Creating and Maintaining Relationships in
Social Peer-to-Peer Networks

S.D. Koolen

]
TUDelft

Creating and Maintaining Relationships in
Social Peer-to-Peer Networks

Master’s Thesis in Computer Science

Parallel and Distributed Systems Group
Faculty of Electrical Engineering, Mathematics, and Corap&tcience
Delft University of Technology

S.D. Koolen

4th January 2007

Author

Steven Darél Koolen
Title

Creating and Maintaining Relationships in Social Peer-terRetworks
MSc presentation

12th January, 2007

Graduation Committee
Prof. dr. ir. H. J. Sips (chair) Delft University of Technglp

Dr. ir. D. H. J. Epema Delft University of Technology
Dr. ir. J. A. Pouwelse Delft University of Technology
Dr. P.H. Westendorp Delft University of Technology,

Faculty of Industrial Design Engineering

Abstract

Peer-to-Peer (P2P) systems are a good alternative to doyvainclient-server
systems for distribution of content. Many different apmtoas exist towards the
design of P2P networks, which should take into account bi#a efficiency,
availability and integrity. The approach discussed in thesis creates a network
based on social relations between users, called a sociab®#Ry network. In
order to create a social P2P network, users must be abledtecaad maintain
connections to friends.

Two main problems in creating a social P2P network are ifledtand discussed
in this thesis. The first is the social network discovery jpeob We have designed
and implemented a protocol to spread and search user idsttitough the social
network using an epidemic protocol and superpeers. The fusgidemic proto-
cols in social networks is a scalable and efficient way of apireg the identities
of users. The second problem is the peer IP address discprasiem. We have
performed an analysis of the dynamics of IP addresses of preex BitTorrent
community as well as in the Tribler network. From this anaslyge conclude
that IP dynamics are relatively low. Therefore, changesPiradldresses can be
propagated through the network and the chance is high thehdaRges can be
discovered through the social network.

Preface

This thesis is part of the Master in Computer Science at Dalfv&rsity of Tech-
nology. The research was done at the Parallel and DistdbBystems Group,
as part of the I-Share research project on sharing resoureagual communi-
ties for storage, communications, and processing of matlimdata. This thesis
describes my research towards the creation of a Peer-torleegork based on
social networks with focus on building the social networlaif?2P network and
maintaining connections with peers in the social surroogaif a peer.

| would like to thank a lot of people who supported and ingpinge, or just were
around during my research. First of all | would like to thamkid Johan Pouwelse
for his never ending enthusiasm and advice and ir. dr. Dicknkgofor his advice
and guidance when writing this scientific report. Furthemmd would like to
thank prof. dr. ir. H. J. Sips for chairing the examinatiomuoittee, and dr. P.H.
Westendorp for being a member of the examination committéethanks also
go to everybody in the research group who discussed issulesne or gave me
inspiring insights. During my spare time, which was scand@eé last few months,
my friends and family were always available to relieve tiroépressure and had
trust in me. Finally, my thanks go to my parents, who are pagsponsible for
my enthusiasm towards technology, and have always sugpme

Steven Koolen

Delft, The Netherlands
4th January 2007

Contents

Preface iii
1 Introduction 1
1.1 Peerto-PeerSystems, 2
1.2 Social Peer-to-Peer Systems 4
1.3 Triblerand BitTorrent 4
1.4 StructureoftheThesis 6
2 P2P Overlay Network Approaches and Challenges 7
2.1 Peer-to-PeerOverlay Networks 7
2.2 Current Overlay Approaches 9
2.2.1 P2P Systems with Central Point(s) 9
2.2.2 Purely Decentralized P2P Systems 10
2.2.3 Distributed HashTables 11
2.2.4 SUPEIPEEIS i e e e 13
2.2.5 Social Featuresin P2P Networks 13
2.3 General Challenges in P2P Overlay Design 15
2.3.1 Scalability and Efficiency 15
2.3.2 Availability L 15
2.3.3 TrustandIntegrity 16
2.4 Specific Research Challenges 16
2.4.1 Social Network Discovery Problem 17
2.4.2 IPdiscoveryproblem 18
3 A Social P2P Overlay Solution 21
3.1 SocialNetwork 21
3.2 Building and Maintaining the Social Network 23
3.2.1 Finding Real Life Social Networks 25
3.22 FindingPermIiDs 25
3.2.3 Determining IP addresses 25

\Y

4 Social Network Discovery
4.1 DesignofldentitySearch
4.1.1 MessageExchange
412 RateControl
4.2 Prototype
421 MSN . . . e
422 GMail
4.2.3 BootstrapHandler
4.3 TestsS e e
4.4 DISCUSSION v o e e e e
5 IP Discovery
5.1 BitTorrent Community Measurement
5.1.1 Measurement Methodology
5.1.2 Dataset
5.1.3 Matching HTML Scraper and Peerping
5.2 TriblerAnalysis
53 Results.
531 IPChanges,
5.3.2 Availability and Connectability
54 DISCUSSION
6 Conclusions and Future Work
6.1 Conclusions
6.2 FutureWork

A ldentity BootStrap Message Specification

Vi

Chapter 1

Introduction

In the last decade, the use of the Internet has increasasheedly fast. The Internet
has developed from a text and email-based service to a ritimmedia platform.
Multimedia uses a lot of bandwidth, putting pressure onessivAn alternative for
the usual client-server model of distributing data is the aisPeer-to-Peer (P2P)
networks. P2P networks are already widely used around tieenket, mainly for
file sharing. The massive size of some P2P networks contge humbers of all
kinds of content. Different approaches to P2P network aesigst, each having
advantages and disadvantages. Many system have scglgi@liformance and
integrity issues as the network size increases.

The research as part of this thesis takes social networkisassfor the P2P struc-
ture. Social network have implicit trust and are quite dol@aThis thesis gives
challenges in P2P overlay network creation and a socialor&thvased solution.
Two problems in creating and maintaining a social P2P nétwaoe discussed.
The first is the building of the social network. It is vital fthre quick adaption of
social system that the network of friends and friends ofillecan be build quick
and easy. A solution is proposed and implemented based eadipg identities
through the social network. The second issue is keeping npemdions in the
social network. Analysis of two P2P networks was done asqfdtie research.
The results show a relative low dynamics of Internet Prdtd€) addresses.

This chapter first gives an introduction into P2P systemseatin 1.1. Some
examples of P2P systems using social features are discusSedtion 1.2. Sec-
tion 1.3 gives a background overview of the P2P system wlidieing used as
part of the research project. Finally Section 1.4 gives thecture of this thesis.

1

number of downloads 100 Million per day
average movie size 8.3MB
total data transfered 24 PB per month

Table 1.1: An estimation of the bandwidth usage of Youtulasgh on 5 samples
of the top 100 downloads of all time.

1.1 Peer-to-Peer Systems

The number of users who use the Internet to get large conteht &s video is
increasing [13]. Media, telecommunication, and broadiegstompanies are in-
troducing ways to watch content through the use of data adiumes, and the dig-
ital distribution of television is growing. At the same tinrgeractive television
[19] and possibilities to create and publish own contenirareeasing. For exam-
ple sites likeyout ube. comandvi deo. googl e. com which allow users to
share their own video content, are very popular.

Today, most content providers still store content on céseavers, which must
be able to handle huge amounts of data. For example, the Putdic broad-
casting company has a servieeyn. ui t zendi nggem st . nl) where recent
television shows can be watched. They have now reachedrtaeimum of 4
Gbit per second of data and will expand to 22 Gbit per secomldemear future
Another examples is the bandwidth usage of youtube. Althawgofficial figures
are available an estimatéhas been made in Table 1.1.

The bandwidth costs are very high, while not even taking adoount the cost
of the servers. Clearly the servers are the bottlenecks idigtigbution system.
More users will be using these video-on-demand systemsratigkifuture more
and more content will be displayed on televisions direatbyrf the Internet. Most
of the content online at this moment is of low quality becaoiskeandwidth con-
strains. For example the recommended size of content on s 320x240
while standard television already has far superior regwist As quality will rice
so will the bandwidth consumption. Another disadvantagseofers is that they
are single points of failure. If the central server fails tantent is no longer
available.

P2P systems are an alternative to the use of central seorexsritent distribution.
P2P system use distributed methods to share and distribaoterd. Each partici-
pantin the systems is both client and server. Individuahts can connect directly
to each other rather than through a computer designated erstralcserver. The
main function of current P2P systems is efficient sharingdistlibution of con-

1Source: Webwereld, 22-05-2006 (in Dutch)
2Measurement by http://willy.boerland.com/
3Based on Youtube Fact Sheet: http://www.youtube.corotifheet

2

Client-Server b Peer-to-Peer

Figure 1.1: The Client-Server model versus the Peer-to-Redel.

Cachelogic Research | Internet Protocol Trends 1993 to 2006

o e
| r2P
O Wt

1993 1994 1994 1996 1997 1998 10999 3000 2001 2000 2003 2004 2005 2004
Yaas

Figure 1.2: Data usage trends of the Internet (source: CagiceR006).

tent and sharing of resources. If one participarnteer, in the network fails the
network as a whole should continue to function. Figure 1dwshthe difference
between a client-server model and a P2P model. The conteneiR2P model
is both send and received by other peers. In the client-semeeel the content
is provided by the server and received by the clients. In tiemteserver model
the bandwidth required for the server equals the sum of thewialths required
by the requesting peers. In a P2P system that pressure isgerlon one server.
Instead the load is spread among peers in the network.

P2P systems are increasingly popular. At the end of 2004dré0% [36] of
all Internet traffic was used by P2P systems. Figure 1.2 shtivevapward trend.
Most existing P2P systems are based on anonymous conrebibreen peers.

3

Some of these networks are tainted by malicous use [28]. Amppblem in
current systems is the lack of incentive to participate ersty content and band-
with. A lot of poeple use the system without contributingljex freeriding. The
performance of most systems decreased after being adoptghkral users who
tend to be egoistic in their behavior. Only 10% of the P2P comity shares 99%
of the bandwidth [45]. Also, current P2P systems are sulbpeattacks or misuse
of the network. Most systems that work well nowadays haveesimmm of central
moderation to prevent malicious use. However, these dertnaponents must be
avoided for scalability [8], availability [4], and staliifi[39] reasons.

1.2 Social Peer-to-Peer Systems

In P2P networks control and trust is partly distributed agwthre users of the net-
work. As discussed in the previous section some systemfhaihction because
people try to maximize their profit and tend to freeride. Ctbaser groups tend
to work better due to the social control. Examples are D@eannect [14] and
BitTorrent communities such as filelist.org. These systezqgsiire relationships
and social control between users. Social P2P aims to crd@#® asystem based
on social networks and thus having social control implicitiie structure.

A first advantage of social P2P networks is that peers areemed to known
peers instead of anonymous peers as in present systemswaye history can
be build up and misbehaving peers can be identified and peshisAlso levels
of trust can be introduced by adding friends. Friends ohfiee (FoFs) are also
probably more trusted than anonymous users. People who trepeople they
communicate with are less likely to misbehave and moreylit@be altruistic.

A second advantage is that content favored by friends is filaly to be inter-
esting content than content favored by random peers. Thalgp@oa social P2P
network could also be people with the same interest, intdneddies. Content
from these groups is even more likely to be of interest. Tioeescontent cluster-
ing is likely to occur. The concept of social P2P is discusseatkpth in Chapter
3.

1.3 Tribler and BitTorrent

The work of this thesis was performed as part of the Freebasearch project
called I-share [23]. As part of I-Share, Delft UniversityTgchnology and Vrije
Universiteit Amsterdam research social P2P. As part of tiegept an academic
research vehicle has been developed called Tribler [40bleFris a P2P client
based on the BitTorrent protocol, and specifically on the AB@@&I{10]. Tri-

4

bler allows the user to add and remove friends. Improvedesiibation based
on permanent identifiers(PermID) is added to provide idi@ble peers. The so-
cial network can be used to find paths between peers throegsottial network.
The social network is used by extra features of Tribler sugh aontent recom-
mendation and discovery algorithm, called BuddyCast. Whi&s usepidemic
protocol to exchange preference lists with taste buddiesbleF will also in-
clude distributed swarm discovery to overcome scalabidisgpies with a central
tracker. Cooperative downloading is an other social featllewing users to re-
quest friends for download assistance. Friends donate dardwidth. Many
other features are in development in the Tribler projeathsas video streaming,
sharing-ratio enforcement and NAT and firewall traversaisThesis investigates
a mechanism to build and maintain the social network in thieldirsystem. The
results of this thesis will be partly tested in Tribler.

Content Blocks &
ontrol Data

—

SwarmID
Peer Info

Cll 1)
]
=

A

Tracker

Figure 1.3: Information exchange in the BitTorrent system.

The BitTorrent system [11] uses central servers, calledérsc which coordinate
single downloads (swarms). The tracker can also do somestrative task and
put some limitations on the user base, for example by onbynatig registered
users. Users need a meta file calledraent which describes the content in terms
of size and hash values. This torrent also contains the ssldifethe tracker(s).
Clients request the tracker for other peers that have theebnAfter receiving

5

the addresses of other peers from the tracker connectierseaup to individual
peers. The user can be in multiple swarms at the same timéahgédndependent
from each other. The system splits content in pieces whekxarhanged between
the peers. Because pieces can be downloaded from multiple gtedbe same time
the system is fast and efficient. The clients are also ableacesthe pieces that
have already been acquired while still downloading othBrsdecrease freeriding
users store past exchange data for a swarm. Peers that goleresources will
be served faster. This mechanism, called tit-for-tat, isn@entive to share and
forces fairness. In Figure 1.3 a simple example is given@BitTorrent system.
In the example data blocks of the swarm are distributed amiomgeers. Only
peer C has the complete download, it is callesbader. The other peers, called
leechers, can exchange blocks with each other and peer C in order taracal
the blocks. For example, peer A can acquire two blocks fromdEthe last part
from either B or E, as soon as they acquired it.

