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Abstract

Previous partially supervised classification methods can partition unlabeled data into positive examples and negative
examples for a given class by learning from positive labeled examples and unlabeled examples, but they cannot further
group the negative examples into meaningful clusters even if there are many different classes in the negative examples. Here
we proposed an automatic method to obtain a natural partitioning of mixed data (labeled data + unlabeled data) by max-
imizing a stability criterion defined on classification results from an extended label propagation algorithm over all the pos-
sible values of model order (or the number of classes) in mixed data. Our experimental results on benchmark corpora for
word sense disambiguation task indicate that this model order identification algorithm with the extended label propagation
algorithm as the base classifier outperforms SVM, a one-class partially supervised classification algorithm, and the model
order identification algorithm with semi-supervised k-means clustering as the base classifier when labeled data is
incomplete.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Partially supervised classification algorithms (Denis et al., 2002; Liu et al., 2003; Manevitz and Yousef,
2001; Yu et al., 2002) try to learn from positive examples and unlabeled examples for a given class. After
the learning procedure, unlabeled examples will be classified into positive examples and negative examples.
We can see that these methods always assume the occurrence of negative examples in unlabeled data. More-
over, they cannot group negative examples into meaningful clusters even if there are many different classes in
the negative examples. But, for some classification tasks, it is better to further group negative examples into
meaningful clusters if negative data includes the instances from many different classes.
0885-2308/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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Here we use the word sense disambiguation problem as an example to show the motivation of our work.
We define the problem of partially supervised word sense disambiguation as the disambiguation of senses of
occurrences of a target word in untagged texts when given incomplete tagged corpus1 for this target word.
Partially supervised sense disambiguation may help enrich manually compiled lexicons by discovering new
senses from untagged corpora.

Word sense disambiguation (WSD) can be defined as associating a target word in a text or discourse with a
definition or meaning. Many corpus based methods have been proposed to deal with the sense disambiguation
problem when given a definition for each possible sense of a target word or a tagged corpus with the instances
of each possible sense, e.g. supervised sense disambiguation methods, and semi-supervised sense disambigua-
tion methods.

Supervised sense disambiguation methods rely on the information from previously sense tagged corpora to
determine the senses of words in unseen texts (Leacock et al., 1998; Lee and Ng, 2002; Pedersen, 2000).

Semi-supervised methods for sense disambiguation are characterized in terms of exploiting unlabeled data
in the learning procedure with the requirement of predefined sense inventories for target words. Some methods
were proposed to exploit bilingual resources, e.g. aligned parallel corpora, untagged monolingual corpora in
two languages Brown et al., 1991; Dagan and Itai, 1994; Diab and Resnik, 2002; Li and Li, 2004; Ng et al.,
2003. Another research line is to automatically generate monolingual sense tagged corpora without reference
to the second language corpora (Hearst, 1991; Karov and Edelman, 1998; Mihalcea and Moldovan, 1999;
Mihalcea, 2004; Niu et al., 2005; Park et al., 2000; Pham et al., 2005; Yarowsky, 1995), e.g. bootstrapping.

Bootstrapping (or self-training) is a general scheme for minimizing the requirement of manually tagged cor-
pus, which was proposed for sense disambiguation by Hearst (1991).

Hearst’s bootstrapping method was improved by Yarowsky (1995) in two aspects: (a) manually identify
collocations for word senses to generate initial labeled data; (b) exploit a redundant view (one sense per dis-
course property) to filter or augment sense tagged examples in the bootstrapping process.

Some efforts were devoted to improve the base classifier in the bootstrapping process: Park et al. (2000)
used committee learning algorithm as the base classifier, while Mihalcea (2004) introduced a combination
of majority voting with bootstrapping or co-training.

Mihalcea and Moldovan (1999) did some work on using web data to obtain sense tagged corpora. They
used the information from WordNet to formulate queries consisting of synonyms or definitions of word
senses, and obtained additional training data for word senses from Internet using existing search engines.

Recently, Pham et al. (2005) described an application of four semi-supervised learning algorithms for WSD,
including basic co-training, smoothed co-training, spectral graph transduction (SGT), and a variant of SGT
(SGT + co-training). Niu et al. (2005) evaluated a graph based semi-supervised learning algorithm on SENS-
EVAL-3 data for WSD.

