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Abstract. The Differentiated Services framework allows to provide scal-
able network Quality of Service by aggregate scheduling. Services, like a
Premium class, can be defined to offer a bounded end-to-end delay. For
such services, the methodology of Network Calculus has been applied
successfully in Integrated Services networks to derive upper bounds on
the delay of individual flows. Recent extensions allow an application of
Network Calculus even to aggregate scheduling networks. Nevertheless,
computations are significantly complicated due to the multiplexing and
de-multiplexing of micro-flows to aggregates. Here problems concerning
the tightness of delay bounds may be encountered.

A phenomenon called Pay Bursts Only Once is known to give a closer
upper estimate on the delay, when an end-to-end service curve is derived
prior to delay computations. Doing so accounts for bursts of the flow of
interest only once end-to-end instead of at each link independently. This
principle also holds in aggregate scheduling networks. However, it can be
extended in that bursts of interfering flows are paid only once, too. In
this paper we show the existence of such a complementing Pay Bursts
Only Once phenomenon for interfering flows. We derive the end-to-end
service curve for a flow of interest in an arbitrary aggregate scheduling
feed forward network for rate-latency service curves, and leaky bucket
constraint arrival curves, which conforms to both of the above principles.
We give simulation results to show the utility of the derived forms.

1 Introduction

The Differentiated Services (DS) architecture [2] is the most recent approach of
the Internet Engineering Task Force (IETF) towards network Quality of Service
(QoS). DS addresses the scalability problems of the former Integrated Services
approach by an aggregation of micro-flows to a small number of different traffic
classes, for which service differentiation is provided. Packets are identified by
simple markings that indicate the respective class. In the core of the network,
routers do not need to determine to which flow a packet belongs, only which
aggregate behavior has to be applied. Edge routers mark packets and indicate
whether they are within profile or, if they are out of profile, in which case they
might even be discarded by a dropper at the edge router. A particular marking on



a packet indicates a so-called Per Hop Behavior (PHB) that has to be applied for
forwarding of the packet. Currently, the Expedited Forwarding (EF) PHB [9],
and the Assured Forwarding (AF) PHB group are specified. The EF PHB is
intended for building a service that offers low loss, low delay, and low delay
jitter, namely a Premium service. The specification of the EF PHB was recently
redefined to allow for a more exact and quantifiable definition [5]. Especially
the derivation of delay bounds is of interest, when providing a Premium service.
In [4] such bounds are derived for a general topology and a maximum load.
However, these bounds can be improved, when additional information concerning
the current load, and the special topology of a certain DS domain is available.

In [15] a central resource management for DS domains called a Bandwidth
Broker (BB) is presented. A BB is a middleware service which controls and fa-
cilitates the dynamic access to network services of a particular administrative
domain [10]. The task of a BB in a DS domain is to perform a careful admission
control, and to set up the appropriate configuration of the domain’s edge routers,
whereas the configuration of core routers is intended to remain static to allow
for scalability. While doing so, the BB knows about all requests for capacity of
certain QoS classes. Besides it can easily learn about the DS domains topology,
either statically, or by implementing a listener for the domains routing proto-
col. Thus, a BB can have access to all information that is required, to apply
the mathematical methodology of Network Calculus [3, 13], in order to base its
admission control on delay boundaries that are derived for the current load, and
the special topology of the administrated domain [19].

In this paper we address the derivation of end-to-end delay guarantees based
on Network Calculus. We derive a closed form solution for the end-to-end delay
in feed forward First In First Out (FIFO) networks, for links that have a rate-
latency property, and flows that are leaky bucket constraint. In particular this
form accounts for bursts of interfering flows only once, and thus implements
a principle for aggregate scheduling that is similar to the Network Calculus
Pay Bursts Only Once principle [13]. The derived boundaries can be applied
as a decision criterion to perform the admission control of a DS domain by
a BB. The remainder of this paper is organized as follows: In Section 2 the
required background on Network Calculus, and the notation that is applied in
the sequel are given. Section 3 introduces two examples, which show how bursts of
interfering flows worsen the derived delay bounds and, which prove the existence
of a counterpart to the Pay Bursts Only Once phenomenon for interfering flows
in aggregate scheduling networks. The first example can be satisfactorily solved
by direct application of current Network Calculus, whereas to our knowledge for
the second example a tight solution is missing in current literature. This missing
piece is addressed in Section 4, where a tight closed form solution for arbitrary
feed forward networks with FIFO rate-latency service curves and leaky bucket
constraint arrival curves is derived. In Section 5 we describe the implementation
of the admission control in a DS BB that is based on worst-case delay bounds.
Numerical results on the performance gain that is achieved by applying the
previously derived terms are given. Section 6 concludes the paper.



