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Abstract—We consider receiver design for coded transmission
over linear Gaussian channels. We restrict ourselves to the class
of lattice codes and formulate the joint detection and decoding
problem as a closest lattice point search (CLPS). Here, a tree search
framework for solving the CLPS is adopted. In our framework,
the CLPS algorithm is decomposed into the preprocessing and tree
search stages. The role of the preprocessing stage is to expose the
tree structure in a form matched to the search stage. We argue
that the forward and feedback (matrix) filters of the minimum
mean-square error decision feedback equalizer (MMSE-DFE) are
instrumental for solving the joint detection and decoding problem
in a single search stage. It is further shown that MMSE-DFE fil-
tering allows for solving underdetermined linear systems and using
lattice reduction methods to diminish complexity, at the expense of
a marginal performance loss. For the search stage, we present a
generic method, based on the branch and bound (BB) algorithm,
and show that it encompasses all existing sphere decoders as special
cases. The proposed generic algorithm further allows for an inter-
esting classification of tree search decoders, sheds more light on the
structural properties of all known sphere decoders, and inspires
the design of more efficient decoders. In particular, an efficient
decoding algorithm that resembles the well-known Fano sequen-
tial decoder is identified. The excellent performance—complexity
tradeoff achieved by the proposed MMSE-DFE Fano decoder is
established via simulation results and analytical arguments in sev-
eral multiple-input multiple-output (MIMO) and intersymbol in-
terference (ISI) scenarios.

Index Terms—Closest lattice point search (CLPS), Fano decoder,
lattice codes, sequential decoding, sphere decoding, tree search.

1. INTRODUCTION

ECENT years have witnessed a growing interest in the
Rclosest lattice point search (CLPS) problem. This interest
was increased by the connection between CLPS and maximum-
likelihood (ML) decoding in multiple-input multiple-output
(MIMO) channels [1]. MIMO channels offer significant ad-
vantages in terms of increased throughput and reliability at
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the price of a more challenging decoding task for the receiver.
For example, the exhaustive search implementation of ML
decoding has a complexity that grows exponentially with the
degrees of freedom available in the channel. This observation
inspired several approaches for suboptimal decoding that offer
different performance—complexity tradeoffs (e.g., [2], [3]).

Reduced complexity decoders are typically obtained by ex-
ploiting the codebook structure. The scenario considered in our
work is no exception. In principle, the decoders considered here
exploit the underlying lattice structure of the received signal to
cast the decoding problem as a CLPS. Some variants of such
decoders are known in the literature as sphere decoders (e.g.,
[4]1-[7]). These decoders typically exploit number-theoretic
ideas to efficiently span the space of allowed codewords (e.g.,
[8], [9]). The complexity of such decoders was shown, via
simulation and numerical analysis, to be significantly smaller
than the exhaustive ML decoder in many scenarios of practical
interest (e.g., [4], [5]). The complexity of the state of the art
sphere decoder, however, remains prohibitive for problems
characterized by a large dimensionality [10]. This observation
is one of the main motivations for our work.

The overriding goal of our work is to establish a general
framework for the design and analysis of tree search algorithms
for joint detection! and decoding. Toward this goal, we first
divide the decoding task into two interrelated stages; namely,
1) preprocessing and 2) tree search. The preprocessing stage
is primarily concerned with exposing the underlying tree
structure from the noisy received signal. Here, we discuss the
integral roles of minimum mean-square error decision feedback
equalizer (MMSE-DFE) filters, lattice reduction techniques,
and relaxing the boundary control (i.e., lattice decoding) in tree
search decoding. We then proceed to the search stage where a
general framework based on the branch and bound (BB) algo-
rithm is presented. This framework establishes, rigorously, the
equivalence in terms of performance and complexity between
different sphere and sequential decoders. We further use the
proposed framework to classify the different search algorithms
and identify their advantages/disadvantages. The MMSE-DFE
Fano decoder emerges as a special case of our general frame-
work that enjoys a favorable performance—complexity tradeoff.
We establish the superiority of the proposed decoder via
numerical results and analytical arguments in several rele-
vant scenarios corresponding to coded as well as uncoded

ITn the sequel, the term detection refers to receiver processing that assumes
uncoded transmission. Joint detection and decoding refers to receivers that
handle the linear channel and the channel code jointly (possibly in a suboptimal
way).
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transmission over MIMO and intersymbol-interference (ISI)
channels. More specifically, in our simulation experiments, we
apply the tree search decoding framework to uncoded vertical
Bell Labs layered space-time architecture (V-BLAST) [11],
linear dispersion space—time codes [12], algebraic space—time
codes [13]-[15], and trellis codes over ISI channels [16]. In
all these cases, our results show that the MMSE-DFE Fano
decoder achieves near-ML performance with a much smaller
complexity than the state-of-the-art decoders. Note that another
classification of tree search algorithms, based on a different
definition of complexity appeared in [17].

