
1

Joint Nonlinear Channel Equalization and Soft
LDPC Decoding with Gaussian Processes

Pablo M. Olmos, Juan José Murillo-Fuentes*Member, IEEEand Fernando Pérez-CruzSenior Member, IEEE

Abstract—In this paper, we introduce a new approach for
nonlinear equalization based on Gaussian processes for classi-
fication (GPC). We propose to measure the performance of this
equalizer after a low-density parity-check channel decoder has
detected the received sequence. Typically, most channel equalizers
concentrate on reducing the bit error rate, instead of providing
accurate posterior probability estimates. We show that the
accuracy of these estimates is essential for optimal performance
of the channel decoder and that the error rate output by the
equalizer might be irrelevant to understand the performance
of the overall communication receiver. In this sense, GPC is
a Bayesian nonlinear classification tool that provides accurate
posterior probability estimates with short training sequences. In
the experimental section, we compare the proposed GPC based
equalizer with state-of-the-art solutions to illustrate its improved
performance.

Index Terms—LDPC, SVM, Gaussian processes, equalization,
machine learning, coding, nonlinear channel, soft-decoding.

I. I NTRODUCTION

In wireless communications systems, efficient use of the
available spectrum is one of the most critical design issues.
Thereby, modern communication systems must evolve to work
as close as possible to capacity to achieve the demanded binary
rates. We need to design digital communication systems that
implement novel approaches for both channel equalization and
coding and, moreover, we should be able to link them together
to optimally detect the transmitted information.

Communication channels introduce linear and nonlinear
distortions and, in most cases of interest, they cannot be con-
sidered memoryless. Inter-symbol interference (ISI), mainly a
consequence of multi-path in wireless channels [1], accounts
for the linear distortion. The presence of amplifiers and
converters explain the nonlinear nature of communications
channels [2]. Communication channels also contaminate the
received sequence with random fluctuations, which are typi-
cally regarded as additive white Gaussian noise (AWGN) [3].

In the design of digital communication receivers the equal-
izer precedes the channel decoder. The equalizer deals withthe
dispersive nature of the channel and delivers a memoryless
sequence to the channel decoder. The channel decoder cor-
rects the errors at the received sequence using the controlled

This work was partially funded by Spanish government (Ministerio de
Educación y Ciencia TEC2006-13514-C02-01,02/TCM, Consolider-Ingenio
2010 CSD2008-00010) and the European Union (FEDER).

F. Pérez-Cruz is supported by Marie Curie Fellowship 040883-AI-COM.
F. Pérez-Cruz is with the Electrical Engineering Department in Princeton

University, Princeton (NJ). F. Pérez-Cruz is also an associate professor at Uni-
versidad Carlos III de Madrid (Spain). E-mail:fernando@tsc.uc3m.es

P. M. Olmos and J.J. Murillo-Fuentes are with the Dept. Teor´ıa de la Señal
y Comunicaciones, Escuela Superior de Ingenieros, Universidad de Sevilla,
Paseo de los Descubrimientos s/n, 41092 Sevilla, Spain. E-mail: {olmos,
murillo}@us.es

redundancy introduced at the transmitter. In most studies,see
[4], [5], [6], [7], [2], [8], [9], [10] and the references therein,
the dispersive nature of the channel and the equalizer are
analyzed independently from the channel decoder. Moreover
its performance gains are typically measured at very low bit
error rate (BER), as if there were no channel decoder.

One of the goals of this paper is the analysis of state-of-
the-art nonlinear equalizers together with the channel decoder.
We make use of the fact that the equalizer performance
should not be measure at low BER, but in its ability to
provide accurate posterior probability estimates that canbe
exploited by a soft-input channel decoder to achieve capacity.
Therefore measuring the performance of equalizers at low
BER is meaningless, because the channel decoder can achieve
those BER values at significantly lower signal power.

We employ low-density parity-check (LDPC) codes [11]
to add redundancy to the transmitted binary sequence. LDPC
codes have recently attracted a great research interest, because
of their excellent error-correcting performance and linear com-
plexity decoding1. The Digital Video Broadcasting standard
uses LDPC codes for protecting the transmitted sequence and
they are being considered in various applications such as 10Gb
Ethernet and high-throughput wireless local area networks
[13]. LDPC codes can operate with most channels of interest,
such as erasure, binary symmetric and Gaussian. Irregular
LDPC codes have been shown to achieve channel capacity
for erasure channels [14] and close to capacity for binary
symmetric and Gaussian channels [15].

For linear channels, the equalizers based on the Viterbi
algorithm [16] minimize the probability of returning the in-
correct sequence to the channel decoder, and they are known
as maximum likelihood sequence equalizers (MLSEs). The
subsequent channel decoder must treat the output of the MLSE
as a binary symmetric channel, because it has no information
about which bits could be in fault. Instead, we could use
the BCJR algorithm [17] to design our equalizer. The BCJR
algorithm returns the posterior probability (given the received
sequence) for each bit, but it does not minimize the probability
of returning an incorrect sequence as the Viterbi algorithm
does. Nevertheless the BCJR algorithm provides a probabilistic
output for each bit that can be exploited by the LPDC decoder
to significantly reduce its error rate, because it has individual
information about which bits might be in error. Thereby, the
subsequent channel decoder substantially affects the way we
measure the performance of our equalizer.

For nonlinear channels the computational complexity of
the BCJR and the Viterbi algorithms grows exponentially

1The coding complexity is almost linear as proven in [12].

2

with the number of transmitted bits at each encoded block
(frame) and they require perfect knowledge of the channel.
Neural networks and, recently, machine-learning approaches
have been proposed to approximate these equalizers at a lower
computational complexity and they can be readily adapted
for nonlinear channels. An illustrative and non-exhaustive
list of examples for nonlinear equalizers are: multi-layered
perceptrons [4]; radial basis functions (RBFs) [5]; recurrent
RBFs [6]; wavelet neural networks [7]; kernel adaline [2];
support vector machines [8]; self-constructing recurrentfuzzy
neural network [9]; and, Gaussian processes for regression
[10]. But, as mentioned earlier, these approaches only compare
performance at low BER without considering the channel
decoder.

