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Abstract—In this paper, we introduce a new approach for redundancy introduced at the transmitter. In most studies,
nonlinear equalization based on Gaussian processes for - [4], [5], [6], [7], [2], [8], [9], [10] and the references thein,
fication (GPC). We propose to measure the performance of this ;4 dispersive nature of the channel and the equalizer are

equalizer after a low-density parity-check channel decodehas .
detected the received sequence. Typically, most channeluedizers analyzed independently from the channel decoder. Moreover

concentrate on reducing the bit error rate, instead of providing its performance gains are typically measured at very low bit
accurate posterior probability estimates. We show that the error rate (BER), as if there were no channel decoder.

accuracy of these estimates is essential for optimal perforance One of the goals of this paper is the analysis of state-of-
of the channel decoder and that the error rate output by the o o1y honlinear equalizers together with the channebdec
equalizer might be irrelevant to understand the performane .

of the overall communication receiver. In this sense, GPC is W& make use of the fact that the equalizer performance
a Bayesian nonlinear classification tool that provides acoate Should not be measure at low BER, but in its ability to
posterior probability estimates with short training sequences. In  provide accurate posterior probability estimates that lban

the experimental section, we compare the proposed GPC basedexploited by a soft-input channel decoder to achieve capaci
equalizer with state-of-the-art solutions to illustrate ts improved 1 arefore measuring the performance of equalizers at low
performance. BER is meaningless, because the channel decoder can achieve

Index Terms—LDPC, SVM, Gaussian processes, equalization, those BER values at significantly lower signal power.
machine learning, coding, nonlinear channel, soft-decodp. We employ low-density parity-check (LDPC) codes [11]
to add redundancy to the transmitted binary sequence. LDPC
codes have recently attracted a great research interest, &

In wireless communications systems, efficient use of thy their excellent error-correcting performance and limezeam-
available spectrum is one of the most critical design issugsgexity decoding. The Digital Video Broadcasting standard
Thereby, modern communication systems must evolve to warkes LDPC codes for protecting the transmitted sequence and
as close as possible to capacity to achieve the demanday binhey are being considered in various applications such G910
rates. We need to design digital communication systems ti&thernet and high-throughput wireless local area networks
implement novel approaches for both channel equalization g13]. LDPC codes can operate with most channels of interest,
coding and, moreover, we should be able to link them togethgich as erasure, binary symmetric and Gaussian. Irregular
to optimally detect the transmitted information. LDPC codes have been shown to achieve channel capacity

Communication channels introduce linear and nonlinefgr erasure channels [14] and close to capacity for binary
distortions and, in most cases of interest, they cannot be cgymmetric and Gaussian channels [15].
sidered memoryless. Inter-symbol interference (ISI),Myad  For linear channels, the equalizers based on the Viterbi
consequence of multi-path in wireless channels [1], actoumlgorithm [16] minimize the probability of returning the-in
for the linear distortion. The presence of amplifiers angbrrect sequence to the channel decoder, and they are known
converters explain the nonlinear nature of communicatioas maximum likelihood sequence equalizers (MLSES). The
channels [2]. Communication channels also contaminate t#gbsequent channel decoder must treat the output of the MLSE
received sequence with random fluctuations, which are typis a binary symmetric channel, because it has no information
cally regarded as additive white Gaussian noise (AWGN) [3bout which bits could be in fault. Instead, we could use

In the design of digital communication receivers the equahe BCJR algorithm [17] to design our equalizer. The BCJR
izer precedes the channel decoder. The equalizer dealshgithalgorithm returns the posterior probability (given theaiged
dispersive nature of the channel and delivers a memoryleggjuence) for each bit, but it does not minimize the protigbil
sequence to the channel decoder. The channel decoder grreturning an incorrect sequence as the Viterbi algorithm
rects the errors at the received sequence using the ceatrolioes. Nevertheless the BCJR algorithm provides a proktibili
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with the number of transmitted bits at each encoded blogkobabilistic inputs to the channel decoder is developed in
(frame) and they require perfect knowledge of the channéection IV. In Section V, we include illustrative experinten
Neural networks and, recently, machine-learning appresacho compare the performance of the proposed equalizers. We
have been proposed to approximate these equalizers at a loganclude in Section VI with some final comments.
computational complexity and they can be readily adapted

for nonlinear channels. An illustrative and non-exhawstiv 1l. GAUSSIAN PROCESSES FORMACHINE LEARNING

