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Abstract—In this paper, we present an algorithm to find all
low-weight codewords in a given quasi-cyclic (QC) low-density
parity-check (LDPC) code with a fixed column-weight and girth.
The main idea is to view a low-weight codeword as an (a, 0)
trapping sets, and then show that each topologically different
(a, 0) trapping set can be dissected into smaller trapping sets.
The proposed search method relies on the knowledge of possible
topologies of such smaller trapping sets present in a code
ensemble, which enables an efficient search. Combined with the
high-rate QC LDPC code construction which successively adds
blocks of permutation matrices, the algorithm ensures that in the
code construction procedure all codewords up to a certain weight
are avoided, which leads to a code with the desired minimum
distance. The algorithm can be also used to determine the
multiplicity of the low-weight codewords with different trapping
set structure.

I. INTRODUCTION

It is now established that the presence of certain struc-
tures in Tanner graphs of low-density parity-check (LDPC)
codes leads to decoder failures and error-floor phenomenon in
the high signal-to-noise ratio region. For iterative decoding
these structures are generally referred to as trapping sets.
An iterative decoding algorithm initialized with errors located
in variable nodes of a trapping set does not converge to a
codeword. If we view an iterative decoder as a dynamical
system [1], successful decoding corresponds to a “trajectory“
which leads to the original codeword, thus codewords act as
strong attractor points, while oscillatory behavior occurs in
the neighborhood of weaker attractor points corresponding to
trapping sets.

Our experimental study has shown that a random, finite
length, regular LDPC code free of certain trapping sets has
large minimum distance with high probability. Moreover, in [2]
we have observed that the short Tanner code with dmin = 20
[3] contains only three types of minimal-weight codewords
and that the subgraphs induced by the the support of any of
these codewords contain trapping sets. Moreover, the three
codeword types differ in their trapping set composition, and
the corresponding attractor strengths. These observations lead
to a plausible conjecture that, in general, small trapping sets
are nested in the support of codewords, and more importantly
that the graph induced by the support of a codewords may be
decomposed into a union of subgraphs which are mainly trap-
ping sets. Therefore, it seems natural to study the connection

between trapping sets and the structure of codewords as well
as the relations between the trapping sets present in a code
and the minimum distance dmin of the code.

Finding the minimum distance of a given code is known
to be hard [4], and during the past decade several practical
techniques have been proposed to search for low-weight
codewords of a code hence providing upper bounds on dmin.
The first technique, called the error impulse method, has been
introduced by Berrou et al. [5] in the context of turbo codes [6]
and adapted for LDPC codes by Declerq and Fossorier (see [7]
and references therein). The impulse method aims at adding
a controlled noise to the all-zero codeword in order to make
the decoder converge to a nearest non-zero codeword, and then
give an upper bound on dmin based on the weight of such non-
zero codeword. Stern [8] proposed a probabilistic approach
to determine low-weight codewords of binary linear codes,
which has been modified by Hirotomo et al. and used for
LDPC codes in [9]. This approach operates on the systematic
representation of the parity-check matrix in order to find low-
weight codewords. More recently Keha and Duman introduced
a branch and cut algorithm [10] to find exact minimum dis-
tance of short-length LDPC codes. The algorithm solves two
integer programming problems (one to find codewords based
on the generator matrix, and another to find codewords in the
null space of the parity-check matrix). However the complexity
of this algorithm restricts its application to moderate-length
codes. None of the above approaches consider the topology
of the subgraphs induced by codewords.

Since codewords are just a particular type of trapping set,
namely (a, 0) trapping sets (to be introduced precisely later), a
naive code construction procedure would involve an exhaustive
search for all the subgraphs corresponding to codewords up
to a certain size in a Tanner graph, and then removing such
structures from a graph in order to obtain a code with a
good minimum distance. However the exhaustive search of
low-weight codewords or (a, 0) trapping sets is impractical
as soon as the codeword weight exceeds 12. Previous work
on exhaustive search for trapping sets ([11], [12]) has demon-
strated that search for (a, b) trapping sets is practical only
when a ≤ 11 and a Tanner graph has no more than 1000
variable nodes. Efficient algorithms to find trapping sets with
a dominant contribution to the error floor have been proposed
by Karimi and Banihashemi [13]. Although these algorithms



can handle trapping set of larger size, they may miss low-
weight codewords.

On the code design front, the most common approach taken
in the literature to achieve large minimum distance when the
column-weight is small (three or four) is ensuring that the
designed code has a large girth. Indeed, it has been shown
that a linear increase in the girth leads to an exponential
increase in the lower bound on the minimum distance for codes
whose column-weight is greater than three [14]. Large girth is
beneficial to iterative decoders because it reduces the statistical
dependence of the messages passed along edges of the Tanner
graph. However increasing the girth either drastically increases
the code length or reduces the row-weight of the code, hence
reducing the code rate. Numerous approaches based on this
idea have been proposed. The bit-filling [15] consists of
adding columns in the parity-check matrix while satisfying
the constraints on the girth. Significant effort has also been
made in increasing girth of structured codes using algebraic
codes [16], array codes [17], [18] or quasi-cyclic (QC) LDPC
codes [19], [20], [21], [22].

