successors. 
The first successor points to a node representing the func- 
tion cofactored with respect to the negative phase of the 
node variable, the second successor points to the function 
cofactored with respect to the positive phase. In the figure, 
the branch labeled a = 0 points to a sub-BDD which rep- 
resents fa = c and the branch labeled a = 1 represents the 
function fa = b + c. All the variables are ordered (thus the 
notion of an "ordered" BDD). The ordering imposes the 
constraint that each successor node must have a variable 
associated with it that i s  greater than any of its predecessor 
variables. In the example, the order i s  a, 6, c. Note that any 
path from the root to either leaf visits the nodes whose 
variables are in the proper order (although a variable may 
be skipped). 

Thus each nonleaf node implicitly represents some Bool- 
ean function of those variables whose order i s  greater than 
or equal to the order of the variable at the node. The BDD 
is forced to be "reduced" in the sense that if two internal 
nodes represent the same function, then they must be the 
same node. Of course the number of nodes can be expo- 
nential, but it has been observed that if the ordering i s  cho- 
sen correctly, this exponential explosion rarely occurs in 
practical functions. Finding an optimum ordering is 
extremely difficult; however, good heuristic orderings have 
been given [70]. It has been demonstrated, since BDD's are 
canonical given an ordering, that BDD's with good order- 
ings provide a very effective way of verifying that two Bool- 
ean networks are equivalent. 

Bryant [29] has shown how most logic operations on 
BDD's can be done in linear or log linear time measured 
in terms of the number of nodes in the BDD. 
, An improvement of the standard BDD is to use a negative 
pointer. A regular (positive) pointer indicates the successor 
node function, whereas a negative pointer implies the com- 
plement of the indicated successor function. This allows 
the combining of a function and its complement into the 
same DAG [59]. For example, if one node has a successor 
g and another has a successor which is the function E,  then 
instead of using two different nodes to represent these dif- 
ferent functions, only one node is necessary if one of the 
predecessors uses a negative pointer. It has been dem- 
onstrated that this idea saves substantial storage without 
any noticeable penalty in run-time. 

BDD's are currently used in verifying if two multilevel 
networks are equivalent. The technique is simple since a 
BDD is  canonical. Each output of a network is reduced to 
a BDD over the input variables. Two output functions are 
equivalent if and only if their BDD's are isomorphic. Check- 
ing isomorphism of BDD's is extremely fast. BDD's have 
also been used to provide an initial multilevel decompo- 
sition of a network using the one-to-one mapping from a 
BDD to a multiplexor decomposition. Each node in a BDD 
maps into a multiplexor controlled by the node variable. 
Theothertwoinputsaretheoutputsofthesuccessor nodes. 
For example, if yx and yji represent the outputs of the suc- 
cessor nodes, then the node function i s  the multiplexor 
function 

xyx + 3iyp 

In recent work by Muroga [78], an initial decomposition i s  
obtained by a procedure similar to this. 
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4) Multivalued Decision Diagrams a n d  Incompletely 
SpecifiedFunctions: More recently, BDD’s have been used, 
in conjunction with Muroga’s method of transduction (cf. 
section V-C), in a logic synthesis system at Fujitsu [71]. Here 
it is necessary to extend the BDD so that it has three leaf 
nodes, 0,1, and don’t care. The transduction method com- 
putes a compatible set of permissible function (CSPF) at 
each node, which is an incompletely specified function. 
These are used to identify redundancies and to substitute 
one function into another. 

BDD’s have been extended also to include multivalued 
variables and multivalued outputs (MDD’s) [91]. Instead of 
each node having two successors, a node associated with 
a multivalued variable has up to p successors, where p i s  
the number of possible values of the multivalued variable 
associated with the node. As before, each node in the MDD 
uniquely represents a multivalued logic function. A graph 
is  reduced if no two nodes represent the same function. It 
has been shown that the MDD is  a canonical representa- 
tion, and that most of Bryant’s resultsfor BDD’sextend quite 
easily and naturally. The expectation i s  that this extension 
of the BDD‘swill gain importanceas multivalued multilevel 
functions become more important in future developments 

5) If-Then-Else DAG’S: Another generalization of BDD’s 
proposed by Karplus [59] is called if-then-else DAG’S. In con- 
trast to the BDD, each internal node has three outgoing 
pointers. The first, the i f  part, i s  another if-then-else DAG 
and hence represents an arbitrary Boolean expression. The 
second, the “true” part, i s  the one taken whenever the i f  
expression evaluates to true. The third, the else part, is the 
one taken whenever the i f  expression evaluates to false. 
Thus the node test in the BDD is a single variable whereas 
in the if-then-else DAG it is an arbitrary Boolean expression. 
Karplus gives seven rules for constructing the if-then-else 
DAG which will insure that two DAG’S are equal if and only 
if their Boolean expressions are also equal (i.e., it i s  canon- 
ical). This structure isan interesting generalization of BDD’s 
and it remains to be seen how effective it i s  in various appli- 
cations, although the concept has already led to more effi- 
cient methods for constructing the regular BDD‘s. 

~ 9 1 .  

IV. LOGIC DECOMPOSITION/RESTRUCTURING 

The objective of multilevel logic synthesis i s  to find the 
best multilevel structure. Often the logic to be imple- 
mented is extracted directly from a register transfer lan- 
guage(RTL)and thus hasanatural multilevelform.This may 
or may not be the best structure, but it i s  important not to 
destroy it (e.g., arbitrarily flatten it to  two-level) until it i s  
assessed. On the other hand, some logic, particularly con- 
trol and finite-state-machine logic, i s  more naturally 
described in two-level form and no initial structure isgiven. 
In either case, we have the problem of finding the best mul- 
tilevel structure, but in the first casewe may have an advan- 
tage in that the user may have given a good multilevel struc- 
turebyvirtueof how itwasstructured in theRTLinput.This 
section is concerned with various techniques which allow 
us to restructure the initial logic description. The methods 
are divided into algebraic methods, which are fast, and 
Boolean methods, which are slower (at times, much slower) 
but have the power to explore the entire restructuring space 
in a more general way. 

A. Basic Operations 

The goal of multilevel logic optimization i s  to obtain an 
equivalent representation of a given logic function that i s  
optimal with respect to a cost function involving area and 
delay. In manipulating the initial representation of the logic 
function, the following five operations are key. 

The “decomposition” operation on a Boolean function 
is the process of re-expressing a single function as a col- 
lection of new functions. For example, the process of trans- 
lating 

F = abc + abd + Ea + 
to 

F =  XY+XY 

X = ab 

Y = c + d  

i s  decomposition. Note that the fan-in F (the variables on 
which F depends explicitly) was altered by this operation. 

A related operation, but applied to many functions, is  the 
“extraction” operation. It is  the process of identifying and 
creating some intermediate functions and variables, and re- 
expressing the original functions in terms of the original as 
well as the intermediate variables. There i s  significant prac- 
tical difference between this and the decomposition oper- 
ation. For example, extraction applied to the following three 
functions 

F = (a + b)cd + e 

G = (a + b)F 

H = cde 

yields 
F = X Y + e  

G = XF 

H = Ye 

X = a + b  

Y = cd 

where multiple-fan-out nodes X and Y have been created. 
This operation identifies common subexpressions among 

different logic functions forming a network. New nodes are 
created, but each of the logic functions in the original net- 
work is simplified as a result of the introduction of the new 
nodes. The optimization problem associated with the 
extraction operation i s  to find a set of intermediate func- 
tions such that the resulting network i s  optimal in an appro- 
priate sense. 

“Factoring” i s  the process of deriving a factored form 
from a sum-of-products form of a function. For example, 

F = ac + ad + bc + bd + e 

can be factored to 

F = (a + b)(c + d) + e. 

The associated optimization problem i s  to find a factored 
form with the minimum number of literals. In this case, we 
simply change the representation of the function. 

“Substitution” (also called “resubstitution”) of a func- 
tion G into F i s  the process of expressing F as a function of 
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its original inputs and G. For example, substituting 

G = a + b  

into 

F = a + b c  

produces 

F = G(a + c). 

This operation creates an arc in the Boolean network con- 
necting the node of the function being substituted (G) to 
the node of the function being substituted into (F).  

“Collapsing” (also called “elimination” or “flattening”) 
i s  the inverse operation of substitution. If G is a fan-in of 
F, collapsing G into F re-expresses Fwithout G (undoes the 
operation of substituting G into F ) .  For example, if 

F = Ga + c b  

G = c + d  

then, collapsing G into F results in 

F = ac + a d  + bZd 

G = c + d .  

If the node G is not an output, it may be eliminated, result- 
ing in a Boolean network with one less node. 

All of the operations use techniques that are analogous 
to multiplication and division. In fact, “division” plays a key 
role in multilevel logic optimization. In this section, the 
concept of division as well as effective algorithms for divi- 
sion are reviewed. Algorithms for factorization, decom- 
position, extraction, substitution, and collapsing, based on 
these results, are presented. 

B. Division and Common Divisors 

Since Boolean algebra does not have additive or multi- 
plicative inverses, in mathematical terms there can be no 
division operation. However, in optimizing logic functions, 
it i s  important to define operations which, when given func- 
tions f and p, find functions q and r such that f = p q  + r. 
Every such operation is similar to the division operation in 
other algebras and is  therefore called, with a little abuse of 
mathematical terms, “division” of f by p generating “quo- 
tient q“ and “remainder r.”The function p is called a “Bool- 
ean divisor” of f if r i s  not null and a “Boolean factor” if r 
i s  null. Such a division operation i s  not unique. Even for a 
given division operation, the resulting q and r may be 
dependent upon the particular representation of f and p. 

The number of Boolean factors and divisors of a given 
logic function can be very large, as made evident by the 
following Propositions: 

Proposition I :  A logic function g i s  a Boolean factor of a 
logic function f if and only if f g  = 0, i.e., f c g. 

Proposition 2: If fg # 0, then g i s  a Boolean divisor of f. 

The two propositions show that for any logic function f 
there are many Boolean divisors and factors; in fact, any 
function containing f i s  a Boolean factor of f and any func- 
tion with at least one rniniterm common with f i s  a Boolean 
divisor of f. This poses a problem in choosing a best factor 
since there are so many factors. If the domain is restricted 
toa particular subset of expressions, then thedivision oper- 

ation i s  unique and much easier and fasterto carry out. This 
restricted version of division is called “algebraic division.” 
The following definitions make this notion precise. 

The “product” of two cubes c and d is a cube defined by 
(recall that a cube can be viewed as a set of literals) 

0 

c U d otherwise 

if gx(x E c U d and si E c U d )  
c d = [  

The “product” of two expressions F and G is a set defined 

FC= { c d l c E F a n d d E G a n d c d #  0). 

Notice that cd = 0 i f  and only if c U dcontains both a literal 
and its complement. 

We say that F i s  an “algebraic expression” if F is a set of 
cubes such that no one cube contains another: e.g., a + ab 
i s  not an algebraic expression since cube a contains cube 
ab.’ FC is an “algebraic product” if F and G are algebraic 
expressions and have disjoint support (that is, they have no 
input variables in common). Otherwise, FG is a “Boolean 
product.” For example, (a + b)(c + d )  = ac + a d  + bc + 
b d  is  an algebraic product ayd both (a +_b)(a + c) = a + 
ab + ac + bc and (a + b) (b  + c) = ab + ac + bc are 
Boolean products. 

An operation (OP) is called “division” if, given two func- 
tions f and p, it generates q and r(OP( f, p) = (q, r))  such that 
f = p q  + r. If p q  i s  an algebraic product, OP is called an 
“algebraic division;”otherwisepq isa Boolean product and 
OP is therefore called a “Boolean division.” Note that an 
algebraic divisor (factor) is also a Boolean divisor (factor). 

by 

C. Algebraic Methods 

Decomposition based on Boolean manipulations can be 
quite expensive computationally, but in principle can 
achieve optimum results. On the other hand, the algebraic 
manipulations can be made much faster and, especially 
when iterated with selectivecollapsingoperations, can give 
very good results. One task of logic synthesis is to decide 
when to use each kind of manipulation in order to obtain 
a good combination of run-time efficiency and quality of 
results. 

This leads to the most often used paradigm for multilevel 
logic synthesis [4], [141, [161, [461: 

minimize each logic function to obtain an algebraic 
expression, 
perform algebraic operations, including decomposi- 
tion, extraction, factorization, resubstitution, and 
elimination, on these expressions, 
optionally iterate steps 1 and 2. 

Theseoperations may beenriched with afew Booleanoper- 
ations that improve the overall result without penalizing 
the running-time efficiency of logic optimization. 

The next three sections review the basic algorithms used 
to perform algebraic operations. Section IV-G covers Bool- 
ean operations. 

7) Algebraic Division and Its Complexity: In general, we 
face two tasks in using either notion of division. The first 

’The containment of a cube c,  by another cube c2 is confusing 
if we view each cube as a set of literals. We shall always refer to 
one cube containing another if the set of ”minterms” in one con- 
tains the set of minterms in the other. 
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isto find agood candidatedivisor,and thesecond istocarry 
out the division, i.e., to determine, given p and f, the quo- 
tient q and remainder r so that f = pq + r. 

Care should be taken to make this algorithm as fast as 
possible since it will be used many times in the inner loops 
in a logic synthesis system and is a key subroutine of many 
of the other algorithms. 

"Weak division" is a specific example of algebraic divi- 
sion. As far as we know, it is the only form of algebraic divi- 
sion used. It has the virtue of making the result (quotient 
and remainder) unique. The name "weak" refers to its 
power in relation to Boolean division (also called strong 
division). Given two algebraic expressions f and p, a divi- 
sion i s  called "weak division" i f  

1) it generates q and rsuch that pq is an algebraic prod- 
uct, 

2) r has as few cubes as possible, and 
3) pq + rand fare the same expression (having the same 

set of cubes). 

Given the expressions f and p, it can be shown that q and 
r generated by weak division are unique. WEAK-DIV 
denotes the operation of weak division. Often, f l p  i s  used 
to denote the quotient of "weak-dividing" f by p. In Fig. 2 

WEAKDIV( f,  p): 

U =Set { U, } of cubes in f with literals not in p deleted 

V =Set { U> ] of cubes in f with literals in p deleted 

I* note that uJu, is one the j-th term off */ 

v ' = { U J E  v : u,=p . } .  

q = n vi. 

r = f - p q  

Fig. 2. Algorithm W E A L D I V .  

isasketchofan O(nlogn)(nisthenumberof productterms 
in f and p) algorithm proposed for weak division [23]. This 
algorithm achieves i ts  n logn performance by encoding and 
ordering the terms in Uand V. McGeer found a linear algo- 
rithm for weak division given that expressions f and p have 
their cubes already encoded and sorted [74]. It was shown 
that algorithms could be found which are linear and pro- 
duce their results as a set of cubes in sorted order. Thus an 
initial sorting of the cubes of all functions at the beginning 
of the network manipulation would suffice. Thereafter, lin- 
ear algorithms could be employed. 

D. Kernels and Kernel Intersections 

7) Basic Definitions: The notion of a kernel of an alge- 
braic expression was introduced in [23] to provide means 
for finding subexpressions common to two or more expres- 
sions, i.e., to find good candidate divisors. All operations 
used to find kernels are algebraic (i.e., algebraic product, 
algebraicdivision, etc.), but theword "algebraic" isomitted 
for brevity. In particular, algebraic division is done by 
WEAK-DIV. 

An expression is "cube-free" if no cube divides the 
expression evenly (e.g., ab + c is cube-free; ab + ac and 
abc are not cube-free). Notice that a cube-free expression 
must have more than one cube. 

The "primary divisors" of an expression fare the set of 
expressions 

D ( f )  = { f l c lc isacube} .  

The kernels of an expression fare the set of expressions 

X( f )  = {glg E a)( f )  and g is  cube-free}. 

In other words, the kernels of an expression fare the cube- 
free primary divisors of f. 

A cube c used to obtain the kernel k = f lc  is called a "co- 
kernel"of k, and e( f )  is used to denote the set of co-kernels 
of f. For example, the kernels and their corresponding co- 
kernels of the function 

x = ad f  + aef + bdf  + bef + cdf + cef + g 

= (a + b + c)(d + e)f + g 

are listed in Table 1, where for convenience we have shown 
the kernels in factored form. Notice that a kernel may have 

Table 1 Kernels and CO-Kernels of (a + b + c)(d + e)f + g 
Kernel CO-Kernel Level 

a + b + c  df, ef 
d + e  af, bf, cf 
(a + b + c)(d + e) 
(a + b + c)(d + e)f + g 

f 
1 

more than one co-kernel even though the kernel of a co- 
kernel is unique. A co-kernel can be the trivial cube l if the 
original expression i s  cu be-free. 

For certain operations described in the following sec- 
tions, it i s  nearly as effective and frequently more efficient 
to compute a certain subset of X( f )  rather than the full set. 
This leads to the following recursive definition. Let 

{k E X ( f ) l X ( k )  = {k } }  

{k E X( f ) l vk l  E X(k), such that kl # k and 

n = 0 

K"f = i k, E X"-'( f ) }  n > O  

Using these sets, we define the "level" of a kernel as fol- 
lows. If k €  Xo(  f), then k is a level-0 kernel off .  If k E X " (  f )  
and k X n - l (  f), then k is a level-n kernel of f. According 
to the definition, a kernel i s  said to be of level-0 if it has no 
kernels except itself. Similarly, a kernel is of level-n if it has 
at least one level n-1 kernel but no kernels (except itself) 
of level-n or greater. This gives us a natural partition of the 
kernels since 

X O ( f )  c X ' ( f )  c X 2 ( f )  c . . .  c X " ( f )  c Wf).  

2) Computing the Kerne1s:All the kernels of a given func- 
tion f can be found by applying the definition in a straight- 
forward way. The kernel-generation algorithm proposed by 
Brayton and McMullen [23] makes f cube-free first by find- 
ing its largest cube-factor. It then selects the literals of f i n  
lexicographical order and divides them into 6 the resulting 
quotient is a kernel if it i s  cube-free. If it is not, then it i s  
made cube-free by selecting its largest cu be-factor. The pro- 
cedure is repeated on the resulting functions until func- 
tions with no kernels (kernel of level-0 of f )  are found. A 
majorefficiencycan beobtained by noting that if thelargest 
cube factor extracted contains an already selected literal, 
then thecurrent branch can beterminated, sinceall kernels 
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that can be found by continuing have already been gen- 
erated. This leads to an algorithm in which no co-kernel is 
duplicated and which i s  quite simple [24]. 

3) Fundamental Theorem: The following theorem is  key. 
Theorem 4.3: If two expressions f and g have the property 

that any k f e  X( f )  and any kg E X(g), implies that 1 kg f l  kf  I 
5 1 (kg and kf have at most one term in common), then f 
and g have no common nontrivial algebraic divisors. (A non- 
trivial divisor has at least two terms). 