list of examples for_ nonlin_ear eqL_JaIizers are: multi-laer  sgyssian processes for machine learning are Bayesian
perceptrons [4]; radial basis functions (RBFs) [S]; reentr nonjinear detection and estimation tools that provide poin
RBFs [6]; wavelet neural networks [7]; kernel adaline [2]gstimates and confidence intervals for their predictions. W
support vector machines [8]; self-constructing recurfaazy  specifically refer to Gaussian process for classificatioRG{B
neural network [9]; and, Gaussian processes for regressigp getection problems and Gaussian process for regression
[10]. But, as mentioned earlier, these approaches only eenp(GpR) for its estimation counterpart. GPR were first proose
performance at low BER without considering the channg{ 1996 [22]. GPR are characterized by an analytic solution
decoder. . . _ _ . given its covariance matrix and we can estimate this conaeia
The aforementioned equalizers are designed to minimigeirix from the data. They were subsequently extended for
their BER by undoing the effect of the channel: multi-patd ang|ssification problems in [23], [24]. We have shown that GPR

nonlinearities. But their outputs cannot be directly ipteted ;44 GPC can be successfully applied to address the channel
as posterior probability estimates, which significantlmiti equalization problem [25], [10].

the performance of soft-inputs channel decoders, such as
LDPC codes. In this paper, we propose a channel equali € Gaussian Processes for Regression
based on Gaussian processes for classification (GPC). GPC ar
Bayesian machine-learning tools that assign accuratepoist ~ Gaussian processes for regression is a Bayesian supervised
probability estimates to its binary decisions, as the BCJRachine leamning tool for predicting the posterior prokigpi
algorithm does for linear channels. GPC can equalize linedfrthe output ¢.) given an input.) and a training setl¢ =

and nonlinear channels using a training sequence to adjust{<i: bi}i=1, Xi € R b; € R, i.e.

paramgters anq it does not need to know a priori the channel p(b|x., D). (1)
estate information.

In a previous paper [10], we have shown that equa”zersGPR assumes that a real-valued fUnCtion, knownlaas
based on GPC are competitive with state-of-the-art saiatio tent function underlies the regression problem and that this
when we compare performances at low bit error rate. In tl‘ﬁénction follows a Gaussian process. Before the labels are
paper, we focus on their performance after the sequence FR¥ealed, we assume this latent function has been drawn
been corrected by an LDPC code. The ability of GPC fsom a zero-mean Gaussian process prior with its covariance
provide accurate posterior probability predictions bedste function given by k(x,x’). The covariance function, also
performance of these equalizers compared to the state@gnoted as kernel, describes the relations between each pai
the-art solutions, based on support vector machines (SVM8j points in the input space and characterizes the functions
SVM does not provide posterior probability estimates asd ithat can be described by the Gaussian process. For example,
output needs to be transformed, before it can be interpeeted:(x, x') = x'x’ only yields linear latent functions and it is
posterior probabilities. used to solve Bayesian linear regression problems. A éeltail

The transformation of SVM output into posterior probadescription of covariance functions for Gaussian processe
bilites has been proposed by Platt in [18] and Kwok idetailed in [26, Chap. 4].

[19], among others. Platt's method squashes the SVM soft-For any finite set of input samples, a Gaussian process
output through a trained sigmoid function to predict pdster becomes a multidimensional Gaussian defined by its mean
probabilities. Platt's method is not very principled, astP| (zeroin our case) and covariance matrix. Our Gaussian psoce
explains himself in [18], but in many cases of interest Rrior becomes:

provides competitive posterior probability predictiohs[19], p(f[X) =N (0,K), (2)

the SVM output is modera.ted by making use of a reIappns_%er& = [f(x1), F(x2), s Fx)]T, X = [x1, %o,
between SVM and the evidence framework for classificatiag), g K);; = k(xi,%;),¥ %, %; € D.

networks, proposed by MacKay in [_20]. The moderateq OUtPUt 5 ce the labels are revealds— [b1,ba, ..., ba] T, together
can be taken as an approximation to the posterior clggiy, the |ocation of the (to-be-estimated) test poiat, we can
probability. Nevertheless, these are interpretations®8VM o5 te (1) using the standard tools of Bayesian statistics
output as posterior probabilities, which was not desigreed Bayes rule, marginalization and conditioning.