Some observations can be made on previous supervised and semi-supervised methods. They always rely on
hand-crafted lexicons (e.g. WordNet) as sense inventories. But these resources may miss domain-specific
senses, which leads to incomplete sense tagged corpora. Therefore, sense taggers trained on the incomplete
tagged corpora may misclassify some instances if the senses of these instances are not defined in sense inven-
tories. For example, one performs word sense disambiguation in information technology related texts using
WordNet2 as sense inventory. When disambiguating word ‘‘boot’’ in phrase ‘‘boot sector’’, a sense tagger will
assign this instance with one of the senses of ‘‘boot’’ listed in WordNet. But the correct sense ‘‘loading oper-
ating system into memory’’ is not included in WordNet. Therefore, this instance may be associated with an
incorrect sense. We can use partially supervised classification algorithms to retrieve instances from untagged
corpus for each sense appearing in the incomplete tagged corpus. However, these methods cannot further
group the negative examples (instances not belonging to any sense in the incomplete tagged corpus) into mean-
ingful clusters even if there are many different senses in the negative examples.

This partially supervised sense disambiguation problem may be generalized as a partially supervised clas-
sification problem by treating the incomplete sense tagged corpus of a target word (consisting of the contexts
1 ‘‘Incomplete tagged corpus’’ means that tagged corpus does not include the instances of some senses for the target word, while these
senses may occur in untagged texts.

2 Online version of WordNet is available at http://wordnet.princeton.edu/cgi-bin/webwn2.0

http://wordnet.princeton.edu/cgi-bin/webwn2.0
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of occurrences of the target word with correct sense tags) as labeled data, the untagged corpus of the target
word as unlabeled data, each possible sense of the target word as a class, and the number of senses (or sense
number) of the target word in mixed data (labeled data + unlabeled data) as model order (or cluster number,
class number). Given labeled data and unlabeled data, we are interested in (1) labeling the instances in unla-
beled data with class labels appearing in labeled data; (2) trying to find each possible new class3 from unla-
beled data.

For discovering each possible new class in unlabeled data, we propose an automatic method to estimate the
model order of mixed data by maximizing a stability criterion defined on the classification results from an
extended label propagation algorithm over all the possible values of model order. After model order identifi-
cation, we can obtain a partitioning of the mixed data with the optimal number of clusters, where each cluster
consists of similar examples from mixed data, and it satisfies two constraints: labeled examples with the same
class label will stay in the same cluster, labeled examples with different class labels will stay in different clusters.
If the estimated model order (or cluster number) of mixed data is equal to the number of classes in labeled
data, then there is no new class in unlabeled data. Otherwise new classes will be represented by the clusters
in which there is no instance from labeled data.

This paper is organized as follows. First, we will present a model order identification algorithm with an
extended label propagation algorithm as the base classifier for partially supervised classification in Section
2. Then we will provide experimental results of this algorithm on SENSEVAL-3 data for WSD in Section
3. We will summarize related work on partially supervised classification in Section 4. Finally we will conclude
our work and suggest possible improvements in Section 5.

2. Model order identification for partially supervised classification

We perform partially supervised classification by following steps:

(1) Estimate the optimal value of model order of mixed data by maximizing a stability criterion defined on
classification results from an extended label propagation algorithm (to be presented in Section 2.1) over
all possible values of model order in mixed data. The stability criterion assesses the agreement between
classification result on full mixed data and that on sampled mixed data. An extended label propagation
algorithm is used to classify the full or sampled mixed data into a given number of clusters before the
stability assessment. We will provide the details of the model order identification procedure and the sta-
bility criterion in Section 2.2.

(2) After model order identification (or cluster number estimation), we can obtain a partitioning of mixed
data with the estimated number of clusters using the extended label propagation algorithm, where each
cluster consists of similar examples from mixed data, and it satisfies two constraints: labeled examples
with the same class label will stay in the same cluster, labeled examples with different class labels will
stay in different clusters. In fact, this classification process has been performed on mixed data in the
order identification procedure.