This theorem I S  used for detecting if two or more expres- 
sions have any common algebraic divisors other than single 
cubes. This can be done by computing the set of kernels 
for each logic expression, and forming nontrivial (more than 
one term) intersections among kernels from different func- 
tions. If this intersection set i s  empty, then we need only 
look for divisors consisting of single cubes (which is  an eas- 
ier task). In other words, we need not compute the set of 
all algebraic divisors for each expression to determine if 
there are common nontrivial algebraic divisors. This leads 
to great run-time efficiency since the set of kernels i s  much 
smaller than the set of all algebraic divisors, and secondly, 
in the algorithm for computing kernels, the cube-free prop- 
ertyof kernels leads toaveryeffective method fortrimming 
the search tree for the kernels. On the other hand, if we find 
a nontrivial intersection, then this is  a candidate algebraic 
divisor common to two or more functions. Knowledge of 
whichfunctionsthese kernelscamefromandwhich co-ker- 
nelswereused allows us toassess thevalueofthis potential 
divisor. 

E. Algebraic Methods for Logic Operations 

The operations of extraction, decomposition, factoring, 
and substitution can be carried out quite effectively in the 
algebraic domain using weak-division and kernels. In this 
subsection, proceeding in increasing complexity, we pre- 
sent algorithms for substitution, then factoring, decom- 
position, and finally, extraction. 

7) Substitution: ”Algebraic substitution” consists of the 
process of dividing the function fl at node i in the network 
by the function f ,  (or by 8) at node j. During substitution, 
if f ,  is an algebraic divisor of fl, then fl i s  transformed into 

fl = hf, + r; 
similarly for 8. In practice, we attempt this for each pair f,, 
( in theBoolean network, implyingasmanya~2n~algebraic 
divisions, if there are n nodes in the network. 

The following observations are trivial but important in 
circumventing most of thesedivisions.Thefunction f, is not 
an algebraic divisor of f, if 

1) f ,  contains a literal not in fl, 
2) f ,  has more terms than f,, 
3) for any literal, the number of times it occurs in f ,  

exceeds that in fl, 
4) f, is in the transitive fan-in of f,. 

In somecases, we are not interested in the result of division 
if thequotient f,l f ,  isonlyasinglecube.Thiscan bedetected 
byanother useful filter: iffor any literal thecountforf,equals 
the count for f,, then ( fl/ f,) is, at most, a single cube. 

2) Factorization and  Decomposition: The definitions of 
factoring and decomposition, as given in section IV-A, show 
that the basic operations involved are the identification of 

a divisor and division of a function by that divisor. Decom- 
position i s  basically identical to factoring except that di- 
visors yield new nodes in the Boolean network, and as such 
can fan-out and be used in their negative phase. 

The problem of “optimum” factoring and decomposition 
has been the object of intense study in the past, but the 
number of proposed techniques which are practical for 
large networks (e.g., more than 1000 gates) is limited. The 
techniques reviewed here are the optimum NAND-gate 
synthesis of Dietmeyer and So [40], and the algebraic 
approach of [23] and [15]. 

One of the first techniques practical for large circuits i s  
the factoring technique of Dietmeyer and Su [40]. Their 
technique starts with a minimized sum-of-products rep- 
resentation of a single-output function. The factors con- 
sidered are “single-cube factors.” The single-cube factor i s  
identified from the representation of the logic function by 
choosing a “common factor subarray” and “common fac- 
tor” which maximizes the ”figure-of-merit.” The figure-of- 
merit is the width of the cube factor (number of literals) 
times the height of the common factor subarray (number 
of cubes having these literals as a subset). Three techniques 
are given for implementing the common factor and the 
common factor subarray using NAND-gates. All three are 
evaluated for the common factor which maximizes the fig- 
ure-of-merit and the one requiring the fewest gates is cho- 
sen. The evaluation function for each implementation 
counts the number of inverters and bounded fan-in gates 
needed to realize the circuit, assuming this common factor 
i s  chosen. Dietmeyer and Su proposed two algorithms for 
finding the common factor and common factor subarray: 
onewhich findsthecommon factorwit ha  maximum figure- 
of-merit, and a heuristic algorithm which rapidly finds a fac- 
tor with a good figure-of-merit. 

The primary limitation of Dietmeyer-Su factoring is that 
common factors which consist of more than one cube are 
not considered. While it is  possible to find multiple-cube 
factors during common-cube extraction, nothing in the 
heuristic cost function for a common factor guides the 
selection toward these factors. 

The technique proposed in [23] and [I51 is based on ker- 
nels and finds multiple-cube factors. There are several 
incarnations of this idea; however, they can all be repre- 
sented by the generic algorithm shown in Fig. 3. Given a 

GFACTOR(F) { 

If F has no factor, return 

D =DIVISOR(F) 

(Q,R) =DIVIDE(F,D) 

return GFACTOR(Q)GFACTOR(D)+ GFACTORCR) 

1 
Fig. 3. Basic factorization algorithm. 

function F, procedure DIVISOR(F) finds acandidate divisor, 
D, which, when substituted into F, simplifies the expres- 
sion.Thequotient Q isfound bydividingD into Faccording 
to the division procedure DIVIDE(F, D). Various options for 
the procedures DIVISOR and DIVIDE are discussed in the 
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following. The function F can thus be represented as a par- 
tially factored form 

F = Q D + R  

where R i s  the remainder. The basic algorithm then pro- 
ceeds to recursivelyfactor Q and D using the same method. 
(This basic procedure can be made “optimal” in the sense 
that it will produce “maximally” factored forms if minor 
modifications are applied [16], [18], [97]). 

The various forms of the algorithm are obtained by 
choosing different subalgorithms to implement the rou- 
tines DIVISOR and DIVIDE. For DIVIDE, algebraic division 
i s  often used even though it may not be as effective as Bool- 
ean division. Algebraic division is, of course, much faster 
than i ts  Boolean counterpart. 

The DIVISOR routine selects kernels or other divisors of 
F. I t s  versions differ in the care with which the divisor i s  
chosen. The simplest algorithm, QUICK-DIVISOR, or QD 
for short, quickly selects just one level-0 kernel. When QD 
is substituted for DIVISOR in GFACTOR, the resulting pro- 
cedure is called QUICK-FACTOR, or QF. Since QD finds an 
arbitrary level-0 kernel, the quality of the final result pro- 
duced by QF is suspect. However, this can be improved by 
performing a second division by the quotient made cube- 
free to obtain the candidate factor [12]. 

A more careful choice of divisor leads to the algorithm 
BEST-KERNEL, which greedily selects the kernel ( k )  which, 
when substituted into F, maximally reduces the total num- 
ber of sum-of-product literals of F and k .  The procedure 
obtained by substituting BEST-KERNEL for DIVISOR in 
GFACTOR i s  called GOOD-FACTOR, or GF. Since 
BEST-KERNEL finds all the kernels, GF represents a trade- 
off of speed for obtaining better quality results. 

These factoring algorithms are obviously heuristic, since 
the procedure cannot be guaranteed to generate optimum 
results with respect to the cost function selected. The qual- 
ity of the factoring is monitored by computing the literals 
in thesum-of-productsform of each factor. Sincethechoice 
of common divisor i s  restricted to kernels only, the results 
of factoring depend largely on the initial sum-of-product 
forms. 

In multilevel minimization as performed in the system 
MIS [15], factoring algorithms are used repeatedly to esti- 
mate the cost of a Boolean network, since the cost of the 
nodes i s  estimated to be the number of literals in the fac- 
tored form of the node functions. Here the speed of the 
algorithm is  essential and QF i s  favored. However, toward 
the end of the minimization process, when it i s  important 
to have an accurate evaluation of the cost of the network, 
GF i s  used. 

Note that Dietmeyer-Su’s procedure is a special case of 
GFACTOR where the DIVISOR routine searches for single- 
cube divisors only. 

Other versions of GFACTOR would involve Boolean 
operations, which are discussed in section IV-G. 

3) Extraction: The extraction operation identifies com- 
mon subexpressions and manipulates the Boolean network 
accordingly. Algebraic decomposition and substitution can 
be combined to provide an effective extraction algorithm. 

In particular, procedure QUICK-DECOMPOSITION 
applies QF to a given node and creates a new node in the 
network, for each new factor of this node provides a very 
fast method for breaking down a Boolean network quickly. 

QUICK_EXTRACTION(F) { 

Fig. 4. 

Apply QUICKDECOMPOSITION to each node of the network 

Perform all possible pairwise algebraic substitutions 

Eliminate all single literal functions 

Eliminate all functions with small value 

1 
Quick extraction algorithm. 

It may be combined with algebraic substitution to form a 
fast extraction procedure, as shown in Fig. 4. 

At the end of the QUICK-DECOMPOSITION step, each 
node of the network cannot be factored, so each literal 
appears only once. Substitution identifies identical nodes, 
and one is substituted into the other, leaving a nodewhose 
logic function i s  a cube with a single literal. These are elim- 
inated along with the nodes that have small value, typically 
those which do not fan-out. 

The motivation behind this is that QF is very fast but still 
identifies good kernels for factoring each single function 
well. The kernels become nodes of the Boolean network 
and substitution identifies common nodes. Thus common 
divisors identified in this way are also near best for fac- 
toring. Of course, this i s  not always the best choice and not 
all common divisors are found, but the method is very fast 
and the results are quite good. 

F. Rectangle Covering 

The key problem in the algebraic operations presented 
in the preceding is  the identification of a divisor. We have 
seen that kernels offer a good set of divisors, both for fac- 
toring (or decomposition) and extraction. It i s  surprising 
that the problem of finding a kernel and, generally, finding 
acommon single-and multiple-cubedivisor, can be reduced 
to the same mathematical problem [16]-[18], [82]. In addi- 
tion to being elegant, this formulation favors the devel- 
opment of fast and effective algorithms. 

In this subsection, the concepts of rectangles and rect- 
anglecovering are introduced. Then the formulation of ker- 
nel determination and the common subexpression iden- 
tification in terms of rectangles are given. Finally, some 
algorithms for rectangle covering are given. In this sub- 
section, we closely follow [82]. 

1) Basic Definitions: A “rectangle” (R, C) of a matrix 13, B,, 
E (0, 1, *}’ is a subset of rows R and a subset of columns 
C such that B,/ E {I, * }  for all i E R, j E C. 

A rectangle (Rl, C1) i s  said to “strictly contain” rectangle 
(R2, C2) if R2 E R1 and C, c C1 or R2 C RI and C, E C,. 

A “prime rectangle” (R, C) of B i s  a rectangle which i s  not 
strictly contained in any other rectangle of B. 

The “co-rectangle” of a rectangle (R, C) is the pair (R, C ) ,  
where C’ i s  the set of columns not in C. 

A set of rectangles { (Rk, C k ) }  form a “rectangle cover” of 
a matrix B if B,, = 1 implies i E Rk, j E Ck for some k. Thus 
each 1 in B must be covered by at least one rectangle from 
the cover. A covering need not be disjoint, so that a 1 in B 

*The *’s in B represent don’t cares and are introduced by some 
algorithms in solving the “covering” problem for B. 
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may be covered by more than one rectangle. The points of 
6 which are labeled *are not required to be covered by any 
rectangle in the cover. These points represent "don't-care'' 
points in the matrix. 

Each rectangle (Rk, Ck) has an associated weight (or cost) 
defined by a "weight function w (Rk, Ck),rr The weight of a 
rectangle cover { (Rk,  Ck)} is,defined as the sum 

c W(Rk, Ck). 

The "minimum-weighted rectangle-covering problem" i s  , 
that of finding a rectangle cover of a matrix with minimum 
total weight. 

2) Rectangles and Kernels: Rectangles in a matrix provide 
an alternate way of representing and interpreting the ker- 
nels of a logic function. Consider the expression x = abd 
+ acd + bcd but represented as a Boolean matrix B (called 
the "cube-literal matrix"), where there i s  one row for each 
term in the disjunctive form and one column for each dif- 
ferent literal. For example, the expression x i s  represented 
as follows. 7 acd 

bcd 1 0  

The correspondence between rectangles of the Boolean 
matrix for f and kernels for f i s  given by the following dis- 
cussion and was suggested by an observation of A. Wang: 
that intersections of kernels can be obtained by the ker- 
neling algorithm. 

The expression corresponding to a co-rectangle of the 
expression i s  determined by the entries in the Boolean 
matrix restricted to the rows and columns of this co-rect- 
angle. For the rectangle { R, C} = { (2, 3), (3,4)} the co-rect- 
angle i s  {R, C} = {(2,3), (1,2,5)} in the preceding example, 
and the corresponding expression i s  a + b. Thus the co- 
rectangle corresponds to a kernel. The rectangle itself cor- 
responds to the co-kernel, i.e., the cube divisor used to 
obtain the kernel. The cube divisor i s  the set of literals cor- 
responding to the columns C; in the preceding example, 
this i s  the cube cd. 

The following proposition states more precisely the rela- 
tionship between kernels and co-rectangles, and co-ker- 
nels and rectangles. 

Proposition 4.4: c i s  a co-kernel of f if and only if it is the 
cube corresponding to a prime rectangle of the cube-literal 
matrix of fwith at least two rows. A kernel i s  the expression 
associated with the co-rectangle of a prime rectangle. 

From the rectangle interpretation of kernels, it is  also pos- 
sible to understand more clearly the notion of the level of 
a kernel. A level-0 kernel i s  the co-rectangle of a prime rect- 
angle which has no other rectangle containing i t s  column 
set. In other words, it corresponds to a prime rectangle of 
maximal width. A prime rectangle of maximal height cor- 
responds to a kernel of maximal level, i.e., one whose row 
set i s  not contained in any other rectangle. 

3) Common-Cube Extraction: Common-cube extraction 
i s  the process of finding cubes common to two or more 
expressions and extracting the common cube to simplify 
each of the expressions [82]. The optimization problem is  
to find the particular cubes to introduce into the network 
to provide an optimum decomposition. 

Common cubes can be identified easily using the cube- 
literal matrix. First, the cube-literal matrix for the Boolean 
network i s  created. A rectangle in the cube-literal matrix 
identifies a cube which can be extracted from the network. 
Thecolumnsofthe rectangle identifythe literals in thecom- 
mon-cube, and the rows identify the cubes (and expres- 
sions) where the common cube appears. 

The weight function for a rectangle measures the opti- 
mization goal for cube extraction, To minimize the total 
number of literals in the network, the weight of a rectangle 
ischosen sothattheweight ofarectangle-coverofthecube- 
literal matrix equals the total number of literals in the net- 
work after the new single-cube functions are added to the 
network. Hence the minimum-weighted cover corre- 
sponds to the optimum "simultaneous" extraction of a col- 
lection of cubes. 

For cube extraction, the weight of a rectangle i s  defined 
as 

if 1R(  = 1 

if J R (  > 1' + IC1 

If a rectangle (R,  C) has only a single row, this corresponds 
to leaving the cube unchanged in the network (no extrac- 
tion); hence theweight of this rectangle counts the number 
of literals in the cube. If the rectangle has more than one 
row, this corresponds to creating a new single-cube func- 
tion (with 1 CI literals), and substituting this new function 
into 1 RI other cubes at a cost of 1 R 1 additional literals; hence 
the weight of a multiple-row rectangle is 1 RI + I CI. 

When searching for a rectangle to extract, it i s  useful to 
define the "value" of a rectangle. For cube extraction, the 
value of a rectangle is defined as 

v(R, C) = 1 { ( i , j ) l B , ,  = 1, i E R , j  E C} I - w(R, C). 

The value reflects the desirabilityof choosing the rectangle 
and is equal to the number of literals which would be saved 
in the network if  this rectangle is extracted. This i s  simply 
the number of 1 points covered by the rectangle minus the 
weight of the rectangle. No additional literals are saved for 
covering a * in the matrix; hence these are not counted. If 
a rectangle contains only points which are 1, then the value 
of a rectangle for cube extraction i s  the area minus the 
perimeter. 

4) Kernel-Intersection €xtraction: As discussed in section 
IV-D, kernels can be used effectively in obtaining common 
subexpressions. The choice of an "optimal" kernel inter- 
section, i.e., a kernel intersection that will most reduce the 
number of literals in a Boolean network once substituted 
into the nodes of the network, i s  a complex optimization 
problem. However, it can also be expressed as a rectangle 
covering problem [82]. 

The Boolean matrix associated with the optimal kernel- 
intersection problem is called the "co-kernel-cube matrix." 
Arow in this matrixcorrespondstoaco-kernel (and itsasso- 
ciated kernel), and each column corresponds to a cube 
present in some kernel. The entry B,, i s  set to 1 if the kernel 
associated with row icontains the cube associated with col- 
umn i. 

w(R, C) = 

For example, given the equations 

F = af + bf  + ag + cg + ade + bde + cde 
G = a f  + b f  + ace + bce 

H = ade + cde 
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the kernels (associated co-kernels are shown in parenthe- 
ses) of Fare {de + f + @a),  de + f(b), a + b + c(de), a + 
b( f), de + g(c), a + c(g)}. The kernels (and co-kernels) of 
G are {ce + f(a, b), a + b( f, ce)}, and the only kernel of H 
i s  { a  + c(de)}. For ease of presentation, the functions F and 
G, which themselves are kernels, are not listed in the set 
of kernels. The co-kernel cube matrix is easily constructed 
from this data. The unique cubes from all of the kernels are 
a ,  b, c, ce, de, f, and g; these cubes are used to label the 
columns of the matrix. There are thirteen kernels, and the 
corresponding co-kernels are used to label the rows of the 
matrix. 

The product of a co-kernel for a row and the kernel-cube 
for a column yields a cu be of the expression of one or more 
of the original functions. For reference, the cubes of the 
original expressions are numbered from 1 to 13, e.g., af i s  
labeled 1, bf 2, and so on. The number of the cube result- 
ing from the product of the co-kernel for row i and the ker- 
nel-cube for column j is  placed at position B,, in the co-ker- 
ne1 cube matrix. For example, the co-kernel a when mul- 
tiplied by the kernel de + f + gyields thecubes numbered 
5,1,  and 3, which areade, af, and ag. Note that there is often 
more than oneway to form each cube in an expression. For 
example, cube 1 (af) i s  created by the co-kernel a multi- 
plying the kernel de + f + g, and by the co-kernel f mul- 
tiplying the kernel a + b. 

The co-kernel cube matrix for the previous example i s  as 
follows. 

a b c c e d e f g  

1 2  3 4 5 6 7  

F a  1 
F b  2 
F de 3 
F f 4  
F c  5 

G a  7 
G b  8 
G ce 9 
G f 10 
H de 11 

F g  6 

. 5 1 3  

. 6 2 .  
5 6 7 .  . .  
1 2 .  . .  

. 7 . 4  
3 . 4 .  . .  

. 1 0 . 8 .  

. 1 1 . 9 .  
10 11 . . .  
8 9 .  . .  

12 . 13 . . .  

A rectangle of the co-kernel cube matrix identifies an 
intersection of kernels; this kernel intersection i s  a com- 
mon subexpression in the network. The columns of the 
rectangle identify the cubes in the subexpression, and the 
rows of the rectangle identify the particular functions that 
the subexpression divides. The entries covered by the 
matrix correspond to cubes from the original network. 