1.4 Structure of the Thesis

The previous sections have given an introduction to theestrf this thesis. In
the next chapters we will discuss the goals and results st#isiearch. Chapter 2
identifies problems in P2P overlay networks and the problesirgg studied in this
research aimed at creating a social P2P network. Chapteo8udes a social P2P
network solution and covers the research problems firsidoized in Chapter 2.
The two problems, Social Network Discovery and IP Discoyarg discussed in
depth in Chapters 4 and 5, respectively. Finally, Chapter érsathe conclusions
of the research, and also gives recommendations for furéisearch.

Chapter 2

P2P Overlay Network Approaches
and Challenges

P2P systems form a virtual topology of computers, caflegts, and their con-
nections. The network can be represented as a graph witreths ps the nodes
and the network connections as the edges. In order to cre2®® anetwork, an
interconnecting network has to be created, which is catledvterlay network.
The overlay network facilitates the self-organizing systef the nodes (peers)
and the edges (connections). The responsibility of thelayeretwork is to fa-
cilitate the efficient and working creation and maintenamicte virtual topology
and facilitate the communication and connections betwkerpéers. Designing
an overlay is quite difficult. Some current designs fail téiveé good services.
In this chapter we will discuss overlay networks and soméleras that occur in
such networks.

Section 2.1 gives an overview of the ideas behind an overdyark. Some of
the most widely used P2P overlay techniques are in Secti@n General issues
in designing an overlay network are given in Section 2.3.ti8ec2.4 discusses
some problems in current P2P overlay networks that arestieatthis thesis.

2.1 Peer-to-Peer Overlay Networks

Most current P2P networks have the goal to create a largebdittd storage
space to share content and share bandwidth in order to dethigbined trans-
fer speeds. In this thesis we will focus on these networks,hbwever trivial to

extend the ideas to the sharing of other resources such esssing power. The
sharing of content is based upon replication. After initmelertion of the content
in the network it will be distributed among other peers. Asheaf these peers
also shares the content the speed at which this content cegbéeed is the com-

7

A:23.98.255.1

C:95.43.22.1
B: 54.54.22.3 D: 65.50.222.66
F: 23.43.102.200 E: 34.99.99.6

BHA - El B B: 54.54.22.3

I E C C:95.43.22.1
E:34.99.99.6
£/

B: 54.54.22.3
il c: 95.43.22.1
B 54.54.22.3 D: 65.50.222.66

E: 34.99.99.6 E

Figure 2.1: Example of a P2P overlay network.

bined available upload bandwidth of the peers sharing téecd. As more and
more replications of the content are available the totatlbadth available for the
content will grow. Acquiring the content as well as the loplar search for con-
tent is also facilitated by the overlay network. This mayuiegjrouting messages
through the network to other peers.

The idea of a P2P overlay network is too create a network ofpcens which
are interconnected instead of using a client server modehpDters can only be
connected to a relatively small number of other computersnn€ct to a huge
number of other peers is neither efficient nor feasible withresources available
per peer. P2P systems can however grow very large. Therefrevery peer
in the network can be connected to all other peers. Becaudeedhtge size
of current P2P networks, peers are only connected to a veajl percentage of
the P2P network. Overlay networks offer services for the momication and
connection handling between the peers in the network, dntupeers that are
not directly connected to the peer. The overlay network syai on top of the
network connections, which creates transparent servacésgher layers of the
software to handle the virtual topology of the network.

Figure 2.1 shows an basic overlay network. Peers keep tfackubset of other
peers and can be connected to them. In the example each pesrtkack of some
other peers and their IP address. A peer may be in the listdiuavailable, as
peer F is in the example. The overlay will use algorithms amolWedge of the
network to offer services to other peers. The overlay ndtfamilitates the joining
and leaving of a peers. For example the placement amongpkes. After initial
joining the overlay network will keep communicating withethetwork in order

8

to keep the network stable and handle network maintenaregending on the
design. The overlay network will maintain a virtual topojognd route messages
among nodes of the topology.

2.2 Current Overlay Approaches

P2P networks have evolved from the first simple systems |éester [44] to more
advanced system. Different methods to control the stracod distribute content
and metadata have been developed.

P2P overlay networks are mostly differentiated in the way \thitual topology
looks, is created and maintained, and the way messagesued tmetween peers.
In this section the designs of most important current oyenl@twork solutions
are shown. Each of these approaches have different wayssifrdinating data
over the network. These forms show concepts from the extmdes. Mixtures
of the given approaches are often used to combine advantdgéferent ap-
proaches. An example of a mixture is the use of DistributedhHEables in the
central point based system BitTorrent [31, 6] in order to oware the problem
of offline servers.

2.2.1 P2P Systems with Central Point(s)

The simplest way of structuring a P2P system is to have oneoz oentral points.
This central point keeps track of the properties, addredscantent of a number
of peers. Upon connecting to the system a peer announce®ews address and
content shared. The complexity of the system is low becausesérver is the
fixed place of return for peers. Another advantage is thatémgral points can
discover peers disappearing which keeps the system stalide. searching for
content is easy. To fetch or search for content the user seretyuest to the cen-
tralized server. The server then sends back a list of thesfesing the requested
resources and facilitates the connection and download.c&htal point is even
more useful if it is ran by a trusted source. BitTorrent is aarsgle of a systems
using (multiple) central servers as shown in Figure 1.3.

A major disadvantage is that the central server is a bottlenhe central server
needs to be powerful enough to serve requests from all uséhe inetwork. In
extremely large P2P systems such server requires hug@esiqeocessing and
bandwidth. This puts a limit on the scalability of the netiwoAn other problem
is the single point of failure of the server; once it disappéhe network no longer
works. To overcome the single point of failure not one sebegmultiple servers
can be used. These systems are still easy to implement bptdabem of scala-
bility still exists. Although the single point of failure {gartly overcome, having

9

centralized servers as the heart of a system is always & thréee continuity of
the system. Each of the servers could disappear and thequaerscted to it will
also stop functioning. The responsibility for the centehers lies with who runs
it, which costs money and can make the medium unavailablertees Also the
owner can put sensor on the content which might be undesifabsome users.
It is better to have as few central components in the systgmossble. Examples
of dominating systems that use (multiple) servers are thaleMetwork [26],
DirectConnect [14] and BitTorrent [11].

2.2.2 Purely Decentralized P2P Systems

The first decentralized P2P systems were fully decentihliaé peers are threated
completely equal. Peers connect to a first known peer in ttveanke. They build
links with other peers as they encounter them during a ses§ionnections are
created ad-hoc with almost no rules. The peers are unorderédte example in
Figure 2.2 shows. When content or information is requiredtrobshese sys-
tem flood the network with request and messages. These nessasgforward
through the network a number of times. This method creates af loverhead.
Most unstructured decentralized P2P systems do not sdale[Bbecause of the
low efficiency of the flooding mechanism, although some inaproents can be
made using smarter routing of messages. One approach @ (suitiple) ran-
dom walks of the network [29]. Another approach is semardiding [50]; in
which queries are only send toward peers which are thoudtdve interest in the
information or answers to the queries. The interesting pelerction is based on
previous knowledge of the peers.

Figure 2.2: An overview of a decentralized P2P overlay netwo

Epidemic protocols [5] are useful as an alternative for flogaf information that
is not changing very fast. This technique slowly spreaddrifgmation across

10

D D : zizlsicazts arrival
I
=

Figure 2.3: Example of epidemic gossiping.

the network using regular small random gossips of knowledigie also used in
the spreading of information in distributed databases If2k not a search tech-
nology but rather a way to dissimulate information acrossrtetwork. Because
the information is forwarded through the network each geitigpreads quite fast
around the network and duplication is high. The spread it &xponential,
which makes the system robust against failures. If for examach period is five
minute and peers send a gossip to two other peers. The sprdaalinafter in-
sertion is already &t'? = 4096 peers, not counting duplicates. An example of a
gossip is in Figure 2.3. It shows three forwards. One of therpeeceives the
message twice in the third period. Although this redundamagtes resources it
makes the method more robust.

The opinions on the scalability of gossiping are divided, [22], but is believed
to be good, especially when combined with semantic routlp@fd clustering of
peers [34].

2.2.3 Distributed Hash Tables

To become more scalable and deterministically find conteetworks can be
mathematically structured [20] using rules on how to orgarhe topology. Ex-
amples are Chord [46], Content Addressable Network (CAN) [@ddi Kademlia
[31]. The system maps a key onto a peer, making that peernsigpe for the
information stored at the key. The keys are spread matheatigtequally around
all users, so that all user in the structure can potentialysed as a small server
for information. This method in essence implements a disted database. Peers
can update or receive information stored at a certain key.eér pequiring to

11

File (key 37)

File (key 38)

Figure 2.4: An example of a structured P2P overlay netwoirkp$fied overview
of Chord [46].

access information at a key must be able to calculate the Kig. key can for
example be a unique file hash. By routing messages througkrtivtse the peer
responsible can be determined. Each peer receiving a regjtlesy has the infor-
mation and replies or it forwards the message to the clogestipknows near the
target. Most DHT systems can route a message to a pégflag n), n being the
number of nodes in the system.

In the example of Figure 2.4, the peers are aligned acrostuaMtircle based on
a mathematical distribution, which will evenly spread tleeys across the circle.
Each peer has an identifier and takes responsibility for thewith the same
number. If a peer of a certain number does not exist in the or&tithe first
following peer will assume responsibility for the key. Foraenple key 30 will be
the responsibility of peer 37. If peer 1 wants to access tfa@rnmation stored at
the key 38 it sends a message to peer responsible for key 3&h wHforwarded
through the network. Because no peer with number 38 exist3#uaiill get the
message and handle the request or update.

A major problem of the structured approach is that it onlykgan stable systems.
Upon failing, joining or leaving of peers the structure musupdated or repaired.
Maintaining the structure is often difficult and resourceasuming. When users
are transient the system will be unstable and hard to maingsiulting in an un-
stable structure and a lot of misrouted messages. Studvessh@wn that most
networks are highly transient [42]. The churn of the netwmidkes the network
unstable. Related is that an attack on the network can be ffetiee. Because
attackers know the structure it is easier to attack essgatgas. These attacks are
called rational attacks [35]. In the example a malicious @8ecould forward a

12

message to none existing peers so that peer 1 would not fitadgist.

Another problem is that load can be high on one or more pefaigder is respon-
sible for popular content the requests can overload this gdgs overloading is

negative for the function of the peer and the network. The len be spread by
using multiple ways to create keys and thus use multiplegpéeit this technique
is extremely complex and requires a lot of overhead.

2.2.4 Superpeers

Each peer has different connectivity capabilities, addandwidth, CPU power
and up time. Peers can have different responsibilitiesarsitstems. Some peers
can therefore have some special tasks which are handled bgteakcserver in
centralized approach. Thesaperpeers can act as a servers for a number of or-
dinary peers. The superpeer technique [33] is a good way @fcoming the
problems with transient users and makes the lookup andhgofimessage eas-
ier since a limited number of superpeers can handle thestidns. Connections
between superpeers can create a network of superpeers whaskence models
the functionality of centralized server. These superptks over some of the
responsibilities of the servers in the centralized P2PesystHowever once a su-
perpeer fails, its functions and responsibilities willcily be taken over by other
peers. This technique is quite robust, but it puts a high waa small fraction
of peers. Figure 2.5 gives an overview of a network with faysespeers. Each
of the superpeers is responsible for a number of peers. Am@raof a system
using superpeers to lookup meta data is Skype [3]. Skypesets create a list of
contacts. By connecting to a superpeer the addresses ofgreatstermined and
a search for users can be sent to the superpeers.

2.2.5 Social Features in P2P Networks

Social networking on the Internet is growing. Social netwuag websites such as
nyspaces. comor kut . comandhyves. nl have millions of users. P2P sys-
tems also have been using social features for some time. b sgetems groups
are created to which a user has to register or meet certaeriarbefore being
able to access the system. These restrictions are oftetedreafight freerid-
ing and insertion of malicious content. An example is DC++][idhich runs
central configurable servers. Administrators of theseessrgan define minimal
sharing features or even IP address ranges to assure higlibiém connection
and ban freeriding. An other adaption of a system to createlscontrol is that
some BitTorrent site require registration. Users who do betyadhe rules of the
community are banned. These closed communities have Betted control than
other open parts of the same network. Malicious users carabedal easier and

13

/EI

.
l
!

-

J— “[Al"—”@

«—H

<€ >

Figure 2.5: An overview of a superpeer P2P overlay network.

the totally utility of the system is increased. These P2Resysare not designed
for social control, but using some extra mechanisms soaatrol is enforced,

which is almost always done by registering IP address antt@aaccess to the
system by these IP addresses.

Recently P2P systems with explicit social features areditced. The P2P project
Maze [9] is designed, implemented and maintained by an aciadesearch team.
The Maze system uses encryption and a central server taottimérnetwork and
authenticate users. The maze system allows users to addlantfy friends.
Besides chatting and direct friend sharing it does not ekptbier social features
such as friends of friends. An other example is Skype [3],ieerover-IP program
using friends and superpeers to communicate. A pure dedieett example is
thesocialized.net [7] which bases trust and social relatipps on the usefulness
of peers in routing messages and sending queries. Onlydiadiged.net now
explicitly uses social properties to evaluate other peedggtermine how to route
messages. It also uses similarities in interest to determpossible interesting
links between peers.

14

2.3 General Challenges in P2P Overlay Design

The previous sections mentioned that a lot of pitfalls arudbf@ms exist in current
overlay networks. Overlay networks can not function welless they provide
scalability, efficiency, availability and integrity. Theeproperties are essential for
a P2P overlay network. These are general problems and shegctshsidered with
every P2P overlay design. Some of these properties are garttradictory. A
central server for example can increase integrity and effey but is not scalable.

2.3.1 Scalability and Efficiency

P2P systems can grow extremely large over time. Current P@®ries connect
thousands to millions of users. As the size grows so doesotiaé amount of
resources in the system. However the system becomes fardiiiicalt to con-
trol. Even though a central server may be able to control saigfe networks
these systems themselves do not scale. Scalability meahs throwing P2P
network should not have a significant decrease in performafdding more
users increases the total available resources but mayexsire more overhead
in maintenance and network messages. This problem putairesto the possi-
ble network size. This overhead must not become too big asudtri@ decreased
performance.