2.1. An extended label propagation algorithm

Let X LþU ¼ fxign
i¼1 be a set of labeled and unlabeled examples (mixed data) for a target word, where xi rep-

resents the ith example, and n is the total number of examples. Let SL ¼ fsjgc
j¼1 denote the class label set in XL,

where XL consists of the first l examples xg (1 6 g 6 l) that are labeled as yg (yg 2 SL). Let XU denote other u

(l + u = n) examples xh(l + 1 6 h 6 n) that are unlabeled.
Let Y 0

X LþU
2 N jX LþUj�jSL j represent initial soft labels attached to labeled examples, where Y 0

X LþU;ij
¼ 1 if yi is sj

and 0 otherwise. Let Y 0
X L

be the top l rows of Y 0
X LþU

and Y 0
X U

be the remaining u rows. Y 0
X L

is consistent with the
labeling in labeled data, and the initialization of Y 0

X U
can be arbitrary.
3 ‘‘New class’’ is the class that does not appear in labeled data.
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Let k denote the possible value of model order in mixed data XL + U, and kX L
be the number of classes in

initial tagged data XL. Note that kX L
¼ jSLj, and k P kX L

.
The classification algorithm in the order identification process should be able to accept labeled data DL

4,
unlabeled data DU

5 and model order k as input, and assign a class label or a cluster index to each instance
in DU as output. Traditional supervised or semi-supervised algorithms (e.g. SVM, label propagation algorithm
(Zhu and Ghahramani, 2002)) cannot classify the examples in DU into k clusters if k > kX L

. The semi-super-
vised k-means clustering algorithm (Wagstaff et al., 2001) may be used to perform clustering analysis on mixed
data, but its efficiency is a problem for clustering analysis on a very large dataset since multiple restarts are
usually required to avoid local optima and multiple iterations will be run in each clustering process for opti-
mizing a clustering solution.

In this work, we propose an alternative method, an extended label propagation algorithm (ELP), which can
classify the examples in DU into k clusters. If the value of k is equal to kX L

, then ELP is identical with the plain
label propagation algorithm (LP) (Zhu and Ghahramani, 2002). Otherwise, if the value of k is greater than
kX L

, we will perform classification by following steps:

(1) estimate the size of the dataset of each new class as sizenew_class by identifying the examples of new classes
using the ‘‘Spy’’ technique6 and assuming that new classes are equally distributed;

(2) D0L ¼ DL, D0U ¼ DU;
(3) remove tagged examples of the mth new class (kX L

þ 1 6 m 6 k) from D0L
7 and train a classifier on this

labeled dataset without the mth class;
(4) the classifier is then used to classify the examples in D0U;
(5) the least confidently unlabeled point xclass m 2 D0U, together with its label m, is added to the labeled data

D0L ¼ D0L þ xclass m, and D0U ¼ D0U � xclass m;
(6) steps (3) to (5) are repeated for each new class till the augmented tagged data set is large enough (here we

try to select sizenew_class/4 examples with their sense tags as tagged data for each new class);
(7) use the plain LP algorithm to classify remaining unlabeled data D0U with D0L as labeled data.

Table 1 shows the details of this extended label propagation algorithm.
Next we will describe the plain label propagation algorithm.

Define W ij ¼ expð� d2
ij

r2Þ if i 5 j and Wii = 0 (1 6 i,j 6 jDL + DUj), where dij is the distance (e.g. Euclidean

distance) between the example xi and xj, and r is used to control the weight Wij.
Define jDL + DUj · jDL + DUj probability transition matrix T ij ¼ P ðj! iÞ ¼ W ijPn

k¼1
W kj

, where Tij is the prob-
ability to jump from example xj to example xi.

Compute the row-normalized matrix T by T ij ¼ T ij=
Pn

k¼1T ik.
The classification solution is obtained by Y DU

¼ ðI � T uuÞ�1T ulY 0
DL

. I is jDUj · jDUj identity matrix. T uu and
T ul are acquired by splitting matrix T after the jDLjth row and the jDLjth column into 4 sub-matrices.

2.2. Model order identification procedure

For achieving the model order identification ability, we use a cluster validation based criterion (Levine and
Domany, 2001) to infer the optimal value of model order of XL + U.
4 DL may be the dataset XL or a subset sampled from XL.
5 DU may be the dataset XU or a subset sampled from XU.
6 The ‘‘Spy’’ technique was proposed in Liu et al. (2003). Our re-implementation of this technique consists of three steps: (1) sample a

small subset Ds
L with the size 15% · jDLj from DL; (2) train a classifier with tagged data DL � Ds

L; (3) classify DU and Ds
L, and then select

some examples from DU as the dataset of new classes, which have the classification confidence less than the average of that in Ds
L.

Classification confidence of the example xi is defined as the absolute value of the difference between two maximum values from the ith row
in labeling matrix.