.From the previous example, the prime rectangle ( (3 ,  4, 
9, IO}, {I ,  2 ) )  identifies the subexpression a + b which 
divides the functions F and G. Cubes numbered 1, 2, 5, 6, 
8,9,10,and 11 from theoriginal setof functionsarecovered 
by this rectangle. This corresponds to the factorization of 
the equations into the form 

F = deX + fX + ag + cg + cde 

G = ceX + fX 

H = ade + cde 

X = a + b .  

The weight of a rectangle of the co-kernel cube matrix is 
chosen to reflectthe number of literals in the network if the 
corresponding common subexpression is inserted into the 
network. A minimum-weighted rectangle-cover of the co- 
kernel cube matrix then corresponds to a “simultaneous” 
selection of a set of subexpressions to add to the network 
in order to minimize the total number of literals in the net- 
work. 

As before, weights w:and w:are defined for the rows and 
columns of the matrix, and the weight of a rectangle i s  
defined in terms of theseweights. Also, values VI/ are defined 
for the elements of the matrix, and the value of a rectangle 
i s  defined in terms of the values of the elements covered 
by the rectangle, and the weight of the rectangle. 

The value of a rectangle (R, C) of the co-kernel cube matrix 
is thus defined as 

Notethattheco-kernel cube matrix may bequitelarge.Thus 
finding the best kernel intersection may be expensive. It is 
sometimes more effective to reduce the number of kernels 
to be examined; for example, restricting to the set of all 
level-0 kernels. 

5) Minimum- Weighted Rectangle Covering Algorithms: 
We have seen that an optimum solution to the minimum- 
weighted rectangle covering problem yields optimum alge- 
braic extraction, including common-cube and kernel-inter- 
section extraction, offering a unified approach to the 
extraction, factorization, and decomposition problems. 
However, the minimum-weighted rectangle covering prob- 
lem is NP-complete [82] and an exact solution i s  possible 
only in limited cases. 

In general, a heuristic procedure is preferred to apply 
rectangle covering to algebraic extraction. Heuristic pro- 
cedures can be divided into two categories: 

1) extract the “best” rectangle, substitute it into the 
expressions, and then reapply the procedure toa new 
modified matrix to take into account the operations 
performed; 

2) find a “good” rectangle cover by generating a cover 
and then refining it; substitute the corresponding 
expressions into the Boolean network and repeat on 
a new modified matrix to take into account the oper- 
ations performed. 

The advantage of the first technique i s  that it takes into 
account immediately common factors between the newly 
extracted function and the rest of the logic network. The 
disadvantage of this approach i s  that it selectsgreedilyonly 
one rectangle at a time and does not account easily for the 
simultaneous extraction of multiple rectangles. 

Both these approaches have been implemented in MIS 
[82] by R. Rudell based on a very efficient sparse-matrix rep- 
resentation. 

6) Simultaneous Selection of  Rectangles: An alternate 
approach to the greedy nature of the previous approach 
i s  to find a minimum-weight rectangle cover and then 
extract simultaneously all of the rectangles from the matrix. 
This algorithm i s  shown in Fig. Sand i s  analogous to a single 
pass of the EXPAND, IRREDUNDANT, REDUCE sequence 
of ESPRESSO [22]. This operation can be iterated, as done 
in ESPRESSO, by defining an expand procedure to expand 
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COVERINGEXTRACT(B) { 

P =RECT-PRIMEXOVER(B) 

P =RECTlRREDUNDANT(P, E )  

P =RECT-REDUCE(P, E )  

extract the rectangles of P 

} 

Fig. 5. Algorithm COVERING-EXTRACT. 

each rectangle from an initial covering into a prime rect- 
angle. This is then made irredundant and reduced, with the 
reduced rectangles becoming the input to the first part for 
reexpansion. Iteration would continue until no decrease in 
weight is obtained. As in ESPRESSO, this style of heuristic 
algorithm depends on finding good heuristics for choosing 
the direction for expansion, and the sequence in which the 
rectangles are reduced. 

G. Boolean Methods 

Thealgebraic methodsarefast becausethe logic function 
i s  treated as a polynomial, and hence fast methods of 
manipulation are available. Although some optimality is 
sacrificed, this i s  acceptable in multilevel logic synthesis 
during the initial phases of the synthesis process. However, 
when these methods fail to produce improved results, 
stronger methods can be used if further optimization i s  
desired. These stronger methods, called Boolean methods, 
treat the logic expression as a true logic function using all 
the Boolean identities as well as don't cares to achieve a 
better answer. While these are slower, they can be very 
effective in overcoming a local "algebraic" minimum. 
Often, after a Boolean method is  used, the algebraic meth- 
ods can be repeated, usually with further improvement. In 
many cases, this iteration can be repeated with continued 
improvement . 

7) Boolean Division: Some of the Boolean methods are 
,based on replacing algebraic division, in the operations dis- 
cussed, by Boolean division. The process of Boolean divi- 
sion i s  the following. Given afunction fand a divisorp, find 
a quotient q and remainder r such that f = gq + r, and such 
that q and rare as "simple" as possible. To meet this objec- 
tive, we use any of the Boolean identities and don't cares 
available. This division i s  implemented by introducing an 
artificial variable for p, say z = p. Then a "local" don't-care 
set i s  generated, zp + 2p, i.e., all the values of the variables 
in the net that makezdifferent from p can never occur and 
hence are don't cares. Then f i s  minimized using this, along 
with other don't cares that may be available. In addition, 
there are several options to this basic procedure depending 
on how the result of division i s  to be used. 

1) we would like z to remain in the answer. 
2) we would like 2 not to be in the answer. 
3) we would like to control what is "simple." 

The reason for z to be in the final result fmin i s  that the quo- 
tient q obtained by the division is defined as fmin/z. Thus 
z must be forced into the final answer. This can be enforced 
by modifying the EXPAND procedure of the minimizer; 
whenever a cube is  to be expanded, z is not expanded until 
after expanding al l  other variables. If we want to allow the 

answer to be expressed in terms of 2, then we can force Z 
and define its corresponding quotient as Q = fmin/Z Thus 
fmin = zq + ZQ + r. Similarly 2 can be removed from the 
result by expanding it first (we knowthat itwil l expand, and 
hence 2 will not appear). The requirement that the result 
be simple i s  related to the discussion in section V-C-2 of 
having a minimizer which returns the simplest factored 
form. Since such a minimizer is not yet available, several 
heuristics have been employed. One is  to ask for a result 
which has the minimum literal or (minimum variable) sup- 
port. 

Minimum literals heuristic: This i s  a heuristic that can 
be added to a two-level minimizer just before cubes in the 
cover are expanded to primes. The objective is, given a set 
of cubes, to find a prime cover which has the minimum 
number of distinct literals in theexpandedcover(minimum 
literal support). (A similar objective asks for the minimum 
number of variables in the support. However, experiments 
have shown that the minimum literal heuristic leads to bet- 
ter results.) Note that the literal support of a function is 
exactly the set of nets that must be routed to this function, 
so a side benefit may be a netlist that i s  easier to route. 

Finding the minimum set of literals i s  relatively simple; 
only expand a literal in any cube if it can be expanded from 
allcubesinwhich itoccurs.Toobtain theminimumanswer, 
the order of expansion i s  important. The solution to this is 
obtained by using a blocking matrix as defined in [22]: for 
each cube in the cover, the "literal" blocking matrix i s  a 
Boolean matrix with a 1 in position i, j if literal I/ appears in 
the cube to be expanded, and appears in the i t h  cube of 
the off-set. A "super blocking matrix" i s  formed by con- 
catenating the literal-blocking matrices for all the cubes in 
thecover.Thesetof columnsofthe minimum column cover 
represents the literals that can be simultaneously removed 
from allthecubesofthecover.The minimumcolumncover 
for this matrix i s  found by an efficient algorithm [22]. After 
removing these literals and arriving at a cover with mini- 
mum literal support, further expansion of the resulting 
cubes i s  done in the usual way. The result i s  a prime cover 
with the guaranteed minimum number of literals in its sup- 
port (provided the minimum column cover problem was 
solved exactly). 

Boolean resubstitution: In BOLD, an operation called 
Boolean resubstitution [49] i s  used. It can be seen as a gen- 
eralization of the ESPRESSO REDUCE operation to the mul- 
tilevel context, and adds variables to the support of the 
function being minimized. In BOLD, both Boolean resub- 
stitution and algebraic decomposition generate the overall 
structure of the Boolean network. (A mechanism similar to 
Boolean resubstitution is the subset-support filter 
described in section V-C-2). 

The basic idea for each node function of the Boolean net- 
work and for each intermediate variable is 

1) reduce each node function with respect to the vari- 
able (i.e., REDUCE the sum-of-products representa- 
tion of the node function); 

2) expand the node function; literals corresponding to 
the variable are not expanded; 

3) expand with respect to the variable. 

This process can be quite effective in some problems by 
exploiting already existing logic, although the critical path 
length may increase if not controlled during the resubsti- 
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tution process. Also in i ts  raw form, this i s  an expensive pro- 
cedure-in some problems, 90-95 percent (or more) of the 
execution time is  spent in Boolean resubstitution. Cur- 
rently [77l these drawbacks have been almost completely 
eliminated by employing filters on the candidate variable 
set [84], and by using implication (cf. section V-D-1) infor- 
mation todecreasethework in reducingand expanding[85] 
the candidate substitution variables. , 

2) Spectral Methods: Spectral methods focus on trans- 
forming the input space B" into one represented in a dif- 
ferent basis so that the functions to be implemented, as 
functions of the new basis, have more obvious and simpler 
implementations. For example, if the transformed function 
becomes a single AND or XOR, then the logic that must be 
implemented requires only one gate plus the logic to per- 
form the input transformation. An interesting way to look 
at this topic i s  to envision the Boolean n-space as a Boolean 
cube, and a Boolean function f on this space as a set of ver- 
tices on this cube. All vertices where f = 1 are given a black 
dot. The objective of the input transformation i s  to rotate 
sequentially and transform (like a Rubik's cube) the faces 
of this cube so that most of the black dots are moved to or 
near the same face. The transformations of the faces rep- 
resent intermediate logic functions which create an initial 
decomposition. After this, the function, as a function of 
these intermediate variables, is a simpler function. For 
example, if all the black dots occupy, after the transfor- 
mation, an entire face or cube of the space, then the func- 
tion can be implemented as a single AND term. This point 
of view has been proposed by [41]. The main idea is to be 
able to transform the input space so that the function 
becomes much simpler in the new variables. 

The transformations considered by the spectral methods 
have some similarity with Fourier transforms and can be 
computed in O(N log N),  but here N i s  the number of min- 
terms in the space. Thus the direct approach to imple- 
mentingthe spectral methods has until recently found little 
practical application. We discuss some of the classic 
approachestothisand pointtosome recent literaturewhich 
attempts to lower the computational complexity. 

X O R  decomposition: XOR'S functions are examples of 
Boolean factors that are difficultto identify. Algebraic meth- 
ods do not perform well on functions that have good XOR 

decompositions. 
The idea of XOR decomposition is to implement a Boolean 

function as two logic blocks. The first block consists com- 
pletely of XOR gates and the second block consists of unre- 
stricted combinational logic. The problem i s  defined as fol- 
lows. Given a function f with n inputs and k outputs, find 
a decomposition of f into two blocks of logic, U and fo, such 
that uconsists completely of XOR gates and has n inputs and 
n outputs, fc consists of unrestricted combinational logic 
and has n inputs and k outputs, and the "simplicity" of fo 
i s  maximized (simplicity i s  defined below). U i s  called the 
linear block, and f,, the nonlinear block. The block U can be 
viewed as a linear transformation of the input space which 
effects a change of basis. 

To find the XOR decomposition of a k-output function f 
= { fa, r ,  . * fk-'}, an autocorrelation function B is used: 

k - I  k - 1  

Bf(7) = c Bf'"(7) = c c f'"(x)f'"(x Q 7 )  
r = O  , =o  X € ( O , l ) "  

V T  E (0 ,  I}". 

In general, if we translate a function f by 7( f(x) f(x e T ) ) ,  

then theautocorrelation function,Bf(7), isameasureof how 
well the function fcorrelates with i t s  translated image. For 
this particular problem, we may visualize the autocorre- 
lation function as follows. Picture the Boolean n-cubeof the 
input space 8". Given a single output Boolean function f") 
defined on this space, put markers over every point in the 
n-cubein theon-setoff"'. Nowpicksomepoint~~B".With- 
out moving the markers, rotate the Boolean n-cube in place 
so that T and the point (0 . . . 0) E B" switch places. The auto- 
correlation Br,, , (7)  is  a measure of the number of points 
in B" that are covered by markers both before and after the 
rotation. 

In [96] it i s  proposed to measure the simplicity of a func- 
tion as the sum over all the function's outputs of the num- 
ber of miniterms in the on-set that are distance 1 from each 
other. This can be defined in terms of the autocorrelation 
function for special ~ ' s ,  i.e., any of then miniterms that are 
distance 1 from the origin. (Note that when an input x i s  
xoRed with a constant 7, the effect i s  to translate x by 7(x e 
7).) Now tho problem i s  to compute the autocorrelation 
function. 

Special methods are applicable to this because they pro- 
vide an elegant method of computing Bf(7)  using the Wei- 
ner-Khinchin theorem [76]. One such transform i s  the Reed- 
Muller transformation: 

R"F = S 

where F and S are the truth tables of the function before 
and after the transformation, respectively, and 

where 

R' = [: :]. 
Each rowkof R" isthetruth tablefortheso-calledkth Reed- 
Muller function +".This setof functionsforms the new basis 
for the transformed space. The elements Sk of S are the 
spectral coefficients. (Note that the functions fcan now be 
expressed as f = a kSkr(k)which represents fas an XOR sum.) 
Sk can be interpreted as the correlation between the given 
function vector f and b k )  [54]. A drawback of this approach 
is that a truth table representation i s  needed to compute 
the spectral coefficients, and thus the overall complexity is 
exponential. 

In place of using a single linear decomposition, a decom- 
position into a linear block U followed by a nonlinear block 
fo( f(x) = f,(ux)) can be accomplished by constructing a 
matrix U as follows. Let T be an n x n matrix with columns 
T, ,  T = [70r 71, . . . , 7n-1], where 

1) 70 = argrna~,,~B~(.r) 
2) L, is the linear space spanned by (0, r0, . . . , 7 , )  

3) 7, = argmaxrcL,.,BA7) 
4) U = 7-I. 

Then a direct implementation of the linear part U i s  

ZI = @0~,5m- l~ I / x / .  

The nonlinear part is implemented in the usual way as a 
function of z, i.e., each miniterm in the on-set of f i s  trans- 
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lated into another miniterm by U. The set of all these mini- 
terms represents a new function f(z), which is then imple- 
mented by some multilevel synthesis process (MIS, 
ESPRESSO, etc.). 

Of course, if one implements this procedure directly, the 
complexity i s  s t i l l  exponential since the basis of the trans- 
formations involves truth-table-like manipulations. Varma 
and Trachtenberg [96], in an attempt at making spectral 
methods more practical, suggest a method of using a sum- 
of-products cover of a function to calculate autocorrelation 
coefficients. They introduce the concept of an “arithmetic” 
cover, which is a redundant cover produced by a sequence 
of pair-wise intersections of cubes in the cover. Each iter- 
ation in the sequence has a different sign associated with 
its resultant cubes. The idea is  that alternating signs of each 
iteration in a prescribed manner will properly count the 
cube intersections and thus properly count the total num- 
ber of minterms covered by the function. They give heu- 
ristics to generate a reduced set of autocorrelation coef- 
ficients from the arithmetic cover and propose to calculate 
the autocorrelation coefficients approximately by arbitrar- 
ily truncating the sequence of pair-wise intersections that 
produces the arithmetic cover. This corresponds to approx- 
imating a Fourier series by its lower order components. 

Mixed generalized Reed-Muller form: A Reed-Muller 
form is  simply an XOR sum-of-products where every variable 
appears in its positive phase only, and where the OR oper- 
ator i s  replaced by the XOR operator. It can be easily derived 
from the regular sum-of-products by replacing any com- 
plemented variable Ti by x e 1 and multiplying out the 
resulting expression using the distributive law. For exam- 

a6ca = a(b e l )c(d e 1) = abcd e abc e acd e ac. 

The mixed generalized Reed-Muller form allows both 
polarities of a variable to occur. In [53], a program (EXOR- 
CISM) i s  described in which heuristic minimization of logic 
functions in this form are performed. It i s  claimed that this 
i s  useful for circuits such as arithmetic and communication 
circuits, encrypting schemes, coding for error control, etc. 
It i s  also claimed that Reed-Muller forms are candidates for 
easily testable circuits with “function independent” testing 
[791. 

3) Methods ofAshenhurst and Curtis: These methods aim 
at re-expressing a logic function as a function of other func- 
tions, i.e., as a multilevel network. Ashenhurst [3], in a fun- 
damental paper, stated the simple disjunctive decompo- 
sition theorem: a function f(A, B )  is decomposable with 
“bound set” A and “free set” B (i.e., f(A, B )  = F(+(A), B)) 
if and only if its 21’1 x 2IAl Karnaugh map, with the variables 
Bdefiningthe rowsandA definingthecolumns, hasat most 
four distinct kinds of columns: 

ple, 

1) all 0’s 
2) all 1’s 
3) a fixed pattern of 0’s and 1‘s 
4) the complement of (3). 

Curtis [34] extended Ashenhurst’s results to include a 
multiple decomposition. as follows: a function f(A, B )  is  
expressible as a composite function F(&(A), * , 4k(A), B )  
if and only if its 2l’’ x 2IAl Karnaugh map has, besides 0 and 
I,atm0st2~di~tinctcolumnvectors. Fork = 1,thistheorem 
reduces to Ashenhurst’s theorem. Curtis also stated that a 

switching function f(A, B )  i s  expressible as a composite 
function 

F(41(A), . . . 4pM)t ql(B), . . . r qq(B)) 

if and only if the 21’1 x 2IA1 and 2IAl x 21’1 Karnaugh maps 
have at most 2 P  and 29 distinct columns, respectively. 

To see how this works, imagine the truth table for f 
reshaped into a matrix where each row is indexed by a 
minterm in the B space. Let m be a minterm of the B 
variables. Then f,,,, the cofactor of fwith respect tom, i s  the 
rnth row of this matrix. Now, by the generalized Shannon 
expansion, 

f = c mf,,,(A). 

If besides 0 and 1 there are at most k distinct functions 
among the f,,,(A), then f can be written 

k 

f = gI(B)4,(A) + 
,=1 

where g,(B) is a logic function consisting of all miniterms 
in the B space with the common row +,(A). In addition, 
instead of implementing each of the k functions g , (B)  
(which are mutually exclusive), one can encode them with 
9 = log2k functions q,  for a simpler implementation. Then 
f can be written as 

k 

,=1 
f = c ((ql(B), * , q q W )  = e M , W  

where e, i s  the encoding for g,(B). Of course, the choice of 
this encoding i s  important to obtain functions q,  that are 
as simple as possible. 

Roth and Karp [80] presented a procedure for Boolean 
function decomposition which operates on the on-set and 
off-set covers, rather than on the truth table, for the func- 
tion. However, their algorithm still requires exponential 
time to find the minimum cost decomposition. 