In a decentralized network each peer only knows a smallgodf the total sys-
tem but must be able to find content and communicate acrosetiverk without
having too much increase in latency and bandwidth consmp#s the network
grows the traffic to route messages across the network wilkase. The protocol
of the system must be efficient in order to minimize the ovadhehich does not
directly contribute to the actual content sharing. Theglesi a P2P system must
make sure that the overhead is minimized and the systemlab$e{3].

2.3.2 Availability

The total number of users of a P2P system may be very largeoballrpeers are
available at the same time. Most system have a highly trathgger base. A study
[21] showed that only 3% of the user of a BitTorrent system hradgime of over
10 hours. Also constantly a lot of users leave the systenvéoras well as join
for the first time. Transient users require peers to conmedtfterent users and
reroute traffic. The network structure has to be maintairmtt@antly and a part
of the connects or messages will not succeed.

Content is also transient. Most users [39] only share corf¢erat short time and
BitTorrent studies have shown that 99% of the P2P bandwiditosaded by only
10% of the P2P community [45]. P2P systems must be desigrmetoome the

15

problems of transient users and content. The transientenafuthe users must
have the least possible impact on the system as a whole. &jeus the system
must be difficult and altruistic behavior must be encourdgecreating incentives
to do so.

2.3.3 Trust and Integrity

Even if a peer is connectable and available the functignafithe overlay network
can decrease if some of these peers misbehave. Some usbehavis within
the design boundaries of the system. Users of networks tebd unwilling to
share contents or bandwidth. Incentives to share are exfjftor most users. The
system must be designed with implicit or explicit incensite share resources.
Some networks for example depend the download speed on lkbedgpeed.
Some peers may also attack the system or disobey the rulés.cdin make the
network unstable. Especially P2P system with a tight stinecare vulnerable to
these attacks. Repairing and stabilizing the network iscdiffiand requires a lot
of overhead. Systems that require forwarding of messagesudmerable to these
attacks since peers are able to decrease the performanice nétwork by not
forwarding messages or taking out essential points in thear&.

A possible solution is evaluation of peers. Behavior of pearsbe evaluated and
actions can be taken to diminish the impact of bad behavaentifiable peers
are easier evaluated because past behavior can be takertauont. Peers can
earn trust and or have credentials to show its trustworsisin€or trust to work
the system needs to be able to correctly identify peers.sideuld not be able to
forge their identity or worse take over the identity of otpeers. This problem is
know as the peerspoofing problem. Due to the relatively ammog environment
of the Internet and the massive size of current P2P systens paa easily take
a new clean identity. The whitewashing of history by peengely difficult and
it is therefore easier to evaluate peers on the positivevi@hthan on negative
behavior.

2.4 Specific Research Challenges

The solution to the design of an overlay network discussethis thesis uses
social networks of people as a basis for the topology. Inrotereate such a
topology the system must be able to link real life people &rpeFigure 2.6 gives
an example of a social network on the left and a P2P networkemight. This

figure shows the main goal of our research. The challengedsettie an overlay
network which is able to map the social network onto the P2Rar&. The sys-

tem must handle the construction and maintenance. Thidgmotan be divided

16

Real life social network P2P network (Internet)

9 o ? =

X\Q =

S

Figure 2.6: From people and their social network to InteR&#? networks.

into two subproblems. First the system must be able to déterto connect to
which peers, the social network discovery problem. Secatwhaection must be
set up and maintained to these peers. To be able to make actiomn® friends

their current address must be found among the possibleonsliof users. Since
the address of peer may change, this is a major challenges problem is the
IP discovery problem. In this research we would like to reseghe social net-
work discovery problem and the IP discovery problem. Thelteshould make
it possible for the Tribler system to create a social network

2.4.1 Social Network Discovery Problem

The overlay network is used to determine which peers to adrine The overlay
network may need to connect to certain peers in order to f&sotent from that
peer. This requires that the overlay knows which peers hawecontent. The
determination of content of peers is not part of the main tioncof the overlay
network and not discussed here. Content and meta informdisprbution will
be handled in higher levels in the software hierarchy.

The overlay network is used to create and maintain the Vita@ology. This
requires the overlay network to determine autonomouslyhahvpeers to con-
nect. A computer can only make a maximum number of conneeraheach
connection creates overhead. It is important that the ayerétwork creates and
maintains connections to a relatively small number of peserthat the operation
of the entire P2P network works well. The choice of peerstisrofletermined by
the chosen structure of the topology of the network. For gdanm a pure cen-
tralized environment all the peers will only connect to otieeo peer, the server.
In a social network the connections would be to peers in tk@&bnearness of a

17

peer.
Given that the system would know the people to connect to iatroorrent sys-
tem peers are anonymous and it is difficult to determine taetity of connected
peers. People can counterfeit their identity and make ugewleges of the owner
of the identity, a sybil attack [16]. A problem is how to idéytpeers. Using a
trusted third party to enforce identifiers is the easiestrandt safe way, but this
requires a central component and thus can not be used iibdtstt P2P environ-
ment. In a distributed environment other certification isessary. Examples are
using the IP address and using hardware embedded keys. Batbtarery useful
nowadays. IP address based is useless because often enptgis are behind
one IP. The absence of hardware embedded keys rendersassisal distributed
solutions is required to identify peers. In order to useaawetworks a peer must
be identifiable so that returning connections can be reezegnand buddies can
be recognized. If peers are identifiable the system must leetaldifferentiate
between friends and other peers. Given that peers are fidbtgi methods are
required to find friends and allies and build the social nekythe social network
discovery problem.

2.4.2 |P discovery problem

Once the target peers are clear, connections must be sedupaintained. The
system must be able to find the Internet address (IP addrets®) peer. Even if a
connection has been made before or an IP address is knoweatomnto a peer
is not always easy. Peers are unreliable and can changesaddd2P overlay
network must handle the dynamics of the behavior of thesespe®l be able to
(re)connect to peers.

Unreliable Peers

Studies have shown that most peers are not available alirtiee tOnly 3% is
available 10 hours or more a day [21]. Also connections cannstable. There-
fore given an internet adress of a peer a connect will notydveaicceed. Peers
are unreliable.

Dynamic IP

Even if a certain peer is online the IP address may changee Suernet service
providers assign IP addresses randomly from a pool of IPe@ddrumbers result-
ing in changing IP addresses. Also the physical locatioreefpmay change. For
example in case of mobile clients. In most cases changinghksical location
will result in a change of IP address. Discovering the curegldress of a peer is

18

important so a connection to transient peers can be made.oAdolutions exist,
for example Mobile IP (IETF RFC 3344 [38]),IPv6 [49] and Madigent [27].

But most required significant change of the underlying networ

Once a peer starts a session it should (re)discover the ssldfeother peers in
order to connect to them. If peers are anonymous this mayreeggrunning the
algorithm to determine neighbor peers. If the P2P systers satifiable peers
the possible changes of IP addresses must be looked up intordennect to a
known peer.

Unconnectable Peers

Even though the current address of a peer is known and thespeine the peer
may be unconnectable. Many computers are protected by fisewraare behind
NAT routers to share the IP address [18]. If these black boxése connection
are not properly set up, our connection attempt may be btbckhis problem is
however outside the scope of this report.

19

20

Chapter 3
A Social P2P Overlay Solution

The approach to the problem of creating a P2P overlay netiuotier discussed
in this thesis is to base the topology of the overlay netwarlasocial network.
The people in the social network are the peers in the P2P netanal the connec-
tions are the social links. In order to do so a P2P program buikt and maintain
the social network. This chapter gives an overview of my tsmfufrom real life
social network to physical Internet network. In the chaptdrand 5 two parts of
the solution are more elaborately discussed.

Before discussing the building and maintaining of a sociavogk, Section 3.1
discusses useful features of a social network. For a so2Ziahetwork to be useful
it must first be populated by friends. Peers must add theindis or buddies. The
building of a network and maintaining it is discussed in f#@ct3.2.

3.1 Social Network

Each person has ties and relationships with many peopladhrtheir social net-
work. The social network is a network of friends, friendsrénds (FoFs), friends
of friends of friends, and so on. A social network has featuhat are useful to
exploit creating an overlay network. An example overviewaa$ocial network
is in Figure 3.1. The figure shows the social network of usewkich has four
friends B,C,D and E and ten FoFs (F - O). Some of the friends ateahfiiends,
such as C and B. It also shows that our some of the FoFs can beetedmough
multiple friends. For example peer M can be reached throegh P and L, B and
N or through E.

If the social network is used as a bases for a P2P overlay netirtends will
be connected to friends. Users are less selfish in their bmht@wards friends
[37]. They may even be altruistic. Friends also have friendeu trust your
friends and your friends trust their friends. These FoFstlageefore probably

21

Figure 3.1: A social (P2P) network. The black lines are retehips, the dotted
circles are friend levels in the social network of peer A.

22

more trusted than random other peers. It is suggested [a0}hbk trust of two
peers is dependent on the distance of those peers in thé sewi@rk. Therefore
FoFs are also more likely to behave well. The further theadist between two
peers the lower the trust. If misbehaving peers are idedtifiey will probably
be removed as friends in the social network and thereforeentmthe edges of
the social network. The creation of the knowledge of theadowtwork around a
peer is not part of the scope of this report but is essentialsacial P2P network.
The implicit trust in the system helps to keep content in thead network correct
and keep malicious peers on the edge of a social network. pdeple tend to be
more willing to share resource towards friends becausedkpgct the favor back
or are altruistic in the future which can greatly increasailability.

Social networks are also clustered. People tend to haveoéfiiénds in common
[43]. This clustering is useful because friends are clestemd therefore friends
can be used to connect to other friends [47]. Also people thighsame interest
tend to be connected to a lot of common friends. This clusest interest can be
used since useful content will probably be around userse$fime interest [48].
This increases the chance of correct semantic routing.sRaeralso expand the
social network with peers with similar interests of tasteantent and cluster with
them in the same way. This would increase the reach of thalsoetiwork.
Throughout the social network most peers are within a redbticlose to each
other. Research has shown that two random people anywhére warld are on
average separated by only by a small number of intermediatal@icquaintances.
The average number of hops in the USA is six [32]. On the Ietethe average
number of hops is five to seven [15]. This social nearness sék®ossible to
connect to almost any peer in the world using only a small remobhops around
the social network. Each peer should know its surroundirggasoetwork with
a number of layers of FoFs. By using the route in the social ot@most any
peer can be connected. Due to the small number of hops trebditslof such a
system can be very good.

3.2 Building and Maintaining the Social Network

The social P2P network building can be seen as three steps:

1. Finding real life networks. From the real life social netwto computer
social networks.

2. Finding the PermIDs of peers. From computer social nétsvtw identifi-
able peers.

3. Determining IP addresses. From identifiable peers twithal computers.

23

These steps are shown in Figure 3.2 based on the social tketiibre person in
the middle of the real-life social network. This figure al$mws the potentially
connected malicious and unconnectable users.

Real life social network | Computer social networks | Individual identifiable | P2P network (Internet)

| ' peers with PermID |
@ = — B ! @

Finding real life networks Finding PermIDs Determining IP addresses

Figure 3.2: The three steps from real life social networka R2P computer net-
work with identifiable computer peers.

In order to use a social network in a P2P system the systertesraairtual social
network. The challenge is to find a person which is classifged &iend and be
able to connect to that peer. This requires identifiablegpaed peer must not be
able to spoof their identity. So a way to authenticate a serquired. In [25] we
introduced permanent identifiers (PermID) for each peeiang authentication
scheme using a challenge response system. This PermiBeapsehe identity
of a peer on the network and peers can verify that identity.

To build the social P2P network users are required to addledogbuild their
social network. The current Tribler system allows usersofgyadheir PermID and
give or send it to their friends. These friends can manually the PermID of
this friend to their list of friends. This process is too ditfit and ineffective for
most users and prohibits a quick adaption of the system g uggon first use of
the system a user must be able to quickly build up a socialor&tim the Tribler
network. This is the bootstrap phase of the social netwoikerGthat peers are
identifiable by their PermID the question is how to find therRI& of a person.
This enables us to find the PermIDs of friends so a social nm&tean be build.
Second we should be able to connect to a peer given the PeirhiDInternet
Protocol (IP) address and Port number at which a peer is ctairie must be
found. Our approach uses the social networks to find the IReadaf a PermiD.
As shown in figure 3.2 the building of the P2P social netwodurees steps from
a real life social network to the physical network.

24

3.2.1 Finding Real Life Social Networks

Although this step can be skipped and people could enteetddife social iden-
tities them self automating this step can decrease the tinbeitdling a social
network. As a lot of current social computer networks alyeexist with social
network information this information can be extracted asddiin quickly build-
ing a social P2P network. In real life people are member okiallls of social
networks. The people in these networks have unique idestrepresented by
strings and numbers. Some of these are unique for the pdssa@xample email
address or phone number. A mechanism that extracts cumera sietworks,
from address books for example, can be useful. We desigmtihgriemented
modules to extract such information from GMagind MSN Messengé&rwhich
are discussed in Chapter 4.

3.2.2 Finding PermIDs

The next problem is how to map current real life social neksdo the social P2P
system. Given a unique value representing our identity wstne able to store
information representing our identity on the network anarsle for identities we
know. This bootstrap phase is not frequently used and irdtion change rate
is relatively slow. Therefore it is not necessary to haveesrely smart and effi-
cient protocols. We propose to spread mappings of identftyrination to allow
the search for the corresponding permanent identifier. netessary to be able
to send information and to request it. To ensure privacy nifi@mation should
not be directly revealed. Hash values can be used to hiderivetgodata. The
spreading and updating of information can be relativelyvshmd thus epidemic
gossip protocols are a good choice.

We use the social network to store identities and searchrfes.oThe social clus-
tering increases the chance of finding friends as soon asre&dyl have friends.
This way the social network can grow incrementally. We @eat implementa-
tion for the Tribler system, which is discussed in Chapter 4.