The aforementioned equalizers are designed to minimize
their BER by undoing the effect of the channel: multi-path and
nonlinearities. But their outputs cannot be directly interpreted
as posterior probability estimates, which significantly limit
the performance of soft-inputs channel decoders, such as
LDPC codes. In this paper, we propose a channel equalizer
based on Gaussian processes for classification (GPC). GPC are
Bayesian machine-learning tools that assign accurate posterior
probability estimates to its binary decisions, as the BCJR
algorithm does for linear channels. GPC can equalize linear
and nonlinear channels using a training sequence to adjust its
parameters and it does not need to know a priori the channel
estate information.

In a previous paper [10], we have shown that equalizers
based on GPC are competitive with state-of-the-art solutions,
when we compare performances at low bit error rate. In this
paper, we focus on their performance after the sequence has
been corrected by an LDPC code. The ability of GPC to
provide accurate posterior probability predictions boosts the
performance of these equalizers compared to the state-of-
the-art solutions, based on support vector machines (SVMs).
SVM does not provide posterior probability estimates and its
output needs to be transformed, before it can be interpretedas
posterior probabilities.

The transformation of SVM output into posterior proba-
bilities has been proposed by Platt in [18] and Kwok in
[19], among others. Platt’s method squashes the SVM soft-
output through a trained sigmoid function to predict posterior
probabilities. Platt’s method is not very principled, as Platt
explains himself in [18], but in many cases of interest it
provides competitive posterior probability predictions.In [19],
the SVM output is moderated by making use of a relationship
between SVM and the evidence framework for classification
networks, proposed by MacKay in [20]. The moderated output
can be taken as an approximation to the posterior class
probability. Nevertheless, these are interpretations of the SVM
output as posterior probabilities, which was not designed to
provide such information [21].

The rest of the paper is organized as follows. Section II
is devoted to introducing Gaussian processes. We present the
receiver scheme in Section III together with the channel model
and the transmitter. Also, we briefly describe the Sum Product
algorithm for BCJR equalization and LDPC decoding. The
application of GPC to construct an equalizer that provides

probabilistic inputs to the channel decoder is developed in
Section IV. In Section V, we include illustrative experiments
to compare the performance of the proposed equalizers. We
conclude in Section VI with some final comments.

II. GAUSSIAN PROCESSES FORMACHINE LEARNING

Gaussian processes for machine learning are Bayesian
nonlinear detection and estimation tools that provide point
estimates and confidence intervals for their predictions. We
specifically refer to Gaussian process for classification (GPC)
for detection problems and Gaussian process for regression
(GPR) for its estimation counterpart. GPR were first proposed
in 1996 [22]. GPR are characterized by an analytic solution
given its covariance matrix and we can estimate this covariance
matrix from the data. They were subsequently extended for
classification problems in [23], [24]. We have shown that GPR
and GPC can be successfully applied to address the channel
equalization problem [25], [10].

A. Gaussian Processes for Regression

Gaussian processes for regression is a Bayesian supervised
machine learning tool for predicting the posterior probability
of the output (b∗) given an input (x∗) and a training set (D =
{xi, bi}n

i=1
, xi ∈ R

d bi ∈ R, i.e.

p(b∗|x∗,D). (1)

GPR assumes that a real-valued function, known asla-
tent function, underlies the regression problem and that this
function follows a Gaussian process. Before the labels are
revealed, we assume this latent function has been drawn
from a zero-mean Gaussian process prior with its covariance
function given by k(x,x′). The covariance function, also
denoted as kernel, describes the relations between each pair
of points in the input space and characterizes the functions
that can be described by the Gaussian process. For example,
k(x,x′) = x⊤x′ only yields linear latent functions and it is
used to solve Bayesian linear regression problems. A detailed
description of covariance functions for Gaussian processes is
detailed in [26, Chap. 4].

For any finite set of input samples, a Gaussian process
becomes a multidimensional Gaussian defined by its mean
(zero in our case) and covariance matrix. Our Gaussian process
prior becomes:

p(f |X) = N (0,K), (2)

wheref = [f(x1), f(x2), . . . , f(xn)]⊤, X = [x1,x2, . . . ,xn]
and (K)ij = k(xi,xj), ∀ xi,xj ∈ D.

Once the labels are revealed,b = [b1, b2, . . . , bn]⊤, together
with the location of the (to-be-estimated) test point,x∗, we can
compute (1) using the standard tools of Bayesian statistics:
Bayes rule, marginalization and conditioning.

We first apply Bayes rule to obtain the posterior density for
the latent function:

p(f , f(x∗)|D,x∗) =
p(b|f ,X)p(f , f(x∗)|X,x∗)

p(b|X)
, (3)

whereD = {b,X}, the probabilityp(f , f(x∗)|X,x∗) is the
Gaussian process prior in (2) extended with the test input,

3

p(b|f ,X) is the likelihood for the latent function at the
training set, andp(b|X) is the evidence of the model, also
known as the partition function, which guarantees that the
posterior is a proper probability density function.

A factorized model is used for the likelihood function:

p(b|f ,X) =

n
∏

i=1

p(bi|f(xi),xi), (4)

because the training samples have been obtained independently
and identically distributed (iid). We assume that the labels are
noisy observations of the latent function,bi = f(xi) + ν, and
that this noise is Gaussianly distributed. The likelihood yields,

p(bi|f(xi),xi) = N (0, σ2

ν). (5)

A Gaussian likelihood function is conjugate to the Gaussian
prior and hence the posterior in (3) is also a multidimensional
Gaussian, which simplifies the computations to obtain (1).
Although other observation models for the likelihood have
been proposed in the literature, as discussed in [26, Section
9.3].