The rest of the paper is organized as follows. Section II intro-
duces our system model and notation. In Section III, we consider
the design of the preprocessing stage and discuss the interplay
between this stage and the tree search stage. In Section IV, we
present a general framework for designing tree search decoders
based on the BB algorithm. In Section V, we establish the supe-
rior performance—complexity tradeoff achieved by the proposed
MMSE-DFE Fano decoder, using analytical arguments and nu-
merical results, in several interesting scenarios. Finally, we offer
some concluding remarks in Section VI.

A brief comment about notation is now in order. Throughout
the sequel, vectors are denoted by bold lowercase characters
(e.g., z), and matrices are denoted by bold uppercase charac-
ters (e.g., H). Z,R, C refer to the ring of integers, field of real
numbers, and field of complex numbers, respectively.

II. SYSTEM MODEL

We consider the transmission of lattice codes over linear
channels with additive white Gaussian noise (AWGN). The
importance of this problem stems from the fact that several very
relevant applications arising in digital communications fall in
this class, as it will be illustrated by some examples at the end
of this section. Let A C R™ be an m-dimensional lattice, i.e.,
the set of points

A={A=Gz:z 7™} (1)
where G € R™*™ is the lattice generator matrix. Let v € R™
be a vector and R a measurable region in R™. A lattice code
C(A,v,R) is defined [18]-[20] as the set of points of the lattice
translate A + v inside the shaping region R, i.e.,

CAv,R)={A+v}NR. (2)
Typically, the translate vector v is used to maximize the number
of lattice points inside R and/or randomize the distribution of
the codebook over R [18], [21]. Without loss of generality, we
can also see C(A, v, R) as the set of points ¢ + v, such that the
codewords ¢ are given by
¢ =Gz, forz e U 3)
where U C Z™ is the code information set.

The linear additive noise channel is described, in general, by

the input—output relation

r=H(c+v)+2 4)
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where r € R" denotes the received signal vector, z ~ N(0, 1)
is the AWGN vector, and H € R™*™ is a matrix that defines
the channel linear mapping between the input and the output.

Consider the following communication problem: a vector of
information symbols z is generated with uniform probability
over U, the corresponding codeword ¢ = Gz is produced by
the encoder, and the signal ¢ + v is transmitted over the channel
(4). Assuming H and » known to the receiver, the ML decoding
rule is given by

# = argmin [r — Hv — HGz|*. 5)
xcld

The constraint &/ C Z™ implies that the optimization problem
in (5) can be viewed as a constrained version of the CLPS with
lattice generator matrix given by HG and constraint set /.

A few remarkable examples of the above framework are as
follows.

1. MIMO flat-fading channels: One of the simplest and most
widely studied examples is a MIMO V-BLAST? system
with squared quadrature amplitude modulation (QAM)
constellations, M transmit, and /N receive antennas, op-
erating over a flat Rayleigh-fading channel. The baseband
complex received signal® in this case can be expressed as

[ P 1yc
C: H C C
r i c +z
CNXM j

where the complex channel matrix HC € is com-
posed of independent and identically distributed (i.i.d.) el-
ements /1§ ; ~ Nc(0, 1), the input complex signal ¢ has
components ¢ chosen from a unit-energy Q2-QAM con-
stellation, the noise has i.i.d. components z{ ~ N¢(0,1),
and p denotes the signal-to-noise ratio (SNR) observed at
any receive antenna. The system model in (6) can be ex-
pressed in the form of (4) by appropriate scaling and by
separating the real and imaginary parts using the vector
and the matrix transformations defined by

(6)

u® — u = [Re{u}”, Im{u}"]"
) _ [Re{H} —Tm{H%}
H°— H= Im{HC} Re{HC}

The resulting real model is given by (4) where n = 2N,
m = 2M, and the constraint set is given by U = Z7),
with Zg = {0,...,Q — 1} denoting the set of integers
residues modulo Q.

In the case of V-BLAST, the lattice code generator ma-
trix G = kI, where & is a normalizing constant, function
of ), that makes the (complex) transmitted signal of unit
energy per symbol. This formulation extends naturally to
MIMO channels with more general lattice-coded inputs
[20]. In general, a space—time code of block length 7' is
defined by a set of matrices C° = [¢§, . .., ¢5] in CM*T,

2In the sequel, V-BLAST refers to the transmission of independent uncoded
data streams from the different transmit antennas.