3.2.3 Determining IP addresses

Once a peer gets online it should be able to reconnect taetsds. Some peers
will be offline and not be connectable. Other peers may hasegdd addresses.
The first problem ca not be resolved, although friends mayltbeistic to each
other and stay online longer. Thus the social incentiveayp shline for friends.

see http://www.gmail.com
2see http://messenger.msn.com

25

The problem of finding changed addresses should and can dleaes This re-

quires finding an IP address for a PermID. This can be resalgedy different

technologies such as superpeers, flooding or central serdsing the bootstrap
phase of building a social network we get initial IP addressiefriends and the
system can store the IP address if an other peer initiatesotineection. The sys-
tem can always try the last known IP address. If this failsstfstem must resolve
the new IP address. We propose to use the social network. dutios is to use

common friends and friends of friends to store and find theecurlP address.
A peer coming online should announce its identity and addi@sll peers in its

social network to which it can connect. By exchanging list®efmIDs and ad-
dresses with friends and FoFs the local IP address datab&sends and FoFs
can be kept up to date. As only one peer in our social netwasisginline to cap-
tured changes we will be able to reconnect to the social PR#onkeand acquire

changes.

The question is whether this will succeed. In order to andhierit is necessary
to know the chance a user is offline or the statistical digtiily of online users
and the the chance and frequency of IP address changes atth¢hesers keep
their IP address. We measured the dynamics of IP addressh wehdiscussed in
Chapter 5.

26

Chapter 4

Social Network Discovery

In the previous chapter we outlined the concept of a soci&®l R&work, which

consists of relationships between people. In order to usk auP2P network it
is required to add friends and a social P2P network with moeads can func-
tion better. The social network can be build manually, byiagldiser permanent
identifiers and other data. Figure 4.1 shows the screen shttits current method
in Tribler. But this method is a slow method and difficult foethverage user,
blocking the quick adaptation of a system.

It is essential for adaptation of a social P2P system thatialseetwork is build
quick and easy. Users of a social P2P system must be able &P identity
of their friends, represented by a permanent identifier. 4 #&d easy way is to
enable users to search for their friends by known value$, aswalues of real life
identities. User should be able to insert their real lifentity in the network and
attach it to their online P2P identity. Social network digexy must be included
in every social P2P network.

This chapter discusses an approach based on the socialrkgivinich is used to
spread information among the peers in the social nearnesgeér by using an
epidemic protocol. In case no social network exists sugrf@ehnology is used
as a backup. A module has been designed and implementedlarfor spread-
ing and searching of identities. Also, example modules leen developed for
the extraction of identities of friends from GMail and MSN &&enger in Tribler.
These identities can be input for a search on the network.

Section 4.1 gives an overview of the identity search medmarfor the social
network discovery problem. The prototype implementat®discussed in Sec-
tion 4.2. Results of some tests are in Section 4.3. Sectiordidctisses the
solution in this chapter.

27

PermiD: MFIWEAYHKOZI2{ICAQYFKAEE ABODPOAEAQLpNlAysIMFkDDaGNATYFPyubLIDULCMENIGEYUAPSGIKCMIDLINERPYATY: = |
IP: 192.168.0.15
Port: 5851

-
4| | »

Copy and paste this information in an email to your friends, so they can add you to their Friends List in Tribler.

Invite frisnds Close:

mnddafriend i 2=
Add a friend

IMarme: ||

G|

Part: !

PermlD: I

Icon (32x32 BMP Format]: I Briowise |

Add Canicel |

Figure 4.1: Current method to add friends in Tribler.

4.1 Design of Identity Search

The goal of the social network discovery is to enable useiindadentities of peo-
ple. This requires users to be able to add their own identitiysearch for others.
The spreading and searching must be quick and easy. The m&thshould also
consider that malicious peers could fake their identitingig spoofing attack, in
order to get certain privileges.

As discussed in Section 2.2, different ways exists of spnggaind searching in-
formation across a network. A social P2P network can explmital features for
this goal. Social networks have social nearness and cingtef peers, therefore
user can spread and save mappings around friends. So@#rohg means that
people have a lot of common friends and thus users can findaheh through
their friends. The reach of a social network is also very huger example,
a study has shown that humans have on average a direct setiaark of 124
people [22] and on average everybody in the world is confeotugh 5 to 7 in-
termediate friends[15]. If each of these people would abeeha social network
of 124 people and only half of the people overlap, two levekhe social network
would already consist df242 (0.5 = 7688 people. More levels will exponentially
grow the reach. Peers can reach each other through the pedpé&r social net-
work. The concept is shown in Figure 4.2. In this figure twcelayof the social

28

networks of peer A and E are shown. Peers A and E are said tdtavdegrees
of separation. Peer C is in both and thus can store informétion both A and E.
It is possible for A to reach for information of E and find théormation through
C and vice versa. Thus spreading and searching informatiamg two levels of
a social network creates the possibility for the systemachédour levels of users.
In a crowded network this would mean many users.

We propose exploiting of the social P2P network with an epidegossip proto-
col. Since the social network can become enormous, bu@swely clustered this
technology is very efficient and scalable. The social nétatso has implicit trust
among peers. Since friends are more trusted than randonymoois peers the
impact and possibility of a spoofing attack is reduced. litiestare spread in the
social network and searches are executed in the social retW@ peer already
has friends in his network these are requested first in alsea&iso friends of
friends can be requested because they are also more likevoshared known
contacts. The clustering of friends increases the chareentipping is found if
peers have a common friend which also uses the network. Beceusll peers
are clustered or have a social network build, superpeerdeamsed as a ren-
dezvous point. If the search among friends and FoFs doeswlt in a positive
response superpeers are queried. Superpeers store atiatiion they encounter,
but since this information is not verified mapping infornoatifrom superpeers
must be considered less trusted.

This solution spreads personal mappings from an identity permanent identi-
fier, to allow the search for the corresponding permanemttifier. An identity
can be seen as the tupleervice, value), which should point to the correct Per-
mID. To ensure privacy the information should not be dixectivealed, instead
of the actual values the (sha [17]) hash values are used. &rhiEes parameter
is a string description of the already existing identity; &xampleemail. The
inclusion of a service parameter adds to possibility to tigeslystem for differ-
ent types of real life identities. To spread and requestrin&tion we propose
two new messages to the BitTorrent protod8OOTSTRAP_GET to request and
BOOTSTRAP_SET to send identity information. The exact specification ofstne
messages is in Appendix A.

A boost in the speed of building a social P2P network can beraptished by
using existing social networks and extract the relatigpshs input for the search
on the network. Nowadays, a lot of systems exist which implationships be-
tween persons. Extracting information from these systemgiee us friends of
a person. Examples of these systems are MSN Messengersteriamd GMail
contact list.

The message size in a test (see Section 4.3) on averagetedrisiss6% of useful
data and the rest is overhead created by the bencoding atiohdry format.
Dropping the dictionary values and using an array and at<irder raised that

29

FoFs of Peer A FoFs of Peer E

Friends of Peer E

Figure 4.2: Social Network of two Peers.

86%. However, to allow the message specification to be egtendthe future
and to allow flexibility the dictiories are used in the finabam.

4.1.1 Message Exchange

The identity search mechanism continuously runs in the dpacid allowing
other peers to request or update information. Every trdissat the system
is based on one peer sendinB@OTSTRAP_SET or BOOTSTRAP_GET message.
The system uses the Tribler secure overlay module [40],hwmakes it possible
to send message to specific PermIDs and register to recessages. Usage of
the bootstrap system is done in the following cases:

e User insertion of identity mapping

e User request of PermID based on a real life identity

e Continuous spreading of information. Done by gossiping
e Receiving of information

Each of these cases is clarified in the following subsections

Insertion of identity data

If a user wants to add information to attach to its PermID asidhe name of
the service and the value must be provided. The system tattlasignatures and

30

ser

Add identity

-Superpeer
-Sender is friend/FoF
-Mapping is of friend/FoF

nnnnnnn

Peer injecting information Peer receiving information

Figure 4.3: Scheme for adding of an identity.

other meta data. After the data is created and stored in bdatabase the new in-
formation is announced to friends, friends of friends (Hadfsd superpeers using
the BOOTSTRAP_SET message. Figure 4.3 shows this scenario in a diagram.
A peer should only insert mappings that represent his owmtitye His P2P iden-
tity is unique by his PermID and corresponding private keyavoid false inser-
tions pointing to a PermID, and thus making distributed dkof service attacks
possible, a created identity mapping must be signed by terting peer. This
signature includes the service and value and because iafimmcan be updated
the time of insertion is included in the signature. The sigreavoids that peers
can create false mappings pointing to other peers.

Peers can however insert false identities. They can claie the owner of a cer-
tain identity while they are not. Without a trusted sourde impossible to avoid
this. In order to minimize the impact peers should not stoudipie values of the
same service for each PermID. Although a identity value @aldimed by mul-
tiple peers it is not possible for a peer to claim multiplentiges of the same ser-
vice. For example both Bob and Alice can insertéinei | : al i ce@mai | . com
tuple and a request should return both. Butif Bob firstinsaresi | : al i ce@mai | . com
and lateremai | : bob@rai | . compeers receiving both should discard the old-
est. This way a peer can not claim a lot of identities in orderedirect every
search to him. Peers should however verify mappings befngthem as friends
as discussed in Section 4.4.

Request for PermID of real life identity

Users should be able to search for identities of friends. duest or search is
done using théservice, hashedvalue) tuple. The value (for example an email

31

Requesting Peer Peer receiving request

Figure 4.4: Scheme for requesting other peers for an igentit

address) is hashed for privacy reasons. This tuple is useebtch friends, FoFs
and superpeers using tBOOTSTRAP_CGET message. To increase the efficiency
each request may consist of multiple tuples. Friends araeguienmediately. The
load on superpeers should not be too big and a peer can haygeabmber of
FoFs. To limit the bandwidth usage and peer load FoF and Bepesearches
are queued and at a certain interval a number of these ssarchend until all
searches are done or a positive result is returned. The scfana request is
shown as a diagram in Figure 4.4.

The use of friends and FoFs has the advantage of using shs#tieng of friends
as a means to find peers. Also friends are likely to be moréetiutan random
peers which decreases the impact of malicious clients. @rfigend is found the
system can send previous unsuccessful requests to thisTd@erway an incre-
mental search is done which includes the growing social oW he system can
reach up to four levels in the social network as shown in FEgar2.

Upon receiving a request the system looks in its database PErmID is found
that matches the service and hash, all known mappings dPdratlID are returned
to the requester.

Gossiping

Information is announced during insertion. The informatsould however also
spread among peers which were not connectable or in thel smtigork at the
moment of insertion. The concept of gossiping is used tolglepread mappings
around. At a specified regular intervals gossips are senghdrthe social net-
work. A gossip consists of a number of mappings of friends laoiés from the

32

Program Start

Get random mappings
from friends and FoFs

-Superpeer
I -Sender is friend/FoF

Secure overlay
Internet

-Mapping is of friend/FoF

Start Gossip

Peer gossiping information Peer receiving information

Figure 4.5: Scheme for gossiping social mappings.

local database. This information is gossiped to randonmdise FoFs and super-
peers. Gossiping is an excellent way to distributed slowlgnging data such as
mappings as discussed in Section 2.2.2. The social surirayiad| know every-
thing from the nearby social layers in time. Figure 4.5 shtivesdiagram of this
gossiping.

Receiving of mapping data

Upon receiving of a BOOSTRAP SET message containing infoondtie sys-
tems first checks the integrity of the message and the signe®econd the system
looks whether request were send for this mapping and notisiser if that is
the case. The system saves the message to the local datalihsefollowing
cases:

1. The peer is a superpeer. Superpeers store all information
2. Social network:

(&) The sender of the mapping message is a friend or FOF. Eiesimes
all information that friends and FoFs are storing.

(b) The message contains mapping information from friendso#s. So
that the peers stores all information from the nearby so@alork.

In each of these cases the information is only saved if no nevi@mation from
the same PermID and service exist. It is possible that thegaees information
of the same hash value but this cannot be from the same séteitelD. It is pos-
sible that two identical hash values with different Permisst because people
can insert false information. If this is the case at leastadrike peers is try to fake
its identity. Without verification it is impossible to deteine the correct mapping.

33

4.1.2 Rate Control

Bandwidth consumption and the load on peers must be low. ThEhamnesm
should create little overhead. In order to control the badttwusage peers may
only send messages to other peers once every number of secdsd the mes-
sage may contain a maximum number of mappings or requeste thresholds
at the receiving peer are exceeded messages are droppedqtfest is launched
by a user and the number of mappings is larger than the tHoe8t®message is
split up and queued.

4.2 Prototype

The basic bootstrap protocol can be used for different riaidentities. As part
of this thesis a prototype is implemented in TriBleFhe bootstrap protocol is im-
plemented as a python module called®@rsTRARMMANAGER. The modules for
extracting the existing social networks are created adairbiack boxes. Each
of these modules should have a similar function which asctyg username and
password for an existing account and returns a list of peapeesented by ser-
vice, value and optional a name field. As part of this thesislbboxes are created
for the extraction of friends based on contact lists from M@dssenger Contact
List and Gmail Address book.

4.2.1 MSN

An adapted version of the MSNP packaggused to connect to an existing MSN
Messenger account and extract contact information. Thigggcconnects to the
MSN network and acts as a client. Once the contact list isieed|from the server,
itis returned. In the prototype this is shown as a list whiah be searched for on
the Tribler network. Figure 4.6 shows an example of the pyp@interface. The
service is callears n since these are msn friends.

4.2.2 GMalil

To extract the contact list from webmail accounts of gmail wge the libgmail
module®. This module acts as a interface to connect to the websitenaiilg
It allows the extraction of contacts from the contact lisheTmodule had to be
slightly adapted in order to function some new functionsrobg as well. As with

Tribler branch of version February 16,2006
2http://msnp.sourceforge.net
3http://libgmail.sourceforge.net

34

[Search Existing Frame

phorst@hotmail.com (4, Annaaa.... (F) anna<3jsimer w
I@hotmal.com (Clarence)
Hi@hotrail com (Anouk. GESLAAGD!1)

r@hotmail.com (Bob)
@hotmall.com (Kooken)
s0@hotmail com
uw@hotmail.com ((F) Anne (F))
llens@hotmall. com (josje)
anbroek@hotmail.com (Spanbroek L)
rampt@hotmall. com
h@hotrail com {Liz)
omper@hotmail. com (N
@hotmail.com (Ron)
intweld@hotmailcom (M)
@hotmall.com (caraling (#))
dhooft@hotmail. com (N scrictie schrijven i)
pdznul.nl (Jurriaan)
B@hotmail.cor
br@hotmai Il iciodo Backzarchitecture)
heen

an: b :
Search Tribler Metwork

Figure 4.6: Prototype of MSN identity extraction interface

MSN contact the email addresses are shown in a list and caearel®d on the
Tribler network. The contact details are only email addzesand therefore the
service isenai | . Figure 4.7 gives an example of the prototype user interface

after an extraction.