provide such information [21]. , We first apply Bayes rule to obtain the posterior density for
The rest of the paper is organized as follows. Section #a |atent function:

is devoted to introducing Gaussian processes. We present th
receiver scheme in Section Il together with the channelehod p(f, f(x:)|D, %) = p(blf, X)p(f, f(x*”X’X*), (3)

and the transmitter. Also, we briefly describe the Sum Prbduc p(b|X)

algorithm for BCJR equalization and LDPC decoding. ThehereD = {b, X}, the probabilityp(f, f(x.)|X,x.) is the
application of GPC to construct an equalizer that providé€saussian process prior in (2) extended with the test input,
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p(b|f,X) is the likelihood for the latent function at theB. Gaussian Processes for Classification
training set, angy(b|X) is the evidence of the model, also  GpR can be extended to solve classification problems. In
known as the partition function, which guarantees that thgis case, the labels are drawn for a finite set and, in this
posterior is a proper probability density function. section, we concentrate on binary classification, be.e
A factorized model is used for the likelihood function: {0,1}. For GPC we need to change the likelihood model for
the observations, because they are now either 0 or 1. The

p(blf, X) = ﬁp(bilf(xi),xi), () likelihood for the latent function ak; is obtained using a
ey response functio®(-):
because the training samples have been obtained indegnden p(bi = 1[f (%), ;) = ®(f(xi)). (13)

and identically distributed (iid). We assume that the lalmeke The response function “squashes” the real-valued latent
noisy observations of the latent functidn,= f(x;) +v, and function to an (0, 1)-interval that represents the posterior
that this noise is Gaussianly distributed. The |Ike|Ih0tlE1d5, probabmty for bl [26] Standard choices for the response
function are®(z) = 1/(1 + exp(—=x)) and the cumulative
pbil f(xi),x:) = N(0,07). (5) density function of a standard normal distribution, used in
logistic and probit regression respectively.
A Gaussian likelihood function is conjugate to the GaussianThe integrals in (6) and (7) are now analytically intracegbl
prior and hence the posterior in (3) is also a multidimensionbecause the likelihood and the prior are not conjugated.
Gaussian, which simplifies the computations to obtain (Ijherefore, we have to resort to numerical methods or approx-
Although other observation models for the likelihood havgnations to solve them. The posterior distribution in (3) is
been proposed in the literature, as discussed in [26, Sectigpically single-mode and the standard methods approeimat
9.3]. it with a Gaussian [26]. The two standard approximations are
We can obtain the posterior density of the output in (1) fdhe Laplace method or expectation propagation (EP) [27]. In
the test point by conditioning on the training set andand [24], EP is shown to be a more accurate approximation and
by marginalizing the latent function: we use it throughout our implementation. Using a Gaussian
approximation for (3) allows exact marginalization in (Fda

b, |x,. D) = b, ). x, DD, x.)df (x. 6) e can use numerical integration for solving (6), as it inesl
plbsx., D) /p( 1 Ge), x)p(f () [Py %) df (x0), - (B) marginalizing a single real-valued quantity.

wheré ) i
C. Covariance functions

_ In the previous subsection we have assumedilrtx’) is
DDy x.) = ), D, x.)df. 7 , :
p(f(x:)|D, %) /p(f(x ) f[D, x.) (") known, but, for most problems of interest, the best covagan

function is unknown, and we need to infer it from the training

We divide the marginalization in two separate equations §amples. The covariance function describes the relation be
show the marginalization of the latent function at the tiren tween the inputs and its form determines the possible soisiti
set in (7) and the marginalization of the latent function ahe GPC can return. Thereby, the definition of the covariance
the test point in (6). As mentioned earlier, the likelihoogunction must capture any available information about the
and the prior are Gaussians and therefore the marginalizathroblem at hand. It is usually defined in a parametric form
in (6) and (7) only involve Gaussian distributions. Therebys function of the so-calleblyperparametersThe covariance
we analytically compute (6) using Gaussian conditionind afunction plays the same role as the kernel function in SVMs

marginalization properties: [28].
If we assume the hyperparametefsto be unknown, the
p(bs|x., D) = N(me,, 07, ), (8) likelihood of the data and the prior of the latent functioglgli
p(b|f,d,X) and p(f|X, ), respectively. From the point of
where view of Bayesian machine learning, we can proceed as we
did for the latent functionf. First, we compute thenarginal
w. =k C b, (9) likelihood of the hyperparameters of the kernel given the
Ug* = k(x,, %) — k' Clk, (10) training dataset:
o p(BIX,0) = [p(bIE6.X)p(EIX. 0008 (14)

Second, we can define a prior for the hyperparamepé6s
. T 1 1
k= [k(xl’;(*)’ kx2, %), k(%)) (A1) ihat can be used to construct its posterior density. Thiml, w
C=K+oL (12) integrate out the hyperparameters to obtain the predition
However, in this case, the likelihood of the hyperparanseter
2Given the training data sef, takes values in all th&®” dominium as it does nOt have a conjggate p.I’IOI’ and the pOSterIOI’.IS non-
is a vector ofn. samples of a Gaussian Process. analytical. Hence the integration has to be done either by



sampling or approximations. Although this approach is wedin LDPC code, because it achieves channel capacity forybinar
principled, it is computational intensive and it is not fibkds erasure channels [14] and close to capacity for Gaussian
for digital communications receivers. For example, Markowchannels [15]. LDPC codes are linear block codes specified by
Chain Monte Carlo (MCMC) methods require several hundredparity check matriX with a low density number of ones,

to several thousand samples from the posterigrtofintegrate hence the name of these codes.