MacKay and Davey [23] and Fossorier [19] established
an upper bound of (dv + 1)! on the minimum distance for
(dv, dc)-regular QC-LDPC codes. Bocharova et al. [24] used
computer search to obtain several low-rate codes (R = 2/5
and R = 3/6) that achieve this upper bound. Theses codes
are based on convolutional LDPC codes and are also obtained
by increasing the girth of the Tanner graph. In [24] the authors
give an overview of results on improving minimum distance
of QC codes by increasing the girth. By generalizing the work
presented in [19] Smarandache and Vontobel [25] derived
upper bounds for a special class of regular QC codes using pro-
tographs. The construction of protograph-based LDPC codes
with a linear minimum distance has also been considered in
[26] and[27].

In this paper, we consider an ensemble of (dv, dc)-regular
LDPC codes of length n and girth g, denoted Cn(dv, dc, g),
and give an algorithm which determines the trapping set com-
position of all non-isomorphic Tanner graphs corresponding to
weight-w codewords present in a given code in Cn(dv, dc, g).
The algorithm utilizes three key expansion operations to search
for subgraphs by adding nodes or trapping sets to existing
subgraphs. Combined with the code construction that we have
recently developed [28], the algorithm ensures that in the code
construction procedure all codewords of weights up to w are
avoided, which leads to a code whose minimum distance is
at least w + 2. The algorithm can be also used to determine
the multiplicity of the lowest weight codewords with different
trapping set structure.

The paper gives then the preliminary insights of the structure
of codewords of left-regular LDPC codes with a given girth
and the link between the presence of trapping sets and the
minimum distance of a code. To provide these insights, we
present a case study for codes belonging to Cn(3, dc, 8),
and the minimum distance up to 16. We present the search
method for weight-14 codewords of the Cn(3, dc, 8) ensemble.
Generalization of the method to LDPC codes with different

column-weight and/or girth can be done by modifications
of several steps at the cost of increasing the computational
complexity of the search.

The rest of the paper is organized as follows. Section II
provides the necessary preliminaries regarding LDPC codes,
trapping sets and check coloring of structured LDPC codes. In
Section III we review the trapping set ontology and we intro-
duce the three expansion operations which are used throughout
this paper. Section IV gives the main contribution of the paper,
which is a search method that guarantee to find all the low-
weight codewords in the Cn(dv, dc, g) ensemble. We conclude
the paper by a discussion in Section V.

II. PRELIMINARIES

In this section, we provide some background and notations
on LDPC codes [29]. Let C denote a (n, k) LDPC code over
the binary field GF(2). C is defined by the null space of an m×
n parity-check matrix H over GF(2) where m is the number of
constraints on the n bits of the code. C can be represented by a
bipartite graph G, known as Tanner graph [14], which consists
of two sets of nodes: the set of the m parity-check nodes (or
simply check nodes) C = {c1, c2, ..., cm} and the set of the n
variable nodes V = {v1, v2, ..., vn}. An edge connects a check
node i to a variable node j if the entry at the ith row and jth
column in H is 1. A vector x = (x1, x2, ..., xn) is a codeword
if and only if xHT = 0. The support of x denoted by supp(x)
is the set of all variable nodes v ∈ V such that xv 6= 0. The
weight of the vector x is given by |supp(x)|. The minimum
distance dmin of a code C is given by the minimum weight of
the non-zero codewords of C. An LDPC code is said to be dv-
left regular if each variable node in G has degree dv . Similarly,
an LDPC code is said to be dc-right regular if each check node
in G has degree dc. dv and dc are also called column-weight
and row-weight, respectively. A (dv, dc)-regular LDPC code
is both dv-left regular and dc-right regular and the rate of such
a code is given by R ≥ 1− dv/dc. The length of the shortest
cycle in G is called the girth of G and is denoted by g. In this
paper, Cn(dv, dc, g) denotes the ensemble of (dv, dc)-regular
LDPC codes with girth g.

Let V ′ ⊆ V be a subset of variable nodes of G. The
subgraph induced by V ′ contains all the edges of G that
connect the variable nodes of V ′ to their neighboring check
nodes of and is denoted by I(V ′).

A. Trapping set

Let x = (x1, . . . , xn) be a transmitted codeword. Consider
an iterative decoder and let x̂l = (x̂l

1, . . . , x̂
l
n) be the decision

vector after the lth iteration. A variable node v ∈ V is
eventually correct if there exists a positive integer lc such that
for all l ≥ lc, xv = x̂l

v . The decoding is successful if all the
variables in V are eventually correct. We adopt the definition
of trapping sets from [30]. Let r be the input of an iterative
decoder and suppose the decoding was not successful.