Ml Search Existing Frame

—

)
bots@yahoo. com (I ot:)
whotmal.cor (SN visser)
icolo. il ()
sanoma-uitgevers. i (breakaut)
@amail.com (I Erijder)
hotmail com ()
m@student tudelft.nl { EEMopdam)
@hotmal.com (iboot)

v : i <l .
Search Tribler Metwork

Figure 4.7: Gmail identity extraction prototype interface

4.2.3 Bootstrap Handler

The BOOTSTRAFHANDLER class implements the actual handling of messages
and storing and searching of identities. It implements tleemanisms as dis-

35

secover: add PermidOuverlayTazk BOOTSTRAP_GET ABCLaunchManyThread-1

Mo more SPs

overlay: Start overlay swarm connection to ¢'superpeerl.dasZ2.ewi.tudelft.nl’,. 79
18>

olencoder: Setting up new connection to (’superpeerl.daz2.ewi.tudelft.nl’,. 7818

olencoder: Reserved hits: *S\xBB\xB8\xB8 B8 \>xBOE\xB0\xHAR"

overlay: Bare connection B.8.8.8 1518 to 138.161.211.; 7818 reported by threa
ABCLaunchManyThread—-1

overlay: Got RESPOMSE1 len 1227

= 21 ®wdwx zecure overlay connection made eex 130161 .211.

secover: add connection in secure overlay (superpeerl.das2.ewi.tudelft._nl’,. 78
@» auth listen port 7818

secover: task update (‘superpeerl.das2.ewi.tudelft_nl', 018> <{Tribler.Ouverlay.5
ecureuerlay.OverlayTask instance at BxB1D711208>

overlay: send message BOOTSTRAP_GET to MFIwEAYHKoZI=zjBACAQYFK4EEABoDPygAEAKDKg6FPHY
Ft5gJMgtsODThBrTaYIXOme g /gb 7 ?xNADREbu JTSKNN+ I kJAGvK3 p7¥0apySe T CGAUWUu? A
SocketHandler: no—data closing connection 138.161.211. 7011

SocketHandler: closing connection to 138.161.211.

olencoder: connection_ lost

Figure 4.8: Request to Superpeer on Tribler Network.

cussed in this chapter. The user can insert informationfdantity, search for

others and the class gossips identity information arourite dlass accepts the
message8O0TSTRAP_GET and BOOTSTRAP_SET. Figure 4.8 shows a com-
mand line log output of a search.

4.3 Tests

We tested the system in a small scale test environment. Hgaoyput on a
superpeer is shown in figure 4.9. A search resulting in a fdegranID is shown
in figure 4.10.

We created a fake social network with a superpeer having 400vk PermIDs
with each four identity services. We ran ten instances ofientl which were
all friends. In this test the PermID, IP address and port iehfis were known.
Each of the friends insert their (random) values for the fiol@ntity services.
This information is spread immediate among friends and tipeipeer. Each of
the peers also randomly searches 20 of the 1600L{0 * 4) possible identity
representations with an interval of ten minutes. Afterlad test runs each of the
peers knows all its searches.

In order to test whether the superpeer could handle a lot qpiegts, we also
ran the ten friends constantly sending random requestsetsuperpeer. After
a message was send another one was send directly hereaftehe Quperpeer
rate limits were disabled to allow receiving of all messagédse superpeer could
handle the continues stream of messages and a reply wasrserndrg request.

36

#H# no torrents

##i# no torrents

EPHSFESg Ity

Figure 4.9: Example output on peer after recieving GET ngessa

I x|

- fournd as permis MEIMEAYHKaZIzi0CAQYFKAEEABaDPgAEACEEInmMEs Dk gh - ChipcUZZSThGIMNKETUHMI T1AF +¢
YZIZI¥CREUIXDaeaULzM+-OdQEGZbFybryke

Figure 4.10: Prototype Pop-up Result of Tribler Network $kand Found Per-
mid.

37

4.4 Discussion

The gossiping of information will slowly spread all infortian. As the infor-
mation is in injected the P2P system it will probably be sabgdat least the
superpeers but a lot of other peers might known the infolonais well. A search
for an identity is very likely to get results if the searchualis in the system.
The biggest issue in this solution is that everybody canrirfaése identities. A
solution could be to introduce a trusted third party. Evesgrishould sign up and
prove its identity to the third party so that searches candséied. The central
server could sign verified identities and give the signatotée user. This makes
the user able to prove its claim about his identity. This heveequires a central
server and thus has scalability issues. Also the questisrhgswould run and
be responsible for this server. The owner should be trustddadlling to invest
without any return. Therefore a decentralized verificaiolution is required in a
global social P2P network.

In order to prevent malicious insertion of identity values use signatures. We
can always confirm that the inserted value is done by the Reitrdigned the
values with. The PermlID prevents peer spoofing. However sopemay fake its
identity. For example Bob may insert a service email with galice@mail.com.
The common way (used by MSN, Skype,Hyves) of verifying is$e direct ver-
ification. The final implementation of the bootstrap seatobutd include some
form of direct verification. Our social network however cad &0 make a more
efficient social based verification possible.

Direct Verification Direct verification means that the mapping of identity to
PermID is directly verified with the owner of PermID. This ¢tdbe for example
by mouth or telephone. Most current systems use a form ohkoballenge-
response. Once a presumed person is found a challenge iscsérat person.
For example a question only that person could know. If thes@eresponds with
the correct answer its identity is considered verified. Téersi of the system are
responsible for correct verification. For good conclusiegfication the challenge
response should be send and replied in both ways betweend®rs pequiring
four messages. This makes the verification process lengthg@mplex and it is
therefore also possible to use smaller number of messagesexBmple Skype
[3] uses only one response message. This makes the resptynsilthe end-user
bigger but decreasing complexity of the verification preces

Verification by friend Most social networks have common friends. If some
of the already verified friends have verified common friends aguld assume
their identities as already verified. A mapping could inéurtedentials signed

38

by our friends that these mappings are correct. Of courséette op trust in
this verification must be lower than that of direct verificati This could however
decreases the number of direct verifications dramaticallyha social network
grows.

39

40

Chapter 5

IP Discovery

Building the social network, as discussed in Chapter 4, is thediep in creating
a social P2P network. The second step is creating and maimgainternet data
connections between peers. A data connection must be dregitween friends in
the network, and thus peers must be able to connect to thentuR address of
their friends. As outlined in Section 2.4.2 connecting tergds problematic due
to low peer reliability, peer unconnectability, and ungaP addresses.
Unconnectability is outside the scope of this thesis, buéis# promising tech-
niques exist to overcome the problem [18]. Online time meawents are avail-
able [21, 39]. These studies conclude that the majority@pters are unavailable
most of the time. However, to the best of our knowledge nolfeabdress change
analysis has been done. In order to fill this gap the IP addressge dynamics of
peers has been studied as part of this thesis and is discnsttesl chapter. The
first dataset is based on a BitTorrent community, of which therg were moni-
tored for about a week. The second dataset is based on fouhsnohobserved
data from the bootstrap peers in the Tribler network. Basetheriwo datasets
can be concluded that IP address of peers are not very dynamic

Section 5.1 will first discuss and explain the measuremera BitTorrent com-
munity and an analysis of the Tribler network in Section T.8e results of both
analyses are combined in Section 5.3. Finally, the restilisi® chapter are dis-
cussed in Section 5.4.

5.1 BitTorrent Community Measurement

The question is how dynamic IP addresses of peers are, hew péers in P2P
networks change their IP address, and how available theyAaranalysis should
be done on a P2P system. We wanted to do a measurement on ad@itTarm-
munity which has identifiable users, because this way userde tracked across

41

| FromHTML | From Peerping|

SwarminfoHash SwarminfoHash
Nickname
Connectable Internal
Percentage Pieces
Time - Idle Time Of Update
Clientname | (Part of) PeerlD
IP Port

Table 5.1: Data from HTML Scraper and Peerping module thatlap.

Tracker Pinger ‘] New Peer Peer pi nger q
Swarm Alive Peer Alive

Reschedule Reschedule

New Swarm
ﬁ Scr aper

(Re)schedule

Y Y

< >J@Tracker < >J@ Peer ’

Save To D Save To Dafabase
Swarm Deatl

OO

Figure 5.1: Scheme of BitTorrent community measurement.

Get HTML Files

Save [lo Database tabase

Peer Death

sessions. A measurement has been done on a BitTorrent cotgr{furli epor n.

or g) with around 90,000 registered users. This closed commbag fixed nick-
names with which we can identify people. Statistics of themload behavior of
these users are shown on the website. Statistics are showadb swarm. On
the other hand the IP addresses are distributed by the traCke first attempt
was to measuréi | el i st. or g, a community with more diverse content, but
the administrators unfortunately removed statisticsrdytine development of our
measurement software.

5.1.1 Measurement Methodology

Given that we would have the IP addresses of nicknames aircérhes we could
calculate statistics about changing IP addresses. Umiately the system does
not provide these directly for privacy reason. Howevergsiwe can also poll in-

42

dividual peers for their progress and progress data is atstahle on the website
we can try to link the data from the website and the peersrimdtion is received
from three sources: the website HTML scrapes, from trackgquest and from
individual peer request (PeerPing). The two sources hatiegverlap in infor-
mation, the nicknames and IP address information are the H3dvapes and the
peerpings. The overlap in the two sources is shown in Talile 5.

Two pieces of software were used to monitor the HTML pagesherone hand
and the tracker and peers on the other hand. The schemedanéaisurement is
shown in Figure 5.1. The HTML page scraper used is an adaptite system by
Roozenburg [43]. The scraper downloads the torrent file agdspaf individual
swarms and saves the results on average every five minutasnbs may differ
due to resource limitation on the system. Not all informatim the HTML files
is important. Most of it are layout,comments or annotatigkithough all HTML
files are saved for each swarm, the following informationltered per user per
scrape moment:

e SwarminfoHash: unique hash value of the swarm

Time: time of the HTML scrape

Nickname: the nickname in the website system

Connectable: Yes if the peer is connectable and No if it is not

Percentage: percentage of the completion of the download

Idle: time since last progress update received from the peer

ClientName: name and version of the client

The torrents saved by the HTML scraper are input for the Regmpodule. The
torrents are equally spread among eight parallel runniagker and peerping
clients. The tracker requester and peerping clients weloiged gather informa-
tion based on the torrent files. These clients poll the tnaekery 15 minutes for
new peers. Every known peers is also polled every 10 mintites & still down-
loading (leecher). Because seeders do not change valuertheglg polled every
30 minutes to see whether they are still available. Each éipeer is connected,
an update is requested by the PeerPing client and the foljpwiformation is
stored in a file per swarm:

e Time: time an update is received from the client

e |IP and Port: IP address of peer and the port used by the client

43

e Pieces: number of pieces completed

e Internal: | if the peer was ping from the system or E when theneation
originated from the other peer

e PeerID: 20 character self chosen name of peer. First eigitacters are a
code for the client name.

After collection of the data the raw data is matched as dsmlish Section 5.1.3.

Fubar 4004
LordSi | ent
77nn77
maci ek82
SVAMPEN
whi t el i ght
gqwerty2r3r
Xip
kar el caca

Yes 100. 00% 1d07:53: 15 16: 22 Azureus/2.4.0.2 1149609549
Yes 100. 00% 1d00: 52: 05 21:13 uTorrent/ 1500 1149609549
100. 00% 16: 21: 57 20: 27 uTorrent/ 1500 1149609549
100. 00% 6: 48: 47 7:44 BitConet/0. 66 1149609549
100. 00% 3d18: 32: 00 19: 27 uTorrent/ 1500 1149609549
93.26% 1:28:54 0:32 Azureus/2.4.0.2 1149609549
32.57% 1:02:41 3:35 BitTorrent/4.1.2 1149609549
s 20.79% 3:49:30 10: 41 Azureus/2.4.0.2 1149609549
12.84% 1:54:38 3:16 BitTorrent/4.1.2 1149609549

£§366565

Output 1:
time, idle,

Example HTML scrape data (nickname, connectable, pergemntane,
client, and scrape time).

1149544820
1149544828
1149544897
1149545179
1149560219
1149554372
1149554550
1149554558
1149554559

87.5.214.61 49177 1409
193.77.246. 216 81 1409
81. 228. 26. 36 59612 1409
75.10.66.5 55170 1409
212.1.157.98 49153 38

87.5.214.61 49177 1409
80. 202. 215. 133 11704 1409
88.108.172. 45 41952 1409
84.230. 152. 223 18760 1409

- AZ2402- GUCZPdr Zr 5wR
- AZ2402- q89g9KhHHQG0
- AZ2402- 5ex5ADHouMX
- AZ2402- 1 | LOboAOhp5p
M- 4- 1- - 75f cedf 62121
- AZ2402- GUCZPdr Zr 5SwR
- BCD061- AsR22eeBsj wg
Mi- 4- 1- - 04df 5e442baa
- AZ2402- wulj HaVnGQOgyz

Output 2:
PeerlID).

Example peerping data for swarm (time, IP address, poggnat, and

5.1.2 Dataset

The dataset contains seven days of data. Only seven daysadlabke because
the systems bans non-contributing members such as theesclegnt used. This
contains information from 796 swarms of the community. Thi®rimation is

stored in log files. Output 1 shows a small subset of data aelefrom the

HTML pages. In output 2 some lines of the peer measuremestaken. It must
be noted that the PeerID is something like: -AZ2402-q89gBIKIQ60’, where

the first eight characters represent the client.