it out. For the interested readers, further details can bedo

in [26]. A. Sum-Product Algorithm

Alternatively, we can maximize the marginal likelihood . .
: L . ; S A fact h [30 ts th bability densit
in (14) to obtain its optimal setting [22], which is used t?uncti(?: (())]E t?::prangorL Lze{jsgi [1/? proya I]ITy aser;m y

describe the kernel for the test sa_\mp_les. A_Ithough Sett"pgoduct of U potential functions
the hyperparameters by maximum likelihood is not a purely
Bayesian solution, it is fairly standard in the community @n 1 &
allows using Bayesian solutions in time sensitive appilicest ply) = 7 H wr(Yr),
This optimization is nonconvex [29]. But, as we increase k=1
the number of training samples, the likelihood becomesveherey;. only contains some variables from ¢ (ys) is the
unimodal distribution around the maximum likelihood hyperk'" potential function, andZ ensure®(y) adds to 1. A factor
parameters and the ML solution can be found using gradiegfeph is a bipartite graph that has a variable node for each
ascent techniques. See [26] for further details. variabley;, a factor node for each potential functign (y+),

The covariance function must be positive semi-definiténd an edge-connecting variable nggéo factor nodepy (y+)
as it represents the covariance matrix of a multidimensiorih y; is in yx, i.e., if it is an argument oy, (-).
Gaussian distribution. A versatile covariance functiomtth The sum-product (SP) algorithm [31] takes advantage of
we have previously proposed to solve channel equalizatitie factorization in (18) to efficiently compute any margdina

(18)

problems is described by: distribution for anyy;:
d 1 U
k(xi,x;) = a1 exp <— ZW(XM - ij)2> +ox] X435, p(y;) = Z ply) = 7 Z H Pk (Yk)- (19)
£=1 (15) y/y; y/yj k=1

where 0 = [a1,71,72, - . ., 74, a2, 3] are the hyperparame_wherey/yj indicates that sum runs for all configurations of

ters. The first term is a radial basis kernel, also denoted %&Vith y; fixed. _ _ )
RBF or Gaussian, with a different length-scale for each inpu 1h€ SP algorithm computes the marginals for all the vari-
dimension. This term is universal and allows constructir@P!es iny by performing local computations in each node
a generic nonlinear classifier. Due to the symmetry in olfith the information being exchanged between adjacenofact
equalization problem and to avoid overfitting, we use theesarind variable nodes. The marginals are computed iteratively
length-scale for all dimensions; = v for ¢ = 1,...,d. The in @ finite number of steps, if the graph is cycle-free. The
second term is the linear covariance function. The suitgtif COMPlexity of the SP algorithm is linear #ii and exponential

this covariance function for the channel equalization fewb N the number of variables per factor [31]. If the factor drap

has been discussed in detail in [10]. contains cycles, the junction tree algorithm [32] can beluse
merge factors and obtain a cycle free graph, but in many cases
I1l. COMMUNICATION SYSTEM of interest, it returns a single factor with all the variabla

. . . . - ... it. We can also ignore the cycles and run the SP algorithm
In Fig. 1 we depict a discrete-time dlg|tal-c0mmun|cat|ogS if they were none, this algorithm is known as Loopy

system with a nonlinear communication channel. We transrgg”ef Pro . : .
) . . , pagation. Loopy Belief Propagation only retuams
independent and equiprobable binary symbelg] € {£1}, approximation top(y;), as it ignores the cycles in the graph,

which are systematically encoded into a binary sequéfyée d in some cases it might not converge. Nevertheless, ih mos

;Jhsmghan L?P%hc?de.t;he_ tlm_e-mvsr!ant impulse response é)gses of interest its results are accurate and it is usedywide

€ channel with lengtin, IS given Dy: in machine learning [32], image processing [33] and channel
nr—1 coding [34].

h(z)= Y hlfz"", (16)

=0 B. Equalization

The_nonllneantles in the channel, mainly dge to amplifiers The LDPC decoder works with the posterior probability
and mixers, are modeled hy(-), as proposed in [2]. Hence, . . : :
of each transmitted bit, given the received sequence, i.e.