Definition 1. [30] A trapping set T(r) is defined as a non-
empty set of variable nodes in G which are not eventually
correct. Since two different decoder input vectors can result



in the same trapping set, a trapping set T(r) is denoted simply
by T . A trapping set T is an (a, b) trapping set if the subgraph
induced by T , I(T ), has a variable nodes and b odd-degree
check nodes.

The following theorem for trapping sets of dv-left-regular
LDPC code is adopted from [31] and [28] which will be
needed in the remainder of the paper.

Theorem 1. Let C be a dv-left-regular LDPC code. Let T
be a set of variable nodes. Let O and E be two disjoint
sets consisting of odd- and even-degree check nodes of I(T),
respectively. T is a trapping set for Gallager A/B decoder if
every variable node in I(T) has at least ddv

2 e check nodes in
E and no collection of bdv

2 c + 1 check nodes of O share a
neighbor outside I.

Throughout the paper, the term trapping set is used accord-
ing to Theorem 1. Moreover, the trapping set ontology [32]
used in this paper is based on this theorem for Gallager A/B
decoder. The union of trapping sets T1 of type T1 and T2

of type T2 is an induced subgraph of all the variable nodes
which are in both T1 and T2. I(T1−T2) denotes an induced
subgraph of variables which are in T1, but not in T2.

Let x be a non-zero codeword of C and T = supp(x).
Thus T is an (a, 0) trapping set. Conversely, if there exists
an (a, 0) trapping set in C, then C has a codeword of weight
a. Therefore, a code C has minimum distance dmin if and
only if for a < dmin, C contains no (a, 0) trapping set and
there exists at least one (dmin, 0) trapping set in C. We denote
elementary codewords as codewords whose induced subgraph
only contain degree-2 check nodes. Elementary trapping sets
are trapping sets whose subgraphs only contain degree-1 or
degree-2 check nodes. From now on, the term codeword refers
to an (a, 0) trapping set which is the induced subgraph on the
support of the codeword.

Fig. 1 depicts three trapping sets present in Cn(3, dc, 8),
namely the (4, 4) trapping set, the (5, 3) trapping set and the
only weight-6 codeword for this ensemble of LDPC codes,
also referred to as the (6, 0) trapping set. In this figure and
throughout the paper, e denotes a variable node, 0 denotes
an even-degree check node, and ` represents an odd-degree
check node.

B. Check coloring for structured LDPC codes

The definition of structured LDPC codes is adopted from
[28]. In particular, we consider LDPC codes whose parity-
check matrices are arrays of permutation matrices. A permu-
tation matrix is a square binary matrix with only one entry
binary one in each row and column and zeros elsewhere.

There exists an intrinsic property of check nodes in the
Tanner graph of the structured LDPC codes. This property is
referred to as coloring and is given by the following definition.

Definition 2. Let K = {1, 2, ..., dv} be a set of colors. A
coloring of check nodes in a Tanner graph G of a dv-left
regular LDPC code is a function f : C → K, such that

(a) (b) (c)

Figure 1. Tanner graph representation of trapping sets for column-weight-3
and girth-8 LDPC codes : (a) the (4, 4) trapping set. (b) the (5, 3) trapping
set. (c) (6, 0) trapping set (codeword of weight 6).

∀ ci, cj ∈ C, i 6= j and v ∈ V connected to ci and cj ,
f(ci) 6= f(cj).

Proposition 1. There exists a coloring for a dv-left regular
structured LDPC code.

Proof: The basic blocks of the structured LDPC code are
permutation matrices. Since the code is dv-left regular each
column of the parity-check matrix consists of dv permutation
matrices. Let us assign colors 1, . . . dv to the check nodes
corresponding to the rows of the parity-check matrix such
that all the check nodes in the same permutation matrix have
the same color. For this coloring, suppose there exist distinct
check nodes ci, cj ∈ C connected to a common variable node
such that f(ci) = f(cj). Therefore, the rows corresponding
to ci and cj are in the same permutation matrix. Since ci
and cj are connected to a common variable node, the column
corresponding to that variable node has entry 1 in ci and
cj which is a contradiction since ci and cj are in the same
permutation matrix and each permutation matrix can have only
one non-zero entry in each row and column.

The coloring property will be used to bound the number of
possible codewords which may be generated for a given weight
w. Exploiting coloring property results in huge computational
complexity reduction of the search algorithms.

III. TRAPPING SET ONTOLOGY AND EXPANSION
OPERATIONS

In this section, we present the basic components of the
search algorithm. These components are adopted from the
trapping set ontology (TSO) [32] specifically for column-
weight-3 and girth-8 LDPC codes. The TSO is the database of
trapping sets and it gives the relations between their topologi-
cal structures. In other words, in addition to the identification
of the trapping sets present in an ensemble of codes, the
TSO also provides guidance through the search procedure
for trapping sets using the knowledge of the topological
relationships between them.

The TSO greatly simplifies the enumeration of trapping sets
in a code using the underlying parent-child relation between
them compared to the exhaustive search of individual trapping
sets. The following definition gives the formal concept of the
parent-child relations between trapping sets.