We can obtain the posterior density of the output in (1) for
the test point by conditioning on the training set andx∗ and
by marginalizing the latent function:

p(b∗|x∗,D) =

∫

p(b∗|f(x∗),x∗)p(f(x∗)|D,x∗)df(x∗), (6)

where2

p(f(x∗)|D,x∗) =

∫

p(f(x∗), f |D,x∗)df . (7)

We divide the marginalization in two separate equations to
show the marginalization of the latent function at the training
set in (7) and the marginalization of the latent function at
the test point in (6). As mentioned earlier, the likelihood
and the prior are Gaussians and therefore the marginalization
in (6) and (7) only involve Gaussian distributions. Thereby,
we analytically compute (6) using Gaussian conditioning and
marginalization properties:

p(b∗|x∗,D) = N (µb∗ , σ
2

b∗), (8)

where

µb∗ = k⊤C−1b, (9)

σ2

b∗ = k(x∗,x∗) − k⊤C−1k, (10)

and

k = [k(x1,x∗), k(x2,x∗), . . . , k(xn,x∗)]
⊤, (11)

C = K + σ2

νI. (12)

2Given the training data set,f takes values in all theRn dominium as it
is a vector ofn samples of a Gaussian Process.

B. Gaussian Processes for Classification

GPR can be extended to solve classification problems. In
this case, the labels are drawn for a finite set and, in this
section, we concentrate on binary classification, i.e.bi ∈
{0, 1}. For GPC we need to change the likelihood model for
the observations, because they are now either 0 or 1. The
likelihood for the latent function atxi is obtained using a
response functionΦ(·):

p(bi = 1|f(xi),xi) = Φ(f(xi)). (13)

The response function “squashes” the real-valued latent
function to an (0, 1)-interval that represents the posterior
probability for bi [26]. Standard choices for the response
function areΦ(x) = 1/(1 + exp(−x)) and the cumulative
density function of a standard normal distribution, used in
logistic and probit regression respectively.

The integrals in (6) and (7) are now analytically intractable,
because the likelihood and the prior are not conjugated.
Therefore, we have to resort to numerical methods or approx-
imations to solve them. The posterior distribution in (3) is
typically single-mode and the standard methods approximate
it with a Gaussian [26]. The two standard approximations are
the Laplace method or expectation propagation (EP) [27]. In
[24], EP is shown to be a more accurate approximation and
we use it throughout our implementation. Using a Gaussian
approximation for (3) allows exact marginalization in (7) and
we can use numerical integration for solving (6), as it involves
marginalizing a single real-valued quantity.

C. Covariance functions

In the previous subsection we have assumed thatk(x,x′) is
known, but, for most problems of interest, the best covariance
function is unknown, and we need to infer it from the training
samples. The covariance function describes the relation be-
tween the inputs and its form determines the possible solutions
the GPC can return. Thereby, the definition of the covariance
function must capture any available information about the
problem at hand. It is usually defined in a parametric form
as function of the so-calledhyperparameters. The covariance
function plays the same role as the kernel function in SVMs
[28].

If we assume the hyperparameters,θ, to be unknown, the
likelihood of the data and the prior of the latent function yield
p(b|f , θ,X) and p(f |X, θ), respectively. From the point of
view of Bayesian machine learning, we can proceed as we
did for the latent function,f . First, we compute themarginal
likelihood of the hyperparameters of the kernel given the
training dataset:

p(b|X, θ) =

∫

p(b|f , θ,X)p(f |X, θ)df . (14)

Second, we can define a prior for the hyperparameters,p(θ),
that can be used to construct its posterior density. Third, we
integrate out the hyperparameters to obtain the predictions.
However, in this case, the likelihood of the hyperparameters
does not have a conjugate prior and the posterior is non-
analytical. Hence the integration has to be done either by

4

sampling or approximations. Although this approach is well
principled, it is computational intensive and it is not feasible
for digital communications receivers. For example, Markov-
Chain Monte Carlo (MCMC) methods require several hundred
to several thousand samples from the posterior ofθ to integrate
it out. For the interested readers, further details can be found
in [26].

Alternatively, we can maximize the marginal likelihood
in (14) to obtain its optimal setting [22], which is used to
describe the kernel for the test samples. Although setting
the hyperparameters by maximum likelihood is not a purely
Bayesian solution, it is fairly standard in the community and it
allows using Bayesian solutions in time sensitive applications.
This optimization is nonconvex [29]. But, as we increase
the number of training samples, the likelihood becomes a
unimodal distribution around the maximum likelihood hyper-
parameters and the ML solution can be found using gradient
ascent techniques. See [26] for further details.

The covariance function must be positive semi-definite,
as it represents the covariance matrix of a multidimensional
Gaussian distribution. A versatile covariance function that
we have previously proposed to solve channel equalization
problems is described by:

k(xi,xj) = α1 exp

(

−
d
∑

ℓ=1

γℓ(xiℓ − xjℓ)
2

)

+α2x
T
i xj+α3δij ,

(15)
where θ = [α1, γ1, γ2, . . . , γd, α2, α3] are the hyperparame-
ters. The first term is a radial basis kernel, also denoted as
RBF or Gaussian, with a different length-scale for each input
dimension. This term is universal and allows constructing
a generic nonlinear classifier. Due to the symmetry in our
equalization problem and to avoid overfitting, we use the same
length-scale for all dimensions:γℓ = γ for ℓ = 1, . . . , d. The
second term is the linear covariance function. The suitability of
this covariance function for the channel equalization problem
has been discussed in detail in [10].

III. C OMMUNICATION SYSTEM

In Fig. 1 we depict a discrete-time digital-communication
system with a nonlinear communication channel. We transmit
independent and equiprobable binary symbolsm[j] ∈ {±1},
which are systematically encoded into a binary sequenceb[j]
using an LDPC code. The time-invariant impulse response of
the channel with lengthnL is given by:

h(z) =

nL−1
∑

ℓ=0

h[ℓ]z−ℓ, (16)

The nonlinearities in the channel, mainly due to amplifiers
and mixers, are modeled byg(·), as proposed in [2]. Hence,
the output of the communication channel is given by:

x[j] = g(v[j]) + w[j] = g

(

nL−1
∑

ℓ=0

b[j − ℓ]h[ℓ]

)

+ w[j], (17)

where w[j] represents independent samples of AWGN. The
receiver equalizes the nonlinear channel and decodes the re-
ceived sequence. For the channel decoder we have considered

an LDPC code, because it achieves channel capacity for binary
erasure channels [14] and close to capacity for Gaussian
channels [15]. LDPC codes are linear block codes specified by
a parity check matrixH with a low density number of ones,
hence the name of these codes.