44

The dataset may contain wrong information since the inféionas provided to
the system by users. However, social control is high in tlesedl community
and malicious users are banned quickly. Since the up and datenmust be in
balance a faulty swarm can easily be identified and falsenmdtion is low.

5.1.3 Matching HTML Scraper and Peerping

The two sources of information are HTML and peerping. Nodtirelationship
between the sets exists. It is necessary to connect themmatehing between
HTML scraper results and peerping results is based on nmgiafisimilar data.
For example percentage can be calculated from the numbeeadpdivided by
the total number of pieces from the torrent file. The matchendone in three
steps:

1. Inner swarm possibility selection
2. Inter swarm possibility selection

3. Combining inner and inter swarm results and selecting hit@dy results

The matching client scans each swarm and looks for poss#@gpmgs matches
for each nickname in the HTML Scraper data. The client als&sdor nicknames
that were in multiple swarms at the same time and for peerpiragldresses that
were also in the same number of swarms during that time. Tinessteps in the
matching both result in possible peerping peers for eadtnaime. As a third step
the system combines the two results and if possibles ch@osedch between the
nickname and peerping peer. It was possible to match on gevetd% of the
nicknames to peerid(s) in each swarm. Of the nicknames 4%aiid possible
matches but a clear choice could not be made. On average 68 nicknames
were unidentifiable because no possibilities existed. iBhsostly because peers
are seeders all the time or unconnectable due to networkctestis such as fire-
walls. Due to the lack of information, peerping data fromseh@eers can not be
acquired and no link between the sets can be created. Of tentifiable nick-
names, 72% was always a seeder or unconnectable. Thess agsushown in
Table 5.2.

Inner swarm possible matches

The idea of inner swarm matching is to create lists of posdft@erIDs for each
nickname in the system. This is done per swarm. The systems stoby tak-
ing two consecutive occurs of a nickname in a swarm from thMHdBet. All
possible peerping results that can are in range of the tweemarive occurs are

45

Match found

43%

Ambigous matching

4%

No match found

63%, of which 72% was either seeder or unconnect

able

Table 5.2: Average percentages matching results per swarrié BitTorrent

measurement

selected. The systems first takes all peerping results bettie time of the two
HTML results. This includes many impossible results. Thaules are filtered by
client name, percentage and connectability. This selgasione for every two
consecutive measures. The time between two occurs in thelHsBEVis five min-

utes. This is quite short since peers are only polled evempibbites. Therefore,
if no results are found the five minute window is widened. éast of taking two
direct consecutive occurs the system can take three or nemgecutive occurs
and take the outer two as boundaries. The pseudo algorithimso$election for

each individual swarm is shown in Algorithm 1.

Algorithm 1 Inner Swarm

HtmlPeers := Read()

PeerpingPeers := Read()

for all pp IN PeerpingPeerto
if PP with similar IP,Port,Client,Increasing Percentage Dtbera

MERGE
end if
end for

for all TP IN HtmlIPeerslo

occurs ;= TP.data
window=0

while Not found possibledo

window =+ 1

for all T,,,T,,, IN occurs SUCH THATT},, = T}, 1 window dO
PossibleTemp :$ Peerpingpeer(s)||Swarm, Ty, < Tpeerping < Tn}
PossibleTemp := Filter(PossibleTen¥p7,,, < % Peerping < %T,)
PossibleTemp := Filter(PossibleTempPClient = Peer PingClient)

PossibleTemp := Filter(PossibleTempionnectable vV (Unconnectable N

external))

Possibles :=3Possibles N PossibleT emp

end for
end while

TP.InternalPossibles = Possibles

end for

46

Inter swarm possible matches

Since some peers download from multiple swarms at the sanmeettiese peers
must occur in both HTML and peerping data. The system sweegsail the
HTML files in order to find these multiple swarm users and s@vesnformation
of each occur of a nickname and its timing. It also countseddiit amounts of
overlaps and the timing. A peer may for example be in five swsadoring one
period and in only three during an other period. The resulsaéso filtered for
matching percentages, connectability and client names.

Overlaps can be found on multiple levels, the user can be ne than two swarms
at the same time. Because overlap on low levels a common andfgeers have
similar low level overlaps a selection is done. Criteria faviag the overlaps are:

1. If only one overlapping IP address with PeerIDs found

2. If minimal five level overlaps save all overlaps from lefige and higher.
This is because the results showed that overlap levels ugtts 3till high
with a lot of different IP addresses at the same time and ther@ot likely.
Starting from level five overlap not much collisions occur.

3. Minimal level three and the most occurring overlap ouasahlso the only
overlap in the maximal level overlap

4. Minimal level three and more than one overlap in higheslland only one
in highest overlaps. If the highest overlap is most in highegl! use it.

Combining Inter and Inner swarm matches

For each swarm the most likely matches between PeerPingiakdames are
saved. This is based on inner swarm and inter swarm posigbilAll nicknames
of a swarm are put in a queue and the system checks for the ikalgtrhatches
of each nickname based on the following criteria:

1. Inter - Inner swarm match:

(a) If only one (same) match in both inner and inner match.
(b) Intersection of inner and inter swarm possibilitiessgiwne result

(c) Maximum match in inner swarm is also in inter swarm match

2. checkOneMatch: Find nickname with only one possible pagrand that
possibility has been identified at minimal two occurrences.

47

3. checkMoreMatch: If the most occuring match is at leastéwdas much as
the second most. And that possibility has been identifiediainmal two
occurrences.

4. removeZeroMatchResults: Remove nicknames that do notdrgvpossi-
ble match and mark those as 'Unidentifiable’

If a match is found the match is saved, the nickname is remtroed the queue
and the peerid is remove from all other possibility lists e ®ystem sweeps over
all nicknames multiple times until no more resolves are domRis process is
repeated for every swarm. This results in a list of Peerlbduding IP addresses
used by thoses peerids, for each nickname. From thesesesligt of time, IP
address and port at which a nickname is seen can be creatieth, avh discussed
in Section 5.3.

1160352436. 415 82.157.141.59 6881
1160367186. 879 82.157.141.59 6881
1161085908. 742 82.157. 141. 59 6881
1161104614. 420 82.157.141.59 6881
1161123541. 294 82.157. 141. 59 6881
1161138517. 617 82.157.141.59 6881
1161158705. 957 82.157. 141. 59 6881
1161173262. 847 82.157.141.59 6881
1161188092. 717 82.157.141.59 6881

Output 3: Tribler data containing timing and IP address data for a H2rm

5.2 Tribler Analysis

The BitTorrent measurement, as discussed in the previoumoseds the first
source of IP address change data. The second source is feoaséhns of the
Tribler system. The Tribler system uses bootstrap peersdble new users to
quickly be able to use the system. From data of the bootseapspwe observed
the IP address and PermID data of users in the Tribler netvirekmIDs are fixed
for an installation of the Tribler client and PermIDs arenalsique. Thus, because
the data shows information for each PermID it is possiblextoaet the different
IP addresses of a PermID and thus of a user. Output 3 showses@mgple data.
During creation of the results it was clear that some peapiemultiple instances
of the client at the same time with the same PermID but frorfeht IP ad-
dresses. This probably caused by copying the installationttltiple computers.
Because the goal of the analysis is to see changes of IP addrese client this
kind of behavior blurs the data. These peers are also filtieosd the results. If

48

8000 4000

M\
7000 ‘ f o A An a1 3500
% I e /\ . 7 “
© Il | %
T 6000f I \ 1 3000 &
g o | 2
< 5000 I\ 12500 £
A | £
a \ N A [
£ 4000t SN2 2tV || 4 2000 %
o | g
S 3000 \ | 41 1500 §
5 \ \ ‘ =
Ro) “ | [}
E 2000} ‘ || 4 1000 2
Z | ‘
1000+ | L 4 500
O 4/-\‘-7—/‘\ Il Il Il Il Il Il Il Il O

04/03/18/03/01/04/15/04/29/04/13/05/27/05/10/06/24/06/08/07/22/07/
2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006

Date

Active PermIDs New PermIDs

Figure 5.2: New arrival of PermIDs and active PermIDs in thel&r network.

a peer switches back and forth a number of times between IRRs&kEb within a
short amount of time it is very likely that the user runs npléiinstances.

Figure 5.2 shows the number of active PermIDs and new asrivalthe Tribler
network. Showing almost an continuous measurememgdnonth. The graph
shows some peaks and a gap. The peak around May 2th is dueoter Triess
coverage. The gap in both graphs is caused by a bootstraprastron May 18th.
The strange increase after the server crash comes to togéathehe hosting of
an open source movie "Elephants Drearhy Tribler. This probably caused an
increase in users of Tribler.

5.3 Results

Both the BitTorrent community measurement and the Tribledyaisa provide
similar lists that contain IP address and timing informater identifiable peers.
From these lists information about the dynamics of IP addre®f peers can be
extracted or calculated. The results of IP address changavioe are shown in
the next subsection. From the BitTorrent community measengmb is also pos-
sible to extract availability and connectability data, ethare briefly discussed as
well.

!Elephants Dream: http://orange.blender.org/

49

Number of Peers seen with that number of IPs

100000

10000

10001 |
100 |

10

40 60 80
Number of different IP addresses

L
100

120

Number of Peers seen with that number of IPs

10000

100F

\
\
1000 ¢ |

L
10

—
20 30 40 50 60 70
Number of different IP addresses

Figure 5.3: Number of Peers with number of IP addresses. dth&dure shows
the Tribler network, the right figure the BitTorrent Communitgtwork. The
lines are Bezier approximations of the data points.

Percentage of peers seen with a number of IPs

100

10

0.1

0.01

BT ———

BT datapoints
Tribler
Tribler datapoints x

0.001

40

60

120

Number of different IP addresses

Figure 5.4: Number of Peers (in percentage) with number aflidfesses used on
a BitTorrent Community Network and the Tribler network. Theek are Bezier
approximations of the data points.

50

Tribler | BitTorrent Community|

Single IP address 36830(90.7%) 7545(84.4%)
Two IP addresses 2327(5.7%) 909(10.2%)
3-4 IP addresses 818(2.0%) 339(3.8%)
5-10 IP addresses 440(1.1%) 122(1.4%)
11+ IP addresses 191(0,5%) 20(0.2%)

Table 5.3: Number op IP addresses used by peers in TribleBéihorrent com-
munity.

5.3.1 IP Changes

The goal of the research done for this chapter has been tordeðe IP address
dynamics of peers in a P2P network. From the results can belsad P addresses
of peers are not very dynamic. In both Tribler and the BitTormmmunity most
people in the network use only one IP address. Figure 5.3sttmvpercentage
of users that use a certain number of IP addresses in theeTnbtwork and the
BitTorrent community. In the Tribler network 91% of the usersy have one
IP address during their time using the client. The verticdd & on a logaritmic
scale because the number of user using more IP address @nmypguickly. The
percentages drops to 6% of the users having two IP addredesmthan 2% of
the users use more than five addresses. The Figure also dmwarhe for the
BitTorrent measurement, in which 84 % of the peers only usesiBraddress.
In the BitTorrent community also only 2% of the peers uses ntloaa five IP
addresses. The percentages are shown in Table 5.3.

Figure 5.4 shows both datasets in one figure, which showsrkaiia similarity
between the two sets on the number of IP numbers per users.liBeshfollow
roughly the same trend. The resemblance of the two indep¢mdgasets con-
firms the validity of the analysis. Only in the end the lines @it different, but
this is due to the fact that the Tribler dataset has more users

Thus only small percentage of the users could be a potentialgm due to chang-
ing IP address. The number of users with many IP addressesyisow, although
it must be noted that some peers come online with a diffeferaddress almost
each time and some peers use a lot of IP addresses.

Peers might not use their P2P client all the time, and thezdf®address (switch)
data is only from observed sessions of the P2P clients. Riaggg®% and 16%
of the users of Tribler and BitTorrent community are seen witlitiple IP ad-
dresses. Please note that this does not say anything akeautibunt of observed
switches. Figure 5.5 and Figure 5.6 show the amount of sestci the peers
that use at least two IP addresses. On the horizontal axiv@nreumber of IP
addresses and on vertical axis the number op changes thatifze®. Almost ev-

51

140

120 b

100 k

80 | N i

Number of IP Changes

60 80 100 120
Number of IP Adressess

Figure 5.5: Number of IP address changes versus the numberaafdresses in
the Tribler Network.

600

500 + i
il
o 400f * .
o +
©
= +
O + *
D_ +
= 300f:]
o o+
3 A
E 1
S +
Z 200} %t i

%*+ #i
+1 ++
100 | = . .
R T
+oy o . +
0 %1+1++*++++++ ! N ' ! | | |
0 10 20 30 40 50 60 70

Number of IP Adressess

Figure 5.6: Number of IP address changes versus the numteraafdresses in
the BitTorrent Community.

52

ery peer which uses 25 IP addresses or more in both dataseds @sjual number
of changes of IP address. Thus, peers that have a lot of IRs&kl tend to ac-
quire a new IP address every switch. On the other hand pe#re iower region
have a lot more changes than the number of IP addresses anthdyuchange
between IP address from a small pool of addresses. A straffigeedce between
both datasets is the amount of changes in the BitTorrentetatéke peers in the
BitTorrent community change back and forth a lot more ofteantpeers in Tri-
bler. This could point out that some of the matching on the @it@nt community
contains a small amount of pollution.

1le+07
" G ¢ Je i
- 1e+06 | ; A T i
< el
3
Q it e
%) sgw ; 3
' 100000 “* ” 0 *%I g i%t]
3 %ﬁfbﬁm ++*+ ++¢+ fﬁ’fj H ﬁﬁﬁ‘ ri *gﬁ% s
g }* # g ++ ++ o HthH» e ﬂ#ﬁ?‘ ot +f¢;f* e HrF
8 10000 | véiﬂ“‘%:mg% N e Y el
O ﬁr+#++%+ﬁtr j: g"ﬁj’#i %ﬁ ﬂ*i :3&# ++*+#++*’4+
o + i## #;:r :*I%%JHﬂff 4; +*%++ﬁ+#_¢++++ AN
- e T #H A + T ++
g 1000 - A T e Tt]
) + " tr+ & t%#j:# + +i’+++++
E + ¥ + T
g * **++ N ot oty
100 + * + *oy i
g + + N + +
N
= N
First 36830 peers
10 fhave no IP E
address changes *
N
Il Il =+ Il Il Il
36000 37000 38000 39000 40000

Peer, sorted by number of changes

Figure 5.7: Average time between IP address changes of ieties Tribler Net-
work. The first 36830 peers have no change in IP address amsasaown.