(a) (b)

Figure 2. Tanner graph representation of the two topologies for weight-8
codewords for column-weight-3 and girth-8 LDPC codes.

Definition 3. [28] A trapping set T1 is said to be a successor
of a trapping set T2 if there exists a subset V2 of variable
nodes of T1, where I(V2) (the subgraph induced by V2) is
isomorphic to T2. Then T2 is called a predecessor of T1.

For example, the (5, 3) trapping set of Fig. 1(b) is obtained
by addition of one variable node to the (4, 4) trapping set
of Fig. 1(a). Thus, the (5, 3) trapping set is a successor
of the (4, 4) trapping set and the (4, 4) trapping set is the
predecessor of the (5, 3) trapping set. Also we can see that
the (6, 0) trapping set of Fig. 1(c) is a successor of the (4, 4)
trapping sets. Similarly we have depicted in Fig. 2 the only two
topologies corresponding to a weight-8 codeword for column-
weight-3 and girth-8 LDPC code. One can easily see that
trapping sets (namely (4, 4), (5, 3), (6, 4)) are predecessors
of these (8, 0) trapping sets.

The main result of this paper is an algorithm to search for
all the codewords up to certain weight. Let G be the Tanner
graph corresponding to a code C. The search algorithm has G
as an input and verifies whether any codeword up to certain
weight is contained in G. To search for the codewords, it is
simpler to search for the smaller trapping set which are the
predecessors of the codewords. TSO facilitates an efficient
search of trapping sets. The search begins with enumeration
of cycles with a variable nodes (which can be seen as a
(a, a) trapping set for column-weight-3 codes) since every
trapping set contains at least one cycle. Then larger trapping
sets can be found by expanding these smaller trapping sets.
The term Expansion Operations used in this paper refers to
three easily programmable subroutines which accept subgraph
T1 and return subgraph T2, successor of T1. In other words,
T2 is searched for by checking if the expansion of subgraph
T1 exists in G. We show later that these three Expansion
Operations are sufficient to search for all the successor of
trapping sets leading to a codeword.

The expansion operations allow us to search for all the
codewords up to certain weight without searching for them
individually. These operations are adopted from [32] and
they are used to search for larger trapping sets from smaller
trapping sets. These operations provide a method to search

for a trapping set from its parent by adding one variable, or
another trapping set to a parent trapping set.

Expansion Operations

1) Expansion Operation 1 (EO1):
Searching for (c, d) trapping set generated by the union
of (a1, b1) and (a2, b2) trapping sets:

Let T1 be a (a1, b1) trapping set and let T2 be a (a2, b2)
trapping set. Let T3 be a (c, d) trapping set where T3 is
a successor of T1 and T2. Let T1, T2 and T3 be the
trapping sets of types T1, T2 and T3, respectively and let
V1 and V2 be the set of variable nodes of T1 and T2,
respectively. Then, to search for T3, it is sufficient to
check if the induced subgraph I(V) is of type T3 where
V = V1 ∪ V2.

2) Expansion Operation 2 (EO2):
Searching for (a+ 1, b− 1) trapping sets generated by
(a, b) trapping sets:

Let T1 be a (a, b) trapping set and let T2 be a (a +
1, b − 1) trapping set where T2 is a successor of T1.
T2 can be obtained by adjoining one variable node to
T1. Let T1 and T2 be the trapping sets of types T1
and T2, respectively. So in order to search for T2, it is
more convenient to search for a variable node connected
to two odd-degree check nodes of the smaller subgraph
I(T1).

3) Expansion Operation 3 (EO3):
Searching for (a+ 1, b− 3) trapping sets generated by
(a, b) trapping sets:

Let T1 be a (a, b) trapping set and let T2 be a (a +
1, b− 3) trapping set where T2 is a successor of T1. T2
can be obtained by adjoining one variable node to T1.
Let T1 and T2 be the trapping sets of types T1 and T2,
respectively. Then, to search for T2, it is sufficient to
search for a variable node connected to three odd-degree
check nodes of the smaller subgraph I(T1).

The search for (a + 1, b − 3) trapping sets is very similar
to the search procedure for (a+1, b− 1) trapping sets. Fig. 3
illustrates the expansion operations. In these figures, T̃ denotes
as the set of variable nodes and even-degree check nodes
contained in the trapping set T . Fig. 3(a) shows EO1 where
the trapping sets T1 and T2 share a certain number of odd-
degree check nodes to form the successor trapping set T3. Fig.
3(b) depicts the EO2 where one variable node connecting two
odd-degree checks nodes of the trapping set T1 leads to form
the successor trapping set T2. EO3 is illustrated in Fig. 3(c)
in which one variable node connects three odd-degree checks
nodes of the trapping set T1 to form the successor trapping
set T2.
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T̃1
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T̃1
...
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Figure 3. Illustration of the expansion operations: T̃ denotes the set of variable nodes and even-degree check nodes contained in the trapping set T . (a)
EO1: Searching for T3 as a union of T1 and T2. (b) EO2: Searching for (a+ 1, b− 1) trapping set (T2) starting from a (a, b) trapping set (T1). (c) EO3:
Searching for (a+ 1, b− 3) trapping set (T2) starting from a (a, b) trapping set (T1).