A. Sum-Product Algorithm

A factor graph [30] represents the probability density
function of the random variabley = [y1, . . . , ynV

]
⊤, as a

product ofU potential functions:

p(y) =
1

Z

U
∏

k=1

ϕk(yk), (18)

whereyk only contains some variables fromy, ϕk(yk) is the
kth potential function, andZ ensuresp(y) adds to 1. A factor
graph is a bipartite graph that has a variable node for each
variableyj , a factor node for each potential functionϕk(yk),
and an edge-connecting variable nodeyj to factor nodeϕk(yk)
if yj is in yk, i.e., if it is an argument ofϕk(·).

The sum-product (SP) algorithm [31] takes advantage of
the factorization in (18) to efficiently compute any marginal
distribution for anyyj:

p(yj) =
∑

y/yj

p(y) =
1

Z

∑

y/yj

U
∏

k=1

ϕk(yk). (19)

wherey/yj indicates that sum runs for all configurations of
y with yj fixed.

The SP algorithm computes the marginals for all the vari-
ables iny by performing local computations in each node
with the information being exchanged between adjacent factor
and variable nodes. The marginals are computed iteratively
in a finite number of steps, if the graph is cycle-free. The
complexity of the SP algorithm is linear inU and exponential
in the number of variables per factor [31]. If the factor graph
contains cycles, the junction tree algorithm [32] can be used to
merge factors and obtain a cycle free graph, but in many cases
of interest, it returns a single factor with all the variables in
it. We can also ignore the cycles and run the SP algorithm
as if they were none, this algorithm is known as Loopy
Belief Propagation. Loopy Belief Propagation only returnsan
approximation top(yj), as it ignores the cycles in the graph,
and in some cases it might not converge. Nevertheless, in most
cases of interest its results are accurate and it is used widely
in machine learning [32], image processing [33] and channel
coding [34].

B. Equalization

The LDPC decoder works with the posterior probability
of each transmitted bit, given the received sequence, i.e.
p(b[j]|x[1], . . . , x[nC]) ∀j = {1, . . . , nC}. The BCJR algo-
rithm [17] (a particularization of the SP algorithm for chains
as used in digital communication community) computes this
posterior probability, when the channel is linear and perfectly
known at the receiver.

In Fig. 2 we show the factor graph for the channel equalizer.
The variable nodesb[j] represent the transmitted bits that

5

w j !
" #

v j !
" #$ %1b j ! & '" #

Channel

x j !
" # Equalizer

LDPC

Channel

Decoder
ˆ(1)p b j ! " #$ % Receiver

 !ˆ 1b j" # $ %
& '

m j" #

& '
LDPC

Channel

Encoder

Transmitter

m j !
" # ()h z ()g $

Fig. 1. Discrete-time channel model, together with the transmitter and the proposed receiver.

1r 2r Cn
r

[2]b[1]b [3]b []Cb n

0s

[2]v[1]v [3]v []Cv n

[2]x[1]x [3]x []Cx n

([1] | [1])p x v ([2] | [2])p x v ([3] | [3])p x v ([] | [])C Cp x n v n

1s 2s Cn
s

3r

Fig. 2. Factor graph for a dispersive AWGN channel.

we want to detect, the variables nodesx[j] are the observed
sequence at the receiver, and the variables nodessj are the
state of the channel at each time step:

sj = [b[j − 1], · · · , b[j − nL + 1]]
⊤

. (20)

The factor nodesp(x[j]|v[j]) and rj(·) represent, respec-
tively, the AWGN and the dispersive nature of the channel:

rj(sj , sj−1, b[j], v[j]) =

{

1, v[j] = b[j]h[0] + s⊤j−1
h

0, otherwise
,

(21)

where h = [h[1], h[2], · · · , h[nL − 1]]. Notice that sj is
completely determined byb[j] andsj−1.

We can run the SP algorithm, as introduced in the previous
subsection, over the factor graph in Fig. 2 to obtain the desired
posterior probabilities:p(b[j]|x[1], . . . , x[nC]).

C. LDPC decoding.

We have represented an example of factor graph of the dis-
persive channel together with the factor graph of the(nC , kC)
LDPC code in Fig. 3. The new factorsqu, u = 1, . . . , nC−kC ,
are the parity checks imposed by the LDPC code. Every parity
check factor is a function of a subset of bitsi ∈ Qu, the edge-
connections betweenqu and the bits nodes,

qu =

{

1,
∑

i∈Qu
b[i] mod 2 = 0

0,
∑

i∈Qu
b[i] mod 2 = 1

. (22)

This factor graph contains cycles and the application of the
Loopy Belief Propagation algorithm only provides posterior
probability estimates forb[j]. For simplicity, we schedule the
Loopy Belief Propagation messages in two phases. First, we
run the BCJR algorithm over the dispersive noisy channel and
get exact posterior probabilities. Second, we run the Loopy

1q 2q C Cn kq

1r 2r Cn
r

[2]b[1]b [3]b []Cb n

0s

[2]v[1]v [3]v []Cv n

[2]x[1]x [3]x []Cx n

1s 2s Cn
s

3r

([1] | [1])p x v ([2] | [2])p x v ([3] | [3])p x v ([] | [])C Cp x n v n

Fig. 3. Example of a joint factor graph for a dispersive AWGN channel and
the LDPC decoder.

Belief Propagation over the LDPC part of the graph to correct
the errors introduced by the channel and get a new estimate
for the posterior probabilities of the message bits. We could
then rerun the BCJR algorithm to obtain better predictions and
repeat the process until convergence. But the LDPC decoding
for large channel codes typically returns extreme posterior
probability estimates and it is unnecessary to rerun the BCJR
part of the graph, because it does not change them.