2 Network Calculus Background and Notation

Network Calculus is a theory of deterministic queuing systems that is based on
the early work on the calculus for network delay in [6, 7], and on the work on
Generalized Processor Sharing (GPS) presented in [16, 17]. Further extensions,
and a comprehensive overview on current Network Calculus are given in [12, 13],
and from the perspective of filtering theory in [3]. Here only a few concepts are
covered briefly, to give the required background, and to introduce the notation
that is mainly taken over from [13]. In addition since networks consisting of
several links n that are used by a flow of interest, and a number of interfering
flows m are investigated, upper indices j indicate links, and lower indices i
indicate flows in the sequel.

The scheduler on an outgoing link can be characterized by the concept of a
service curve, denoted by β(t). A special characteristic of a service curve is the
rate-latency type that is given by βR,T (t) = R · [t − T ]+ with a rate R and a
latency T . The term [x]+ is equal to x, if x ≥ 0, and zero otherwise. Service curves
of the rate-latency type are implemented for example by Priority Queuing (PQ),
or Weighted Fair Queuing (WFQ). The latency of a PQ scheduler is given in [5]
for variable length packet networks with a Maximum Transmission Unit (MTU)
according to T = MTU/R. Nevertheless, routers can implement additional non-
preemptive layer 2 queues on their outgoing interfaces for a smooth operation,
which can add further delay to a layer 3 QoS implementation [20]. Thus T =
(l2 +1) ·MTU/R might have to be applied, whereby l2 gives the layer 2 queuing
capacity in units of the MTU.

Flows are defined either by their arrival functions denoted by F (t), or by
their arrival curves α(t), whereas α(t2 − t1) ≥ F (t2) − F (t1) for all t2 ≥ t1.
In DS networks, a typical characteristic for incoming flows can be given by the
leaky bucket constraint αr,b(t) = b + r · t that is also known as sigma-rho leaky
bucket in [3]. Usually the ingress router of a DS domain meters incoming flows
against a leaky bucket algorithm, and either shapes, or drops non-conforming
traffic, which justifies the application of leaky bucket constraint arrival curves.

If a link j is traversed by a flow i, the arrival function of the output flow F j+1
i ,

which is the input arrival function for an existing, or an imaginary subsequent
link j + 1, can be given according to (1) for t ≥ s ≥ 0 [12].

F j+1
i (t) ≥ F j

i (t− s) + βj(s) (1)

From (1) the term in (2) follows. The operator ⊗ denotes the convolution under
the min-plus algebra that is applied by Network Calculus.

F j+1
i (t) ≥ (F j

i ⊗ βj)(t) = inf
t≥s≥0

[F j
i (t− s) + βj(s)] (2)

Further on, the output flow is upper constrained by an arrival curve αj+1
i that

is given according to (3), with ® denoting the min-plus de-convolution.

αj+1
i (t) = (αj

i ® βj)(t) = sup
s≥0

[αj
i (t + s)− βj(s)] (3)



If the path of a flow i consists of two or more links, the formulation of the
concatenation of links can be derived based on (4).

F j+2
i (u) − F j+1

i (u− (t− s)) ≥ βj+1(t− s)
F j+1

i (u− (t− s)) −F j
i (u− t) ≥ βj(s)

F j+2
i (u) −F j

i (u− t) ≥ βj+1(t− s) + βj(s)
(4)

The end-to-end service curve is then given in (5), which covers the case of two
links, whereas the direct application of (5) also holds for n links.

βj+1,j(t) = (βj+1 ⊗ βj)(t) = inf
t≥s≥0

[βj+1(t− s) + βj(s)] (5)

The maximal virtual delay d for a system that offers a service curve of β(t)
with an input flow that is constraint by α(t), is given as the supremum of the
horizontal deviation according to (6).

d ≤ sup
s≥0

[
inf[τ ≥ 0 : α(s) ≤ β(s + τ)]

]
(6)

For the special case of service curves of the rate-latency type, and sigma-rho
leaky bucket constraint arrival curves, simplified solutions exist for the above
equations. The arrival curve of the output flow according to (3) is given in (7)
for this case, whereas the burst size of the output flow bi + ri ·T j is equal to the
maximum backlog at the scheduler of the outgoing link.

αj+1
i (t) = bi + ri · T j + ri · t (7)

The concatenation of two rate-latency service curves can be reduced to (8).

βj+1,j(t) = min[Rj+1, Rj ] · [t− (T j+1 + T j)]+ (8)

Finally, (9) gives the worst case delay for the combination of a rate-latency
service curve, and a leaky bucket constraint arrival curve.

d ≤ T j + bi/Rj (9)

If a flow i traverses two links j and j + 1, two options for the derivation
of the end-to-end delay exist. For simplicity, the service curves are assumed
here to be of the rate-latency type, and the arrival curve is chosen to be leaky
bucket constraint. At first the input arrival curve of flow i at link j + 1 can be
computed as in (7). Then the virtual end-to-end delay is derived to be the sum
of the virtual delays at link j and j + 1 according to (9). Doing so results in
d ≤ T j + bi/Rj + T j+1 + (bi + ri · T j)/Rj+1. The second option is to derive
the end-to-end service curve as is done in (8), and compute the delay according
to (9) afterwards, resulting in d ≤ T j +T j+1 + bi/ min[Rj+1, Rj ]. Obviously, the
second form gives a closer bound, since it accounts for the burst size bi only once.
This property is known as the Pay Bursts Only Once phenomenon from [13].