Periodically, these methods have been rediscovered and 
some implementations have been attempted but with no- 
table lack of success on practical problems. Some other 
interesting methods of decomposition to be mentioned are 
Muroga’s method for decomposition into a minimum num- 
ber of negative gates [55] and Davidson‘s NAND decom- 
position [37l. 

H .  Output Phase Assignment 

In minimizing logic for PLA’s, it i s  well known that the 
phase assigned to each output can make a substantial dif- 
ference in the final area. However, for multilevel logic, this 
should not be a factor, since one can obtain either phase 
of an output by simply inserting an inverter. Thus it i s  sur- 
prising that methods for finding an output phase assign- 
ment for multilevel logic have been developed, and sub- 
stantial improvement in the area has been reported in some 
examples [98]. A possible explanation i s  that the algorithms 
currently used in multilevel synthesis are relatively weak, 
especially if only algebraic operations are used, and cannot 
examine all possible optimizations. For example, the alge- 
braic algorithms perform cube and kernel extraction only 
on the positive phasesofthefunctionsatthenodes. In addi- 
tion, the cube or kernel i s  selected on the basis of its value. 
Current implementations make this value judgement only 
on the basis of the positive phase of all the node functions 
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present, and miss the good algebraic kernels of the com- 
plement functions. 

Thus there are possibly two choices for obtaining better 
results. One is  to start with a two-level version of the logic 
and apply phase assignment techniques similar to that done 
for PLA implementations [98]. After selecting a phase 
assignment, regular multilevel synthesis is invoked. The 
second choice i s  to ignore phase assignment and to extend 
the cube- and kernel-finding algorithms to ones which 
examine both phases in order to extract and evaluate cubes 
and kernels. To date, a comparison between these two 
approaches has not been done. ltwould beof interest if the 
results obtained are st i l l  substantially different, thus sug- 
gesting other mechanisms at work. 

1. Restructuring for Timing 

ing, and delay-driven placement. This phase is  character- 
ized by its dependence on a particular target technology 
and on the existence of fast and relatively accurate timing 
simulators. 

A third and last phase of timing optimization may be per- 
formed when actual designs are available. There, much 
moreaccuratetiming analyzer scan be used to fine-tunethe 
circuit parameters. This phase serves both theoptimization 
and verification purposes. 

There have been several previous attempts to solve the 
timing restructuring problem. SOCRATES [5] uses a rule- 
based approach and tries to achieve global restructuring 
through a sequenceof local transformations. More recently, 
an algorithmic-based restructuring technique was devel- 
oped in the Yorktown Silicon Compiler [I31 and in [89]. In 
thissection we reviewthealgorithmic-based techniquesfor 
restructuring for timing, while the rule-based techniques 
are reviewed in section VIII. 

7) Basic Definitions: The "arrival time" of a signal is the 
time at which the signal settles to its steady-state value. A, 
i s  used to denote the arrival time of signal s. (All times are 
relative to an arbitrary, but common, reference point). The 
"required time" of a signal i s  the time at which the signal 
i s  required to be stable. R, is used to denote the required 
time of signal s. 

The "slack" of a signal is the difference between i ts  
required time and arrival time. S, is used to denote the slack 
of signal s and is defined as 

Being able to meet performance requirements is abso- 
lutelyessential in synthesizing logiccircuits. As circuitcom- 
plexity increases, manual methods for performance 
improvement become impractical and must be replaced 
with automatic performance-optimization systems. These 
must work with different of circuit hierarchy and at 
various steps of the design process (e.g., retiming, reducing 
delay in combinational logic, delay-driven layout, etc.). 

Timing optimization of combinational circuits can be 
viewed as a three-phase process. In the first phase, circuits 
are globally restructured to have better "timing proper- 
ties." As a simple example, Fig. 6 shows two equivalent cir- 

X Y '  U 

X Y 

(a) (b) 
Fig. 6. Equivalent circuits with different timing property. 

cuits. If the arrival times of all the inputs are the same, cir- 
cuit (b) I S  preferred over circuit (a), for it reduces the output 
arrival time. On the other hand, if input U i s  the critical sig- 
nal,circuit(a) becomes superior.Thus,even though thetwo 
circuits have the same area, one i s  better than the other 
when speed is important. Here the quality of the circuits 
i s  judged not by the detailed timing diagrams, but rather 
by the circuit structure. A more sophisticated example of 
global restructuring is the conversion from a carry-ripple 
adder to a carry-look-ahead adder. The restructuring-for- 
timing phase ischaracterized by i t s  independence from the 
target technology. The objective here is to look for global 
structural changes of circuits to achieve delay reductions 
that cannot be obtained by lower-level techniques such as 
transistor sizing or buffering. 

Asecond phaseof timing optimization may be performed 
during the physical-design process. Here the target tech- 
nology i s  known and more accurate timing information i s  
available. Optimization involves transistor sizing, buffer- 

s, = R, - A,. 

It i s  clear that the slack value of a signal measures its crit- 
icality, i.e., signals with negative slacks are considered to 
be critical. Unlike arrival times and required times, slacks 
have no reference point; hence slacks are sometimes more 
convenient to use. 

One method of timing optimization uses the approach 
of mapping the network into two-input NAND gates and 
inverters and then uses a unit delay model. It is specifically 
designed to be used in conjunction with technology map- 
ping in MIS [16]. The general approach i s  first to minimize 
the area of a network without concern for the delay (e.g., 
all the global common factors have been extracted out). 
Next, the network is decomposed into two-input NAND gates 
and inverters, which i s  the input format for the technology 
mapping algorithms. At this point, timing optimization is 
invoked to restructure the circuit into an alternative two- 
input NAND-gate and inverter form in which critical paths 
are reduced at the possible expense of area. The output of 
timing optimization i s  then fed directly to the technology- 
mapping stage. 

Timing constraints are specified as input-arrival times of 
primary inputs and output-required times of primary out- 
puts. The goal of timing optimization i s  to meet the timing 
constraintswhile keeping thearea increaseto i t s  minimum. 

2) Restructuring Algorithm: The critical section of a Bool- 
ean network i s  composed of critical paths from primary 
inputs to primary outputs. Given a critical path, the total 
delay on the path can be reduced if any section of the path 
is sped up. For example, Fig. 7(a) shows a critical path, a - 
x - y. The critical path can be reduced by first collapsing 
xandyand then redecomposingyinadifferentwayto min- 
imize the critical path, as shown in Fig. 7(b). This method 
(first collapsing along a critical path and then redecom- 
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a b 
(a) 

b C 

(b) 
Fig. 7. Reducing delay by collapsing and redecomposition. 

posing to shorten the critical path) i s  the basic step taken 
in restructuring. The nodes along the critical paths chosen 
to be collapsed and resynthesized form the "resynthesis 
region." 

Since a critical section usually consists of several over- 
lapping critical paths, the algorithm selects a minimum set 
of subsections, "resynthesis points," which when sped up 
will reduce the delays on all the critical paths. A weight i s  
assigned to each candidate resynthesis point to account for 
possible area increase and for the total number of resyn- 
thesis points required. The goal i s  to select a set of points 
which cuts all the critical paths and has minimum total 
weight; this set is called "minimum-weighted node cut-set." 

Once the resynthesis points are chosen, they are sped up 
by the collapsing-decomposing procedure. The simplified 
delay model is then used to find the new critical section of 
the network. The algorithm proceeds iteratively until the 
timing requirement i s  satisfied or no improvement can be 
made. The following i s  an outline of the algorithm. 

SPEED-UP (7) 

Compute the arrival and required times for all the 
nodes in 7, using the supplied arrival times at the pri- 
mary inputs and the required times at the primary 
outputs. 
Find all the critical nodes in 7. 
Compute a weight for each critical node. 
Find the minimum weighted cut-set of all the critical 
paths. 
Partially collapse along the critical path at each node 
on the cut-set. The length of section along each crit- 
ical path to be collapsed is controlled by a parameter 
d. 
Redecompose each collapsed node into two-input 
NAND gates and inverters. 
If the timing requirement i s  satisfied, done. 
If the circuit improved from the previous iteration, go 
to step 1. 

Computing weights of critical nodes: The weight 
assigned to each node in the critical section must reflect 1) 
its potential for speed-up and 2) an area penalty incurred 
if the node is chosen. Some critical nodes are easier to speed 
up than others. For example, in Fig. 8(a), all the nodes are 
critical. If node y is selected, collapsing its critical fan-in into 
y will result in a node with one critical input x and two 
noncritical inputs. So, it is easy to decompose it such that 
the critical path is reduced, as indicated in Fig. 8(b). If, on 
the other hand, x i s  chosen, collapsing its critical fan-ins 
intoxwill result in a nodewith all of its fan-ins being critical. 

t Y  

(a) 

Fig. 8. Node y is easier to speed up than x. 

So, there is no decomposition that can reduce the critical 
paths inthiscase.Theweightof acritical nodeshould reflect 
how easy it i s  to resynthesize at the node. 

It i s  also possible that, to reduce a critical path, certain 
nodes have to be duplicated. For example, Fig. 9(a) is part 

(C) 

Fig. 9. Area increase during resynthesis. 

of a network with critical signals b - x - g. If g i s  chosen 
as a resynthesis point, x needs to be collapsed into g and 
redecomposed in a different way. Since f also depends on 
x, x needs to be duplicated before the collapsing, as indi- 
cated in Fig. 9(b). Now the critical path becomes b - x2 - 
gand can then be reduced as shown in Fig. 9(c). This increase 
in area should be reflected in the weight of g. Also, it may 
be that x existed initially because it had good area value. 
Now, however, its fan-out has been reduced, so it should 
be examined again for its area value and eliminated if prof- 
itable. 

Both the potential for speed-up and the area increase of 
a critical node depend on the size of the "resynthesis 
region" at the node. The resynthesis region of a node con- 
sists of a set of critical nodes within a distance d from the 
node. d i s  a parameter for the global restructuring algo- 
rithm and can be used to control the amount of speed-up 
to be made in each iteration. 

To find the minimum weighted cut-set of a Boolean net- 
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work, a flow network [64] i s  constructed and the max-flow 
min-cut algorithm is used. 

3) Resynthesis: Once the minimum weighted node cut- 
set i s  found, each node on the cut-set is then resynthesized. 
The resynthesis of a node x involves collapsing all the crit- 
ical fan-ins of x, within a distance dfrom x, into x, and then 
decomposing x back to two-input NAND gates and inverters 
such that the critical path i s  minimized.The objective of the 
redecomposition is to minimize A,, the arrival timeof x. For 
this, timing-driven decomposition algorithms are used. 

“Timing-driven decomposition” refers to decomposing 
a single-output logic function, given the arrival times of all 
the inputs and a delay model, into a tree of two-input NAND 

gates and inverters such that the output arrival time is  min- 
imized. Existing methods include rule-based approaches 
[35], [SI and tree-balancing techniques [62]. These tech- 
niques work on an existing decomposition and incremen- 
tally modify the decomposition to reduce the output arrival 
time. A direct constructive algorithm is described in [89]. 
Given a function and arrival times of all the inputs, the algo- 
rithm decomposes ”optimally” the function into two-input 
 gatesand sand inverterswith minimum output arrival time. 
Exact conditions are given, under which the algorithm pro- 
duces optimum results. 

4) lncremental Delay Trace: Global timing optimization 
depends heavily on the delay information, such as slacks 
or arrival times, derived using a chosen delay model. Most 
procedures perform a complete delay trace over the entire 
network each time the network i s  restructured. However, 
restructuring algorithms modify at each iteration only a 
small section of the network. It is unnecessary and quite 
wasteful to recompute all the timing information. A simple 
example i s  in Fig. 10. The numbers at the nodes are the cur- 

Fig. 10. When A, changes from l to 2, only A, is affected. 

rent arrival times. The underlying delay model i s  “unit- 
delay.” Suppose that during the resynthesis, the arrival time 
of x changes from 1 to 2. The only node whose arrival time 
is affected i s  y. Thus only a few nodes were affected. 

In [97, Boolean networks are abstracted as directed 
acyclic graphs (DAG’s) and several graph theoretical results 
are developed concerning the properties of DAG’s and the 
ordering of the nodes in DAG’s. Using the notion of topo- 
logical ordering, efficient incremental delay trace algo- 
rithms are given which provide greatly improved efficiency 
during the restructuring for timing process. 

V. LOGIC OPTIMIZATION/MINIMIZATION 

This section i s  concerned with techniques which, given 
a restructured multilevel network, try to optimize the node 
functions and, to some extent, improve incrementally the 
structure. The result may lead to additional possibilities for 
restructuringwhich in turn may allow further optimization. 

The key to optimization i s  the use of don’t cares. These may 
come from many sources and an understanding of the role 
they play i s  fundamental. As we will see, basically all the 
techniques presented in this section make use of don’t 
cares, some directly and some implicitly. The topic of sec- 
tion V-E on node invariance shows that by understanding 
which don‘t cares are used by the various network trans- 
formations, one can make definitive statements about the 
preservation of testability and the test sets for a network. 

A. Internal Don’t Cares 

In section I l l-A-I,  we discussed external don’t cares and 
their several sources. Internal don’t cares arise in multilevel 
logic because of the structure of the Boolean network. The 
internal don’t cares must be deduced from the given net- 
work structure. They are divided into satisfiability and 
observability don’t cares. 

Satisfiability don’t cares: These don‘t cares are a result 
of the existence of the additional intermediate variables yi 
introduced at the intermediate nodesof a Boolean network. 
As an example, consider the network 

x = a6 
y = cd 
f = x y  

which implements f = (a + b) (c + d). For any node that 
uses the intermediate variablesx and y, we have the option 
of eliminating x and y or expanding the Boolean space to 
include these variables. If we do the latter, there are com- 
binations of variables which will never occur. For example, 
the combination x = 0, a = 0, b = 0 will never occur, and 
in general, since x = Z6, then x z a6 will never occur. This 
i s  expressed by the logic function 

x(a + b)  + 2%. 

The intermediate nodes of a Boolean network impose the 
relation 

where x i s  the set of primary inputs and y the set of inter- 
mediate variables. Of course, since the Boolean network i s  
acyclic, fj depends on only a subset of they variables. In the 
space Blxl+lYl ,  the “satisfiability don‘t-care (SDC) set” i s  
given by 

SDC = c (y, 5 + y/ f,). 
Sometimes it i s  appropriate to leave out the don’t care con- 
tribution from node i. This i s  denoted as 

SDC, = c (y, ?, + 7, 6). 

The SDC gives all the internal patterns of signals that will 
never occur, due to the network structure, and is called the 
satisfiability don’t-care set because each of the relations 

/ + ‘  

y/ = f/k y) 

must be satisfied during the correct operation of the net- 
work. The part in the SDC contributed by the function f,, 
(y/ 3 + 7, f,) i s  called the ”local satisfiability don’t-care set.” 

An alternative view of SDC can also be given as follows. 
In general, a Boolean function f,(v) i s  defined on the space 
of primary inputs B”. However, multilevel functions are 
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represented using intermediate variables, and hence lead 
to the definition of the function on a space of combined 
intermediate variables and primary inputs B""". However, 
this latter description i s  incomplete if the topology of the 
Boolean network i s  not considered, since mutual depen- 
dencies among the variables guarantee that a large set of 
points on this extended space can never occur (the SDC 
set). Forexample,thecubecorrespondingtof = xyisshown 
in Fig. 11. The black dots correspond to the elements of the 
SDC set. 

X 

Fig. 11. Cube representation of f = xy. 

In some sense, the SDC really i s  not a don't care set at 
all, since it i s  trivial (the empty set) when viewed as a set in 
the primary input space. Also, the size of the SDC set i s  
uniquely determined given only the number of primary 
inputs ( n )  and the number of intermediate and output 
variables (m)  in the network ( 1  SDC 1 = 2"+"' - 2"). This is 
based on the observation that the number of care points 
(2") in the space remains constant independent of m. 

Observability don't cares: These don't cares occur 
becauseateach nodethereisanetworkstructurethat limits 
the observability of the value of the node as seen at a pri- 
mary output. In discussing this, we need to extend the 
notion of a cofactor of a function to that of a Boolean net- 
work q with respect to a literal x. This results in the cofac- 
tored network denoted by qx. This i s  obtained simply by 
cofactoring each node function f, of q with respect to the 
literal x. However, there is a subtle distinction to be made 
here. Note that each fan-out of x, f,, becomes f,x, a function 
independent of x. Thus the network qx can be seen as q with 
a signal x stuck at 1. A node in the network i s  defined not 
only by a logic function f,, but also by its interrelation with 
the other nodes in the Boolean network. Thus a node j 
whose node function f ,  does not depend explicitly on x is 
unaltered in the new networkqx, i.e., f ,  = f,x, but if it depends 
implicitly on x in q ,  then cx, as a function of the primary 
inputs, is changed. 

The observability of a node j at an output k of a network 
is the notion that fk i s  implicitly dependent on y,. This i s  
given by the function 

where e isthexoRoperator.The meaningofthisisthatafkI 
ay, gives the input conditions under which the output fk 

differs in the two networks qyJ and qy,, i.e., the conditions 
under which the value of y, can be observed at output fk. 
The preceding expression is called the Boolean difference 
of fk with respect to y,. 

There may be conditions under which the value of y, can- 
not be observed at any of the outputs. Assume for the 
moment that the external don't-care sets DXk are empty. 
(This restriction will be removed in the following.) Then 

these conditions are given precisely by 
- 
a fk ODC = n (fky, = fkyl) = n -. - kanoutput kanoutput ay, 

This is called the "observability don't-care (ODC) set" for 
the signal y,. Note that, unlike SDC, which is common for 
the entire network, the ODC, is specific tg, the node y,. 

We can now make a precise connection with testing3. A 
signal y, can be tested for, say, "stuck-at-I," by finding an 
input test vector v such that 

a) (m7,,), # 4, and 
b) (am,), # 4. 

The first condition says that, when we evaluate the network 
at v, the value of y, is 0 and the other values of the inter- 
mediate variables y, satisfy the compatibility relations y, = 
f,(v, y). The second condition says that the value of vis such 
that it allows the value of y, to be observed, at least at one 
output; 

(rn,), = kan;tp"t ($), * 4. 

Thus SDC and am, contain the precise conditions under 
which y, can be combinationally tested for stuck-at-I or 
stuck-at-0. These conditions are associated respectively with 
the ability to justify the fault and to propagate it to an out- 
put. 

Generally, a f /  ay, i s  not easy to compute. There is a chain 
rule that can be used; however, this becomes complex 
quickly. For example, assume that f depends explicitly on 
g,, g2, * * . , g,, which in turn depend implicitly on y,. Then, 
according to the chain rule, 

a f  agn - af - af ag1 e af  ag2 ~ . . . e 
ay, %I ay, ag2 ay, agn ay, 

e a2f ag1 ag2 ~ a2f ag1 ag3 e . . . 
ag1g2 ay, ay/ ag1 ag3 ay, ay, 

The terms ag, / ay, can be obtained by recursive application 
of the chain rule. The high-order terms in the preceding 
expression can be associated with self-sensitizing recon- 
vergent paths from y, to an output [73]. 