(a) (b)

Figure 4. Computation tree of a column-weight-three and girth-eight codeword with (a) one degree-6 check node, (b) three degree-4 check nodes.

IV. SEARCH METHOD

In this section, we present the method to search for all the
low-weight codewords in an LDPC code C with Tanner graph
G. In the remainder of the paper, all the statements pertain to
Cn(dv = 3, dc, g = 8) unless stated otherwise. This choice has
been governed by the availability of the TSO for such LDPC
codes. This method can be generalized to any column-weight
and girth, provided the TSO for this LDPC code ensemble is
known. The search method is presented for the codewords of
weight 14. The generalization of this method for codewords
with larger weight is straightforward by adding extra steps
to the search method. The proof proceeds by classifying the
codewords into a finite number of categories and dealing
with each category separately. In each case, we prove that the
search procedure is able to search for all the codewords in
that category. The proofs are constructive and provided along
the paper as they illustrate the search algorithm. The proofs
also give insights in possible extensions to LDPC codes with
different column-weights and girths.

Since the number of possible codewords of weight 14 is
very large, it is not possible to search for all of them one
by one. Even if possible it would be highly inefficient since
a given code does not contain all possible codewords. Our
search method categorizes the codewords in such a way that
every category of codewords can be searched for in a finite
number of steps. Lemma 1 and 2 are presented in order to
bound the categories of weight-14 codewords in Cn(3, dc, 8).

Lemma 1. In the Cn(3, dc, 8) ensemble, there is no weight-14
codeword with a check node of degree 6.

Proof: Assume there exists a weight-14 codeword with
girth 8 with a check node of degree-6. We start building the
subgraph of this codeword from the degree-6 check node as
a root (hence connected to six variable nodes). Each variable
node branches to two other check nodes since the column-
weight is three. None of these check nodes can be the same
since it would results in a 4-cycle which violates the girth-
8 constraint. Then each check node is connected to at least
one other variable node to have even-degree check nodes. By
a similar argument, none of these variable nodes can be the
same because it would create a 6-cycle. As it is shown in
Fig. 4(a), in order to have a codeword with a degree-6 check
node, at least 18 variable nodes are required to satisfy the
girth-8 constraint. Thus, it is not possible to have a weight-14
codeword with a degree-6 check node.

Lemma 2. In the Cn(3, dc, 8) ensemble, there is no weight 14
codeword with three check nodes of degree 4.

Proof: By the same argument used in the proof of Lemma
1, we start building the subgraph of a codeword using a degree-
4 check node as a root. Similarly to Lemma 1, we expand the
subgraph while satisfying the girth-8 constraint. There are two
possible subgraphs. Fig. 4(b) shows the first resulting subgraph
which does not violate the girth-8 constraint. Therefore, in
order to have a weight-14 codeword with three degree-4 check
nodes, at least 16 variable nodes are required. The second



possible subgraph (not shown) is a subgraph which the degree-
4 check nodes does not share a common variable. However it
is not possible to obtain a weight-14 codeword while satisfying
the girth-8 constraint by the same reasoning.

As it was stated in the previous sections, codewords of
weight 14 are (14, 0) trapping sets. The following proposition
categorizes the (14, 0) trapping sets.

Proposition 2. Any (14,0) trapping sets of Cn(3, dc, 8) be-
longs to one of the following three categories.

1) Elementary codewords with only degree-2 check nodes.
2) Codewords with only one degree-4 check node, and

every other check nodes have degree 2.
3) Codewords with only two degree-4 check nodes, and

every other check nodes have degree 2.

Proof: To prove Proposition 2, it is sufficient to show that
1) there exists no (14, 0) graph with one check node of

degree greater than 4.
2) there exists no (14, 0) graph with more than two degree

4 check nodes.
These statements directly come from Lemma 1 and 2.

Before explaining the search algorithm, we present the ratio-
nale behind the steps of the search. Since all the codewords of
Cn(3, dc, 8) have an 8-cycle, the starting point of the procedure
is to search for the 8-cycles, which are (4, 4) trapping sets. Our
goal is to expand the (4, 4) trapping sets to reach a (14, 0)
trapping sets with the use of expansion operations explained
in Sec. III. Then, in the subsequent steps, we will be dealing
with (a, b) trapping sets found in the previous step. In general,
let G be the input Tanner graph to the search algorithm. Let
T be a (a, b) trapping and T be a trapping set of type T
in G. There are three cases to expand T in order to search
for the successors of T . These three cases perfectly fit to the
previously mentioned expansion operations.