the output of the communication channel is given by: p(llz[1], ... 2[nc]) ¥ = {1,....nc}. The BCIR algo-

rithm [17] (a particularization of the SP algorithm for chai
zlj] = g(lj]) +wlj] = ¢ ( > bi- fWV]) +wlj], (17)  as used in digital communication community) computes this
£=0 posterior probability, when the channel is linear and pztlye
where w[j] represents independent samples of AWGN. THenown at the receiver.
receiver equalizes the nonlinear channel and decodes the rdn Fig. 2 we show the factor graph for the channel equalizer.
ceived sequence. For the channel decoder we have considdiieel variable nodes[j] represent the transmitted bits that

anl



Channel w[j] I;[J} :{il}
mld]  croma U= Y h(z) ol ) i ?13] | | Equatizer "I choma || ]
" Encoder ] o . . | Decoder
Transmitter 23] =+D) Receiver

Fig. 1. Discrete-time channel model, together with the gmaitter and the proposed receiver.

q 1 QZ qnc e

Fig. 2. Factor graph for a dispersive AWGN channel.

we want to detect, the variables nodeg] are the observed
sequence at the receiver, and the variables negeme the
state of the channel at each time step:

Fig. 3. Example of a joint factor graph for a dispersive AWGINaenel and
. . T
s; = [b[] — 1]’ - ,b[] —ng + 1]] ) (20) the LDPC decoder.

The factor node®(z[j]|v[j]) andr;(-) represent, respec- _
tively, the AWGN and the dispersive nature of the channel:Belief Propagation over the LDPC part of the graph to correct
the errors introduced by the channel and get a new estimate

ri(85,85-1, blj], olj]) = {17 vlj] = b[jln[0] +s;_;h for the posterior probabilities of the message bits. We aoul
’ e 0, otherwise ’ then rerun the BCJR algorithm to obtain better predictions a
(21) repeat the process until convergence. But the LDPC decoding
_ . . for large channel codes typically returns extreme posterio
where h = [A[1],h[2],---, h[ny, —1]]. Notice thats; is propaility estimates and it is unnecessary to rerun theRBCJ

completely determined by(;j] ands; ;. . ~ part of the graph, because it does not change them.
We can run the SP algorithm, as introduced in the previous

Subsection, over the factor graph in Flg 2 to obtain therddsi IV. NONLINEAR CHANNELS: A GPCBASED APPROACH
posterior probabilitiesp(b{jlz[1], .., z[nc]). A. Probabilistic Equalization with GPC

C. LDPC decodin For nonlinear channels we cannot run the BCJR algorithm to
' g obtain the posterior probabilitiegb[j]|x[1], ..., z[n¢c]); since
We have represented an example of factor graph of the djgs need an estimation of the channel, the complexity grows
persive channel together with the factor graph ofthe, k) exponentially with the number of transmitted bits and, instno
LDPC code in Fig. 3. The new factogs, u = 1,...,nc—kc,  cases of interest, it cannot be computed analytically. Is th
are the parity checks imposed by the LDPC code. Every parfyper, we propose to use GPC to accurately estimate these
check factor is a function of a subset of bits Q., the edge- propabilities as follows. We first send a preamble witlits
connections betweeq, and the bits nodes, that it is used to train the GPC as explained in Section II.
1, S0, blil mod2=0 22) Then we estimate the posterior probability for each bit
“ 70, Sico bl mod2=1" b; = blj — 7], (23)
This factor graph contains cycles and the application of thesing the GPC solution:
Loopy Belief Propagation algorithm only provides posterio ., . - . .
probability estimates fob[j]. For simplicity, we schedule the pl7 = 7lle(l],....2[ne]) ~ p(bjlx;, D), Vi=1,... ’21204’)
Loopy Belief Propagation messages in two phases. First, wi . . .
; : . : with d consecutive received symbols as input vector,
run the BCJR algorithm over the dispersive noisy channel an
get exact posterior probabilities. Second, we run the Loopy x; = [zljl,z[j —1],...,z[j —d+ 1]]T, (25)



whered andr represents, respectively, the order and delay obdewords and we average the results over 100 independent
the equalizer. This is a standard solution to equalize neali trials with random training and test data.
channels, as detailed in the Introduction. But, as far as weFor the GPC, we use the kernel proposed in Section 1I-C
know, none of these proposals consider probabilistic datpand we have set the hyperparameter by maximum likelihood.
at the equalizer and its use at the decoder end. For the SVM we use a Gaussian kernel [28] and its width and
Finally, we feed these estimates into the LDPC factor graghst are trained by 10-fold cross-validation [39]. We canno
and iterate until all parity checks are met. The proceduretimin the SVM with the kernel in (15), because it has too
identical to the one mentioned in the previous subsectiamany hyperparameters to cross-validate. At the end of tbe fir
replacing the unavailable posterior predictions by the BCJlxperiment, we also used the Gaussian kernel for the GPC to

by the GPC estimates. compare its performance to the SVM with the same kernel. We
also use the BCJR algorithm with perfect knowledge of the
B. The SVM approach channel state information, as the optimal baseline perdoca

for the linear channel. For the nonlinear channel, the BCJR

We can also follow a similar approach with other We”bomplexity makes it impractical.