IV. N ONLINEAR CHANNELS: A GPCBASED APPROACH

A. Probabilistic Equalization with GPC

For nonlinear channels we cannot run the BCJR algorithm to
obtain the posterior probabilitiesp(b[j]|x[1], . . . , x[nC]); since
we need an estimation of the channel, the complexity grows
exponentially with the number of transmitted bits and, in most
cases of interest, it cannot be computed analytically. In this
paper, we propose to use GPC to accurately estimate these
probabilities as follows. We first send a preamble withn bits
that it is used to train the GPC as explained in Section II.
Then we estimate the posterior probability for each bit

bj = b[j − τ], (23)

using the GPC solution:

p(b[j − τ]|x[1], . . . , x[nC]) ≈ p(bj|xj ,D), ∀j = 1, . . . , nC ,
(24)

with d consecutive received symbols as input vector,

xj = [x[j], x[j − 1], . . . , x[j − d + 1]]
⊤

, (25)

6

whered andτ represents, respectively, the order and delay of
the equalizer. This is a standard solution to equalize nonlinear
channels, as detailed in the Introduction. But, as far as we
know, none of these proposals consider probabilistic outputs
at the equalizer and its use at the decoder end.

Finally, we feed these estimates into the LDPC factor graph
and iterate until all parity checks are met. The procedure is
identical to the one mentioned in the previous subsection,
replacing the unavailable posterior predictions by the BCJR
by the GPC estimates.

B. The SVM approach

We can also follow a similar approach with other well-
known nonlinear tools. For example, we can use a SVM, which
is a state-of-the-art tool for nonlinear classification [35], and
the methods proposed by Platt and Kwok, respectively, in [18],
[19] to obtain posterior probability estimates out of the SVM
output. These approaches are less principled than GPC and, as
we show in the experimental section, their performances after
the channel decoder are significantly worse. Furthermore, the
SVM is limited in the number of hyperparameters that it can
adjust for short training sequences, as discuss in [25].

C. Computational complexity

The complexity of training an SVM for binary classification
is O(n2), using the sequential minimal optimization [36], and
Platt’s and Kwok’s methods add a computational complexity
of O(n2). The computational complexity of making predic-
tions with SVM isO(n). The computational load of training
the GPC grows asO(n3), because we need to invert the
covariance matrix. The computational complexity of making
predictions with GPC isO(n2) [26]. In this paper, we use the
full GPC version because the number of training samples was
low, but there are several methods in the literature that reduced
the GPC training and testing complexity toO(n), using a
reduced set of samples [37], [38]. Therefore, the complexity of
SVM and GPC are similar if we make used of these advanced
techniques.

V. EXPERIMENTAL RESULTS

In this section, we illustrate the performance of the proposed
joint equalizer and channel decoder to show that an equalizer
that provides accurate posterior probability estimates boots the
performance of the channel decoder. Thereby, we should mea-
sure the ability of the equalizers to provide accurate posterior
probability estimates, not only their capacity to reduce the
BER.

Throughout our experiments, we use a1/2-rate regular
LPDC code with 1000 bits per codeword and 3 ones per
column and we have a single dispersive channel model:

h(z) = 0.3482 + 0.8704z−1 + 0.3482z−2. (26)

This channel was proposed in [2] for modeling radio com-
munication channels. In the experiments, we use 200 training
samples and a four-tap equalizer (d = 4). The reported BER
and frame error rate (FER) are computed using105 test

codewords and we average the results over 100 independent
trials with random training and test data.

For the GPC, we use the kernel proposed in Section II-C
and we have set the hyperparameter by maximum likelihood.
For the SVM we use a Gaussian kernel [28] and its width and
cost are trained by 10-fold cross-validation [39]. We cannot
train the SVM with the kernel in (15), because it has too
many hyperparameters to cross-validate. At the end of the first
experiment, we also used the Gaussian kernel for the GPC to
compare its performance to the SVM with the same kernel. We
also use the BCJR algorithm with perfect knowledge of the
channel state information, as the optimal baseline performance
for the linear channel. For the nonlinear channel, the BCJR
complexity makes it impractical.

In what follows, we label the performance of the joint
equalizer and channel decoder by GPC-LDPC, SVM-Platt-
LDPC, SVM-Kwok-LDPC and BCJR-LDPC, in which Platt
and Kwok represent the method used to transform the SVM
outputs into probabilities. The BER performance of the equal-
izers is labeled by GPC-EQ, SVM-Platt-EQ, SVM-Kwok-EQ
and BCJR-EQ.

A. Experiment 1: BPSK over linear multipath channel

In this first experiment we deal with the linear channel in
(26) and we compare our three equalizers with the BCJR algo-
rithm with perfect channel estate information at the receiver.

In Fig. 4(a) we compare the BER of the different equalizers
and in Fig. 4(b) we depict the BER measured after the channel
decoder. We use throughout this section dash-dotted and solid
lines to represent, respectively, the BER of the equalizersand
the BER after the channel decoder.

The GPC-EQ (▽), SVM-Platt-EQ (◦) and SVM-Kwok-
EQ (∗) BER plots in Fig. 4(a) are almost identical and
they perform slightly worse than the BCJR-EQ (⋄). These
results are similar to the ones reported in [10], once the
training sequence is sufficiently long. They also hold for higher
normalized signal to noise ratio (Eb/N0).

In Fig. 4(b) we can appreciate that, although the decisions
provided by the GPC-EQ, SVM-Platt-EQ and SVM-Kwok-
EQ are similar to each other, their estimate of the posterior
probability are quite different. Therefore, the GPC-LDPC
significantly reduces the BER at lowerEb/N0, because GPC-
EQ posterior probability estimates are more accurate and
the LDPC decoder can rely on these trustworthy predic-
tions. Moreover, the GPC-LDPC is less than1dB from the
optimal performance achieved by the BCJR-LDPC receiver
with perfect channel information. The other receivers, SVM-
Platt-LDPC and SVM-Kwok-LDPC, are over2dB away from
the optimal performance. Since both methods for extracting
posterior probabilities out of the SVM output exhibit a similar
performance, in what follows we only report results for the
SVM using Platt’s method for clarity purposes.