The average amount of time that the peers are observed watiPaaddress before
changing to an other IP address are shown in Figure 5.7 fbkefrand in Figure
5.8 for the BitTorrent community. It shows the average timeveen the moment
a peers is observed with an IP address for the first time unsilabserved with
an other IP address. All the peers with IP address changeshaven and are
sorted on the horizontal axis by the number of IP changes. alleeage time
between switches in the Tribler graph is 288556 secondandr80 hours. In the
BitTorrent network it is on average 10 hours. Thus even pémtsdo change, on
average do not change very fast, which makes it easier focialge2P network
to find a changing IP address. However some peers switch eetiiRaddress
after a short amount of time, as is also confirmed by Figurevéa®ch shows the
minimal change times of peers in both datasets. This figurershhat some of

53

1le+07 T T T T T T T T

n
° 1e+06 | 4
c
8 T+ +
b T+ ok iy
a A S
. 100000} R T gﬁw% et a%% i
g Ba R s i A
Q o FEF R T S ﬁ
=g T+ 4t P e T A TR R ey
= s SR A LT +++¥*~4+m
< + 4T T+ T e +H
£ 10000 ey TR B -
* B + oot TRy RARR 4
Y o RO ARTE L Je N
+
£ I :1*%# A R #ﬁtt
skl AT RN L TR T e s
< + frwi + o o AR F
8 1000 P e T R Ak oL N R s et
g T I A AR e e
E . Ij: + o4t +i£+ Foh T &%ﬁ& *H%}.
8 100 . ¥ v FL +++¢+¢ I
) = + +
£
=
10 First 7545 peers i
thave no IP
address changes

1 1 1 1 1 1 1 1 1
7200 7400 7600 7800 8000 8200 8400 8600 8800

Peer, sorted by number of changes

Figure 5.8: Average time between IP address changes of petrs BitTorrent
community network. The first 7545 peers have no change in tfPead and are
not shown.

1le+07 1e+07

%) 1e+06 | %) 1e+06 E
B 2
<] S it T g+ **
8 8 £ e N
2 100000F 2 100000f %g%g?@?'& AT B 1
o i g e Sy
3 3 #A5
© 10000} 2 10000} oo E
@ < i
2 £
o o
o 1000 - o 1000 - E 4
c c
] 8
2 100 - 2 100 | 1
3 3
3 3
o °
£ 10 £ 10 | k|
F =

1t * 1f 1

01 P . 01
36500 37000 37500 38000 38500 39000 39500 40000 40500 41000 7400 7600 7800 8000 8200 8400 8600 8800 9000
Peer, sorted by number of changes Peer, sorted by number of changes

Figure 5.9: Minimal time between IP address changes per péerleft figure is
in the Tribler Network, the right figure in the BitTorrent coranity. The peers
with no change in IP address are not shown.

54

the often switching peers could potentially change themdBress after a couple
of minutes or even quicker.

For the social look up of changing IP addresses it would ler@sting to see what
the chance is that a peer is connectable or unconnectabf@extiaus IP address.
Such numbers could be used to predict the chance that a ¢darzepeer will fail
or succeed due to an IP address change. In a social P2P nehesime users
are connected over and over again. Therefore it is espeamdresting to able
to have knowledge about the probability distribution of Bnaddress change of
a peer that has been seen with the same IP address multigle tithe graph in
Figure 5.10 gives for both Tribler and the BitTorrent comntyitine percentage
of peers that had a different IP address at titng, given that they have had the
same IP addresstimes. The chance that a peer will have changed its IP address
are quite small. For example, if a peer has only been seen threcehance it has
a different IP address the next time is 9.5%. However, if tberhas been seen
at the same IP twice this percentage already drops to a n&0&60.The graphs
do not exactly follow the same trend, as with the number ofd@asses, but in
both graphs a drop is fast. Also in both datasets, after tial idrop, the line
starts to climb a bit again. A possible explanation is thahesgeers may keep
their IP address for a short time, but in the long run a chasdj&elier to occur.
For example a DHCPlease may expire. Figure 5.11 show the individual graphs
of the two data sets. It is quite striking that both dataseigeha similar climb.
Also in both datasets the minimim of the datapoints is alntlbstsame; in both
BitTorrent and Tribler it is around 21. To calculate the figwe used an interval
of an hour, which could point to a change after around onettlag, be caused by
peers returning a next day. We studied the effect of chamgsstinterval, which
is not shown here. But, changing the interval does not chamgdorm of the
figure much and only moves the minimum point of the graphswefmumber a
bit.

5.3.2 Availability and Connectability

The previous section shows that on average the IP addressecd pre mostly
static. Although already a lot of research has been donediegathe online
time of peers in P2P networks [21, 39] the BitTorrent commumeasurement
contains data on availability. Results from that data, preskhere, can verify
the claim that peers are highly unavailable. We extract ftioenog files for each
peer its status, being either online or offline, during theasseement. The log
files have an interval of five minutes and thus the status catetsgmined with a
threshold of five minutes. Figure 5.12 shows the percentatieedotal time that

2Dynamic Host Configuration Protocol

55

10 T T
Tribler

Tribler Datapoints
BT Community
BT Community Datapoints

0.01F A |

Chance of different IP address next time - % (log)

0.001 | | | | | | |
0 50 100 150 200 250 300 350 400

Number of consecutive times encountered user with same IP

Figure 5.10: Chance of a peer returning with a different IPresislif encountered
for a number of consecutive times for both the Tribler andBii€orrent Commu-
nity network. (Only counts- 3600 minutes. The lines are Bezier approximations
of the data points.)

10

| ' ' ' ' Bezier smooth line—— Bezier smooth
| Datapoints Datapoints
I

-

Chance of different IP next time - % (log)
Chance of different IP next time - % (log)

\ \
i \\ \
\\ —
0.1 . —
N _ —
0.01 = & * -
0.001 0.01
0 10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
Number of consecutive times encountered user with same IP Number of consecutive times encountered user with same 1P

Figure 5.11: Chance of a peer returning with a different IPraskl if encoun-
tered for number of consecutive times. Tribler network o ligft, BitTorrent
community on the right. (Only counts 3600 minutes. The lines are Bezier
approximations of the data points.)

56

each peers was online. The figure gives the distribution bhetime.

The data shows confirms earlier findings that most peers aantine all the time

and in fact the majority of the peers are most of the time d@fliim the figure the
most reliable peers are on the left, which shows that onl9o0laB the peers is
available more than 99% of the time and 10.1% of the peersssthan 1% of the
time using the system. During the measurement a peer waseoager33.3% of
the time connected to BitTorrent community.

Connectability is not researched here but it is also avalabthe statistics of the
BitTorrent community. 61% of the peers were always connéetao a 4 out
of 10 peers were at leasts once not connectable. Such a lavectbility could

lead to a lot of problems in connecting to a peer.

Thus connecting to a random known peer has a very high chhatée peer is
either unconnectable or unavailable.

100

90

80

70 +

60

50

40 +

Percentage of the time online

30

20

10

O | | | |
0 5000 10000 15000 20000 25000 30000

Peers, sorted by percentage online

Figure 5.12: Percentage of the time users are online in tAi@B&nt community.

5.4 Discussion

The Tribler analysis gives a good analysis of the dynamicgeafrs. Peers are
identifiable by PermID. Peers can not forge their PermID dalefore no am-
biguous data about the addresses can be in the dataset. étdhvevneasurement
is on a fairly new network. Figure 5.2 shows that a lot of peamhly use the

57

client once or twice. This is probably because people owlyhie new client, es-
pecially after media attention. Also Tribler at this momdags not really exploit
social control. The BitTorrent community does use sociatimdand a lot of peo-
ple are using the system continuously. It must be noted hemteat some users
maybe running their client while using other trackers. Imtcast to the Tribler
network IP addresses are not directly linked to identifiggaders. In order to cre-
ate these links the best possibilities were selected, asstisd in Section 5.1.3.
Some faulty links may be presumed, and thus some of the finaluded for the
result might be ambiguous. Reviewing the data of the prewseation shows that
the independent datasets show much likeness, which is aroatifon that the
BitTorrent measurement and matching process has been quiteate. Although
some extreme values are in Figure 5.6 on the whole the remdtsery similar
and are likely to be correct. The combination of the two iretefent datasets and
the similarity also strengthens the credibility of the dois®ons.

The research in this chapter has been done as part of theckdry problem, as
the third step required in creating a social P2P overlay odtwas discussed in
Section 3.2.3 and shown in Figure 3.2. A mechanism is redunr@ social P2P
system to be able to find the current IP address of peers igedqilthough the
percentage of peers using multiple IP addresses is low seers phange address.
It is important to notice that most peers actually only stvibetween a pool of IP
address, therefore saving the last known couple of addredsepeer can aid in
rediscover the peer. Furthermore, in most cases peers ahaoge IP addresses
in short time. Thus IP numbers are slow changing data and d gadidate of
spreading the changes would be gossiping in the social methaplementing a
gossip mechanism which updates peers in the social netwuank an IP address
change is very likely to succeed in updating changes. Phetddannounce their
new address to all online peers in their social network as ss@ change occurs,
and continue to spread IP addresses of itself and otheradctba social network.
Up to a number of levels of FoFs, the complete social netwdik peer can be
kept up to date with latest addresses with only a small oeerhe bandwidth
since spreading the address can be done quite slowly. Aasgied in Section
2.2.2 a network of thousands of friends and FoFs can be up¢arda couple of
hours. Given that a social network feature is available énsystem that provides
exchanges of friends list, it would be easy to calculate comfriends or common
FoFs. Peers should always spread updates of their addr&ssiscase a peer can
not be connected at the latest known IP address, the frier@iE@Fs of the peer
can be queried for updates. If any of these peers was onknlashtime the peer
was online or it received a gossip, the new address can bé&edgtor example
in the relative small social network of Figure 3.1 consideoanect must be made
to peer B by peer A, and B changed its address since the lasecbrirhe latest
address can be request from friends of peer B, the peers C, EafgliD. Each

58

peer could gossip address of friends and FoFs to all hisdsi@amd FoF, and thus
spreading the information across four levels in the soaalork. If the update
has been gossiped around, all the peers in this network bamklthe information,
even if peer A did not forward anything. For example peer Jiarmduld get the
information from FoF | of B and peer D could get it from friendd FoFs M, C
and E. The chance that at least one of the peers is availatlghisThis way peer
A is likely to acquire the new address of B.

Although peers may not change IP address very fast the pegection showed
that the chance is high that a peer is unavailable or unceainlec Results on
availability on regular networks will probably be even lovieecause the BitTor-
rent community only gives access to peers that contribube cbmmunity thus
has a strong incentive for peers to stay online. The highahahunavailability
and unconnectability could mean that a peer sending an emiagossip of IP
addresses has a high chance of failure. The unavailabrlidyumconnectability
are much more of a problem than IP address dynamics, andféaiegness of
the gossiping solution could decrease due to unavaikalaititt unconnectability.
A lot of research is done to overcome unconnectability dukrémvalls or Net-
work Address Translation boxes, such as firewall puncturja§] and UPnP.
More research should be done and a system should use meth@mgsr¢ome un-
connectability. Also instead of using a push gossip metbedrs may also use a
pull gossip method [34]. Unconnectable peers may be unableckive, but can
pull the information from connectable peers.

Unavailability can not be solved by technical mechanismesesit is the user who
shuts down a computer or P2P client. However, incentivekléoarease the will-
ingness of users to stay online. A social network could éelygood incentives,
since social control is high and people tend to be altrutstiards friends.

3Universal Plug and Play: http://www.upnp.org

59

60

Chapter 6

Conclusions and Future Work

In this thesis we have presented a solution to the problemneaiting an overlay

network based on real social networks. Two main problems baen discussed.
The first is the social network discovery problem, which dewith the creation

of the social network and finding friends. The second parhésdetermination

of the IP addresses of peers in the social network, whichgsired to create and
maintain connections between peers in the social P2P networ

In order to solve the social network discovery problem, weehdesigned and
implemented a module for Tribler which allows the users tarcie for people,

known to them, using social identifiers such as email addsesstelephone num-
bers. The user can search for an identity mapping from alifeatlentifier to a

so-called PermlID. In order to decrease the complexity feruser, input of this
module can be from existing social networks. Two example® feeen built for

MSN Messenger and GMail contact lists. A small test has beened out.

In order to find the IP addresses of people in the social n&tweae have proposed
to use the social network. Using social connections wilyaucceed if a peer is
able to connect to at least some peers in the network. Whetpeerais reach-

able is based on the availability, connectability, and IBrads dynamics of peers.
Connectability is outside the scope of this thesis. Avaligbhas already been

researched. In order to research the IP address dynamieceds, @ BitTorrent

community and the Tribler network have been analyzed.

This chapter gives our conclusions with regard to these tammroblems in
Section 6.1. Some recommendations for future researchrapvements are
given in Section 6.2.

61

6.1 Conclusions

Based on the results of our research in social network disgaesearch, we can
state the following conclusions:

1. Gossiping will spread the local knowledge of identitiesatl peers in the
social network, which creates distributed knowledge ohidg mappings.
Because of the limited bandwidth usage per client and thawelalimited
number of users in the social network of each peer, this ndethaery
efficient and scalable.

2. ldentity mappings are spread around the social netwdrlalréady con-
nected to a social network, common friends are likely to hiaeeidentity
information. This will aid the scalability of the system. ibg superpeers
as backups for information exchange makes the network tgpevan if no
social network has been built or no common friends exist.