7 Initially there are no tagged examples for the mth class in D0L. Therefore we do not need to remove tagged examples for this new class,
and then directly train a classifier with D0L.



Table 2
Stability criterion

Function: CV(XL + U, k, q, Y 0
X LþU

)
Input: data set XL + U, model order k, and sampling frequency q;
Output: the score of the merit of k;

1 Run the extended label propagation algorithm with XL,
XU, k and Y 0

X LþU
;

2 Construct connectivity matrix Ck based on above classification solution on XU;
3 Use a random predictor qk to assign uniformly drawn labels to each vector in XU;
4 Construct connectivity matrix Cqk

based on above classification solution on XU;
5 For l = 1 to q do
5.1 Randomly sample a subset X l

LþU with the size ajXL + Uj from XL + U, 0 < a < 1;
5.2 Run the extended label propagation algorithm with X l

L, X l
U, k and Y0l;

5.3 Construct connectivity matrix Cl
k using above classification solution on X l

U;
5.4 Use qk to assign uniformly drawn labels to each vector in X l

U;
5.5 Construct connectivity matrix Cl

qk
using above classification solution on X l

U;
Endfor

6 Evaluate the merit of k using following formula:
Mk ¼ 1

q

P
lðMðC

l
k ;CkÞ �MðCl

qk
;Cqk
ÞÞ, where M(Cl,C) is given by Eq. (2);

7 Return Mk;

Table 1
An extended label propagation algorithm

Function: ELP(DL, DU, k, Y 0
DLþDU

)
Input: labeled examples DL, unlabeled examples DU,
Model order k, initial labeling matrix Y 0

DLþDU
;

Output: the labeling matrix Y DU for DU;
1 If k < kX L

then
Y DU
¼ NULL;

2 Else if k ¼ kX L
then

Run plain label propagation algorithm on DU with Y DU
as output;

3 Else then
3.1 Estimate the size of tagged data set of each new class;
3.2 Generate tagged examples from DU for ðkX L þ 1Þth to kth new classes;
3.3 Run the plain label propagation algorithm on DU with augmented tagged dataset as labeled data;
3.4 Y DU

is the output from plain label propagation algorithm;
End if

4 Return Y DU
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The model order identification procedure can be formulated as:
k̂X LþU
¼ argmaxKmin6k6Kmax

fCV ðX LþU; k; q; Y 0
X LþU
Þg: ð1Þ
k̂X LþU
is the estimated model order in XL + U, Kmin (or Kmax) is the minimum (or maximum) value of model

order, and k is the possible value of model order in XL + U. Note that k P kX L
. We set Kmin ¼ kX L

. Kmax will
be set as a value greater than any possible ground-truth value. CV is a cluster validation based evaluation
function, or stability criterion. Table 2 shows the details of this function. We set q, the resampling frequency
for estimation of stability score, as 20. a is set as 0.90. The random predictor assigns uniformly distributed
class labels to each instance in a given dataset. We run this CV procedure for each value of k. The value of
k that maximizes this CV function will be selected as the estimation of model order. At the same time, we
can obtain a partitioning of XL + U with k̂X LþU

clusters.
The function M(Cl,C) in Table 2 is given by Levine and Domany (2001):
MðCl;CÞ ¼

P

i;j
1fCl

i;j ¼ Ci;j ¼ 1; xi; xj 2 X l
Ug

P

i;j
1fCi;j ¼ 1; xi; xj 2 X l

Ug
; ð2Þ
where X l
U is the untagged data in X l

LþU, X l
LþU is a subset with the size ajXL + Uj (0 < a < 1) sampled from

XL + U, C or Cl is jXUj · jXUj or jX l
Uj � jX

l
Uj connectivity matrix based on classification solutions computed
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on XU or X l
U, respectively. The connectivity matrix C is defined as: Ci,j = 1 if xi and xj belong to the same

cluster, otherwise Ci,j = 0. Cl is calculated in the same way.
M(Cl,C) measures the proportion of example pairs in each cluster computed on XU that are also assigned

into the same cluster by the classification solution on X l
U. Clearly, 0 6M 6 1. Intuitively, if the value of k is

identical with the true value of model order, then classification results on different subsets generated by sam-
pling should be similar with that on full dataset. In the other words, the classification solution with the true
model order as input is robust against resampling, which gives rise to a local optimum of M(Cl,C).