In Fig. 4(b) we have also included the BER performance
of the GPC-h-LDPC (dashed line), whose inputs are the hard
decisions given by the GPC-EQ. For this receiver, the LDPC
does not have information about which bits might be in error
and it has to treat each bit with equal suspicion. The BER

7

0 1 2 3 4 5

10
−1

Eb/No (dB)

B
E

R

GPC−EQ
SVM−Kwok−EQ
SVM−Platt−EQ
BCJR−EQ

(a)

0 1 2 3 4 5

10
−4

10
−3

10
−2

10
−1

Eb/No (dB)

B
E

R

GPC−LDPC
SVM−Kwok−LDPC
SVM−Platt−LDPC
BCJR−LDPC
GPC−h−LDPC

(b)

Fig. 4. We plot the BER performance for the linear channel in (26) measure
at the output the equalizers in (a) and measured at the channel decoder in (b).
We use dashed-dotted lines for the equalizer BER, solid lines for the LDPC
BER with soft-inputs and dashed lines for the LDPC BER with hard-inputs.
We represent the BCJR with⋄, the GPC with▽, the SVM with Platt’s method
with ◦ and SVM with Kwok’s method with∗.

performance of SVM-Kwok-h-LDPC and SVM-Platt-h-LDPC
are similar to GPC-h-LDPC and they are not shown to avoid
cluttering the figure. It can be seen that even though the
posterior probability estimates of Platt’s and Kwok’s methods
are not as accurate as GPC, they are better than not using them
at all.

To understand the difference in posterior probability esti-
mates, we have plotted calibration curves for the GPC-EQ
and SVM-Platt-EQ, respectively, in Fig. 5(a) and Fig. 5(b)
for Eb/N0 = 2 dB. We depict the estimated probabilities
versus the true ones. We can appreciate that the GPC-EQ
posterior probability estimates are closer to the main diagonal
and they are less spread. Thereby GPC-EQ estimates are closer
to the true posterior probability, which explains its improved
performance with respect to the SVM-Platt-EQ, when we
measure the BER after the LDPC decoder.

To complete this first experiment we have also trained a

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Posterior probability

G
P

C
−

E
Q

 p
os

te
rio

r
pr

ob
ab

ili
ty

 e
st

im
at

e

(a)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Posterior probability

S
V

M
−

P
la

tt−
E

Q
 p

os
te

rio
r

pr
ob

ab
ili

ty
 e

st
im

at
e

(b)

Fig. 5. We plot the GPC-EQ and the SVM-Platt-EQ calibration curves,
respectively, in (a) and (b) forEb/N0 = 2dB.

GPC equalizer with the Gaussian kernel used for the SVM.
We have plot its BER (GPC-LDPC-Gauss,�) after the channel
decoder in Fig. 6 alongside with the GPC-LDPC and SVM-
Platt-LDPC solutions. From this plot we can understand that
the improved performance of the GPC with respect to the
SVM is based on both its ability to provide accurate posterior
probability estimates and its ability to train a more versatile
kernel. In the remaining experiments, we use the versatile
kernel for GPC in (15), as it is an extra feature of GPs
compared to SVMs.

We have shown that GPC-LDPC is far superior to the

8

0 1 2 3 4 5

10
−4

10
−3

10
−2

10
−1

Eb/No (dB)

B
E

R

GPC−LDPC−Gauss
SVM−Platt−LDPC
GPC−LDPC

Fig. 6. We plot the BER performance at the output of the LDPC decoder with
soft-inputs using a GPC equalizer with Gaussian kernel (�), a SVM equalizer
with Platt’s method and Gaussian kernel (◦), and a GPC equalizer with the
kernel in (15) (▽).

other schemes and its performance is close to optimal. This
result shows that using a method that can predict accurately
the posterior probability estimates allows the LDPC decoding
algorithm to perform to its fullest. From this first experiment,
it is clear that we need to compare the equalizers performance
after the channel decoder, otherwise the BER measured after
the equalizers do not tell the whole story. Also, we do not need
to compare the equalizers at low BER, because the channel
decoder reduces the BER significantly.

B. Experiment 2: Nonlinear multipath channel 1

In the next two experiments we face nonlinear multipath
channels. We assume the nonlinearities in the channel are un-
known at the receiver and transmitter, and we need a nonlinear
equalizer, which is able to compensate the nonlinearities in
the channel. For this experiment we use the channel model
proposed in [2], [9]:

|g(v)| = |v| + 0.2|v|2 − 0.1|v|3. (27)

This model represents an amplifier working in saturation
with 0 dB of back off, which distorts the amplitude of our
modulated BPSK signal.

In Fig. 7(a) we compare the BER performance of the GPC-
LDPC (▽) with the SVM-Platt-LDPC (◦). We also plot for
completeness the BER after the equalizer with dash-dotted
lines for the two compared receivers. For this channel model
the BCJR is unavailable, since its complexity is exponential
in the length of the encoded sequence.

The two equalizers perform equally well, while the BER by
the GPC-LDPC is significantly lower than that of SVM-Platt-
LDPC. Again, the ability of the GPC to return accurate pos-
terior probability estimates notably improves the performance
of the channel decoder. In this example, the coding gain is
about2 dB between the GPC-LDPC and the other equalizers.
Also the BER of the LDPC with hard outputs (GPC-h-LPDC)
is higher than the soft-outputs receivers. This result is relevant

1 2 3 4 5 6

10
−4

10
−3

10
−2

10
−1

Eb/No (dB)

B
E

R

GPC−EQ
SVM−Platt−EQ
GPC−h−LDPC
GPC−LDPC
SVM−Platt−LDPC

(a)

1 2 3 4 5 6
10

−4

10
−3

10
−2

10
−1

10
0

Eb/No (dB)

F
E

R

GPC−h−LDPC
GPC−LDPC
SVM−Platt−LDPC

(b)

Fig. 7. Performance at the output of the equalizers (dash-dotted lines) and the
channel decoder with soft-inputs (solid lines) and with hard-inputs (dashed
line) for the GPC (▽) and the SVM-Platt (◦). The BER is included in (a) while
the FER is depicted in (b), for the channel in (26) with the nonlinearities in
(27).

because, even though our posterior probability estimates are
not quite accurate, we are better off with them than without.