Case 1: There exists no odd-degree check node in I(T)
connected to a common variable node in G . Therefore, every
odd-degree check node of T is connected to different variable
nodes of G. In this case, all the (14, 0) codewords satisfying
this condition can be found by searching for the union of T
and (14− a, b) trapping sets using the EO1.

Proposition 3. Let T be a (14, 0) trapping set in Cn(3, dc, 8),
and T ′ be a (a, b) trapping set where T ′ is a successor
of T . Let T and T′ be the trapping sets of types T and
T ′, respectively, and suppose there is no variable node in
I(T−T′) connected to two or more odd-degree check nodes
of I(T′). Then the subgraph introduced by I(T − T′) is a
(14− a, b) trapping set.

Proof: For a 3-left-regular LDPC code, Theorem 1 states
that T is a trapping set for Gallager A/B decoder if every
variable node in I(T) has at least two even-degree check
nodes. In other words, each variable node must have at most
one odd-degree check node. The induced subgraph I(T−T′)
has (14 − a) variable nodes and by removing the induced
subgraph I(T′) from I(T), it is clear that it has b odd-degree

check nodes. Since there are no odd-degree check nodes in
the induced subgraph I(T′) connected to a common variable
node in I(T−T′), thus each variable node in I(T−T′) has
at most one odd-degree check node. Therefore, I(T−T′) is
a (14− a, b) trapping set.

Case 2: There exists at least one variable node in G
connected to two odd-degree check nodes of I(T). In this
case, T can be extended to an (a+1, b−1) trapping set using
the EO2.

Case 3: There exists at least one variable node in G
connected to three odd-degree check nodes of I(T). In this
case, T can be extended to an (a+1, b−3) trapping set using
the EO3.

These 3 cases cover all the possible categories that leads to
a (14, 0) trapping set. These are the basic blocks in our search
procedure. We check all three cases in each stage of the search
to make sure all the (14, 0) trapping sets are searched for.

A. Searching for elementary codewords

The search procedure for all the elementary codewords in
the graph G is given below:

Algorithm 1 Search procedure steps for elementary code-
words.

1) Search for all the (4, 4) trapping sets (8-cycles) in G.
2) For all the (4, 4) trapping sets which satisfy Case 1, use

the EO1 to search for the union of (4, 4) and all the
elementary (10, 4) trapping sets.

3) For all the (4, 4) trapping sets which satisfy Case 2, use
the EO2 to search for all the (5, 3) trapping sets.
Remark 1. There is no (5, 1) trapping set of girth 8 to
be searched for using the EO3.

4) For all the (5, 3) trapping sets which satisfy Case 1, use
the EO1 to search for the union of (5, 3) and all the
elementary (9, 3) trapping sets.

5) For all the (5, 3) trapping sets which satisfy Case 2, use
the EO2 to search for all the (6, 2) trapping sets.
Remark 2. Using EO3, it is possible to search for (6, 0)
trapping sets. However, starting from a (6, 0) trapping
set, it is not possible to search for (14, 0) because there
is no odd-degree check node left to adjoin to any other
subgraph.

6) For all the (6, 2) trapping sets which satisfy Case 1, use
the EO1 to search for the union of (6, 2) and all the
elementary (8, 2) trapping sets.

7) For all the (6, 2) trapping sets which satisfy Case 2, use
the EO2 to search for all the (7, 1) trapping sets.

8) For all the (7, 1) trapping sets which satisfy Case 1, use
the EO1 to search for the union of (7, 1) and all the
elementary (7, 1) trapping sets.

Fig. 5 shows the steps 2, 4, 6 and 8 in Algorithm 1 which
lead to the elementary weight-14 codewords. The dashed line
on these figures represent the connection which has to be made
in order to obtain a (14, 0) trapping set. For instance, Fig. 5(a)
shows the union of a (4, 4) trapping set (upper subgraph) and



(10, 4) trapping set
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(9, 3) trapping set

(b)
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Figure 5. The steps 2, 4, 6 and 8 in Algorithm 1 in which EO1 is used to search for the elementary codewords of weight 14.

a (10, 4) trapping set (connected topology) which leads to a
weight-14 codeword. Similarly Fig. 5(b) shows that the union
of a (5, 3) trapping set (upper subgraph) and a (9, 3) trapping
set (connected topology) leads to a weight-14 codeword. Note
that the TSO ([32]) is the guideline in searching for trapping
sets needed in the search procedure.

B. Search procedure for the codewords with one degree-4
check node

The presence of a degree-4 check node introduces some
complications to the search procedure. The starting point of the
search is a subgraph including the degree-4 check node. Since
there is only one degree-4 check node in the codewords and
it is already in the starting search subgraphs, all the adjoining
trapping sets in the search procedure are elementary trapping
sets.

Proposition 4. The two subgraphs shown in Fig. 6(a) and
6(b) are the predecessors of all the codewords in Cn(3, dc, 8)
with only one degree-4 check node.

Proof: Omitted due to page limitations.
The subgraphs in Fig. 6(a) is not a trapping set.