In this algorithm, we normalize MðCl
k ;CkÞ by the equation in step 6 of Table 2, which makes our objective

function different from the figure of merit (Eq. (2)) proposed in Levine and Domany (2001). The reason to
normalize MðCl

k ;CkÞ is that MðCl
k ;CkÞ tends to decrease when increasing the value of k (Lange et al.,

2002). Therefore for avoiding the bias that the smaller value of k is to be selected as the model order, we
use the cluster validity of a random predictor to normalize MðCl

k ;CkÞ.
If k̂X LþU

is equal to kX L
, then there is no new sense in XU. Otherwise (k̂X LþU

> kX L
) new senses may be rep-

resented by clusters in which there is no instance from XL.

3. Experiments and results

3.1. Experiment design

We evaluated the ELP based model order identification algorithm (implemented by ourselves) on the data
in English lexical sample task of SENSEVAL-3 (including all the 57 English words)8 for WSD, and further
empirically compared it with other state of the art classification methods, including SVM9 (the state of the
art method for supervised WSD (Mihalcea et al., 2004)), a one-class partially supervised classification algo-
rithm (Liu et al., 2003)10, and a semi-supervised k-means clustering based model order identification algorithm
(implemented by ourselves).

Given an incomplete tagged corpus for a target word, SVM does not have the ability to find the new senses
from untagged corpus. Therefore it labels all the instances in the untagged corpus with sense tags from SL.

Given a set of positive examples for a class and a set of unlabeled examples, the one-class partially super-
vised classification algorithm, learning from positive and unlabeled examples (LPU) (Liu et al., 2003), learns a
classifier in four steps:

Step 1: Identify a small set of reliable negative examples from unlabeled examples by the use of a classifier.
Step 2: Build a classifier using positive examples and automatically selected negative examples.
Step 3: Iteratively run previous two steps until no unlabeled examples are classified as negative ones or the
unlabeled set is null.
Step 4: Select a good classifier from the set of classifiers constructed above.

For comparison, LPU11 was run to perform classification on XU for each class in XL. The label of each
instance in XU was determined by maximizing the classification score from LPU output for each class. If
the maximum score of an instance is negative, then this instance will be labeled as a new class. Note that
LPU classifies XL + U into kX L

þ 1 groups in most of cases.
The clustering based partially supervised sense disambiguation algorithm was implemented by replacing

ELP with the semi-supervised k-means clustering algorithm (Wagstaff et al., 2001) in the model order identi-
fication procedure. The label information in labeled data was used to guide the semi-supervised clustering on
XL + U. Firstly, the labeled data may be used to determine initial cluster centroids. If the cluster number is
8 Available at http://www.senseval.org/senseval3.
9 We used a linear SVMlight, available at http://svmlight.joachims.org/.

10 Available at http://www.cs.uic.edu/~liub/LPU/LPU-download.html.
11 The three parameters in LPU were set as follows: ‘‘�s1 spy �s2 svm �c1’’. It means that we used the spy technique for step 1 in LPU,

the SVM algorithm for step 2, and selected the first or the last classifier as the final classifier. It is identical with the algorithm ‘‘Spy + SVM
IS’’ in Liu et al. (2003).

http://www.senseval.org/senseval3
http://svmlight.joachims.org/
http://www.cs.uic.edu/~liub/LPU/LPU-download.html


Table 3
Description of the percentage of official training data used as tagged data when the instances with different sense sets are removed from
official training data

The percentage of official training data used as tagged data (%)

Ssubset = {s1} 42.8
Ssubset = {s2} 76.7
Ssubset = {s3} 89.1
Ssubset = {s1, s2} 19.6
Ssubset = {s1, s3} 32.0
Ssubset = {s2, s3} 65.9
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greater than kX L
, the initial centroids of clusters for new classes will be assigned as randomly selected instances.

Secondly, in the clustering process, the instances with the same class label will stay in the same cluster, while
the instances with different class labels will belong to different clusters. For better clustering solution, this clus-
tering process will be restarted three times. Clustering process will be terminated when clustering solution con-
verges or the number of iteration steps is more than 30. Kmin ¼ kX L

¼ jSLj, Kmax = Kmin + m. m is set as 4.
The data for English lexical samples task in SENSEVAL-3 consists of 7860 examples as official training

data, and 3944 examples as official test data for 57 English words. The number of senses of each English word
varies from 3 to 11.