Until now only networks that perform a per-flow based scheduling, for ex-
ample Integrated Services networks, have been considered. The aggregation or



the multiplexing of flows can be given by the addition of the arrival functions
F1,2(t) = F1(t) + F2(t), or arrival curves α1,2(t) = α1(t) + α2(t). For aggregate
scheduling networks with FIFO service curves, families of per-flow service curves
βθ(t) according to (10) with an arbitrary parameter θ ≥ 0 are derived in [8, 13].
βj

θ(t) gives a family of service curves for a flow 1 that is scheduled in an aggregate
manner in conjunction with a flow 2 on a link j. 1t>θ is zero for t ≤ θ.

βj
θ(t) = [βj(t)− α2(t− θ)]+1t>θ (10)

The parameter θ has to be set to zero in case of blind multiplexing. In FIFO
networks for u = sup[v : F j

1,2(v) ≤ F j+1
1,2 (t)], the conditions F j(u) ≤ F j+1(t),

and F j(u+) ≥ F j+1(t) with u+ = u+ε, ε > 0 hold for the sum of both flows, and
for the individual flows, too. These additional constraints allow to derive (10) for
an arbitrary θ > 0. The complete derivation is missed out here. It can be found
in [13]. From (10) it cannot be concluded that supθ[β

j
θ ], or infθ[β

j
θ ] is a service

curve, but for the output flow αj+1
1 (t) = infθ≥0[(α

j
1 ® βj

θ)(t)] can be given [13].
For the special case of rate-latency service curves, and leaky bucket constraint

arrival curves, (11) can be derived from (10) to be a service curve for flow 1 for
r1 + r2 < Rj .

βj(t) = (Rj − r2) · [t− (T j + b2/Rj)]+ (11)

The methodology that is shown up to here already allows to implement the
algorithmic derivation of delay bounds in a DS domain by a BB, with the re-
striction that the domain has to be a feed forward network. In non feed forward
networks analytical methods like time stopping [3, 13] can be applied. Neverthe-
less, for an algorithmic implementation, it is simpler to prevent from aggregate
cycles, and transform the domains topology into a feed forward network, to allow
for the direct application of Network Calculus. Such a conversion of the network
topology can be made by means of breaking up loops by forbidding certain links,
for example by turn prohibition as presented in [21] for networks that consist of
bidirectional links. Doing so, the BB can inductively derive the arrival curves of
micro-flows at each outgoing link, then compute the service curve of each link
from the point of view of each micro-flow, and concatenate these to end-to-end
service curves, to give upper bounds on the worst case delay for individual flows.

3 Extended Pay Bursts Only Once Principle

Though Section 2 gives the required background to derive per micro-flow based
end-to-end delay bounds in aggregate scheduling networks, these bounds are
likely to be unnecessarily loose. Figure 1 gives a motivating example of a simple
network consisting of two outgoing links that are traversed by two flows. This
example is given to introduce a similar concept to the Pay Bursts Only Once
principle [13] for aggregate scheduling. Flow 1 is the flow of interest, for which
the end-to-end delay needs to be derived. According to the Pay Bursts Only
Once principle, at first the end-to-end service curve for flow 1 has to be derived,
and then the delay is computed, instead of computing the delay at each link
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Fig. 1. Two Flows Share Two Consecutive Links

independently, and summing these delays up. A similar decision has to be made,
when deriving the service curve for flow 1 by subtracting the arrival curve of flow
2 from the aggregate service curves. Either this subtraction is made at each link
independently before concatenating service curves, or the subtraction is made
after service curves have been concatenated. To illustrate the difference the two
possible derivations of the end-to-end service curve for flow 1 are given here for
rate-latency service curves, and leaky bucket constraint arrival curves.

For the first option, which is already drafted at the end of Section 2, the
service curve of link I from the point of view of flow 2 can be derived to be of
the rate-latency type with a rate RI − r1 and a latency T I + b1/RI. Then, the
arrival curve of flow 2 at link II can be given to be leaky bucket constraint with
the rate r2 and the burst size b2 + r2 · (T I + b1/RI). The service curves at link
I and II from the point of view of flow 1 can be given to be rate-latency service
curves with the rates RI − r2, respective RII − r2, and the latencies T I + b2/RI,
respective T II + (b2 + r2 · (T I + b1/RI))/RII. The concatenation of these two
service curves yields the rate-latency service curve for flow 1 given in (12).