Nevertheless, the expansion operations are still applicable
to search for larger subgraphs from smaller subgraphs. For
the reminder of the paper, the term (a, b) subgraph is used
for a subgraph with a variable node and b odd-degree check
node. The search proceeds to two separate cases. The first
step is to search for these two subgraphs. Let S be the (7, 7)
subgraph of Fig. 6(a) and T be the (8, 8) trapping set of Fig.
6(b). Then, two separate algorithms are presented to search
for the codewords containing subgraphs of type S and T .
The first step is to find subgraph S. To search for S, EO1

is used to search for the union of two (4,4) trapping sets in
a way which results in S as a (7,7) subgraph. Searching for
the weight-14 codewords containing a subgraph of type S is
given by the following algorithm.

(a)

(b)

Figure 6. First steps of the search procedure for all the elementary codewords
of weight 14 with only one degree-4 check node (a) First case. (b) Second
case.

Algorithm 2 Search procedure steps for codewords with
one degree-4 check node containing a subgraph of type S.

1) For all the subgraphs of type S which satisfy Case
1, EO1 is used to search for the union of the (7, 7)
subgraph and all the elementary (7, 7) trapping sets.

2) For all the subgraphs of type S which satisfy Case 2,
EO2 is used to search for all the (8, 6) subgraphs.
Remark 3. There is no subgraph of girth 8 to be searched
for using EO3. It is easy to see that by adjoining one
variable node to any 3 odd-degree check node of S in
Fig. 6(a), a 6-cycle is created.

3) For all the (8, 6) subgraphs which satisfy Case 1, use
the EO1 to search for the union of the (8, 6) subgraphs
and all the elementary (6, 6) trapping sets.
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Figure 7. First steps of the search procedure for all the elementary codewords of weight 14 with two degree-4 check node sharing one variable node.

4) For all the (8, 6) subgraphs which satisfy Case 2, use
the EO2 to search for all the (9, 5) subgraphs.

5) For all the (8, 6) subgraphs which satisfy Case 3, use
the EO3 to search for all the (9, 3) subgraphs.

6) For all the (9, 5) subgraphs which satisfy Case 1, use
the EO1 to search for the union of the (9, 5) subgraphs
and all the elementary (5, 5) trapping sets.

7) For all the (9, 3) subgraphs which satisfy Case 1, use
the EO1 to search for the union of the (9, 3) subgraphs
and all the elementary (5, 3) trapping sets.

8) For all the (9, 5) subgraphs which satisfy Case 2, use
the EO2 to search for all the (10, 4) subgraphs.

9) For all the (10, 4) subgraphs which satisfy Case 1, use
the EO1 to search for the union of the (10, 4) subgraphs
and all the elementary (4, 4) trapping sets.

To search for the weight-14 codewords containing a
trapping set of type T , the first step is to find T . To search
for T , EO1 is used to search for the union of two (4,4)
trapping sets in a way which results in T as a (8,8) trapping
set with one degree-4 check node (see Fig. 6(b)). The rest of
the algorithm is as follows:

Algorithm 3 Search procedure steps for codewords with
one degree-4 check node containing a subgraph of type T .

1) For all the trapping sets of type T which satisfy Case
2, use the EO2 to search for all the (9, 7) trapping sets.

2) For all the trapping sets of type T which satisfy Case
3, use the EO3 to search for all the (9, 5) trapping sets.

3) For all the (9, 7) trapping sets which satisfy Case 3, use
the EO3 to search for all the (10, 4) trapping sets.

4) For all the (9, 5) trapping sets which satisfy Case 1, use
the EO1 to search for the union of the (9, 5) trapping
sets and all the elementary (5, 5) trapping sets.

5) For all the (9, 5) trapping sets which satisfy Case 2, use
the EO2 to search for all the (10, 4) trapping sets.

6) For all the (10, 4) trapping sets which satisfy Case 1, use
the EO1 to search for the union of the (10, 4) trapping
sets and all the elementary (4, 4) trapping sets.

From Proposition 4, all the codewords of this category
can be searched using Algorithm 2 and Algorithm 3 which
concludes the search for all weight-14 codewords with exactly

one degree-4 check nodes. The next category of weight-14
codewords concerns codewords with exactly two degree-4
check nodes.

C. Search procedure for the codewords with two degree-4
check node

In the Cn(3, dc, 8) code ensemble, the codewords with two
degree-4 check nodes are categorized into two groups given
below:

1) Codewords whose two degree-4 check nodes are con-
nected to a common variable node.

2) Codewords whose two degree-4 check nodes are not
connected to a common variable node.

Proposition 5. There is no codeword of weight 14 in 3-left
regular structured LDPC codes with girth 8 with two degree-4
check nodes connected to a common variable node.