The relation between logic minimization and testing i s  
straightforward. If a signal y, is not combinationally testable 
for, say, stuck-at-I, then the Boolean network will be 
unaffected4 if y, i s  replaced by 1, thereby simplifying the 

31n this discussion, when we speak of testing we mean testing 
the block of combinational logic assuming that all inputs are con- 
trollableand all outputsareobservable.This"combinationa1" test- 
ingdoes nottake intoaccounttheactual testing environmentwhich 
may exist. For example, the outputs may not be scan latches, so 
observability of the outputs may be reduced by how the outputs 
are used. This, of course, is related to the external don't cares. 

41t will be unaffected "statically," but it may have an effect on 
its timing behavior [73]. 
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network. Indeed, not only can the node j be eliminated, but 
those nodes which are the immediate fan-outs of can be 
replaced by fly,, which is a simpler function. The signal y,  
i s  said to be redundant, and the methods of optimization 
which exploit this connection are referred to as “redun- 
dancy removal” techniques [9]. 

One of the transformations made on a network during 
logic synthesis isto replacethe node function f, byasimpler 
equivalent one. An important consequence that can be 
derived using the preceding don’t care sets i s  as follows. 

Theorem V-anyfu function 6 that can replace ( in 7, result- 
ing in an equivalent combinational network, i s  a cover of 
the incompletely specified function derived from f, and the 
don’t-care sets SDC,, ODC,. 

This i s  important because all possible simplifications of ( 
can be obtained by ”two-level minimization” using a 
uniquely derived don’t-care set of node j .  In practice, the 
don’t-care set used is usually a small subset of this, but the 
theory displays what i s  possibleand makes the precise rela- 
tion with testing clear. Thus redundancy removal as just 
discussed can be seen as a special case of the more pow- 
erful node minimization based on don’t cares. 

The observability don’t-care set ODC, may be obtained 
by exhaustive search, by computing, for each primary out- 
put i in the transitive fan-out of j ,  the sets 

This requires 2“ “fault simulations” if applied in a straight- 
forward way (x E ODC, if no difference is observed at any 
primary output node). An efficient approximation [481 may 
be obtained by the following. 

For i in the “immediate” fan-out of j ,  let 

If G i s  a sum-of-products cover and j an intermediate 
node, RESTRlCT(j, G) i s  a sum-of-products cover G’, 
constructed from G by deleting all cubes containing 
variables in the transitive fan-out of node j .  

A subset of ODC, can be defined recursively as follows. If 
j i s  a primary output, then DO, = 0 else 

DO, = rI RESTRICT Cj, E,,, + DO,). 

The recursion proceeds backwards from theoutputs, depth 
first. (A similar recursive approximation i s  discussed in [19], 
but the RESTRICT operation was missing and the approx- 
imation was not always a valid subset.) This approximation 
is related to the ”observability cover” used by Brglez et al. 
in [26], [30], and [31]. The following result states the relation 
between DO, and ODC,. 

Theorem V-2 (Approximation of ODC,): For all interme- 
diate nodes j 

I E FO ( I )  

D O , E ,  C ODC,m,.  

If no reconvergent paths exist from a nodej to the primary 
outputs of 7, then 

More recently, other valid approximations to ODC, have 
been proposed (cf. section V-C). 

7) Effect of External Don’t Cares: The conditions under 
which a node can be simplified should be augmented by 
the use of the external don’t-care sets DXk. This can be done 
by adding these to the definitions of ODC, and DO, as fol- 
lows: 

D O ,  = RESTRICT ( j ,  + D O , )  

where DOk = OXk if k is  a primary output. The extensions 
of Theorems V - I  and V-2 to include these external don’t 
cares i s  straightforward. 

B. Node Minimization 

IEFO(/ )  

One of the most powerful techniques used in multilevel 
logic synthesis i s  node minimization. Node minimization 
is particularly effective when a Boolean network is partially 
collapsed around agiven node. Usuallythis isdone byelim- 
inating nodes which have little fan-out. In this collapsing 
process, nodes with large logic functions are created. The 
hope is these can be effectively simplified. This is done using 
a two-level minimizer (such as ESPRESSO). The objective i s  
to utilize the implicit don’t care conditions, which exist at 
each node of a Boolean network, to perform two-level logic 
minimization on the Boolean function associated with the 
node. Unfortunately, since the entire don’t-care set i s  
extremelylarge, this ideal is prohibitivelyexpensivefor most 
practical circuits. Consequently, approximation of this sub- 
problem becomes necessary, and two alternative heuristic 
approaches have been studied [4], [49], [77], [161, 1681, [851. 

The first heuristic, the tautology-based approach, uses 
mu I ti level eq u ivalence and tau tology-c hec ki ng algorithms 
directly, adapting ideas from the testing literature. The 
advantage of this approach i s  that all don’t-care conditions 
are automatically accounted for, so the optimizer has the 
opportunity to account for all optimization degrees of free- 
dom. Implementations [4], [49], [50], [77l to date include 
most, but not all, ESPRESSO heuristics [22]; hence the power 
of the two-level logic minimization i s  somewhat diluted. In 
particular, the option of exact minimization [83] i s  lost. 
Although area-minimalitymaynot beachieved, 100-percent 
testability of single stuck faults is guaranteed. 

The second approach, the don’t-care approach [16], [681, 
employs the complete power of the ESPRESSO minimiza- 
tion heuristics. However, the don’t-care sets are approxi- 
mated, and hence some of the optimization degrees of free- 
dom are sacrificed, so again a suboptimal solution i s  
obtained. Both of these approaches have their virtues. 
Comparisons to date favor the first in optimization quality 
and testability, and the second in execution time; however, 
continued improvements in both approaches [33], [85] may 
alter these observations. 

7) The Tautology-BasedApproach: In [4], an algorithm for 
node minimization is described, based on the EXPAND, 
REDUCE, and IRREDUNDANT-COVER operations of 
ESPRESSO [22]. However, these operations do not use the 
off-set and two-level tautology as in ESPRESSO, but are 
based on tautology checking [51]. Tautology checking i s  a 
method to verify that two logic functions are equivalent. 
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This method can be applied to check whether a literal or 
a cube is  redundant by removing the literal or cube and 
checking whether the remaining function is  equivalent to 
the original one. 

When applied to multilevel logic synthesis, the EXPAND, 
REDUCE, and IRREDUNDANT-COVER operations can be 
based on multilevel tautology to check whether a given lit- 
eral or cube is  redundant. In concert, these procedures are 
referred to as the "ESPRESSO loop." The efficiency of this 
approach is  determined by the quality of the implemen- 
tation of the algorithms which form the basis for multilevel 
tautology, e.g., test pattern generation and logic implica- 
tion (see section VI). 

In [4], a procedure called ESPRESSO-MLT is described 
which generalizes this to multilevel logic. It takes a Boolean 
network, and proceeds with a number of optimization 
passes over all node functions. In each pass, every node is  
visited and the following steps are applied: 

constant-function check 
ESPRESSO loop 
Boolean resubstitution 
special-case flattening. 

When an entire pass is completed without change, the 
Boolean network can be guaranteed to be prime, irredun- 
dant, and 100-percent testable for single-input stuck faults. 
The tests for all the input stuck faults are automatically sup- 
plied as a byproduct of the minimization. 

The idea of constant-function check i s  that if the function 
i s  a constant, then at most two equivalence checks (check 
for constant zero and check for constant one) are required. 

Boolean resubstitution, as implemented in BOLD, i s  a 
generalization of the REDUCE operation to the multilevel 
context. Not only does it add literals, but also variables to 
the support of the function being minimized. Since Bool- 
ean resubstitution can discover Boolean factors, it can mod- 
ify the overall structure of the Boolean network. 

The idea of special-case flattening is to save computation 
time and improve solution quality by eliminating certain 
trivial functions. Typical moves are to 

1) eliminate buffers (trivial) and inverters by referring to 
the negative phase of the fan-in of the inverter, 

2) substitute multilevel "AND" functions into a single- 
cube "AND" function, ' 

3) substitute multilevel "OR" functions into single-cube 
functions which reference the negative phase vari- 
able, and 

4) collapse any intermediate function into any fan-out 
that has only one literal. 

These special cases are chosen because the improvement 
i s  known a priori and no additional processing i s  required 
to realize improvement. 

To motivate this approach to multilevel minimization, 
consider 

fl = x1 x 2  + y3 
y2 = f2 = x1x2 + F1x2 

y3 = f3 = X lX& + x1x2. 
Here x1 and x2 are primary inputs and fl and f2 are primary 
outputs. This representation has three functions (functions 
correspond roughly to gates in a standard cell netlist), 

twelve literals (corresponding roughly to transistors), and 
seven inputs (corresponding to the amount of intercon- 
nect). From a delay viewpoint, the circuit has three levels 
of logic, and from a testability viewpoint, there are three 
nontestable input stuckfaults, namelyy2stuck-at-0 in f3,and 
x1 and x 2  stuck-at-I in f3. 

Given this initial representation, applications of the sub- 
procedures EXPAND, IRREDUNDANT-COVER, and BOOL- 
EAN-RESUB lend to the following changes. 

EXPAND: x l x 2 y 2  i s  in SDC3, which implies thatq2 can 
be dropped from the first cube of f3. 
IRREDUNDANT-COVER:FlZ2 is in SDC3, which implies 
that the second cube of f3 i s  redundant. 
BOOLEAN-RESUB: JilX2y2 is in SDC1, which implies lit- 
eral v2 can be added to the first cube of fl. The original 
literals of this cube are removed by the next EXPAND 
step, and the second cube of fl i s  removed by the next 
IRREDUNDANT-COVER step. Note that f3 itself 
becomes redundant, leading to the final (optimal) rep- 
resentation. 

In this example, the ESPRESSO-MLT procedure derives 
the optimum mu Iti level representation 

fl = 7 2  

f2 = x1x2 + 21x2 

which has two functions, five literals, and three inputs. It 
has only two levels of logic and is  100-percent testable, with 
a complete test set 00,01,10 provided. 

2) The Don't-Care-Based Approach: A second approach 
to node minimization i s  based on a more direct application 
of two-level minimization. Partial collapsing of the network 
usually precedes this in order to obtain larger functions at 
each node with more hope of significant minimization. As 
afurther aid in the minimization process, don't cares in the 
form of a subset of the SDC and ODC are gathered. After 
the two-level form is  minimized, it i s  factored and decom- 
posed. 

There are several problems with this approach. 

1) The two-level minimizer has as i ts  prime objective the 
number of cubes in the sum-of-products form. 

2) The don't-care set i s  large, so when a minimizer like 
ESPRESSO, which computes the off-set, is used, the 
off-set produced may be huge. 

Recently, several attempts have been made to overcome 
both these difficulties. 

New methods for two-level minimization in the rnulti- 
level environment: The first idea i s  that the off-set should 
not be computed. One way of avoiding the off-set is to use 
tautology-based algorithms. Although these methods may 
lose some quality in the final cover, tautology-based meth- 
ods can be used and can be quite effectivewhen additional 
information about the typical case encountered in the mul- 
tilevel application [85] i s  available. Pertinent information is 
that 

the don't-care set i s  usually represented mostly by 
primes, 
the initial cover of a node function is usually small, and 
there are many variables, due to the presence of many 
intermediate nodes. 
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The existence of many variables means that during the 
reduce operation, one creates cubes with many literals. 
Thus many trials must be attempted during tautological 
expansion. Since the final expanded cubes usually have a 
small number of literals, most of these expansions are suc- 
cessful. This leads to the idea of attempting to  expand sev- 
eral variables at once. Generally, this speeds up the expan- 
sion in two ways. First, on the average, less tautology calls 
are tried, and second, more tautologies are unsuccessful 
(negative tautologies (NP complete) are faster than positive 
tautologies (CO-NPcomplete)). Finally, in addressing the first 
problem of the preceding, one can choose heuristics which 
are directed toward few literals rather than few primes [85]. 

A second method of avoiding the off-set computation is 
to use a new concept called the reduced off-set [68]. This 
idea is the recognition that when expanding any one cube 
to a prime, the entire off-set is not required or useful. An 
example i s  the problem: 

on-set: Z6Z + Z6c + abc 

off-set: ab + bZ + ab. 

Note that in expanding the term %Z, the point abc in the 
on-set i s  of no use and may as well be included in the off- 
set during the expansion of ZE?. This leads to the reduced 
off-set a + b for this expansion. The interesting points here 
are that the reduced off-set can be obtained without ever 
computing the off-set, and even though the reduced off-set 
i s  special for each cube to be expanded, only a few reduced 
off-sets will suffice for expanding the entire on-set. The 
reduced off-set concept can be combined with the normal 
ESPRESSO algorithms to produce a version based on 
reduced off-set [68] or can be used in a special reduction/ 
expansion process aimed at multilevel applications [85]. 

Filtering the don’t cares: Similar to the idea behind the 
reduced off-set, there are parts of the don‘t-care set which 
will not be useful in obtaining a minimum representation. 
In addition, there are parts which most probablywill never 
be useful. Don’t-care filters [84] are based on 

- the form of the matrix representation of don‘t-care 
cubes, and 
the topology of the multilevel network. 

In most applications so far, the don’t-care set i s  derived 
entirely from the SDC. Suppose the SDC or a subset i s  rep- 
resented in “cube-matrix form.” The cube-matrix form is 
a matrix with rows corresponding to cubes, and columns 
corresponding to variables. An entry is 0 if the variable 
occurs in negative phase in that cube, 1 if in positive phase, 
and 2 if the variable does not occur in the cube. One can 
show that if the sum-of-products form of the current rep- 
resentation of the function plus the don’t-care matrix has 
the block form 

where (e, f )  i s  a single column and 2 i s  a submatrix of all 
2’s; and if the rows associated with f, C, are all don’t care, 
then at least one minimum solution remains when the sec- 
ond block of rows (2, f, C )  are eliminated from the don‘t- 
care set. This i s  called an “exact filter” since no optimality 
i s  lost by i t s  use. Since it i s  easy to detect the specified form 

of M given in the preceding, the exact filter should always 
be used. 

Many “inexact filters” have been tried, and several have 
been found to be quite effective. One is the “subset-sup- 
port filter” based on topological ideas [84]. This filter i s  
applied when a node in the network i s  to be minimized. A 
don’t-care set i s  generated based on the local SDC of only 
the nodes which have their support contained in the sup- 
port of the node to be minimized. This greatly reduces the 
don’t-care set and the run-time of the node-minimization 
process without much lossof qualitycompared to usingthe 
entire SDC. Using this filter, a more robust logic-minimi- 
zation process can be built, since large off-sets are then 
rarely encountered. These filters can also becombined with 
the reduced off-set for further advantage. Currently, the 
subset-support method is the default process used in the 
M I S  system when a node is  simplified. 

C. Transduction 

The “transduction“ (transformation and reduction) 
methods originated with Muroga and students [55] in the 
middle 1970’s. The ideas are intimately related to observ- 
ability don’t-care sets. Although transduction was given 
originally for NOR networks, it has been generalized recently 
to networks with different operators at the nodes (AND’S OR’S 

NAND’S NOR‘S) [78]. The key idea behind transduction is that 
each node in the network i s  an incompletely specified func- 
tion of the primary inputs. This is the same incompletely 
specified function discussed in section V-A, except that in 
the latter the functions are represented as functions of the 
intermediate variables also. The satisfiability don’t-care set 
effectively relates these intermediate variables to the pri- 
mary inputs. In transduction, these incompletely specified 
functions are called the ”maximum set of permissible func- 
tions” (MSPF). The interpretation i s  that each function rep- 
resents all possible permissible implementations at that 
node. As with other versions of this same concept, these 
functions are too expensive to compute in practice, so a 
subset i s  obtained (cf. section V-A). However, in transduc- 
tion the subset obtained (called the CSPF) has some addi- 
tional interesting properties. 

I )  Compatible Set of Permissible Functions: The subset 
of most interest is called the “compatible set of permissible 
functions” (CSPF). The word ”compatible” is the important 
operative here. A CSPF at a node is  a cleverly chosen subset 
of the MSPF. It i s  constructed so that a choice of repre- 
sentation of the CSPF at a node allows the already com- 
puted CSPF’s at the other nodes to remain valid, in the sense 
that they are still a subset of the MSPF (which may be 
changed). The advantage of the CSPF is that a node or signal 
identified to be redundant (essentially a CSPF representing 
a function of only 0’s or don’t care) can be set to 0, i.e., 
removed from the network. Hence redundancy removal can 
be performed simultaneously by computing all the CSPF’s 
and removing all signals identified as redundant.This is dif- 
ferent from other methods of redundancy removal, which 
require that onceone signal is  removed, all other indicated 
redundancies must beverified to be redundant before they 
can be removed. 

The computation of the CSPF’s was given originally for 
NOR circuits only; it is based on ordering the inputs to a NOR 

gate. The highest ordered input is  chosen to be the dom- 
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inating or controlling input, so that when it i s  1, the other 
inputs can be don’t care. Hence, for each input minterm, 
searching from highest to lowest order among the inputs 
of the NOR, the first input with a 1 is  found. For that input 
signal, it i s  required that it compute a 1, but for all other 
inputs, for that miniterm, a 1 or 0 is permissible. Starting 
at the outputs, the external don’t cares OXk for the output 
are put in the permissible function. The computation pro- 
ceeds from outputs to inputs. A CSPF is  computed for each 
fan-out and each node. If a node has a don‘t care at a min- 
term, then each of i ts  NOR inputs is also don’t care. A node‘s 
output CSPF iscomputed astheANDof all its fan-out CsPF’s. 
Note that even though these computations are stated in 
terms of minterms, which implies a truth-table-like inspec- 
tion, they can be formulated using BDD’s, as done recently 
at Fujitsu [71]. 

Like BDD’s, the order imposed for the CSPF computation 
i s  important. The observation that the signal with the least 
order will inherit the most don’t cares motivates an order- 
ing heuristic which ranks the signals in increasing order of 
the probabilityof being redundant. These probabilities can 
be estimated by random simulation. Another heuristic 
assigns highest order to signals with the greatest number 
of miniterms in the on-set of the function. Since 1’s are the 
controlling value for NOR gates, this heuristic attempts to 
introduce more don‘t cares in connections with lower order 
signals and hence increases the likelihood of these signals 
being removed. 

2) Transformations and Reductions: The transduction 
method is  based on the following CSPF-based transfor- 
mations and reductions: 

1) redundant circuits pruning, 
2) connection addition and deletion, 
3) connection substitution, 
4) gate substitution, 
5) gate merging. 

We illustrate the general ideas by discussing two of these. 
Gate Merging: Gate merging is illustrated with NOR 

gates. Two gates g, and g, can be replaced with one gate 
g by the following computation. 

1) Find two gates such that CSPF(gl) r l  CSPF(g2) # 4. 
2) Form a new gate g which i s  the NOR of all the inputs 

of g, and g,. 
3) Remove g, and g, from the Boolean network. 
4) Make g fan out to all fan-out points of both g, and g,. 

Connection/disconnection: This transformation is  sim- 
ilar to the REDUCE process in two-level minimization (cf. 
section V-B-1). “Connection” i s  simply concerned with add- 
ing an extra input to a NOR gate. This can be done if the new 
function of the NOR gate, with the extra input, remains with 
the CSPF after connection. It is relatively easy to make this 
calculation using BDD’s. Disconnection i s  simply redun- 
dancy removal. 