For completeness, we have also depicted the FER in Fig.
7(b). The FER performance is typically used when we are
only interested in error-free frames, which is a more relevant
measure in data-package networks. The results in FER are
similar to the BER. The coding gain between the GPC-LDPC
receiver and the SVM-Platt-LDPC is around1 dB, instead of
2. This difference in performance can be explained, as well,
by the posterior probability estimates given by the GPC. For
the frames that cannot be decoded by the LPDC, the GPC
posterior probabilities are more accurate and allow the LPDC
to return a frame with fewer bits in error.

C. Experiment 3: Nonlinear multipath channel 2

To conclude our experiments, we consider a second model
for a nonlinear amplifier working in saturation. This model

9

was proposed in [9], [40], [41]:

|g(v)| = |v| + 0.2|v|2 − 0.1|v|3 + 0.5 cos(π|v|), (28)

and considers an additional term that further complicates the
performance of the equalizer.

In Fig. 8 we have depicted the BER and FER for the GPC
and SVM equalizers. The performance of the two receivers
follows the same lines that we have seen in the previous
cases: the equalizers perform equally well, while GPC-LPDC
outperforms the SVM receiver. The main difference in this
experiment is the threshold behavior that the SVM-Platt-
LDPC exhibit. ForEb/N0 lower than5 dB their BERs are
worse than the GPC-h-LDPC BER, which means that their
posterior probability estimate are way off and we would
be better off without them. But once theEb/N0 is large
enough their posterior probability estimates are sufficiently
accurate and they outperform the LPDC decoder with hard
outputs. From the FER point of view, the soft-output equalizers
outperform the hard equalizer for allEb/N0 ranges. Thereby,
the use of soft-output equalizers is always favorable, evenin
strong nonlinear channels, in which the posterior probability
estimates might not be accurate.

VI. CONCLUSIONS

The probabilistic nonlinear channel equalization is an open
problem, since the standard solutions such as the nonlinear
BCJR exhibit exponential complexity with the length of the
encoded sequence. Moreover, they need an estimation of the
nonlinear channel and they only approximate the optimal
solution [42]. In this paper, we propose GPC to solve this
long-standing problem. GPC is a Bayesian nonlinear prob-
abilistic classifier that produces accurate posterior probabi-
lity estimates. We compare the performance of the different
probabilistic equalizers at the output of an LDPC channel
decoder. We have shown the GPC outperforms the SVM
with probabilistic output, which is a state-of-the-art nonlinear
classifier.

Finally, as a by-product, we have shown that we need to
measure the performance of the equalizers after the channel
decoder. The equalizers’ performance is typically measured at
low BER without considering the channel decoder. But if we
do not incorporate the channel decoder the BER output by the
equalizer might not give an accurate picture of its performance.
Furthermore, the equalizer performance at low BER might not
be illustrative, as the channel decoder significantly reduces the
BER for lower signal to noise ratio values.

REFERENCES

[1] J. G. Proakis and D. G. Manolakis,Digital Communications. Prentice
Hall, 2007.

[2] B. Mitchinson and R. F. Harrison, “Digital communications channel
equalization using the kernel adaline,”IEEE Transactions on Commu-
nications, vol. 50, no. 4, pp. 571–576, 2002.

[3] J. G. Proakis and M. Salehi,Communication Systems Engineering,
2nd ed. New York: Prentice Hall, 2002.

[4] S. Chen, G. J. Gibson, C. F. N. Cowan, and P. M. Grant, “Adaptative
equalization of finite non-linear channels using multilayer perceptrons,”
Signal Processing, vol. 10, pp. 107–119, 1990.

[5] ——, “Reconstruction of binary signals using an adaptiveradial-basis-
function equalizer,”Signal Processing, vol. 22, pp. 77–83, 1991.

2 3 4 5 6 7

10
−4

10
−3

10
−2

10
−1

Eb/No (dB)

B
E

R

GPC−EQ
SVM−EQ
GPC−h−LDPC
GPC−LDPC
SVM−LDPC

(a)

2 3 4 5 6 7
10

−4

10
−3

10
−2

10
−1

10
0

Eb/No (dB)

F
E

R

GPC−h−LDPC
GPC−LDPC
SVM−Platt−LDPC

(b)

Fig. 8. Performance at the output of the equalizers (dash-dotted lines) and the
channel decoder with soft-inputs (solid lines) and with hard-inputs (dashed
line) for the GPC (▽) and the SVM-Platt (◦). The BER is included in (a) while
the FER is depicted in (b), for the channel in (26) with the nonlinearities in
(28).

[6] J. Cid-Sueiro, A. Artés-Rodrı́guez, and A. R. Figueiras-Vidal, “Recurrent
radial basis function networks for optimal symbol-by-symbol equaliza-
tion,” Signal Processing, vol. 40, pp. 53–63, 1994.

[7] P. R. Chang and B. C. Wang, “Adaptive decision feedback equalization
for digital satellites channels using multilayer neural networks,” IEEE
Journal on Selected areas of communication, vol. 13, no. 2, pp. 316–324,
Feb. 1995.

[8] F. Pérez-Cruz, A. Navia-Vázquez, P. L. Alarcón-Diana, and A. Artés-
Rodrı́guez, “SVC-based equalizer for burst TDMA transmissions,” Sig-
nal Processing, vol. 81, no. 8, pp. 1681–1693, Aug. 2001.

[9] T. Kohonen, K. Raivio, O. Simula, O. Venta, and J. Henriksson, “Design
of an SCRFNN-based nonlinear channel equaliser,” inIEEE Proceedings
on Communications, vol. 1552, Banff, Canada, Dec. 2005, pp. 771–779.