known nonlinear tools. For example, we can use a SVM, which| "\ 1o follows, we label the performance of the joint

is a state-of-the-art tool for nonlinear classification][3&nd equalizer and channel decoder by GPC-LDPC, SVM-Platt-

the methods proposed by Platt and Kwok, respectively, it [1§ ppc - sym-Kwok-LDPC and BCJR-LDPC, in which Platt
[19] to obtain posterior probability est_lmz_ites out of thesv nd Kwok represent the method used to transform the SVM
output. These approaches are less principled than GPC sandﬁlf?\puts into probabilities. The BER performance of the équa

we show in the experimental section, their performances aft, . < is |abeled by GPC-EQ, SVM-Platt-EQ, SVM-Kwok-EQ
the channel decoder are significantly worse. Furthermbee, Gnd BCJR-EQ ' ’

SVM is limited in the number of hyperparameters that it can
adjust for short training sequences, as discuss in [25].
A. Experiment 1: BPSK over linear multipath channel

C. Computational complexity In this first experiment we deal with the linear channel in

The complexity of training an SVM for binary classification(.26) anql we compare our three quahzers .W'th the BCJR _algo-
ithm with perfect channel estate information at the reeeiv

is O(n?), using the sequential minimal optimization [36], and . . :
s O(n”), using quen ! ptimization [36] In Fig. 4(a) we compare the BER of the different equalizers

Platt's and Kwok’s methods add a computational complexity "' " 2" )
of O(n?). The computational complexity of making predic nd in Fig. 4(b) we depict the BER measured after the channel

tions with SVM is O(n). The computational load of training decoder. We use throughout this section dash-dotted aitl sol

the GPC grows a®)(n), because we need to invert théines to represent, respectively, the BER of the equaliaads

covariance matrix. The computational complexity of makinﬁ1e BER aifter the channel decoder.
predictions with GPC i©)(n2) [26]. In this paper, we use the _ "€ _GPC-EQ (), SVM-Platt-EQ ¢) and SVM-Kwok-

full GPC version because the number of training samples wes () BER plots in Fig. 4(a) are almost identical and

low, but there are several methods in the literature thatced they perform-slightly worse than the BCJR—E@).(These
the GPC training and testing complexity ©(n), using a res_u!ts are S|m|Ia_r to t_h(_a ones reported in [10], once the
reduced set of samples [37], [38]. Therefore, the compjefit training sequence is sufficiently long. They also hold fgttar

SVM and GPC are similar if we make used of these advancB@malized signal to noise ratid,/No). .
techniques. In Fig. 4(b) we can appreciate that, although the decisions

provided by the GPC-EQ, SVM-Platt-EQ and SVM-Kwok-
EQ are similar to each other, their estimate of the posterior
probability are quite different. Therefore, the GPC-LDPC

In this section, we illustrate the performance of the pregossignificantly reduces the BER at lowéh, /N, because GPC-
joint equalizer and channel decoder to show that an equaligg) posterior probability estimates are more accurate and
that provides accurate posterior probability estimateddthe the LDPC decoder can rely on these trustworthy predic-
performance of the channel decoder. Thereby, we should mgans. Moreover, the GPC-LDPC is less thadB from the
sure the ability of the equalizers to provide accurate pmste optimal performance achieved by the BCIJR-LDPC receiver
probability estimates, not only their capacity to reduce thwith perfect channel information. The other receivers, SVM
BER. Platt-LDPC and SVM-Kwok-LDPC, are ov@dB away from

Throughout our experiments, we uselg2-rate regular the optimal performance. Since both methods for extracting
LPDC code with 1000 bits per codeword and 3 ones p@bsterior probabilities out of the SVM output exhibit a dni
column and we have a single dispersive channel model:  performance, in what follows we only report results for the

- 1 ) SVM using Platt's method for clarity purposes.
h(z) = 0.3482 +0.87047" + 0.348227% (26) In Fig. 4(b) we have also included the BER performance

This channel was proposed in [2] for modeling radio conef the GPC-h-LDPC (dashed line), whose inputs are the hard
munication channels. In the experiments, we use 200 tminidecisions given by the GPC-EQ. For this receiver, the LDPC
samples and a four-tap equalizer=€ 4). The reported BER does not have information about which bits might be in error
and frame error rate (FER) are computed usity test and it has to treat each bit with equal suspicion. The BER

V. EXPERIMENTAL RESULTS
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Fig. 4. We plot the BER performance for the linear channel2ié) (measure
at the output the equalizers in (a) and measured at the chaeceder in (b).
We use dashed-dotted lines for the equalizer BER, solic lfoe the LDPC
BER with soft-inputs and dashed lines for the LDPC BER withdrhaputs.
We represent the BCJR with the GPC withv, the SVM with Platt's method
with o and SVM with Kwok’s method with.