The objective of the connectionldisconnection transfor- 
mation isto makeaparticulargategredundant.This isdone 
by making all possible direct connections from the tran- 
sitive fan-in of g to gates in the transitive fan-out of g. The 
hope is  that these connections will effectively bypass g and 
thus make g redundant. 

D. Global Flow 

”Global flow” [95], [9], [IO], [93] is a technique that has 
been employed extensively in the LSS system [35] and is  
based on compiler optimization methods. In contrast to 
transduction, global flow tries to minimize the fan-out of 
a chosen gate, using a more global view via cut-sets of a 
derived graph. Also, the connections ade by global flow 

7) Implications: Global flow analysis collects information 
(implications) of the form y; = b; * y; = b,, where y; and y, 
are inputs or internal signals in a Boolean network, and b;, 
b, E {0, I } .  This information i s  collected in sets, called forc- 
ing sets, denoted by Sij(x), where i , j  E (0, I }  and x i s  a signal 
in the network. For example, if y E Slo(x), then x = 1 * y 
= 0. 

2) Relation to Don’t Cares: The sets Sij(x) are directly 
related to two-literal cubes of the SDC set. 

Theorem V-3: In a Boolean networkLyi = bl ayi = bZ, bk 

E (0, I }  if and only if (y; = b,)(y, = bZ) is an implicant of 
the SDC of the network. 

Thus, y; = 1 =. y, = 1 can be expressed equivalently as: 
yjvj i s  a don’t care. The cube yjvj is part of the SDC of the 
network. In some cases, yivi may not appear explicitly as a 
term in the summation of the individual local SDC’s; SDC 
= C(yj$ +vi 4). However, this implicantwill result from the 
(possibly iterated) consensus of cubes belonging to differ- 
ent terms of the SDC. Since iterated consensus produces 
all primes, either yivi results, or one of the literals yi or vi 
is a prime of the SDC. In the latter case, the associated gate 
i s  completely redundant, since its output value is a don’t 
care. 

3) Computing Approximations to the Forcing Sets: Since 
computing the complete forcing sets Sij(x) i s  too expensive 
in general the subsets eij(x) E Sij(x) are used. 

These subsets can be computed using recurrence rela- 
tions and are defined to be the least fixed point of these 
relations. An important feature i s  that these subsets can be 
computed simultaneously for all x. 

In [93], the functions 4 at the nodes in a network are 
restricted to NOR’S. The recurrence relations defined for 
subsets elo(x) and e,,(x) of Sl0(x) and Sll(x), respectively, 
are given for NOR gates only, by the following equations, 
where the relation (y, s) means that y is  an input to the gate 
with output signal labelled s. 

are derived from implications instead ? o CSPF‘s. 

elo(x) = elo(x) U {s:3(y, s)[y E el l (x ) l }  

e;,cx, = e,,cx, U {s:v(y, s)[y E elo(x)l} 

U {s:3(s ,  y), y E elow, V(t, y) 

* [ t  # s * t E e,o(x)]} U { x } .  

U {s:3(s ,  y)[yE el l (x ) l }  U {s:x  E elo(s)} 

(2) 

These relations can be solved for their least (smallest set) 
fixed point by iteration until no change in any set occurs. 
Additionally, subsets of these can be computed even more 
efficiently if some of the clauses in (1) and (2) are omitted. 
Indeed, part of the computation, (1) and (21, of the sets eij(x) 
for all x amounts to a kind of restricted iterated consensus. 
For future reference, we remark that the fourth clause in 
(1) is  called the “contrapositive” implication. 
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4) The Global Flow Method-Reduction and  Expansion: 
The process descri bed in [95] focuses on a signal x and mod- 
ifies its fan-out in such a way that it preserves the behavior 
but reduces the network in some way, e.g., wiring, area, or 
timing. This process i s  described as a reduction-expansion 
iteration, in analogywith theway that two-level logic is min- 
imized heuristically [22]. 

The first process i s  a reduction which shows how any sig- 
nal y in 3 , , ( x ) ,  j E (0, I }  can be altered to include x. More 
precisely, this i s  as follows. 

Theorem V-4. The following transformations on a Bool- 
ean network are valid. 

1) If y, E Tll(x), then replace f, with x + f,. 
2) If y, E 5,,,(x), then replace f, with Yf,. 

This process is called “reduction,” since it adds literals 
to the network and is  analogous to the REDUCE operation 
in [22]. 

Definition 7: The I-frontier of a signal x i s  defined as the 
set of signals s such that 

1) s E el,(x), i E (0, I} ,  
2) there i s  a path (s, j,, j2 ,  . , OUTPUT) such that no 

j k  is in e,,, 
3) in the directed graph of the network, s i s  reachable 

from x, i.e., s i s  in the transitive fan-out of x. 

Definition 2: Let G1 (x) be the graph consisting of nodes 
j E e,,(x), j in the transitive fan-out of x, and edges (j, k), j 
E Sn, k E e,,(x). In addition, add edges ( j ,  k) if there is  a path 
from j to k, where the only nodes along the path in e,, are 
j and k. A I-cut-set of a signal x i s  a set of signals in any of 
the C,,(X), i E (0, I } ,  which in Gl(x) separates x from its 1- 
frontier. For example, the I-frontier itself is such a cutset. 

A similar set of definitions holds for a signal’s 0-frontier 
and corresponding 0-cut-set. 

Theorem V-5: If all the gates of a chosen I-cut-set (O-cut- 
set) of x are reduced according to Theorem V-4, then any 
gate k E G1, k 6 I-cutset (0-cutset) may be expanded by 

This process is called “expansion” since it removes lit- 
erals from the network, analogous to the EXPAND opera- 
tion for two-level minimization. As seen from Theorem 
V-3, the e, sets are related to the SDC. The I-cutset and 1- 
frontier are related to ODC,. 

replacing Fk by F k F  ( f k x ) .  

The global flow algorithm i s  as follows. 

1) Compute the sets e,(x) for al l  x in the network. 
2) Choose a signal x and value i E (0, I } .  
3) Using the e,,(x) set, find the i-frontier of x. 
4) Find a minimum weighted i-cutset in C1 of signalssep- 

arating x and its i-frontier. 
5) Reduce the i-cutset according to Theorem V4(reduc- 

tion). 
6) Cofactor the remaining fan-out of x in G1 according 

to Theorem V-5 (expansion). 

The contrast between the reducelexpand process of 
global flow, and the reducelexpand process of two-level 
minimization is illuminating. In two-level minimization, we 
expand or reduce by selecting a cube and then expand or 
reduce for all literals of that cube. In global flow, we select 

one literal and expand or reduce many cubes in the Boolean 
network associated with that literal. 

One needs good heuristics to choose which signal x to 
use, and which criterion to use in finding the minimum cut- 
set. After a network has been changed, it i s  also necessary 
to recompute the sets eii(x). It is more efficient to do this 
incrementally, but no efficient incremental update pro- 
cedure is known. 

5) Free Nodes: A recent improvement on these ideas [8] 
i s  the observation that certain nodes, called “free nodes,“ 
can be deleted from the graph of implied nodes. This 
reduces the size of the cutset and helps simplify the net- 
work even further. A free node z is one that is implied by 
a node y in the forcing set of x, but y is not in the transitive 
fan-out of x. Since the free node z may be in the transitive 
fan-out of x, deleting it in the graph G, makes G1 smaller. 
Thus the cutset of G1 is potentially reduced, which means 
that the expansion process can be more effective. Note that 
only the free nodes that are also in the frontier are omitted 
from the graph. This may reduce the size of the cutset by 
reducing the size of the “cone” of implications in the tran- 
sitive fanout of the signal x. Leaving the other free nodes 
in the graph cannot increase the size of the cutset. 

E. Node Invariance 

The use of various satisfiability and observability con- 
ditions in networks in multilevel synthesis[6]wasdiscussed 
in section V-A. Use of don’t-care sets which arise from the 
topological structure of the network has been the focus of 
several algorithms. Further, implications through the use 
of e-sets and 5-sets have been shown to be equivalent to 
a subset of the SDC set (cf. section V-D-1). However, the use 
of these various forms of don‘t-care sets has been impeded 
historically by the feeling that transformations on the net- 
work invalidated them, and so recomputation was essential 
after each transformation. Since recomputation is fairly 
expensive, interest has centered on incremental updates. 
The focus of invariance research [75] has been to discern 
which transformations affect these sets and how they are 
affected. 

The general process of logic synthesis can be viewed as 
a sequence of well-defined “transformations” of the net- 
work which yields a network realizing the same function. 
The transformations of the network may be divided into 
thosethatchangethedimensionalityoftheextended space 
and thosethatdonot. Clearly, transformswhichchangethe 
space change the SDC set, but they do so in such away that 
the set over the expanded (or contracted) space can be eas- 
ily derived. For example, the addition of a dimension 
requirestheaddition totheSDCsetof preciselythosepoints 
contained in the “local SDC” of the function being added; 
hence we can write 

SDC’ = SDC + ( y ,  f,). 
The effect of deleting a variable is similar and can be 
expressed as 

SDC’ = SDC, SDCy,. 

Thequestion “when does atransformation leave the SDC 
set fixed?” can be rephrased as “what information permits 
a transformation to change the ‘global functionr5 at a node, 

*The global function at a node is the function viewed as a func- 
tion of the primary inputs. 
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and so to change the SDC set?" The answer i s  that the only 
information which permits a transformation to change the 
global function of the node is precisely the don't-care set 
for the node defined over the primary inputs. In general, 
besides the SDC, which i s  the null set as seen from the pri- 
mary inputs, there are external and observability don't-care 
sets. However, many transformations in practice do not use 
them. Formally, a transformation does not use a don't-care 
set if the transformation remains invariant when the don't- 
caresetsare reduced to$. In such acase,thetransformation 
must leave the SDC invariant. 

Since the don't-care sets for a Boolean network q are 
specifications of a circuit, we can formally define a"circuit" 
as an ordered pair (q ,  D), where q is a Boolean network and 
D i s  a vector of don't-care sets; D, is the don't-care set for 
node f, on a network. D, i s  equal to the union of the external 
and observability don't-care sets of node f,. 

A "transformation" 3 i s  a mapping from a circuit (q ,  D) 
to a new circuit (q', D'). In general, q f q' and D $ D'. In 
this discussion, we consider only transformations where 
the set of nodes i s  preserved by the transformation. 

A transformation 3 : ( q ,  D) * (q', D') i s  said to be "in- 
variant" if for each node y,, the global function $of y, i s  pre- 
served. If the global function of each node is  preserved, 
then the SDC must be preserved. The key result on the pres- 
ervation of these sets i s  as follows. 

Theorem V-6: Let 3(q, D )  = (q', D') be any transformation 
of a network. 3 is invariant iff for every 0 , 3 ( q ,  0) = (q', D") 
(i.e., q' i s  obtained independent of D). 

Interestingly, this theorem implies that all the transfor- 
mations within the MIS-II [I61 synthesis system, with the 
sole exception of "node-simplify," do not change the SDC. 
In particular, the forcing sets, used in global flow and other 
applications, remain invariant under these transforma- 
tions. Further, "node-simplify" does not change the SDC 
unless external or observability don't-cares are used. 

F. Hierarchy of Networks 

Although don't cares are a powerful source of degrees 
of freedom for optimizing a network, they do not and can- 
not capture all the degrees of freedom. This observation [20] 
has led to research on additional methods for describing 
and using this flexibility. 

1) Insufficiency of Don't Cares and Boolean Relations: In 
a logic network specified by a hierarchy where one block 
of logic feeds another, it has been observed that don't cares 
are not sufficient for representing all the flexibility with 
which each block can be simplified. An example is shown 
in Fig. 12, where the first block, an adder, feeds its output 

Comparator ,@, 
Fig. 12. Hierarchical networr. 
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to a comparator. We consider the effect on the minimi- 
zation of the adder due to the filtering effect of the com- 
parator. 

The function of the comparator i s  given by 

z = 01 

z = 00 

z = 10 

a + b c 3 

(a + b = 3)  v (a  + b = 4) 

a + b > 4. 

Input values 000,001, and 010 are not distinguished by the 
comparator; thus (000,001,010) formsan equivalenceclass. 
Theother equivalenceclasses are (011,100) and (101,110, 

This leads to a specification for the adder that takes 
Ill). 

account of this additional flexibility: 

alaoblbo 
0000 
0001 
0010 
01 00 
1000 
001 1 
0101 
0110 
1001 
1010 
1100 
0111 
1011 
1101 
1110 
1111 

x2x1 xn 

{ 000,001,010) 
(000, 001,010) 
(000, 001, 010) 
(000,001,010) 
(000,001,010) 
(011,100) 
(000,001,010) 
(011,100) 
(011, 100) 
(011, 100) 
(011, 400) 
(011,100) 
(101,110,111) 
(011,100) 
(101,110,111) 
(101,110,111) 

This table is interpreted as a truth table where the set listed 
to the right of an input miniterm is  a l i s t  of acceptable out- 
puts of the implementation. This i s  an exampleof a Boolean 
relation which i s  a generalization of a Boolean function. In 
general, a "Boolean relation" is a one-to-many mapping; for 
each input miniterm there can be more than oneacceptable 
output pattern. A don't care on an output is  a special case 
of this. For example, for the miniterm 0000 in the example, 
we could express one set of choices for the outputs as 
00-, which says that the outputs could be either 000 or 001; 
we don't care if output xo i s  0 or 1. However, this don't care 
does not express that the output could also be 010. In fact, 
there is  no way to express the set (000,001,010) with only 
output don't cares. In theexample, ifwe useonlydon'tcares 
in the outputs, the best choice of don't cares, constrained 
to include the normal adder as an acceptable implemen- 
tation, leads to the minimized two-level function, as fol- 
lows. 

alaoblbo 
11-0 
-110 
10-1 
-01 1 
-111 
11-1 
111- 
1-1- 

XZXlXO 

01 1 
01 1 
01 1 
01 1 
100 
100 
01 0 
100 
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On the other hand, a special minimizer [ g o ] ,  which is 
based on an extension of the Quine-McCluskey method to 
Boolean relations, produces a much simpler minimum 
solution. 

alaob&o ~ ~ ~ 1 x 0  

0-1- 01 0 
1-0- 01 0 
1-1- 100 
---I 001 
-I-- 001 

2) Minimizing Boolean Relations: The key observation in 
minimizing a Boolean relation (denoted a) i s  the notion of 
compatible functions. A Boolean function f i s  compatible 
with @ ( f  < a) if 

f (x) E (R(x), Vx E B' 

where @(x) denotes the set of all output patterns accept- 
able for the input miniterm x. The minimum implemen- 
tation i s  some function compatible with a.This leads to the 
notion of a c-prime, which i s  a prime of any function com- 
patible with a. By a slight modification of the consensus 
operation, it is possible to generate all c-primes of @ with- 
out having to generate the set of all functions fcompatible 
with a, a much larger set. After the set of c-primes is gen- 
erated, the selection of an optimum set of c-primes is  done 
by solving a binate-covering problem [ g o ] .  Although this 
procedure is expensive, there i s  hope that a suitable heu- 
ristic minimizer, based on the ESPRESSO expandlirredun- 
dantlreduce paradigm, can be constructed. 

Another context in which Boolean relations arise is a 
finite-state machine with sets of equivalent states. In any 
implementation of the FSM, it is not important which state 
among an equivalent set is used, and in fact, all the equiv- 
alent states may be useful in constructing a minimum 
implementation. In the machine, the condition (input, old- 
state) =) (newstate, output) may be implemented by using 
any one of the states equivalent to newstate. This gives rise 
to "symbolic" Boolean relations [66]. 

VI. LOGIC SYNTHESIS AND TESTING 

Today, when a designer implements a combinational 
logic design, consisting of a collection of primitive (e.g., 
NAND, NOR) or more complex logic gates, the designer is 
working toward a multivariate objective-to meet area, 
speed, reliability, and technology constraints while also 
trying to ensure the design is testable with a small set of 
patterns. This latter task requires that the designer elimi- 
nate redundancy during the test phase and perhaps add 
additional test points to the circuit. Needless to say, it is 
almost impossible for thedesigner to find an optimal trade- 
off of all of these competing objectives for anything but the 
most simple circuits, or when one or more of these con- 
straints i s  very loose (e.g., when circuit delay is not an 

and design for testability. In fact, as we have seen previ- 
ously, the optimization process carried out during logic 
synthesis yields a circuit that, ideally, has no redundancy, 
and as such is 100-percent testable. Some techniques, such 
as multilevel tautology, also yield test vectors as byprod- 
ucts. Conversely, automatic test pattern generation (ATPG) 
identifies redundant faults and hence can be used to elim- 
inate redundant logic. 

In this section, we take a close look at the relationships 
between logic optimization and testing, and evaluate the 
effect that logic synthesis transformations have on the test- 
ability of a combinational circuit. 

A. Equivalence, Logic Minimization, and Testing 

The problem of verifying that two Boolean networks are 
equivalent, without regard to their internal structure, will 
be referred to as the"genera1 equivalence" problem (some- 
times called "formal verification"). This problem often 
arises in the context of checking whether the overall effect 
of some logic synthesis tool has altered the behavior of a 
given network. However, in some cases, like ATPG (auto- 
matic test pattern generation) or logic minimization, it i s  
known that the two networks differ only in one literal of one 
cubeof onefunction. In thiscase theequivalencequestion 
i s  referred to as the "constrained equivalence problem." 
This latter problem is  much simpler and can be solved effi- 
ciently in practical cases. However, both problems are co- 
NP complete. ATPG, being related to the negation of con- 
strained equivalence, is NP complete. 

All formal methods for multilevel equivalence are 
exhaustive in the sense that if a primary input variable 
assignment exists which causes a primary output variable 
to evaluate to a zero, then this assignment will be discov- 
ered. Often a form of binary recursion is employed to sys- 
tematically search all possible primary input variable 
assignments; and both the general and constrained equiv- 
alence algorithms employ a framework based on recursive 
binary partitioning of the Boolean n-cube €3". At each step 
in this partitioning, the representation i s  duplicated, a new 
(single) variable assignment i s  made to effect the partition- 
ing, and the logic of each partition is simplified with an eval- 
uation (simulation) procedure. The heuristic for selecting 
this variable i s  very important, since efficiency rests on 
pruning the binary recursion through identification of spe- 
cial cases. 

There are techniques, for example, subtree matching [57], 
for solving the constrained problem that are definitely not 
applicable to the general problem. In addition, techniques 
for constrained equivalence, such as unique sensitization 
and multiple path backtrace [33], may not be applicable to 
thegeneral problem. Generally, noone method or program 
written for general or constrained equivalence is appro- 
priate for all problems. Thus a different set of tools i s  
required for these two classes of problems. 

important factor). For this reason, it has been the case that 
designers will first attempt to find a feasible solution that 
meets performance and area goals and later modify the 
design, if necessary, to meet test requirements. Testing, 
even for combinational circuits, has been a post-design 
activity. 