We evaluated these four algorithms with different incomplete tagged datasets. Given official training data of
word w, we constructed incomplete tagged data XL by removing the all the tagged instances from official train-
ing data that have sense tags from Ssubset, where Ssubset is a subset of the ground-truth sense set S for w, and S
consists of the sense tags in official training set for w. The removed training data and official test data of w were
used as XU. Note that SL = S � Ssubset. Then we ran these four algorithm for each target word w with XL as
tagged data and XU as untagged data, and evaluated their performance using the accuracy on official test data
of all the 57 words.12 We conducted six experiments for each target word w by setting Ssubset as {s1}, {s2}, {s3},
{s1, s2}, {s1, s3}, or {s2, s3}, where si is the ith most frequent sense of w. Ssubset cannot be set as {s4} since some
words have only three senses. Table 3 lists the percentage of official training data used as tagged data (the
number of examples in incomplete tagged data divided by the number of examples in official training data)
when we removed the instances with sense tags from Ssubset for all the 57 words. If Ssubset = {s3}, then most
of sense tagged examples still stay in tagged data. If Ssubset = {s1, s2}, then there are very few tagged examples
in tagged data. If no instances are removed from official training data, then the value of percentage is 100%.

We used Jensen–Shannon (JS) divergence (Lin, 1991) as distance measure for semi-supervised clustering
and ELP, since plain LP with JS divergence achieves better performance than that with cosine similarity on
SENSEVAL-3 data (Niu et al., 2005).

For the plain LP algorithm in ELP, we constructed connected graphs as follows: two instances u,v will be
connected by an edge if u is among v’s 10 nearest neighbors, or if v is among u’s 10 nearest neighbors as mea-
sured by cosine or JS distance measure (following (Zhu and Ghahramani, 2002)).

We used three types of features to capture the information in all the contextual sentences of target words in
SENSEVAL-3 data for all the four algorithms: part-of-speech of neighboring words with position informa-
tion, words in topical context without position information (after removing stop words), and local colloca-
tions (as same as the feature set used in Lee and Ng (2002) except that we did not use syntactic relations).
We removed the features with occurrence frequency (counted in both official training set and official test
set) less than three times.

If the estimated number of senses (or sense number) is more than the number of senses in the initial tagged
corpus XL, then the results from order identification based methods will consist of the instances from new clas-
ses. When assessing the agreement between these classification results and the ground-truth results on official
test set, we will encounter the problem that there is no sense tag for each instance in new classes. Slonim and
Tishby (2000) proposed to assign documents in each cluster with the most dominant class label in that cluster,
12 Here the accuracy is as same as the precision measure in SENSEVAL-3, and the recall of all the methods we evaluated is 100% since we
attempted to label all the instances in test data.
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and then conducted evaluation on these labeled documents. Here we will follow their method for assigning
sense tags to new classes from LPU, clustering based order identification process, and ELP based order iden-
tification process. We assigned the instances from new classes with the dominant sense tag in that cluster. The
result from LPU always includes only one new class. We assigned the instances from the new class with the
dominant sense tag in that cluster. When all instances have their sense tags, we evaluated the results using
the accuracy on official test set in SENSEVAL-3.

3.2. Results on sense disambiguation

Table 4 summarizes the accuracy of SVM, LPU, the semi-supervised k-means clustering algorithm with
correct sense number jSj or estimated sense number k̂X LþU

as input, and the ELP algorithm with correct sense
number jSj or estimated sense number k̂X LþU

as input using various incomplete tagged data. The bottom row in
Table 4 lists the average accuracy of each algorithm over six experimental settings. Using jSj as input means
that we do not perform order identification procedure, while using k̂X LþU

as input is to perform order identi-
fication and obtain the classification results on XU at the same time.

Given the correct sense number as input, the average accuracy of the ELP algorithm and the clustering
algorithm are 52.5% and 46.1%, respectively. When using the estimated sense number as input, the ELP algo-
rithm and the clustering algorithm achieved 48.9% and 43.8% as the average accuracy. We can see that the
ELP based method outperforms the clustering based method in terms of average accuracy under the same
experiment setting, e.g. using the correct sense number as input or the estimated sense number as input. More-
over, using the correct sense number as input helps to improve the overall performance of both clustering
based method and ELP based method. The two methods, the ELP based method and the clustering based
method, outperform the other two algorithms, SVM and LPU.