βI,II(t) = min[RI − r2, R
II − r2]

· [t− (T I + b2/RI)− (T II + (b2 + r2 · (T I + b1/RI))/RII)]+
(12)

The second option requires that the service curves of link I and II are con-
voluted prior to subtraction of the flow 2 arrival curve [19]. The concatenation
yields a service curve of the rate-latency type with a rate of min[RI, RII] and
a latency of T I + T II. After subtracting the arrival curve of flow 2 from the
concatenation of the service curves of link I, and II, (13) can be given for flow 1.

βI,II(t) = (min[RI, RII]− r2) · [t− (T I + T II + b2/ min[RI, RII])]+ (13)

Obviously, the form in (13) offers a lower latency than the one in (12), which
accounts for the burst size of the interfering flow 2 twice, once with the size b2

at link I, and then with b2 + r2 · (T I + b1/RI) at link II. The increase of the burst
size of flow 2 at link II is due to the aggregate scheduling of flow 2 with flow 1
at link I. Thus, based on (12), and (13) a counterpart to the Pay Burst Only
Once phenomenon has been shown for interfering flows in aggregate scheduling
networks.

However, most problems of interest cannot be solved as simple as the one in
Figure 1. One such example is shown in Figure 2. Flow 2 is the flow of interest,
for which the end-to-end service curve needs to be derived. Links I and II can
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Fig. 2. Three Flows Share Three Consecutive Links

be concatenated after the arrival curve of flow 3 is subtracted from the service
curve of link II. Then the arrival curve of flow 1 can be subtracted from the
concatenation of the service curves of link I and II. Unfortunately the direct
application of the Network Calculus terms given in Section 2 then requires that
the arrival curve of flow 3 at link III is subtracted from the service curve of link
III independently, which violates the extended Pay Bursts Only Once principle.
An alternative derivation is possible, if the arrival curve of flow 1 is subtracted
from the service curve of link II before links II and III are concatenated. Doing
so does unfortunately encounter the same problem.

4 Closed Form Solution for Feed Forward Networks

Consider an end-to-end path of a flow of interest i in an arbitrary aggregate
scheduling feed forward network with FIFO service curve elements. Further on,
assume that a concatenation of consecutive links offers a FIFO characteristic,
too. The path consists of n links that are indexed by j in ascending order from
the source to the destination of the flow of interest i. These links are given in
the set Ji. Further on, the links of the path of flow i are used in an aggregate
manner by an additional number of flows m that are indexed by k. The paths
of the flows k are given by the sets Jk. For each link j a set Kj is defined to
hold all other flows k that traverse the link, not including flow i. Note that flows
may exist that share a part of the path of the flow of interest i, then follow a
different path, and afterwards again share a part of the path of flow i. These
flows are split up in advance into as many individual flows as such multiplexing
points exist. Thus, all resulting flows do have only one multiplexing point with
flow i. In [13] the term Route Interference Number (RIN) is defined to hold the
quantity of such multiplexing points. Then, the set Ki =

⋃
j∈Ji K

j is defined to
hold all m flows that use the complete path or some part of the path of flow i.
Further on, the set Ji,k = Ji

⋂
Jk holds all links of a sub-path that are used by

both flow i and a flow k. Based on these definitions, on the terms in (4), and
on the rules for multiplexing, (14) can be given for time pairs tj+1 − tj ≥ 0 for
all j ∈ Ji. The time indices are chosen here to match link indices, since arrival
functions are observed at these time instances at the belonging links.

Fn+1
i (tn+1)−F 1

i (t1) ≥
∑

j∈Ji
βj(tj+1− tj)−

∑

k∈Ki

∑

j∈Ji,k

(F j+1
k (tj+1)−F j

k (tj)) (14)



Now, the arrival functions of the interfering flows can be easily split up and
subtracted from the relevant links. Like for the derivation of (10) in [13], FIFO
conditions can be defined on a per-link basis. Doing so, pairs of arrival functions
F j+1

k (tj+1)−F j
k (tj) can be replaced by their arrival curves αj

k(tj+1− tj−θj) for
tj+1−tj > θj , with the arbitrary per link parameters θj ≥ 0. Nevertheless, doing
so results in paying the bursts of all interfering flows at each link independently.

However, FIFO conditions can in addition to per link be derived per sub-
path Ji,k. With

∑
j∈Ji,k

(F j+1
k (tj+1)−F j

k (tj)) = F jmax+1
k (tjmax+1)−F jmin

k (tjmin),
whereby jmax = max[j ∈ Ji,k], and jmin = min[j ∈ Ji,k], (15) can be derived for
tjmax+1 − tjmin > θk, based on (10).