SVM-Platt-EQ posterior probability estimate

Posterior probability

performance of SVM-Kwok-h-LDPC and SVM-Platt-h-LDPC (b)

are similar to GPC-h-LDPC and they are not shown to avoid

cluttering the figure. It can be seen that even though th#§- 5 We plot the GPC-EQ and the SVM-Platt-EQ calibratiourves,
posterior probability estimates of Platt’s and Kwok’s muth respectively, in (a) and (b) fof,/No = 2dB.

are not as accurate as GPC, they are better than not using them

at all.
To understand the difference in posterior probability -esttPC equalizer with the Gaussian kernel used for the SVM.

mates, we have plotted calibration curves for the GPC-E¥e have plotits BER (GPC-LDPC-Gauss) after the channel
and SVM-Platt-EQ, respectively, in Fig. 5(a) and Fig. 5(bjecoder in Fig. 6 alongside with the GPC-LDPC and SVM-
for E,/N, = 2 dB. We depict the estimated probabilitielatt-LDPC solutions. From this plot we can understand that
versus the true ones. We can appreciate that the GPC-#® improved performance of the GPC with respect to the
posterior probability estimates are closer to the mainatiafy SVM is based on both its ability to provide accurate posterio
and they are less spread. Thereby GPC-EQ estimates are clggebability estimates and its ability to train a more veiteat
to the true posterior probability, which explains its imped kernel. In the remaining experiments, we use the versatile
performance with respect to the SVM-Platt-EQ, when wkernel for GPC in (15), as it is an extra feature of GPs
measure the BER after the LDPC decoder. compared to SVMs.

To complete this first experiment we have also trained aWe have shown that GPC-LDPC is far superior to the
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Fig. 6. We plot the BER performance at the output of the LDP€&bder with
soft-inputs using a GPC equalizer with Gaussian kerng) & SVM equalizer

with Platt's method and Gaussian kerne),(and a GPC equalizer with the 10
kernel in (15) ).

other schemes and its performance is close to optimal. Thi
result shows that using a method that can predict accurate
the posterior probability estimates allows the LDPC decgdi
algorithm to perform to its fullest. From this first experime L 10 ¢
it is clear that we need to compare the equalizers perforeanc
after the channel decoder, otherwise the BER measured aft

the equalizers do not tell the whole story. Also, we do notlhee 10

-3

to compare the equalizers at low BER, because the chann -¥- GPC—-h-LDPC
decoder reduces the BER significantly. —¥-GPC-LDPC
4 —e—SVM—F’Iatt—LDPC ‘ ‘ ‘
10 1 2 3 4 5 6
B. Experiment 2: Nonlinear multipath channel 1 Eb/No (dB)
In the next two experiments we face nonlinear multipath (b)

channels. We assume the nonlinearities in the channel are un

known at the receiver and transmitter, and we need a nomlinElg: 7- Performance at the output of the equalizers (dastedidines) and the
channel decoder with soft-inputs (solid lines) and withdamputs (dashed

equalizer, which is able to compensate the nonlineariies jine) for the GPC ) and the SVM-Platt). The BER is included in (a) while
the channel. For this experiment we use the channel model FER is depicted in (b), for the channel in (26) with the lm@arities in

proposed in [2], [9]: (27).

lg(v)| = |v] + 0.2[v]* — 0.1]v|>. (27)

Thi del t lif king i turati because, even though our posterior probability estimates a
IS MOde! Tepresents an ampliier- working In- saturatiogl,, quite accurate, we are better off with them than without.
with 0 dB of back off, which distorts the amplitude of our

modulated BPSK signal For completeness, we have also depicted the FER in Fig.
In Fig. 7(a) we compare the BER performance of the GP (b). The FER performance is typically used when we are

/ nly interested in error-free frames, which is a more raiéva
LDPC (v) with the SVM-Platt-LDPC §). We also plot for y

let the BER after th i th dash-d tm asure in data-package networks. The results in FER are
compieteness the arter the equalizer wi ash-do ilar to the BER. The coding gain between the GPC-LDPC

lines for the two compared receivers. For this channel model. .. o\ and the SVM-Platt-LDPC is aroundiB. instead of
_the BCJR is unavailable, since its complexity is expondantii This difference in performance can be expl’ained, as well,
in the length of the encoded sequence. by the posterior probability estimates given by the GPC. For