[10] F. Pérez-Cruz, J. Murillo-Fuentes, and S. Caro, “Nonlinear channel
equalization with Gaussian Processes for Regression,”IEEE Transac-
tions on Signal Processing, vol. 56, no. 10, pp. 5283–5286, Oct. 2008.

[11] D. J. C. MacKay, “Good error-correcting codes based on very sparse
matrices,”IEEE Transactions on Information Theory, vol. 45, no. 2, pp.
399–431, 1999.

[12] T. Richardson and R. Urbanke, “Efficient encoding of low-density parity-
check codes,”IEEE Transactions on Information Theory, vol. 72, no. 2,
pp. 638–656, 2001.

[13] H. Zhong and T. Zhang, “Block-LDPC: A practical LDPC coding system

10

design approach,”IEEE Transactions on Circuits and Systems I, vol. 52,
no. 4, 2005.

[14] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, D. A. Spielman,
and V. Stemann, “Practical loss-resilient codes,” in29th Annual ACM
Symposium on Theory of Computing, 1997, pp. 150 – 159.

[15] S. Chung, D. Forney, T. Richardson, and R. Urbanke, “On the design of
low-density parity-check codes within 0.0045 dB of the shannon limit,”
IEEE Communications Letters, vol. 5, no. 2, pp. 58–60, 2001.

[16] D. Forney, “The Viterbi algorithm,”IEEE Proceedings, vol. 61, no. 2,
pp. 268–278, Mar. 1973.

[17] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of
linear codes for minimizing symbol error rate,”IEEE Transactions on
Information Theory, vol. 20, no. 2, pp. 284–287, Mar. 1974.

[18] J. C. Platt, “Probabilities for SV machines,” inAdvances in Large Margin
Classifiers, A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans,
Eds. Cambridge, (MA): M.I.T. Press, 2000, pp. 61–73.

[19] J. Kwok, “Moderating the outputs of support vector machine classifier,”
IEEE Transactions on Neural Networks, vol. 10, no. 5, pp. 1018–1031,
Sept. 1999.

[20] D. MacKay, “The evidence framework applied to classification net-
works,” Neural Computation, vol. 4, no. 5, pp. 720–736, 1992.

[21] V. N. Vapnik, Statistical Learning Theory. New York: John Wiley &
Sons, 1998.

[22] C. K. I. Williams and C. E. Rasmussen, “Gaussian processes for
regression,” inAdvances in Neural Information Processing Systems 8.
MIT Press, 1996, pp. 598–604.

[23] C. K. I. Williams and D. Barber, “Bayesian classification with Gaus-
sian processes,”IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 20, no. 12, pp. 1342–1351, Dec. 1998.

[24] M. Kuss and C. Rasmussen, “Assessing approximate inference for binary
Gaussian Process classification,”Machine learning research, vol. 6, pp.
1679–1704, Oct. 2005.

[25] F. Pérez-Cruz and J. J. Murillo-Fuentes, “Digital communication re-
ceivers using Gaussian processes for machine learning,”EURASIP
Journal on Advances in Signal Processing, vol. 2008, 2008.

[26] C. E. Rasmussen and C. K. I. Williams,Gaussian Processes for Machine
Learning. MIT Press, 2006.

[27] T. Minka, “Expectation propagation for approximate bayesian infer-
ence,” inUAI, 2001, pp. 362–369.

[28] F. Pérez-Cruz and O. Bousquet, “Kernel methods and their potential use
in signal processing,”Signal Processing Magazine, vol. 21, no. 3, pp.
57–65, 2004.

[29] D. J. C. MacKay,Information Theory, Inference and Learning Algo-
rithms. Cambridge, UK: Cambridge University Press, 2003.

[30] H. Loeliger, “An introduction to factor graphs,”IEEE Signal Processing
Magazine, pp. 28–41, January 2004.

[31] F. R. Kschischang, B. I. Frey, and H. A. Loeliger, “Factor graphs and the
sum-product algorithm,”IEEE Transactions on Inform Theory, vol. 47,
no. 2, pp. 498–519, Feb. 2001.

[32] M. I. Jordan, Ed.,Learning in Graphical Models. Cambridge, MA:
MIT Press, 1999.

[33] E. Sudderth and W. Freeman, “Signal and image processing with belief
propagation [DSP applications],”IEEE Signal Processing Magazine,
vol. 25, pp. 114–141, March 2008.

[34] T. Richardson and R. Urbanke,Modern Coding Theory. Cambridge
University Press, 2008.

[35] B. Schölkopf and A. Smola,Learning with kernels. M.I.T. Press, 2001.
[36] J. C. Platt, “Sequential minimal optimization: A fast algorithm for

training suppor vector machines,” inAdvances in Kernel Methods—
Support Vector Learning, B. Schölkopf, C. J. C. Burges, and A. J. Smola,
Eds. Cambridge, (MA): M.I.T. Press, 1999, pp. 185–208.

[37] E. Snelson and Z. Ghahramani, “Sparse Gaussian processes using
pseudo-inputs,” inAdvances in Neural Information Processing Systems
18. MIT press, 2006, pp. 1257–1264.

[38] L. Csató and M. Opper, “Sparse online Gaussian processes,” Neural
Computation, vol. 14, pp. 641–668, 2002.

[39] C. M. Bishop,Neural Networks for Pattern Recognition. Clarendon
Press, 1995.

[40] B. Majhi and G. Panda, “Recovery of digital informationusing bacterial
foraging optimization based nonlinear channel equalizers,” in IEEE
1st International Conference on Digital Information Management, Dec.
2006, pp. 367–372.

[41] J. Patra, R. Pal, R. Baliarsingh, and G. Panda, “Nonlinear channel equal-
ization for QAM signal constellation using artificial neural networks,”
IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 29,
pp. 262–271, April 1999.

[42] M. Mesiya, P. McLane, and L. Campbell, “Maximum likelihood se-
quence estimation of binary sequences transmitted over bandlimited
nonlinear channels,”IEEE Transactions on Communications, vol. 25,
pp. 633–643, April 1977.