Fn+1
i (tn+1)−F 1

i (t1) ≥
∑

j∈Ji
βj(tj+1− tj)−

∑

k∈Ki

αjmin
k (tjmax+1− tjmin − θk) (15)

To motivate the step from (14) to (15), the FIFO conditions that are applied,
are shown exemplarily for the small network in Figure 2. The derivation, is a
direct application of the one given in [13] for the form in (10). Define an u1, and
u3 for flow 1, respective flow 3 according to (16), and (17).

u1 = sup{v : F I
1(v) + F I

2(v) ≤ F III
1 (t3) + F III

2 (t3)} (16)

u3 = sup{v : F II
2 (v) + F II

3 (v) ≤ F IV
2 (t4) + F IV

3 (t4)} (17)

Now, from (16), and with u+
1 = inf{v : v > u1}, t1 ≤ u1 ≤ t3, F I

1(u1)+F I
2(u1) ≤

F III
1 (t3) + F III

2 (t3), and F I
1(u

+
1 ) + F I

2(u
+
1 ) ≥ F III

1 (t3) + F III
2 (t3) can be given.

Due to the per sub-path FIFO conditions, the above terms also hold for the
individual flows 1, and 2, for example F I

1(u1) ≤ F III
1 (t3), and F I

1(u
+
1 ) ≥ F III

1 (t3).
Similar conditions can be derived for flows 2, and 3 from (17). The following
term in (18) can be set up based on (4).

F IV
2 (t4)− F I

2(t1) ≥ βIII(t4 − t3) + βII(t3 − t2) + βI(t2 − t1)

− (F IV
3 (t4)− F II

3 (t2))− (F III
1 (t3)− F I

1(t1))
(18)

With F I
1(u

+
1 ) ≥ F III

1 (t3), and F II
3 (u+

3 ) ≥ F IV
3 (t4), (19) can be derived.

F IV
2 (t4)− F I

2(t1) ≥ βIII(t4 − t3) + βII(t3 − t2) + βI(t2 − t1)

− (F II
3 (u+

3 )− F II
3 (t2))− (F I

1(u
+
1 )− F I

1(t1))
(19)

Choose two arbitrary parameters θ1 ≥ 0, and θ3 ≥ 0. If u1 < t3 − θ1, F I
1(u

+
1 ) ≤

F I
1(t3−θ1) holds. Further on, t3−t1 > θ1 can be given in this case, since u1 ≥ t1.

With a similar condition for flow 3, the form in (20) is derived.

F IV
2 (t4)− F I

2(t1) ≥ βIII(t4 − t3) + βII(t3 − t2) + βI(t2 − t1)
− α3(t4 − t2 − θ3)− α1(t3 − t1 − θ1)

(20)

Else, for u1 ≥ t3 − θ1, the FIFO condition F III
2 (t3) ≥ F I

2(u1) is applied. Further
on, the term F III

2 (t3)− F I
2(t1) ≥ βI,II(t3 − t1) can be set up, with βI,II denoting



the service curve for flow 2 that is offered by link I, and II. Substitution of t1 by
u1, yields F III

2 (t3) ≥ F I
2(u1) + βI,II(t3 − u1). Hence, βI,II(t3 − t1) = 0 is a trivial

service curve for u1 ≥ t3 − θ1. Similar forms can be derived for u3 ≥ t4 − θ3.
In the following the form in (15) is solved for the simple case of rate-latency

service curves, and leaky bucket constraint arrival curves.

Proposition 1 (End-to-End Service Curve) The end-to-end service curve
for a flow of interest i in an aggregate scheduling feed forward network with FIFO
service curve elements of the rate-latency type βR,T , and leaky bucket constrained
arrival curves αr,b is again of the rate-latency type, and given according to (21).

βi(t) = min
j∈Ji

[
Rj −

∑

k∈Kj

rk

]
·
[
t−

∑

j∈Ji
T j −

∑

k∈Ki

bjmin
k

minj∈Ji,k
[Rj ]

]+

(21)

The form in (21) gives an intuitive result. The end-to-end service curve for flow i
has a rate R, which is the minimum of the remaining rates at the traversed links,
after subtracting the rates of interfering flows that share the individual links.
The latency T is given as the sum of all latencies along the path, plus the burst
size of interfering flows at their multiplexing points indicated by jmin, divided by
the minimum rate along the common sub-path with the flow of interest i. Thus,
bursts of interfering flows account only once with the maximal latency that can
be evoked by such bursts along the shared sub-paths.

Proof 1 In (22) the form in (15) is given for rate-latency service curves, and
leaky bucket constraint arrival curves for tjmax+1 − tjmin > θk.

Fn+1
i (tn+1)− F 1

i (t1) ≥
∑

j∈Ji

(
Rj · [tj+1 − tj − T j ]+

)

−
∑

k∈Ki

(
bjmin
k + rk · (tjmax+1 − tjmin− θk)

) (22)

Here, we apply a definition of the per flow θk by per link θj according to (23).
Now the failure of any of the conditions tjmax+1 − tjmin > θk requires the failure
of at least one of the conditions tj+1 − tj > θj for any j with jmax ≥ j ≥ jmin.