Logic synthesis will impact in a significant way on testing 

B. The A TPG Process 

In the context of this paper, we view ATPG as a specific 
caseof theconstrained equivalence process in which afault 
is asserted (that is, a change is made to one node of the Bool- 
ean network) and a contradiction i s  sought, proving the 
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modified network is not equivalent to the original. The 
satisfiability don't-care set, which has already been shown 
to play a major role in logic minimization (cf. section 
V-6-2; also [85]), i s  also very significant in the ATPG context. 
In this context, which i s  dominated by simulation tech- 
niques, satisfiability don't cares are identified when impli- 
cations of logical assertions are contradictory. When this 
situation occurs, it may be referred to as a "satisfiability 
contradiction." Classical work on using implications in 
ATPG [44] exploited the forward implications that could be 
derived from simulation, but backward, or contrapositive, 
implications were basically ignored. FAN [43] improved on 
this by accounting for the contrapositive implications indi- 
rectly in its"multip1e path backtrace" procedure. However, 
until recently, ATPG work appears to have lagged behind 
techniques such as the work on global flow (section V-D), 
which accounted for all implications, including the con- 
trapositive. Schulz changed that by pioneering the use of 
contrapositive implications in the ATPG context, and 
referred to his technique as "learning," since the contra- 
positive implications could not be deduced during simu- 
lation but had to be "remembered" from the results of pre- 
vious simulations. 

Based on improved unique sensitization, and on his 
learning technique, Schulz discovered an ATPG approach 
[87l, [86] modeled after FAN [43] which obtained remarkable 
results. Namely, tests for all irredundant faults could be 
obtained with a backtracklimitoften and noabortedfaults, 
while identifying all the redundant faults. Empirical evi- 
dence (remember that ATPG is  NP complete) i s  that the fol- 
lowing can be true even for "industrial strength" circuits 
such as the ones in the ISCAS benchmark set. 

Constrained equivalence checking for redundant 
faults can be performed in time linear in the sizeof the 
network. 
Constrained equivalence checking for irredundant 
faults can be performed in time linear in the size of the 
network. 
Fault simulation can drastically reduce the time 
required for constrained equivalence checking. 

Schulz obtained his results with a three-pass methodology 
for ATPG. Each succeeding pass would invoke more pow- 
erful methods for the ATPG process. Random test pattern 
generation followed by fault simulation was applied prior 
to invoking any of the deterministic ATPG algorithms, and 
a parallel fault simulator was invoked after each testable 
fault was identified. Similar results were obtained in [33]. 

Since there were no aborted faults in these experiments 
using the ISCAS benchmarks, and the backtrack limit was 
fixed at ten, the binary recursion tree had not more than 
eleven leaves on any individual constrained equivalence 
check. Since, on any given leaf of the recursion tree the sim- 
ulationlimplication work i s  of linear complexity, and since 
fault simulation itself is of linear complexity, it is clear that, 
for these examples, this type of equivalence checking is, 
effectively, of linear complexity. It was observed that in 
cases where there are no redundant faults, fault simulation 
dominates the overall CPU time consumption (ISCAS exam- 
ples c880, c499, ~6288). It is interesting that for c6288 (a 16- 
bit multiplier), all faults but one are detected by fault sim- 
ulation of the 2000 random patterns, so the constrained 
equivalence checker is called only once. 
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C. Redundancy Identification and Removal 

In a sense, ATPG can be thought of as "redundancy iden- 
tification" (RI). ATPG technology can also be easily har- 
nessed to the task of "redundancy removal." In this meth- 
odology, ATPG tools identify redundancies one at a time 
and put them into a list. Note that a redundant fault implies 
that part of the logic is redundant and can be removed. 
However, only the logic corresponding to the first fault in 
the list can be removed safely. In fact, other faults may not 
be redundant any more because of the change in the logic. 
All the other faults have to be retested after the first fault 
has been removed, although in practice we observe much 
independence between the redundant faults. Once the 
entire list has been rechecked, the entire ATPG/RI process 
can be repeated. These two steps are iterated until all 
redundancies are removed. In this way, prime and irre- 
dundant networkscould beobtained in times rangingfrom 
secondstotensof minuteson aSun41280. Possible heuristic 
improvements on this basic approach are numerous, 
including those suggested in [28]. 

An alternative redundancy removal approach was pro- 
posed by Brand [9]. In this approach, local topological 
searcheswere used to identify redundant nodes in the logic. 
However, this method was not exact in the sense that it did 
not identify all redundant nodes. 

It is of special interest to  speculate on the "optimality" 
of acircuit that has been designed bythe following two-step 
process. 

1) Determine an initial overall structure, perhaps using 
the algebraic decomposition methods of section IV. 

2) Use ATPG techniques like those discussed in the pre- 
ceding to identify and remove all discovered redun- 
dancies [28], [33]. 

Some initial results on this subject are presented in [33]: 
all of the ISCAS benchmarks can be reduced to prime and 
irredundant form in less than 1 hour, overall, on a Sun 4l 
280. Compared to MIS optimization results reported on 
these ISCAS benchmarks [84], the redundancy removal pro- 
gram obtained roughly similar optimization quality overall. 
A speed advantage of more than 20 was observed favoring 
simple redundancy removal. On the other hand, the full 
MIS script includes restructuring as well, and it has been 
observed that restructuring has very little effect on the 
ISCAScircuits. Thusasecond experimentwasdone recently 
where the MIS operations were restricted to those analo- 
gous to the ones performed in [33], essentially node min- 
imization and cube extraction. Similar results, in terms of 
quality, were obtained. The time comparisons varied from 
a factor of 50 favoring redundancy removal, to a factor of 
4favoring node minimization. Qualityvaried from 121 fewer 
literals favoring redundancy removal to 807 fewer literals 
favoring node minimization. The speed comparisons show 
that redundancy removal is surprisingly fast in some cases, 
making this an effective technique for logic minimization. 
The literal comparison also shows that redundancy removal 
i s  quite effective; however, it should be cautioned that the 
ISCAS examples are known to be special and to represent 
only a subclass of circuits. At the time of this writing, more 
examples need to be done to fully position redundancy 
removal, using the efficient techniques presented in [33], 
within the other operations available for multilevel logic 
synthesis. 
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D. Synthesis for Testability 

Acomplete system for "easily" testable logic was reported 
in [27]. With regard to testability which i s  guaranteed com- 
plete in one sense or another, several papers have appeared. 
One approach [4] for area optimization i s  guaranteed to 
produce logic that is prime, irredundant, and 100-percent 
testable for single stuck faults. Further, in this approach, . 
the tests are provided as a byproduct of the optimization. 
Obviously, the procedures for performing such optimi- 
zation efficiently have a strong correlation with ATPG algo- 
rithms [42], [87, [86]. 

More recently [47], [39], [63], [81] logic synthesis has begun 
to focus on testability itself as an optimization criterion. 
These papers pursue the ideal of optimizing for complete 
testability while still striving to reduce network area through 
algebraic transformations. The methods discussed in [4], 
[ 4 7 ,  [39], and [63] all produce logicwhich is 100-percent test- 
able for single stuck faults. The method of [39] does this for 
finite-state machine logic. References [47] and [63] produce 
logic which i s  100-percent testable for multiple stuck faults 
as well, but [63] i s  restricted to a class of three-level CMOS 
circuitsand [ 4 7  i s  restricted toageneral classofcircuitsthat 
can be synthesized by the class of algebraic transforma- 
tions discussed in section IV-C. The methods in [63] and [81] 
produce logic which is 100-percent testable for path delay 
faults as well. In the finite-state machine context, [32] gives 
a method for state assignment which produces an initial- 
izable reset state and overcomes many of the problems 
associated with sequential testing. 

I) 100-Percent Multifault Testable Networks: In [52], [47], 
a theory was outlined for relating 100-percent testability for 
two-level prime and irredundant Boolean networks to 100- 
percent multifault testability for these same networks. 
Much is  known about this subject from early research (see 
[25, p. 651 and its references), but since then new possi- 
bilities arose with the advent of algebraic decomposition 
as a primary tool for area optimized synthesis of multilevel 
logic. In [47, it was shown that for networks derived by a 
suitable class of algebraic decomposition operations, all 
tests needed for 100-percent multifault testability can be 
derived from the underlying equivalent two-level structure. 
A procedure was given that can produce area-optimized 
(but not necessarily optimum) multilevel networks which 
are 100-percent multifault testable when this two-level 
structure either is given or can be computed. Also, iden- 
tification was made of classes of algebraic and topological 
optimization operations under which the 100-percent mul- 
tifault testability property i s  invariant. 

A testability property called SPI (simultaneously prime 
and irredundant) was defined in [52], and it was shown that 
asetof prime and irredundant two-level single-outputfunc- 
tions was SPI. Briefly, if a network i s  SPI, removal of any set 
of nodes, literals, or cubes produces a nonequivalent net- 
work. Obviously, if a network i s  SPI, it i s  multifaulttestable. 
For NAND networks, SPI and multifault testability are equiv- 
alent concepts. Thus SPI can be thought of as the appro- 
priate generalization of the classical multifault testability 
property to the case where an individual node in the Bool- 
ean network can have an arbitrarily complex Boolean func- 
tion associated with it. Thus faults internal to these func- 
tions need to be accounted for as well. 

In [47, it was shown that the SPI property was invariant 

under a large class of algebraic and technology mapping 
transformations; hence a path was established for produc- 
ing multilevel, technology mapped, 100-percent multifault 
testable networks which have had the benefit of algebraic 
minimization operations. 

2) Testability Invariance: In [ 4 7 ,  it i s  demonstrated that 
algebraic methods preserve testability. This result is then 
applied to networks that start as single-output optimized 
two-level functions. Under these conditions, the initial net- 
work i s  completely multifault testable. Hence if only alge- 
braic procedures are used, the complete multifault test- 
ability will be preserved in the derived multilevel network. 
However, it makes sense to ask under which general con- 
ditions transformations used in logic synthesis preserve 
testability. 

We discuss first the condition that the output of a node 
i s  testable for stuck-at-faults. (This can be made equivalent 
to edge testability by artificially inserting a buffer on each 
edge; the testability of the output of the buffer becomes 
equivalent to the testability of the edge.) 

As discussed in section V-A, the observability function of 
a node x at a node with function f i s  defined as 

a f  
- = fx @ f, 
ax 

(assuming the external don't-care sets are empty); and the 
observabilityfunction of a nodex over a network is the sum 
of i ts  observability at each primary output: 

a 4 mx= c -. 
ooipuis 4 ax 

The set of tests - for stuck-at-I and stuck-at-0 are therefore, 
respectively, FODC, and xODC,. Thus, to determine when 
the observability of node x i s  unaffected, it is sufficient to 
determinewhen thecofactorsof (with respecttoxare unaf- 
fected. For this, it i s  useful to have a geometric picture of 
the cofactor of f with respect to a node y, in a network. 

The cofactor of f with respect to y, is the set of possible 
points-that is, points outside the SDC-where f = 1 and 
y, = 1; in other words, the s e t m + , .  However, it i s  not quite 
correct. A point on the quarter-space fy, may be impossible 
becausey, = 1 may be impossibleforthatvertex. Ingeneral, 
the "semantics" of cofactor is that y, is  stuck to 1 without 
regard to the value of (.-Therefore we must exclude from 
SDC the set of points y,f, when considering the cofactors 
with respect to y,, and the set (7, when considering the 
cofactors with respecttoy,.This can bedone by considering 
the set defined in section V-A: 

k f /  

- 

SDC, = c Yk @ fk. 

Theorem VI-7: The cofactor of f with respect to y, i s  the 
set of vertices on the extended space in the set 

It would seem that every transformation of any strength 
at all would affect the test set of at least some node, so the 
problem is not to characterize the transforms which leave 
the entire set of tests invariant but, rather, to characterize 
for a given transform which don't-care sets are left in- 
variant. Fortunately, these are easily characterized. 

Theorem VI-2: Let 3(7, D) be an invariant transform. If SDC, 
i s  left unchanged by 3, then the observability function of 
y, i s  unchanged. 
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To determine which transforms leave SDC, unchanged, 
we observed that a) an invariant transform preserves the 
cofactors with respect to every primary input, and b) if the 
function attached to node y, i s  ignored by the transform, 
then y, is  indistinguishable from a primary input and so its 
cofactors, and hence its observability function, are pre- 
served by the transform. 

As an example, consider the transformation given by the 
algebraic division procedure [74], [16]. Algebraic division 
examines only two functions, those of the divisor and the 
dividend. Hence it follows that at most the testability of the 
divisor and the dividend are affected. This observation also 
holdsforthe Boolean division algorithm in Fig. 13[16], since 

bool-divide(f, g) 

Fig. 13. 

q, r + alg-divide(f, g) 

minimize r with respect to the DC set (x @ g) t qx 

(quotient, remainder) e alg-divide(r, x) 

return (quotient + q, remainder) 

Boolean division. 

the only functions referred to in this procedure are those 
of f and g. Hence this Boolean division procedure has no 
greater or lesser effect on testability than does the algebraic 
procedure. Although this result seems counterintuitive, the 
fact that this Boolean division procedure uses onlythe local 
SDC associated with the divisor means that in some sense 
it has no more information than the algebraic procedure. 

More powerful Boolean division procedures (cf. section 
IV-GI )  expand the don’t-care set somewhat to gain more 
information. Hence these revised procedures can affect 
testabilityand redundancy more globally. However, a trans- 
formation can only affect the observability of those nodes 
y, such that the effect of the transformation i s  dependent 
upon the function f,. 

Theeffect ofvarious transformationson theobservability 
of various nodes are stated in the following. The informal 
proof of each result is that the named transformation is 
dependent only upon the functions of the named nodes. 

Corollary VI-3: Algebraic division and the Boolean divi- 
sion of Fig. 13 affect the observability function of (at most) 
the divisor and dividend. 

Corollary VI-4: Collapsing node f into node g affects the 
observability function of (at most) f and g. 

Corollary VI-5: Adding node f to or deleting node f from 
the network does not affect the observability function of 
any node g # f. 

Further, if one attempts to simplify a node using the sub- 
set-supportfiIter[84](cf. sectionV-B-2)on theSDCand using 
no external or observability don’t-cares, one can use these 
results to make strong statements concerning the preser- 
vation of testability of most of the network. Finally, using 
the duality of node and edge testability, if the observability 
function for each fan-out edge of a node is preserved, then 
the observability for the node i s  obviously preserved. Thus 
the following i s  known. 

Theorem VI-6: Algebraic and the Boolean division of Fig. 
13 do not affect the observability function of the dividend, 
f. Similarly, collapsing node g into node f does not affect 
the observability function of f. 

This theorem has an interesting and counterintuitive 
consequence. Only the observabilityof the nodeg(respec- 
tively, the divisor or the node being collapsed) i s  affected 
by the division or collapsing transformation. This runs 
deeply counter to one’s intuition, which suggests that the 
inputs to g are similarly affected, since these inputs have 
paths through g to the output. However, if g in fact divides 
into f i n  a nontrivial way, then every input of g i s  already 
an input of f. Hence the paths from the inputs of g to pri- 
mary outputs are neither created nor destroyed. 

VII. TECHNOLOGY MAPPING 

After a technology-independent optimization of a set of 
logic equations, the result must be mapped into a feasible 
circuit which i s  optimum with respect to area and satisfies 
a maximum critical-path delay. The rble of technology map- 
ping is to finish the synthesis of the circuit by performing 
the final gate selection from a particular library. The algo- 
rithms chosen for technology mapping are made less com- 
plex because they can be constrained by the structure pro- 
duced by the technology-independent optimizations. It i s  
not the role of technology mapping to change the structure 
of the circuit radically; for example, by finding common 
subexpressions between two or more parts of the circuit. 
Likewise, it is not the role of technology mapping to reduce 
the numberof levelsof logicalongthecritical path.The role 
of technology mapping is the actual gate choice to imple- 
ment theequations-for example,choosingthefastest gates 
along the critical path and using the most area-efficient 
combination of gates off the critical path. 

There are several characteristics which are desirable for 
a technology mapping algorithm: it should 

1) adapt easily to different libraries, 
2) support irregular collections of logic functions, 
3) handle detailed technology-dependent cost func- 

tions, 
4) be efficient in execution time. 

First, it i s  desirable that the technology mapping algo- 
rithm be able to adapt to a variety of different libraries with 
minimal effort. This is  difficult because many libraries have 
an irregular collection of logic functions available as prim- 
itives. An algorithm which depends on characteristics of a 
particular library (for example, availabilityof acomplete set 
of CMOS and-or invert gates) is of limited use. Also, an algo- 
rithm which is geared to a subset of the gates in a library 
i s  limited in its optimization potential. To achieve the goal 
of library adaptability, technology mapping should be 
“user-programmable,” i.e., the user should be able to pro- 
vide new gates to the technology mapper without under- 
standing its detailed operation, and these gates should be 
used effectively. 

During technology mapping, simple cost functions such 
as transistor count or levels of logic will not provide high- 
quality circuits. Instead, it i s  necessary to consider more 
detailed models for the cost of a gate in the actual target 
technology. This detailed level of modeling, coupled with 
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gates which have irregular area and delay cost functions, 
greatly complicates the technology mapping process. 

Therefore, to provide high-quality results for different 
libraries and circuits, a technology mapping algorithm must 
make few assumptions about the relative cost and perfor- 
mance of the gates in a library, and must be prepared to 
model accurately the cost functions which are to be opti- 
mized. 

While it is always desirable to have an efficient algorithm, 
generally the execution performance of the technology 
mapping algorithm is less important than the qualityof the 
final result. This i s  true for the last optimization of a circuit 
before fabrication. However, the steps of technology-inde- 
pendent optimization and technology mapping are often 
iterated by a logic synthesis system if the performance goals 
are not initially met. Technology mapping in this caseoper- 
ates as an accurate predictor of the qualityof a technology- 
independent representation. These results are fed back to 
the technology-independent optimization to improve the 
final implementation. Therefore it i s  desirable that a tech- 
nology mapping algorithm support a fast execution mode 
as well as a higher-quality optimization. 

The two basic approaches used for technology mapping 
are 

1) rule-based techniques [351, [461, [561; 
2) graph covering techniques [60], [16]. 

Rule-based techniques have the same structure as rule- 
based techniques for technology-independent optimiza- 
tion [35]. These are discussed in section VIII. It is important 
to mention that a rule-based system can combine the tech- 
nology-independent and technology mapping stages, pro- 
viding, in principle, a more global view of logic optimiza- 
tion. However, the nature of rule-based systems i s  to 
perform local optimization. Thus the rule-based method 
provides an interesting contrast with the two-phase 
approach which separates the technology-independent and 
dependent phases but which offers a more global view 
within each of the phases. 

The local-transformationhle-based techniques have suf- 
fered historically from inflexibility and large execution 
times; however, they have demonstrated the ability to pro- 
duce high-quality results. 

In this section, we focus on techniques based on graph 
covering. These techniques match quite well the require- 
ments discussed above. 