Comparing the performance of the same system with different tagged datasets (from the first experiment to
the third experiment, and from the fourth experiment to the sixth experiment), we can see that in most of
cases, the performance of SVM, LPU, the ELP based method, and the clustering based method was improved
when using more labeled data. For example, when Ssubset = s1 (the most frequent sense is missing), the accu-
racy of SVM, LPU, the clustering based method with jSj as input, and the ELP based method with jSj as
input, the clustering based method with k̂X LþU

as input, and the ELP method with k̂X LþU
as input are 30.6%,

22.3%, 43.9%, 47.8%, 40.0%, and 38.7%. The performance of these methods were improved to 67.0%,
53.4%, 48.7%, 67.2%, 52.4%, and 69.1% when Ssubset = s3 (only a rare sense is missing). Furthermore, ELP
based method outperforms other methods in terms of accuracy when rare senses (e.g. s3) are missing in the
Table 4
This table summarizes the accuracy of SVM, LPU, the semi-supervised k-means clustering algorithm with correct sense number jSj or
estimated sense number k̂X LþU

as input, and the ELP algorithm with correct sense number jSj or estimated sense number k̂X LþU
as input on

official test data of English Lexical Sample task in SENSEVAL-3 when given various incomplete tagged datasets

SVM
(%)

LPU
(%)

The clustering
algorithm with jSj as
input (%)

The ELP algorithm
with jSj as input (%)

The clustering
algorithm with k̂X LþU as
input (%)

The ELP algorithm
with k̂X LþU as input
(%)

Ssubset = {s1} 30.6 22.3 43.9 47.8 40.0 38.7
Ssubset = {s2} 59.7 54.6 44.0 62.4 48.5 62.6
Ssubset = {s3} 67.0 53.4 48.7 67.2 52.4 69.1

Ssubset = {s1, s2} 14.6 13.1 44.4

40.2
35.6 33.0

Ssubset = {s1, s3} 25.7 21.1 48.5

37.9
39.8 31.0

Ssubset = {s2, s3} 56.2 53.1 47.3

59.4
46.6 58.7

Average
accuracy

42.3 36.3 46.1 52.5 43.8 48.9



Table 5
These two tables provide the mean and standard deviation of absolute values of the difference between ground-truth results jSj and sense
numbers estimated by clustering or ELP based order identification procedure respectively

The clustering based method The ELP based method

Ssubset = {s1} 1.3 ± 1.1 2.2 ± 1.1
Ssubset = {s2} 2.4 ± 0.9 2.4 ± 0.9
Ssubset = {s3} 2.6 ± 0.7 2.6 ± 0.7
Ssubset = {s1, s2} 1.2 ± 0.6 1.6 ± 0.5
Ssubset = {s1, s3} 1.4 ± 0.6 1.8 ± 0.4
Ssubset = {s2, s3} 1.8 ± 0.5 1.8 ± 0.5
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tagged data. It seems that the ELP based method has the ability to find rare senses with the use of tagged and
untagged corpora.

The LPU algorithm can deal with only one-class classification problem. Therefore the labeled data of other
classes cannot be used when determining the positive labeled data for current class. The ELP algorithm can
use the labeled data of all the known classes to determine the seeds of new classes. It may explain why LPU
does not outperform ELP although LPU can correctly estimate the sense number in XL + U when only one
sense is missing in XL.

When only few labeled examples are available, the noise in labeled data makes it difficult to learn confidence
score (each entry in Y DU

). Therefore using the classification confidence criterion may lead to poor performance
of seed selection for new classes if confidence score is not accurate. It may explain why ELP based method
does not outperform clustering based method with small labeled data (e.g. Ssubset = {s1}).

3.3. Results on sense number estimation

Table 5 provides the mean and standard deviation of absolute difference values between ground-truth
results jSj and sense numbers estimated by the clustering or ELP based order identification procedures respec-
tively. For example, if the ground truth sense number of word w is kw, and the estimated value is k̂w, then the
absolute value of the difference between these two values is jkw � k̂wj. Therefore we can have this value for each
word. Then we calculated the mean and deviation on this array of absolute values. LPU does not have the
order identification capability since it always assumes that there is one new class in unlabeled data, and does
not further differentiate the instances from these new classes. Therefore we do not provide the order identifi-
cation results of LPU.