θk =
∑

j∈Ji,k

θj (23)

Reformulation of (22) yields (24) for tj+1 − tj > θj , with j ∈ Ji,k.

Fn+1
i (tn+1)− F 1

i (t1) ≥
∑

j∈Ji

(
Rj · [tj+1 − tj − T j ]+

)

−
∑

k∈Ki

(
bjmin
k + rk ·

∑

j∈Ji,k

(tj+1 − tj − θj)
) (24)

Next, the fact that (10) gives a service curve for any setting of the parameter
θ with θ ≥ 0 is used. Thus, the per-flow θk can be set arbitrarily with θk ≥



0, whereas this condition can according to (23) be fulfilled by any θj ≥ 0.
Hence, (24) gives a service curve for any θj ≥ 0. We define an initial setting of
the parameters θj , for which an end-to-end service curve for flow i is derived for
all tj+1−tj > θj . Then, for the special cases in which tj+1−tj > θj does not hold
for one or several links j, θj is redefined. We show for these cases by means of the
redefined θj that the end-to-end service curve that is derived before still holds
true. Thus, we prove that this service curve is valid for all tj+1 − tj ≥ 0. The
definition of different settings of the parameters θj is not generally allowed to
derive a service curve. As already stated in Section 2, it cannot be concluded that
for example infθ βθ(t) is a service curve [13]. Nevertheless, there is a difference
between doing so, and the derivation that is shown in the following. Here, a
service curve βθj is derived for fixed θj for all tj+1 − tj > θj . This service curve
is not modified later on, but only proven to hold for any tj+1−tj ≥ 0 by applying
different settings of the θj . The initially applied setting of the θj is given in (25).
The θj are defined to be the latency of the scheduler on the outgoing link j plus
the burst size of interfering flows k, if j is the multiplexing point of the flow k
with flow i, divided by the minimum rate along the common sub-path of flow k
and i.

θj = T j +
∑

k∈Kj|j=jmin

bjmin
k

minj′∈Ji,k
[Rj′ ]

(25)

With (25) the term in (24) can be rewritten according to (26) for all tj+1−tj > θj .

Fn+1
i (tn+1)− F 1

i (t1) ≥
∑

j∈Ji

(
Rj · [tj+1 − tj − T j ]+

)

−
∑

k∈Ki

(
bjmin
k + rk ·

∑

j∈Ji,k

(
tj+1 − tj − T j −

∑

k′∈Kj|j=jmin

bjmin
k′

minj′∈Ji,k′ [R
j′ ]

))
(26)

Some reordering, while scaling up the subtrahends by adding [. . . ]+ conditions,
and a replacement of

∑
k∈Ki

∑
j∈Ji,k

by
∑

j∈Ji
∑

k∈Kj yields (27).

Fn+1
i (tn+1)− F 1

i (t1) ≥
∑

j∈Ji

((
Rj −

∑

k∈Kj

rk

) · [tj+1 − tj − T j ]+
)

−
∑

k∈Ki

(
bjmin
k − rk ·

∑

j∈Ji,k

∑

k′∈Kj|j=jmin

bjmin
k′

minj′∈Ji,k′ [R
j′ ]

)
(27)

With the replacement of
∑

k∈Ki

∑
j∈Ji,k

by
∑

j∈Ji
∑

k∈Kj , (28) can be derived.

Fn+1
i (tn+1)− F 1

i (t1) ≥
∑

j∈Ji

((
Rj −

∑

k∈Kj

rk

) · [tj+1 − tj − T j ]+
)

−
∑

k∈Ki

bjmin
k +

∑

j∈Ji

∑

k∈Kj

(
rk ·

∑

k′∈Kj|j=jmin

bjmin
k′

minj′∈Ji,k′ [R
j′ ]

)
(28)



Further on
∑

k∈Ki
bjmin
k =

∑
j∈Ji

∑
k′∈Kj|j=jmin

bjmin
k′ yields (29).

Fn+1
i (tn+1)− F 1

i (t1) ≥
∑

j∈Ji

((
Rj −

∑

k∈Kj

rk

) · [tj+1 − tj − T j ]+
)

−
∑

j∈Ji

( ∑

k′∈Kj|j=jmin

bjmin
k′ −

∑

k∈Kj

rk ·
∑

k′∈Kj|j=jmin

bjmin
k′

minj′∈Ji,k′ [R
j′ ]

)
(29)

Applying the common denominator, while scaling up the subtrahend, and with
j ∈ Ji,k′ and thereby Rj ≥ minj′∈Ji,k′ [R

j′ ] with k′ ∈ Kj , (30) can be derived.

Fn+1
i (tn+1)− F 1

i (t1) ≥
∑

j∈Ji

((
Rj −

∑

k∈Kj

rk

) · [tj+1 − tj − T j ]+
)

−
∑

j∈Ji

((
Rj −

∑

k∈Kj

rk

)
·

∑

k′∈Kj|j=jmin

bjmin
k′

minj′∈Ji,k′ [R
j′ ]

)
(30)

Then, (30) can be reformulated according to (31), still for tj+1 − tj > θj .