Based on the IP address dynamics analysis, we can state bwifgl conclu-
sions:

1. Most of the peers only have one IP address, and if a peeerswsigth the
same IP address a couple of times, the chance that a IP addh@sge
will occur is slim. This will make rediscovering peers easyng a social
network. The chance that multiple peers change IP addresdrismely
low, making it possible to look up IP addresses through tlgataetwork
as long as the social network is reasonably large.

2. The social network is known and every peer announces itltiPess to
friends and FoFs. Therefore a peer can calculate for eads &fénds to
which peers IP addresses have been announced. In case aicamantable
peer a lookup can be very specific. This creates a small nuaflb@okups
and makes this method scalable and efficient.

3. The social network also creates a high level of trust sendkough a IP
announce should be signed, a denial of service attack ikalylsince the
announce is done in the social surroundings of the peer.

4. Most peers are unavailable most of the time, which pravégtmuch more

of a challenge than the dynamics of IP addresses. Howevavauability
does not impact the building of the social network connectio

62

6.2 Future Work

Finally, we present some possible future research for EB2a overlay networks
and some technical improvements:

1.

Although a user can search the network, and is sure thaatbes inserted
are in fact inserted by the owner of the PermID, users camtifedse data.
A confirmation mechanism should be implemented before paardully
acknowledge other peers as their friend. Further reseatolthis subject
is required to make the mechanism less vulnerable to attacks

Gossiping is a good mechanism to spread slow changingmiafion, es-
pecially combined with semantic routing or social networkswould be
useful to research the possibility of one gossip mechanissupport mul-
tiple types of information. This could lead to an integratwith buddy-
cast [40] and other (social) gossip methods in Tribler. @Gasg should be
researched in more depth to create a more advanced goss$ipdnet

Our current social network discovery mechanism has bestad on a very
limited scale; it should be emulated or tested in a social 2fem.

The results from the IP dynamics analysis can be used teemgnt an
address discovery mechanism. This has to be implementettsiedl. The
data acquired from both Tribler and the BitTorrent communoéy be used
to run an emulation or simulation. This could prove in mortadé¢hat the
social network can resolve the IP discovery problem.

. The IP discovery is very likely to succeed in finding a péat has changed

IP address and is online. However, knowledge of unconnkctatunavail-
able peers should be considered as well to improve efficiandyperfor-
mance. More specific research could combine data about ctainiigy,
availability and IP dynamics.

63

64

Bibliography

[1]
[2]
[3]
[4]

[5]

[6]

[7]
[8]

[9]

[10]
[11]

[12]

[13]

[14]
[15]

K. Aberer, P. C. Mauroux, and M. Hauswirth. A framework fonsantic gossiping.
S GMOD Rec., 31(4):48-53, 2002.

D. Agrawal, A. El Abbadi, and R. C. Steinke. Epidemic algorithms in regiéd
databases (extended abstract)P@DS pages 161-172. ACM Press, 1997.

S. A. Baset and H. Schulzrinne. An analysis of the skype peeet-internel
telephony protocol, Dec 2004.

A. R. Bharambe, C. Herley, and V. N. Padmanabhan. Understgratid decon-
structing bittorrent performance. Technical Report MSR-TR-2085Microsoft
Research, 2005.

K. P. Birman. The surprising power of epidemic communication. In A.ifsah
A. A. Shvartsman, and H. W.and B. Y. Zhao, editofsiture Directions in Dis-
tributed Computing, volume 2584 oflecture Notes in Computer Science, pages
97-102. Springer, 2003.

BitTorrent. Draft bittorrent dht protocol
http://www.bittorrent.org/draftiht protocol.html [online].

N. T. Borch. Improving semantic routing efficienaylot-P2P, 00:80-86, 2005.

Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Sher{aking
gnutella-like p2p systems scalable. $SGCOMM ’03: Proceedings of the 2003
conference on Applications, technologies, architectures, and protocols for computer
communications, pages 407-418, New York, NY, USA, 2003. ACM Press.

H. Chen, M. Yang, J. Han, H. Deng, and X. Li. Maze: a sociakrgeeyeer network.
In In Proc. of CEC’ 04-East, Sept. 2004.

ABC [Yet Another Bittorrent Client. pingpong-abc.sourceforgdjonline].

B. Cohen. Incentives Build Robustness in BitTorrentWorkshop on Economics
of Peer-to-Peer Systems, Berkeley, CA, USA, June 2003.

F. M. Cuenca-Acuna, C. Peery, R. P. Martin, and T. D. NguyBtanetP: Using
Gossiping to Build Content Addressable Peer-to-Peer Information $f@ammu-
nities. InTwelfth IEEE International Symposium on High Performance Distributed
Computing (HPDC-12). IEEE Press, June 2003.

K. J. Delaney. With nbc pact, youtube site tries to build a lasting businéssl
Street Journal, June 2006.

DirectConnect++. dcplusplus.sourceforge.net [online].

P. S. Dodds, R. Muhamad, and D. J. Watts. An experimental stu@garich in
global social networksScience, 301:827—-829, Aug. 2003.

65

[16] J. R. Douceur. The Sybil attack. In P. Druschel, M. F. Kaakha&d A. I. T.
Rowstron, editordeer-to-Peer systems, First International Workshop, IPTPS2002,
volume 2429 oL.NCS, pages 251-256. Springer, 2002.

[17] D. Eastlake and P. Jones. RFC3174 - US Secure Hash Algorit{®HAL). Net-
work Working Group, 2001.

[18] Bryan Ford, Pyda Srisuresh, and Dan Kegel. Peer-to-paamumication across
network address translators. arXiv report ¢s.N1/0603074, anfar, 2006.

[19] B. Furht, D. Kalra, F.L.Kitson, A.A.Rodriguez, and W.E. Wall. Desigsuies for
interactive television systembBzEE Computer Magazine, 28(5):25—-38, May 1995.

[20] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, 8talda. The
impact of dht routing geometry on resilience and proximity. SGCOMM ’ 03:
Proceedings of the 2003 conference on Applications, technologies, architectures,
and protocols for computer communications, pages 381-394, New York, NY, USA,
2003. ACM Press.

[21] K. P. Gummadi, R. J. Dunn, S. S., S. D. Gribble, H. M. Levy, andahjan.
Measurement, modeling, and analysis of a peer-to-peer file-sharirigoadr In
SOSP '03: Proceedings of the nineteenth ACM symposium on Operating systems
principles, pages 314-329, New York, NY, USA, 2003. ACM Press.

[22] R. A. Hill and R. I. M. Dunbar. Social network size in humariduman Nature,
14(1):53-72, 2003.

[23] I-Share. I-share: Sharing resources in virtual communities
for storage, communications and processing of multimedia data.
http://www.freeband.nl/project.cfm?language=en&id=520 [online].

[24] M. Jelasity and A. Montresor. Epidemic-style proactive aggregatidarge over-
lay networks. InProceedings of the 24th International Conference on Distributed
Computing Systems (ICDCS 04), pages 102-109, Tokyo, Japan, Mar. 2004. IEEE
Computer Society.

[25] S.D. Koolen. A review of social p2p overlay networks. LiteratusBarch Assign-
ment Computer Science, TU Delft, November 2005.

[26] Y. Kulbak and D. Bickson. The emule protocol specification. MScitheThe
Hebrew University of Jerusalem, Jan 2005. Distributed Algorithms, Nddiwgr
and Secure Systems Group.

[27] D.B.Lange. Present and future trends of mobile agent techydlod. Rothermel
and F. Hohl, editorsMobile Agents, volume 1477 ofLecture Notes in Computer
Science, page 1. Springer, 1998.

[28] J. Liang, R. Kumar, Y. Xi, and K.W. Ross. Pollution in p2p file shariggtsms. In
INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and Cont
munications Societies. Proceedings IEEE, volume 2, pages 1174-1185. Dept. of
Comput. and Inf. Sci., Polytech. Univ., Brooklyn, NY, USA, March 2005

[29] Q. Lv, S. Ratnasamy, and S. Shenker. Can heterogeneity makellgracalable?
In IPTPS'01: The First International Workshop on Peer-to-Peer Systems, pages
94-103, London, UK, 2002. Springer-Verlag.

[30] S. Marti, P. Ganesan, and H. Garcia-Molina. Sprout: P2p routitly social net-
works. In W. Lindner, M. Mesiti, C. Trker, Y. Tzitzikas, and A. Vakali, editors,

66

[31]

[32]
[33]

[34]

[35]

[36]
[37]
[38]

[39]

[40]

[41]

[42]

[43]
[44]
[45]

[46]

EDBT Workshops, volume 3268 of_ecture Notesin Computer Science, pages 425—
435. Springer, 2004.

P. Maymounkovand and D. Mazieres. Kademlia: A peerto -peerrimdton system
based on the xor metric. Imternational Peer-to-Peer Symposium (IPTPS02), 2002.
S. Milgram. The small world problenPsychology Today, 2:60-67, 1967.

A. Montresor. A robust protocol for building superpeer overtapologies. In
Proceedings of the 4th International Conference on Peer-to-Peer Computing (P2P
2004), pages 202—-209, Zurich, Switzerland, Aug. 2004. IEEE.

K.D. Ryu M.S. Khambatti and P. Dasgupta. Push-pull gossiping flmrimation
sharing in peer-to-peer communities. Pnoceedings of the International Confer-
enceon Parallel and Distributed Processing Techniques and Applications (PDPTA),
pages pp. 1393-1399., Las Vegas, Nevada, June 2003.

S. Nielson, S. Crosby, and D. Wallach. Kill the messenger: A tawonof rational
attacks. Inln Proc. of the 4th International Workshop on Peer-to-Peer Systems
(IPTPS), feb. 2005.

A. Parker. Peer-to-peer in 2005. Technical report, Cachel@g05.

Elizabeth Pennisi. How did cooperative behavior evol@ence, 309(5731):93+,
July 2005.

E. C. Perkins. Ip mobility support for ipv4 - request for commen8148 Technical
report, IETF Network Working Group, August 2002.

J.A. Pouwelse, P. Garbacki, D.H.J. Epema, and H.J. Sips. The éiitg2p file-
sharing system: Measurements and analysis 4ttnlnternational Workshop on
Peer-to-Peer Systems (IPTPS 05),, Feb 2005.

J. A. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yandogup, D. H. J. Epema,
M. Reinders, M. van Steen, and H. J. Sips. Tribler: A social-basedtpgseer
system. Technical Report 2006-002 (presented at IPTPS 2008), Ubéversity
of Technology, Feb. 2006. (presented at the 5th Int'l Workshop esr-B-Peer
Systems (IPTPS)).

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schehkealable content-
addressable network. IHGCOMM '01: Proceedings of the 2001 conference on
Applications, technologies, architectures, and protocols for computer communica-
tions, pages 161-172, New York, NY, USA, 2001. ACM Press.

S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handlingnchua DHT.
In Proceedings of the 2004 USENIX Annual Technical Conference (USENIX '04),
Boston, Massachusetts, June 2004.

J. Roozenburg. A literature survey on bloom filters. ReseardigAment, Novem-
ber 2005.

S. Saroiu, K. P. Gummadi, and S. D. Gribble. Measuring and angyhaancharac-
teristics of napster and gnutella hostéultimedia Syst., 9(2):170-184, 2003.

S. Sen and J. Wang. Analyzing peer-to-peer traffic across fatyvorks. IrSecond
Annual ACM Internet Measurement Workshop, November 2002.

I. Stoica, R. Morris, D. Karger, F.F. Kaashoek, and H. Baldira. Chord: A
scalable peer-to-peer lookup service for internet applicatisftGCOMM Compuit.
Commun. Rev., 31(4):149-160, October 2001.

67

[47]
[48]

[49]

[50]

Y. Upadrashta, J. Vassileva, and W. Grassmann. Social netvorkeer-to-peer
systemshicss, 07:200c, 2005.

Mahadevan Venkatraman, Bin Yu, and Munindar P. Singh. Trodtraputation
management in a small-world networikmas, 00:0449, 2000.

R. Wakikawa, J. T. Malinen, C. E. Perkins, A. Nilsson, and A.ubrminen. Global
connectivity for ipvé mobile ad hoc networks. Internet-Draft, Nov. 200@rk-in-
progress.

B. Yang and H. Garcia-Molina. Improving search in peer-to-pesworks. In
ICDCS’02: Proceedings of the 22nd I nternational Conference on Distributed Com-
puting Systems (ICDCS 02), pages 5-5, Washington, DC, USA, 2002. IEEE Com-
puter Society.

68

Appendix A

|dentity BootStrap Message
Specification

The two new message are a request (GET) message and a std)en{€&sage.
The SET message forwards information to other peers. It oasists of map-
pings for a number of peers. The GET message can requesindeatshes of
information and optionally also request all informatiorpefmanent identifiers.
The BOOTSTRAP_CGET message is a dictionary containing the following key and
values

¢ 'permid’ is the permanent identifier of the requester of tharsh
e 'searches’ is an array of dictionaries containing:

— ’'service’ the textual representation of the service. Faneple emalil
or msn

— 'hash’ is the sha hash value of the concatenation of theceand the
original value. For example hash(email:me@mail.com)

e ‘permids’ (optional). Array of permanent identifiers. ANs the requester
to pull mapping values of the given PermIDs.

The BOOTSTRAP_SET message is an array containing dictionaries with the fol-
lowing key and values:

e Array:

— 'permid’ the PermID that is mapped.
— 'mappings’ is an array of mappings of the PermID:

69

* ’'service’ the textual representation of the service. Faneple
email or msn

« 'hash’ is the sha hash value of the concatenation of the cervi
and the original value. For example hash(email:me@mail)co

x 'Insertion’ integer time of the moment the value was insgitg
the original PermID in seconds after 1-1-1970 GMT

x 'signature’ the ECC signature of the hash of a concatenatieg) st
'service + BASEG64 of hash + time of insertion’. The signature
consist of an tuple of the two signature values of an ECC sigaat

x 'mapping’ (optional) The non hashed value of the mapping. Can
be omitted too ensure privacy

« 'ip’ a dictionary containing address information of the pee
- "ipport’ tuple of the IP address and port number
- 'last_.seen’ time the IP address was inserted

- 'signature’ the ECC signature of the hash of string represen-
tation of tuple(ip,port,lasseen)

Since it is an array it can hold mappings of more than one germi

70