Proof: The proof is involved but gives insight into the
restrictions of the coloring property for the structure of the
codewords. The starting point of the search is a subgraph
containing two degree-4 check nodes connected to a common
variable node. We set one of degree-4 check nodes as the root
of the starting subgraph, and then expanding it to the next
levels satisfying the column-weight-3 and girth-8 constraints
and the constraint that there are only two degree-4 check
nodes. In order to preserve the girth-8 constraint, no check
nodes or variable nodes can be connected until the fifth level.
This is illustrated in Fig. 7(a). Since we already have 14
variable nodes at this level, all the check nodes must be shared
between the variable nodes. In order to bound the number of
cases possible, we start by coloring the check nodes of Fig.
7(a) . Without loss of generality, a coloring is set starting with
1 as the color of the root check node. Continuing the coloring
until the last level, one can see that there are three check nodes
with color 3 branching out from the secondary degree-4 check
node. These three check nodes must be distinct, otherwise a
4-cycle would be created . Therefore, these three check nodes
must be connected to the three remaining check nodes with
color 3 (this is depicted in Fig. 7(a) by the edge between the
check nodes with color 3 whose filling color has been changed
to gray to show that they are shared). Because of the symmetry
in the branches containing the remaining check nodes with



color 3, connecting the check nodes in any way results in
just one non-isomorphic graph which is shown in Fig. 7(a).
Then, we remove all the variable nodes connected to two odd-
degree check nodes which results in the (10, 10) trapping set
of Fig. 7(b) denoted by T . Since there is no (4, 10) trapping
set, EO1 can not be used to search for the codewords which are
the successors of T . As it is shown in Fig. 7(a), there is no
odd-degree check node with color 3 left after the necessary
sharing of the color-3 check nodes. Therefore, no variable
node can be connected to three odd-degree check nodes due to
coloring constraint as it would require one odd-degree check
node in each color. So EO3 can not be used. Therefore we can
only use EO2 to search for all the (11, 9) trapping sets. The
only possible way to continue the search is to use EO3 three
consecutive times. However in order to use EO3, the check
nodes with colors 1, 2 and 3 must connect to a variable node.
Therefore, three check nodes of three colors are needed which
it is not possible because at this stage we are left with five
check nodes with color 1, one check node with color 2 and
three check nodes with color 3.

We now detail the search procedure for the weight-14 code-
words whose induced subgraph have two-odd-degree check
nodes which are not connected to common variable node. The
starting subgraph in the search for the this category is shown in
Fig. 8. The two degree-4 check nodes in codewords in this case
are already in the starting search subgraph, therefore all the
adjoining trapping sets in the search procedure are elementary
trapping sets.

Proposition 6. In the Cn(3, dc, 8) code ensemble, all the
codewords with two degree-4 check nodes not connected to
a common variable node are successors of a (6, 8) subgraph
shown in Fig. 8.

Proof: Omitted due to page limitations.
Let S be the (6, 8) subgraph of Fig. 8. One can see that S

can be searched by the union of two (4, 4) trapping set using
EO3.

The following search algorithm searches for all the
codewords containing a subgraph of type S:

Algorithm 4 Search procedure steps for codewords with
two degree-4 check node containing a subgraph of type S.

1) For all the subgraphs of type S which satisfy Case 1,
use EO1 to search for the union of the subgraphs of type
S and all the elementary (8, 8) trapping sets.

2) For all the subgraphs of type S which satisfy Case 2,
use EO2 to search for all the (7, 7) subgraphs.
Remark 4. There is no subgraph of girth 8 to be searched
for using EO3. It is easy to see that by adjoining one
variable node to any 3 odd-degree check node of S in
Fig. 8, a 6-cycle is created.

3) For all the (7, 7) subgraphs which satisfy Case 1, use
EO1 to search for the union of the (7, 7) subgraphs and
all the elementary (7, 7) trapping sets.
Remark 5. Expansion operation 2 can be used to search

Figure 8. Starting search subgraph for the weight-14 codewords with two
odd-degree check nodes which are not connected to common variable node.

for all the (8, 6) subgraphs from the (7, 7) subgraphs.
However, we observed that no codeword can be gener-
ated from the (8, 6) subgraphs since there is no coloring
possible for the generated codewords.

In all the previous sections, we have covered all possible
cases to obtain all weight-14 codewords in Cn(3, dc, 8). Using
LDPC code construction technique from [28], we can avoid
these structures during the code construction to guarantee a
minimum distance of at least 16.

V. CONCLUSION

In this paper, we have presented a method to search for all
the codewords up to a certain weight in Cn(dv = 3, dc, g = 8).
This method is based on the decomposition of the codewords
into smaller subgraphs. The search method starts by searching
for the smallest (parent) subgraphs containing in all the
codeword categories. Then, by using three key expansion
operations, we expand the parent subgraph to search for larger
(child) subgraphs. The expansion continues until reaching all
the codewords of certain weight present in the code. We
showed that the codewords of weight 14 can be enumerated in
a finite number of steps. Avoiding such codewords during the
code construction ensures a code with guaranteed minimum
distance. An extension of this method to higher column-
weight and/or different girth is straightforward (with a price
of increase in complexity) provided the trapping set ontology
of the given code ensemble is available.
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