Fn+1
i (tn+1)− F 1

i (t1) ≥
∑

j∈Ji

((
Rj −

∑

k∈Kj

rk

)

·
(
[tj+1 − tj − T j ]+ −

∑

k′∈Kj|j=jmin

bjmin
k′

minj′∈Ji,k′ [R
j′ ]

))
(31)

The inf(tj+1−tj>θj)|j∈Ji
of (31) can be derived to be the form that is given in (21).

Thus, the service curve in (21) is approved for all tj+1 − tj > θj with the
parameter settings of θj according to (25).

Now, if some of the conditions tj+1−tj > θj fail, the θj that are given in (25)
can be redefined according to (32), based on the arbitrary parameters δj

k ≥ 0
with

∑
j∈Ji,k

δj
k = 1.

θj = T j +
∑

k∈Kj

δj
k · bjmin

k

minj′∈Ji,k
[Rj′ ]

(32)

The burst size of interfering flows bjmin
k is arbitrarily accounted for by θj in (25),

whereas, if an interfering flow k traverses more than one link, the burst size bjmin
k

could be part of any θj , with j ∈ Ji,k. For such redefined θj , it can be shown
that the same derivation as above holds, resulting in (33). Again, applying the
inf(tj+1−tj>θj)|j∈Ji

leads to the same form (21), as shown for (31) before.

Fn+1
i (tn+1)− F 1

i (t1) ≥
∑

j∈Ji

((
Rj −

∑

k∈Kj

rk

)

·
(
[tj+1 − tj − T j ]+ −

∑

k′∈Kj

δj
k′ · bjmin

k′

minj′∈Ji,k′ [R
j′ ]

))
(33)



However, there can be pairs of tj+1 − tj ≥ 0, for which no setting of the param-
eters δj

k according to (32) allows a redefinition of θj , for which tj+1 − tj > θj

for all j ∈ Ji can be achieved. A condition tj+1 − tj > θj can fail for δj
k = 0 for

all k ∈ Kj , if tj+1 − tj ≤ T j , without violating any of the per-flow conditions
tjmax+1 − tjmin > θk. In this case the terms that are related to link j in (33) are
nullified immediately by the [. . . ]+ condition. Nevertheless, if some of the per
flow conditions tjmax+1 − tjmin > θk are violated for a number of flows k ∈ Li,
the service curves of the sub-paths

⋃
k∈Li

Ji,k have according to the derivation
of (10) to be set to zero. However, setting the service curves of sub-paths to zero
is the same as setting the service curves of all links along these paths to zero.
Regarding (33), it can be seen that any links for which the service curve is set to
zero possibly increase the resulting rate of the service curve, compared to (21),
whereas the resulting maximum latency is not influenced. This holds true for any
θj according to (32), respective for any δj

k with
∑

j∈Ji,k
δj
k = 1. Thus, also the case

of δj
k = 0 for all k ∈ Ki\{Li}, and j ∈ ⋃

k∈Li
Ji,k is covered. The latter setting en-

sures that bursts of flows that share part of the sub-paths that are set to zero, but
that also traverse further links, are accounted for at these links. Then by scaling
down the term minj∈Ji\{Ji,k|k∈Li

}[Rj−∑
k∈Kj rk] to minj∈Ji [R

j−∑
k∈Kj rk], (21)

is also a service curve for cases in which tj+1− tj ≤ θj , and finally holds for any
tj+1 − tj ≥ 0 with j ∈ Ji. ¤

Finally, (34) gives a tight end-to-end service curve for flow 2 in Figure 2. As
intended, the bursts of the interfering flows 1, and 3 are accounted for only once,
with their initial burst size at the multiplexing, or route interference point.

β2(t) = min[RI − r1, R
II − r1 − r3, R

III − r3]

·
[
t− T I − T II − T III − b1

min[RI, RII]
− b3

min[RII, RIII]

]+ (34)

5 Numerical Results

In this section we give numerical results on the derivation of edge-to-edge delay
bounds in a DS domain, which can be efficiently applied for the definition of so-
called Per Domain Behaviors (PDBs) [14]. We compare the options of applying
either the Extended Pay Burst Only Once principle, the Pay Bursts Only Once
principle, or none of the two principles.

We implemented an admission control for an application as a BB in a DS
domain. The BB currently knows about the topology of its domain statically,
whereas a routing protocol listener can be added. Requests for Premium capacity
are sent via socket communication to the BB. The requests consist of a start, and
an end time to allow for both immediate, and advance reservation, a Committed
Information Rate (CIR), a Committed Burst Size (CBS), and a target maximum
delay. Whenever the BB receives a new request, it computes the edge-to-edge
delay for all requests that are active during the period of time of the new request,
as described in Section 2. If none of the target maximum per-flow delays is
violated, the new request is accepted, which otherwise is rejected.