The two equalizers perform equally well, while the BER b¥he frames that cannot be decoded b
R y the LPDC, the GPC
the GPC'L[.)PC IS S|g_q|f|cantly lower than that of SVM-Platt, osterior probabilities are more accurate and allow the CPD
LDPC. Again, the ability of the GPC to return accurate po{J—

. S : ) o return a frame with fewer bits in error.
terior probability estimates notably improves the perfante
of the channel decoder. In this example, the coding gain is ) ) )
about2 dB between the GPC-LDPC and the other equalizefs: Experiment 3: Nonlinear multipath channel 2
Also the BER of the LDPC with hard outputs (GPC-h-LPDC) To conclude our experiments, we consider a second model
is higher than the soft-outputs receivers. This resultlsveat for a nonlinear amplifier working in saturation. This model



was proposed in [9], [40], [41]:
lg(v)| = |v] + 0.2]v|* = 0.1]v|* + 0.5 cos(n|v]), (28) 10

and considers an additional term that further complicates t
performance of the equalizer.

In Fig. 8 we have depicted the BER and FER for the GPC
and SVM equalizers. The performance of the two receiver: a
follows the same lines that we have seen in the previou @
cases: the equalizers perform equally well, while GPC-LPDC
outperforms the SVM receiver. The main difference in this
experiment is the threshold behavior that the SVM-Platt- - GPC-EQ
LDPC exhibit. ForE},/N, lower than5 dB their BERs are 10 e e bpe
worse than the GPC-h-LDPC BER, which means that thei —¥—GPC-LDPC
posterior probability estimate are way off and we would —S— SVM-LDPC
be better off without them. But once thg,/N, is large
enough their posterior probability estimates are suffityen
accurate and they outperform the LPDC decoder with hard (@)
outputs. From the FER point of view, the soft-output equakz
outperform the hard equalizer for &, /N, ranges. Thereby, S O SRR, G SN
the use of soft-output equalizers is always favorable, emen
strong nonlinear channels, in which the posterior prolitgbil
estimates might not be accurate. 10

-2|

-3

10 "¢

g
<

4 5
Eb/No (dB)

VI. CONCLUSIONS

The probabilistic nonlinear channel equalization is annope
problem, since the standard solutions such as the nonline
BCJR exhibit exponential complexity with the length of the
encoded sequence. Moreover, they need an estimation of tl 107°;
nonlinear channel and they only approximate the optima

FER

~¥-GPC-h-LDPC

solution [42]. In this paper, we propose GPC to solve this TSR e

long-standing problem. GPC is a Bayesian nonlinear prob 10“‘2 3 . : s ;
abilistic classifier that produces accurate posterior abéb Eb/No (dB)

lity estimates. We compare the performance of the different (b)

probabilistic equalizers at the output of an LDPC channel
decoder. We have shown the GPC outperforms the SViN}. s. performance at the output of the equalizers (dasfeditines) and the

with probabilistic output, which is a state-of-the-art finear channel decoder with soft-inputs (solid lines) and withdrimputs (dashed
classifier line) for the GPC ¢) and the SVM-Plattq). The BER is included in (a) while

. the FER is depicted in (b), for the channel in (26) with the Im@arities in
Finally, as a by-product, we have shown that we need ). P ®) (20)

measure the performance of the equalizers after the channel

decoder. The equalizers’ performance is typically meabate

low BER without considering the channel decoder. But if wee] J. Cid-Sueiro, A. Artés-Rodriguez, and A. R. FigusiNidal, “Recurrent

do not incorporate the channel decoder the BER output by the radial basis function networks for optimal symbol-by-syhbqualiza-
. . . . . tion,” Signal Processingvol. 40, pp. 53-63, 1994.

equalizer might not give an accurate picture of its perforoga |,

. 3 1 P. R. Chang and B. C. Wang, “Adaptive decision feedbaakaézation
Furthermore, the equalizer performance at low BER might not  for digital satellites channels using multilayer neuratwazks,” IEEE

be illustrative, as the channel decoder significantly redube é‘;%mfégg Selected areas of communicatiool. 13, no. 2, pp. 316-324,
BER for lower Slgnal to noise ratio values. [8] F. Pérez-Cruz, A. Navia-Vazquez, P. L. Alarcon-Daarand A. Artés-
Rodriguez, “SVC-based equalizer for burst TDMA transiniss,” Sig-
nal Processingvol. 81, no. 8, pp. 1681-1693, Aug. 2001.
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