From the results in Table 5, we can see that the estimated sense numbers are closer to the ground truth
results when using less labeled data. Moreover, the clustering based method performs better than the ELP
based method in terms of order identification when using small labeled data (e.g. Ssubset = {s1}). It seems that
ELP is not robust to the noise in small labeled data, compared with the semi-supervised k-means clustering
algorithm.

4. Related work

The work closest to ours is partially supervised classification or building classifiers using positive and unla-
beled examples, which has been studied in machine learning community (Denis et al., 2002; Liu et al., 2003;
Manevitz and Yousef, 2001; Yu et al., 2002). They try to learn from positive and unlabeled examples for a
given class. After the learning procedure, unlabeled examples will be classified into positive examples and neg-
ative examples. These methods always assume the occurrence of negative examples in unlabeled data. More-
over, they cannot group negative examples into meaningful clusters. In contrast, our algorithm can find the
occurrences of new senses (represented by negative examples) and further differentiate the new senses by
grouping those negative examples into clusters. Semi-supervised clustering (Wagstaff et al., 2001) may be used
to perform classification by the use of labeled and unlabeled examples, but it encounters the same problem of
partially supervised classification that model order cannot be automatically estimated.
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Levine and Domany (2001) and Lange et al. (2002) proposed cluster validation based criteria for cluster
number estimation. However, they showed the application of the cluster validation method only for unsuper-
vised learning. Our work can be considered as an extension of their methods in the setting of partially super-
vised learning by incorporating a partially supervised classification algorithm (the ELP algorithm) in the order
identification process.

In natural language processing community, the work that is closely related to ours is word sense discrim-
ination which can induce senses by grouping occurrences of a word into clusters without the use of labeled
training data and sense inventories (Fukumoto and Suzuki, 1999; Pedersen and Bruce, 1997; Schütze, 1998).

Schutze’s approach firstly selected important contextual words using v2 or local frequency criterion. With
the v2 based criterion, those contextual words whose occurrence depended on whether the ambiguous word
occurred were chosen as features. When using local frequency criterion, his algorithm selected top n most fre-
quent contextual words as features. Then each context of occurrences of target word was represented by sec-
ond order co-occurrence based context vector. Singular value decomposition (SVD) was conducted to reduce
the dimensionality of context vectors. Then the reduced context vectors were grouped into a pre-defined num-
ber of clusters whose centroids corresponded to senses of target word.

Pedersen and Bruce, 1997 described an experimental comparison of three clustering algorithms for word
sense discrimination. Their feature sets included morphology of target word, part of speech of contextual
words, absence or presence of particular contextual words, and collocation of frequent words. Then occur-
rences of target word were grouped into a pre-defined number of clusters. Similar with many other algorithms,
their algorithm also required the cluster number to be provided.

Fukumoto and Suzuki (1999) presented a term weight learning algorithm for verb sense disambiguation,
which can automatically extract nouns co-occurring with verbs and identify the number of senses of an ambig-
uous verb. The weakness of their method is to assume that nouns co-occurring with verbs are disambiguated
in advance and the number of senses of target verb is no less than two.

Another related work is unknown word sense detection by Erk (2006). He addressed the problem of
unknown word sense detection as the identification of corpus occurrences that are not covered by a given sense
inventory. He modeled this problem as an instance of outlier detection, using a simple nearest neighbor-based
approach to measure the resemblance of a new item to a training set. His work has the problem that occur-
rences with unknown senses cannot be grouped into meaningful clusters even if there are two or more
unknown senses in test data.

Word sense discrimination methods use unsupervised methods to solve sense disambiguation problem with-
out the use of labeled training data, while our algorithm can utilize both labeled data and unlabeled data. In
comparison with semi-supervised sense disambiguation methods, e.g. bootstrapping (Yarowsky, 1995), our
algorithm can try to find missing senses from unlabeled data.

5. Conclusions and future work

In this paper, we present a model order identification based partially supervised classification algorithm,
which can classify unlabeled data into positive and negative examples, and further group negative examples
into a natural number of clusters. Experimental results on SENSEVAL-3 data for word sense disambiguation
task indicate that this classification process with ELP as the base classifier achieves better performance than
SVM, LPU, and the classification process with the semi-supervised k-means clustering as the base classifier.

In the future, we would like to put our efforts on improvement of the order identification procedure with
labeled and unlabeled data. Other possible work includes the investigation of more principled method to esti-
mate the size of seed set in ELP.
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