For performance evaluation we implemented a simulator that generates such
Premium resource requests. Sources and sinks are chosen uniformly from a prede-
fined set. Start, and end times are modelled as negative exponentially distributed
with a mean λ, respective µ, that is a mean of ρ = µ/λ requests are active con-
currently. This modelling has been found to be appropriate for user sessions, for
example File Transfer Protocol (FTP) sessions in [18]. The target delay, CIR,
and CBS are used as uniformly distributed parameters for the simulations.

The topology that is used is shown in Figure 3. It consists of the level one,
and level two nodes of the German Research Network (DFN) [1]. The level one
nodes are core nodes. End systems are connected to the level two nodes that are
edge nodes. In detail, we connect up to five sources and sinks to each of the level
two nodes. Links are either Synchronous Transfer Mode (STM) 4, STM 16, or
STM 64 connections. The link transmission delay is assumed to be 2 ms. Shortest
Path First (SPF) routing is applied to minimize the number of hops along the
paths. Further on, Turn Prohibition (TP) [21] is used, to ensure the required feed
forward property of the network. Figure 3 shows how loops are broken within
the level one mesh of the DFN topology by the TP algorithm. The nodes have
been processed by TP in the order of their numbering. For example the turn
(8; 7; 9) that is the turn from node 8 via node 7 to node 9 is prohibited, whereas
for instance the turn (8; 7; 6), or simply the use of the link (8; 7) is permitted. For
the DFN topology the SPF TP algorithm does only increase the length of one of
the paths by one hop compared to SPF routing. Further on, the TP algorithm
can be configured to prohibit turns that include links with a comparably low
capacity with priority [21], as is shown in Figure 3, and applied by our BB. The
Premium service is implemented based on PQ. Thus, service curves are of the
rate-latency type with a latency set to the time it takes to transmit 3 MTU of
9.6 kB, to account for non-preemptive scheduling, due to packetization, and a
router internal buffer for 2 Jumbo frames [20].

The performance measure that we apply is the ratio of accepted requests
divided by the overall number of requests, and as an alternative the distribution
of the derived delay bounds. Simulations have been run, until the 0.95 confidence
interval of the acceptance ratio was smaller than 0.01. Initial-data deletion [11]
has been applied to capture only the steady-state behavior, and the replication
and deletion approach for means, that is for example shown in [11], was used.
The results are given for different settings of the requested maximum delay, CBS,
and CIR, and for a varying load ρ = µ/λ in Figure 4, and 5. In addition Figure 6
shows the fraction of flows for which a delay bound that is smaller than the delay
given on the abscissa was derived.

As one of our main results we find a significant performance gain, when
accounting for the Extended Pay Bursts Only Once phenomenon. The Pay Bursts
Only Once principle alone allows to derive noticeable tighter delay bounds, based
on edge-to-edge service curves, compared to an incremental delay computation,
as described already in Section 2. The advantage can further on be seen in terms
of the acceptance ratio in Figure 4, and 5, whereas the importance of the Pay
Bursts Only Once phenomenon increases, if a larger CBS is used. In addition
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Fig. 3. DFN Topology and Example Level 1 Prohibited Turns

the Extended Pay Bursts Only Once principle is of major relevance, if the load
on the network is high, and if large bursts are permitted. In case of a high
load, flows are likely to share common sub-paths, and the interference of such
flows with each other is much more accurately described by the Extended Pay
Bursts Only Once principle. Thus, the form presented in (21), allows to derive
tighter delay bounds, and thus to increase the acceptance ratio. In particular,
as Figure 6 shows, the delay bound for the 99-percentile of the flows is reduced
from above 112 ms to 81 ms in case of the Pay Bursts Only Once principle, and
than to 59 ms in case of the extended principle for aggregate scheduling. For the
95-percentile, 85 ms, 63 ms, and 49 ms can be given. Further on, the load, up to
which an acceptance ratio of for example 0.95 can be achieved, can be multiplied,
when accounting for the Extended Pay Bursts Only Once phenomenon.

6 Conclusions

In this paper we have shown that a counterpart to the Pay Bursts Only Once
phenomenon exists for interfering flows in aggregate scheduling networks. We
then have derived a closed form solution for the end-to-end per-flow service
curve in arbitrary feed forward aggregate scheduling networks, where links are
of the rate-latency type, and flows are sigma-rho leaky bucket constraint. Our
solution accounts for the known Pay Bursts Only Once principle, and extends
it to aggregate scheduling in that bursts of interfering flows are paid only once,
too. Thus, our form allows to give significantly closer bounds on the delay, while
the intuitive form reduces computational complexity, if for example applied as a
decision criterion for a Differentiated Services admission control in a Bandwidth
Broker. A significant performance gain has been shown by simulation results.
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