A. Graph Covering and Technology Mapping 

The approach of using directed-acyclic-graph (DAG) cov- 
ering for technology mapping in logic synthesis was first 
proposed by K. Keutzer of AT&T Bell Laboratories in 
DAGON [60]. His thesis was that technology mapping for 
logic synthesis is closely related to the problem of code gen- 
eration for software compilers, and hence the advanced 
techniques that have been developed for code generation 
should be applicable to technology mapping. 

The problem of code generation in a compiler is to map 
a set of expressions onto a set of machine instructions for 
the target machine. Extensive research into compilers has 
led to efficient ways of formulating and solving this prob- 
lem [2]. Each machine instruction i s  decomposed into a 
directed acyclic graph (DAG) of atomic operations, called 
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apattern. Each instruction hasacostassociatedwith itwhich 
represents the relative cost, in execution time, of choosing 
that instruction. The sequence of high-level expressions i s  
also represented by a DAG of atomic operations. The opti- 
mum code generation problem is  equivalent to finding an 
optimum cost cover of the subject DAG by the pattern 
DAG‘S. 

A similar approach is taken for the technology mapping 
problem. A set of base functions i s  chosen such as a two- 
input NAND-gate and an inverter. The logic equations are 
optimized in a technology-independent manner and then 
converted into agraph where each node i s  restricted to one 
of the base functions. This graph is  called the “subject 
graph.” The logic function for each library gate i s  also rep- 
resented by a graph where each node is restricted to one 
of the base functions. Each graph for a library gate i s  called 
a “pattern graph.” For any given logic function there are 
many different representations of the function using the 
base function set. Therefore each library gate i s  repre- 
sented by many different pattern graphs. 

The technology mapping problem i s  viewed as the opti- 
mization problem of finding a minimum cost covering of 
the subject graph by choosing from the collection of pat- 
tern graphs for all gates in the library. A “cover” i s  a col- 
lection of pattern graphs such that every node of the subject 
graph is contained in one (or more) of the pattern graphs. 
Thecover i s  furtherconstrained sothateach input required 
by a pattern graph i s  actually an output of some other pat- 
tern graph. For area optimization, the cost of a cover i s  
defined as the sum of the areas of the individual gates. For 
minimum delay optimization, the cost of a cover i s  defined 
as the critical path delay of the resulting circuit using an 
appropriate delay model. For the more typical problem of 
optimizing for minimum area under a given timing con- 
straint, any coverwhich results in acircuit with critical path 
delay greater than that allowed for any output i s  considered 
an illegal cover; thus the minimum-area legal cover i s  the 
optimization goal. If there are no legal covers, the cover of 
minimum delay is considered the desired solution. 

The critical parts of the procedure are the selection of the 
set of base functions and the optimization technique used 
to solve the covering problem. 

B. Choice of Base Functions 

The choice of a set of base functions i s  arbitrary as long 
as the base function set is functionally complete. However, 
this decision does influence the number of patterns needed 
to representthegatesinalibraryand thequalityofthesolu- 
tion provided by DAG-covering. Thegoal is to find the base- 
function set which provides the highest level of optimi- 
zation and produces a small set of patterns. In M I S  [16], [38], 
a base-function set of a two-input NAND-gate and an inverter 
i s  used. This set can be proved [82] to be as good in terms 
of optimization potential as any other set containing two- 
input NOR-, AND-, OR-gates and inverters. 

When both aNAND-gateand NOR-gateare used in the base- 
function set, the number of patterns required to represent 
some functions increases. For example, using both a two- 
input NAND-gate and a two-input NOR-gate, a large number 
of pattern graphs are required for all representations of the 
gate f = ab + cd. Variations such as three NAND-gates (with 
inverters), three NOR-gates (with inverters), and other rep- 
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resentations using both NAND-gates and NOR-gates are pos- 
sible patterns. Using only the two-input NAND-gate reduces 
the number of patterns to one. 

Thecovering paradigm implies that each nodeof the sub- 
ject graph is covered by a pattern but cannot be split and 
partially covered by two patterns. Therefore the granularity 
of the base function set affects the optimization potential. 
Thus a fine resolution base-function set allows for more 
covers, and hence better quality solutions. However, this 
has a price-more patterns are required to represent the 
logic function for somegates. In DAGON, two-input, three- 
input and four-input NAND-gates are used as the base-func- 
tion set. With this approach, the logic function 

f = abcd + efgh + ijkl + mnop 

requires only one pattern-a tree of five four-input NAND- 

gates. Representing all patterns for this same function using 
two-input NAND-gates and inverters requires 18 patterns. 
However, given the possibility for improved optimization, 
the finer resolution base function appears to be the better 
approach. 

C. Creating the Subject Graph 

A logic network has many representations as graphs of 
components from the base-function set, and each repre- 
sentation i s  a potential subject graph for DAG-covering. 
Each starting point leads to a graph cover of different cost. 
Even if the covering problem is  solved exactly, every one 
of these starting points should be considered for an opti- 
mum solution. 

Therefore heuristics are used to find a near-optimal form 
for the subject graph. As mentioned in the introduction, 
these optimizations include algebraic decomposition and 
Boolean simplification techniques using technology-inde- 
pendent costfunctions.The number of nodes in thesubject 
graph is  used as a technology-independent estimate of the 
area of the circuit. The total number of literals in the sum- 
of-products form is  effectively the same area estimator. The 
longestpathfroman inputtoanoutput in thesubjectgraph 
is used to estimate the delay of the circuit. 

The goal of technology-independent optimization should 
be to find a circuit representation which provides a good 
starting point for DAG-covering. The optimized equations 
are then transformed into two-input NAND-gate and inverter 
form in a straightforward manner. 

This transformation i s  the same used for restructuringfor 
timing [89]. In fact, the starting point provided bythe timing 
restructuring algorithm is  a good one for technology map- 
ping [82]. However, it still remains an open problem to 
determinewhich ofthe possible subject graphsoftwo-input 
NAND’S and inverters yields the optimum solution when an 
optimum covering algorithm is  applied. 

7) The DAG-Covering Problem: DAG-covering-by-DAG’S 
is NP-hard even with only three pattern graphs (inverter, 
two-input NAND, two-input NOR) and if each subject graph 
node has no more than two incoming and outgoing edges 
K11. 

An exact covering algorithm has been proposed in [82], 
based on a branch-and-bound procedure. However, the 
complexityof the algorithm is  so large that only trivial prob- 
lems could be solved. On the other hand, it is debatable 
whether this problem needs to be solved exactly since the 

subject graph is already the result of a heuristic mapping 
and hence does not reflect the most general optimization 
problem that needsto be solved. A moreeffectiveapproach 
would be to develop a heuristic DAG-covering algorithm. 
However, this is still an open problem. (L. Lavagno at Berke- 
ley has experimented with a number of heuristicwith some 
degree of success, where XOR’S and multiplexors are allowed 
in the gate library. This has been implemented in MIS2.1.) 

An alternative approach to the DAG-covering problem is  
to simplify it so that the simplified problem could be solved 
effectively(for example, in linear time). Of course, the qual- 
ity of the final solution will depend on the reduction of the 
search space. 

Keutzer in DAGON [60] has proposed reducing the DAG- 
covering problem to a set of tree-covering-by-trees prob- 
lems. His procedure is based on the following steps: 

1) partition the subject graph into trees; 
2) cover each tree optimally; 
3) piece the tree-covers into a cover for the subject 

graph. 

This approach has proved quite effective. In particular, it 
can be shown that if the cost function i s  additive, such as 
area, the tree-covering problem can be solved with a linear 
complexity algorithm based on dynamic programming. 
DAGON is  a technology mapping program written by 
Keutzer on top of the tree manipulation tool “twig” [92]. 
Twig was originally developed to provide a flexible frame- 
work for building efficient algorithms fortree matchingand 
for solving the tree-covering problem. Twig uses the Aho- 
Corasick [ I ]  string-matching algorithm for matching and 
the Aho-Johnson [2] dynamic programming algorithm for 
optimum tree covering. 

Its weak points are in the loss of global view due to the 
step of partitioning into trees. Covers across partition 
boundaries are not allowed. It will be interesting to see 
whether different partitioning algorithms can substantially 
improve the results obtained with this procedure. 

The approach followed in M I S  [16], [38] i s  patterned after 
DAGON. To improve the quality of the solution, additional 
covers are exposed by replacing any straight interconnec- 
tion between gates with a pair of inverters. This augments 
the search space substantially at little cost. 

D. Delay Optimization and Graph Covering 

Synthesis for performance is  increasingly important due 
to the competitive pressures for electronic systems with 
maximum performance. Thus a solution for technology 
mapping must consider timing in a direct way. If the delay 
were independent of the gate driven (i.e., a constant load 
model i s  used), then a dynamic-programming algorithm of 
linear complexity could be applied as well. Thus far, even 
though this model i s  not accurate, graph-covering-style 
technology mapping for delay has been carried out under 
this assumption. The results obtained are reasonable but 
by no means optimum. In fact, for a general delay cost func- 
tion,theoptimum cover dependson the forward partof the 
tree, and hence the dynamic-programming algorithm may 
not find the optimum result. 

Keutzer and Vancura [62] use tree-height reduction to 
reduce the number of gates in a critical path and then do 
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drive buffering by placing a constraint on the amount of 
drive a gate must have to be used at a fan-out point of the 
network. Berman and Carter [7l investigate the problem of 
optimally powering up a node with a powering tree to min- 
imize the required time at the source node. They prove that 
the problem is NP-complete and propose a heuristic algo- 
rithm which gives good results. 

Rudell[82] has suggested a method to solve the minimum 
delay optimization problem for trees and the constrained- 
by-timing area optimization problem. His idea is  based on 
a binning technique for the pin-loads as follows. 

1) The unique set of pin-loads i s  determined and bin- 
ning functions are constructed. 

2) An array of solutions at each node of the subject tree 
is obtained, one per bin. 

3) The arrival time for each cover for each load value i s  
com puted. 

4) At each input of the cover, the optimum solution for 
driving the corresponding pin-load i s  selected. 

5) The final cover i s  chosen based on the external load 
at the root of the tree. 

The cover obtained by this technique is a minimum-delay 
cover. Note that this approach subsumes all technology 
mapping-related problems such as phase assignment and 
discrete sizing. It can also be generalized to solve the prob- 
lem of technology mapping for optimum area cover with 
delay constraints. 

The complexity of the algorithm i s  still linear, but it 
depends on the number of load-pins and arrival-time bins. 
For a reasonable library, we can have as many as 100 dif- 
ferent pin-loads and 10 000 arrival bins (0.01 ns for 100 ns) 
yielding 1 000 000 solutions per node! Hence, to make this 
algorithm practical, Rudell devised an approximate tech- 
nique that uses only a fixed number of bins. A clustering 
algorithm provides a good value for the bins so that the 
approximation due to the insufficient number of bins i s  
minimized. A straightforward implementation of the algo- 
rithm runs only four times slower than the standard algo- 
rithm. 

l a t e  :mf 
Fig. 14. Example rules from SOCRATES. 
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VIII. RULE-BASED METHODS 

A popular technique for logic optimization uses “local 
transformations” or “rule-based systems.” This includes 
the logic synthesis systems LSS [35], SOCRATES [46], and 
LORES [56]. LSS uses local transforms; where both tech- 
nology-independent transformations and technology map- 
pings are addressed uniformly [58]. Both LSS and SOC- 
RATES use rule-based techniques as a part of a larger 
optimization system. For example, SOCRATES uses two- 
level minimization and algebraic decomposition as part of 
its Optimization strategy, and LSS uses cube-factoring, 
global-flow, and other high-level transformations. 

A rule-based system i s  a collection of rules and tech- 
niques for selecting when and where to apply a rule to 
improve the circuit quality. Each rule is expressed as a pair 
(“target graph,” “replacement graph”). A rule i s  applied by 
identifying a portion of the circuit which contains a 
subgraph isomorphic to the target graph, and replacing the 
subgraph with the replacement graph. Each rule applica- 
tion preserves the circuit functionality. Technology map- 
ping from Boolean equations starts with a straightforward 
translation of the equations into gates in the library (for 
example, using only AND-gates and OR-gates) or into a 
generic gate (e.g., NAND’S). The circuit quality is improved 
through the iterative application of rules. Example rules 
from SOCRATES are shown in Fig. 14. 

The operation of a rule-based system can be understood 
by viewing the optimization as a search on a “state-space 
graph.” The state-space graph is a directed graph, where 
the nodes represent legal circuit configurations with the 
desired functionality, and a directed edge exists from node 
v, to v/ if a rule application can transform the circuit of node 
v, into the circuit of node v/. Each node in this graph has an 
associated cost based on the area and delay of the corre- 
sponding circuit. The optimization starts from an arbitrary 
node in the state-space graph, and each application of a 
rule i s  a move to an adjacent node. The goal i s  to find the 
minimum cost node in the state-space graph. 

The difficulty in applying rule-based techniques for opti- 
mization i s  in solving the problem of searching the state- 
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space graph for the minimum cost node. The approach 
reported in LSS and LORES is a greedy strategy. The edges 
from the current node are examined in a predetermined 
order, and the first edge which improves the value of the 
cost function i s  selected. The new node is taken as the cur- 
rent node, and the process i s  repeated until a local mini- 
mum is reached. A local-minimum node has no outgoing 
edge that improves the value of the cost function. 

In SOCRATES, a search technique replaces the greedy 
strategy. The search starts from the current node and exam- 
inesafixed number of adjacent nodes(the"breadth"0fthe 
search). For each of these adjacent nodes, the search is 
repeated up to a fixed distance from the current node (the 
"depth" of the search). The best move seen in this set of 
nodes surrounding the current node defines a sequence of 
transformations. The next /transformations are taken as the 
next set of moves, and the search i s  continued. The param- 
eter I controls the amount of look-ahead actually taken. A 
sequence of rule applications i s  accepted if the cost func- 
tion at the end of the sequence i s  improved. This allows 
intermediate rule applications to temporarily increase the 
cost function. A state-space search i s  very expensive in 
terms of execution time unless the search parameters are 
controlled. In SOCRATES , a "meta-level rule-based expert 
system" [46] controls the breadth and depth of the search 
at each step and chooses the rules to apply. Results show 
a 12-percent improvement in area optimization for the par- 
tial state-space search over the greedy approach men- 
tioned earlier. Typical values for the parameters are / = 1, 
depth = 2, and breadth = 4. 

The primary advantages of a rule-based system are a) its 
flexibility in the types of rules and cost-functions that can 
be considered during the optimization, and b) the relative 
ease with which the core transformation system can be 
developed. The primarydrawbacks of this approach are the 
difficulty in creating, maintaining, and modifying the rule- 
base, and the difficulty of incorporating new gates into a 
library. Also, unless artfully controlled, rule-based systems 
tend to be expensive in terms of execution time and offer 
an unpredictable quality of the result. These points are 
elaborated next. 

The execution time of a rule-based system is determined 
bythe numberof nodesexamined in thestate-spacegraph. 
Examining each node requires a computation of the cost 
function, includingtheareaanddelayof thecorresponding 
circuit. Even using incremental techniques, computation of 
the delay cost function i s  expensive (on the order of sec- 
onds for a 1-MIP computer on a large circuit [45]). This prob- 
lem is  aggravated by a bounded state-space search, where 
the number of cost function evaluations grows exponen- 
tially in the depth of the search. Therefore the cost of a rule- 
based approach is especially expensive if searching i s  used 
to provide high-quality results. 

The quality of the circuits produced by a rule-based sys- 
tem depends on the completeness of the set of rules, and 
the quality of the heuristics which guide the walk in the 
search space graph. If the rules are not complete, the state- 
space graph may not be connected, leading to the impos- 
sibility of reaching particular solutions. Using a greedy 
search and a predetermined order to evaluate adjacent 
nodes has the problem of becoming stuck in a local opti- 
mum which i s  far from the global optimum. It i s  not clear 
if a limited state-space search adequately avoids subop- 
timal local minima. 

. 

Another problem with rule-based systems is that it i s  dif- 
ficult to incorporate new gates into a library. A technique 
which provides technology portability i s  to define a master 
gate library, and to write all rules in terms of this library. 
It is then assumed that all libraries will be a subset of this 
master library. If a library has agate which is not in the mas- 
ter library, it cannot be involved in theoptimization process 
unless additional rules are added. This difficulty is com- 
pounded further bythe interaction between the set of rules 
and the heuristics which control the rule application. For 
this reason, rule sets are handcrafted with a particular tech- 
nology and design style in mind. Adding a new rule i s  not 
simply a matter of adding the rule to the set of transfor- 
mations; it is also necessary to consider how the new rule 
will interact with the other rules in the system. In the limit, 
it may be necessary to rewrite the heuristics which control 
the order in which the rules are applied. For this reason, 
there i s  a significant effort to port the system to new librar- 
ies and technologies. 

A final problem is the large number of transformations 
required to provide high-quality optimization. Writing, 
managing, and verifyingall of these rules i s  a nontrivial pro- 
cess. 

Despite these problems, local transformation techniques 
have demonstrated the ability to produce high-quality 
results. For example, LSS, SOCRATES, and LORES all report 
optimization results competitive with human designers [35], 
[46], [56]. An interesting recent development is the use of 
global flow in the LSS system. It is reported that this allows 
the elimination of eight out of nine rewrite rules aimed at 
reducing connections, and speeds up the program by one- 
third. Considering these discussions, we may consider this 
development as a merging of the algorithmic technology- 
independent methods with the local transformation meth- 
ods. 

IX. CONCLUSION 

Multilevel logic synthesis i s  a powerful technique for the 
automatic generation of high-quality combinational cir- 
cuits. Multilevel logic synthesis consists of a sequence of 
transformations on a multilevel logic network. These can 
be applied in an arbitrary sequence; however, the final 
result may depend heavily on the sequence chosen. The 
operations can be repeated to improve the results. We have 
discussed a number of different operations that can be per- 
formed on a multilevel logic network. We have attempted 
to survey as many techniques as possible, although more 
emphasis and detail have been given to those operations 
which, in our experience, have proven the most practical. 
It should be noted that such experience is biased toward 
the kind ofdecisionswe madeatthe beginning of thedesign 
of the logic synthesis systems MIS and BOLD. Our approach 
has been heavily tilted toward the use of algorithms with 
proven properties, and thus we may not have represented 
fairly the rule-based approach. We will have to leave a thor- 
ough treatment of this approach to other authors and refer 
the reader to the existing literature [361, [351, [581, [51, [461. 

Even in discussing various algorithmic approaches, there 
are many choices, such as spectral methods, transduction, 
Boolean minimization, and functional decomposition. 
Again, space considerations made it difficult to treat each 
of these methods uniformly, so we have chosen to provide 
more detail for those methods which we believe to be more 
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relevant for  the  design communi ty  and to relegate some of 
the  other, perhaps promising, methods to a brief summary 
w i t h  references to papers fu l ly  describing t h e  approach. 

Mul t i leve l  logic synthesis, us ing all the  techniques that 
have been described, can prov ide logic designs wh ich  are 
competit ive o r  better than most  manual designs, even 
though optimali ty results are still mostly lacking. W e  expect, 
as the  research continues in this area, that  t h e  algori thms 
will cont inue to improve and more  theoretical understand- 
ing wi l l  produce n e w  algorithms, thereby leading to ever- 
improv ing capabilities. 
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