3We use the superscript® to denote complex variables.
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The columns of the codeword C° are transmitted in par-
allel on the M transmit antennas in 7" channel uses. The
received signal is given by the sequence of vectors

o= ,/ﬁﬂccﬂzg, t=1,....T. (7

Lattice space—time codes are obtained by taking a lattice
code C(A,v,R) in R?MT and mapping each codeword
¢ into a complex matrix C° according to some linear
one-to-one mapping R?MT  — CMXT Tt is easy to
see that a lattice-coded MIMO system can be again
expressed by (4) where the channel matrix H is pro-
portional (through an appropriate scaling factor) to the
block-diagonal matrix

Re{H‘}
Im{H}

Ire Sy ®)
where ® denotes the Kronecker product. In this case, we
have n = 2NT and m = 2MT. Interestingly, for a wide
class of linear dispersion (LD) codes [12], [22]-[25], the
information set U is still given by Z7, as in the simple
V-BLAST case, although the generator matrix G is gen-
erally not proportional to I. For other classes of lattice
codes [20], with more involved shaping regions R, the
information set / does not take on the simple form of an
“hypercube.” For example, consider A obtained by con-
struction A [26],i.e., A = C' 4+ QZ™, where C C Ly is
a linear code over Z g with generator matrix in systematic
form [I, PT]T. A generator matrix of A is given by [26]

I 0
G:[P QI] ©

Typically, the shaping region R of the lattice code
C(A,v,R) can be an m-dimensional sphere, the funda-
mental Voronoi region of a sublattice A’ C A, or the
m-dimensional hypercube. In these cases, incorporating
the information set constraint in the search for the ML
codeword might be difficult.

2. ISI Channels: For simplicity, we consider a baseband real
single-input single-output (SISO) ISI channel with the
input and output sequences related by

L
T = E heci—¢ + 2
=0

where (hg,...,hy) denotes the discrete-time channel
impulse response, assumed of finite length L + 1. The
extension to the complex baseband model is imme-
diate. Assuming that the transmitted signal is padded
by L zeroes, the channel can be written in the form (4)
where ¢ = [c1,...,¢,]7 is the transmitted sequence,

r € R™*L is the received sequence, and the channel
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matrix H € RO"L)%™ takes on the banded Toeplitz

form
_ ho .
hl }Lo
H = hL S . . . ho
}LL . hl
hr |

A wide family of trellis codes obtained as coset-codes
[18], [19], including binary linear codes, can be formu-
lated as lattice codes where A is a Construction A lattice
and the shaping region R is chosen appropriately. In par-
ticular, coded modulation schemes based on the ()-PAM
constellation obtained by mapping group codes over Z
onto the ()-PAM constellation can be seen as lattice codes
with hypercubic shaping R. The important case of binary
convolutional codes falls in this class for Q = 2.

III. THE PREPROCESSING STAGE

In our framework, we divide the CLPS into two stages;
namely, 1) preprocessing and 2) tree search. The complexity
and performance of CLPS algorithms depend critically on
the efficiency of the preprocessing stage. Loosely, the goal of
preprocessing is to transform the original constrained CLPS
problem, described by the lattice generator matrix HG and by
the constraint set I/, into a form which is friendly to the search
algorithm used in the subsequent stage. In the following, we
discuss the different tasks performed in the preprocessing stage.
In general, a friendly tree structure can be exposed through
three steps: left preprocessing, right preprocessing, and forming
the tree.

Some options for these three steps are illustrated in the fol-
lowing subsections. However, before entering the algorithmic
details, it is worthwhile to point out some general considera-
tions. The classical sphere decoding approach to the solution of
the original constrained CLPS problem (5) consists of applying
QR decomposition on the combined channel and code matrix,
i.e., letting HG = QR where Q € R™*™ has orthonormal
columns and R € R™*™ is upper triangular. Equation (5) can
be written equivalently as

# = argmin |y — Rz|? (10)
xzcU
where ' = QT (r — Hv). If rank(HG) = m, R has nonzero
diagonal elements and its triangular form can be exploited to
search for all the points & € U such that Rz is in a sphere of a
given search radius centered in 4/'. If the sphere is nonempty, the
ML solution is guaranteed to be found inside the sphere, other-
wise, the search radius is increased and the search is restarted.
Different variations on this main theme have been proposed in
the literature, and will be reviewed in Section IV as special cases
of a general BB algorithm. Nevertheless, it is useful to point out
here the two main sources of inefficiency of the above approach.
1) It does not apply to the case rank(HG) < m and, even when
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rank(HG) = m but HQG is ill-conditioned, the spread (or dy-
namic range) of the diagonal elements of R is large. This entails
large complexity of the tree search [27]. Intuitively, when HG is
ill-conditioned, the lattice generated by HG has a very skewed
fundamental cell such that there are directions in which it is very
difficult to distinguish the points { HGz : ¢ € U};2) Enforcing
the information set constraint £ € I/ can be very difficult since
checking the condition £ € U during the search may entail a
significant complexity.

Left preprocessing can be seen as an effort to tackle the first
problem: it modifies the channel matrix and the noise vector
such that the resulting CLPS problem is nonequivalent to ML
(therefore, it is suboptimal), but it has a much better condi-
tioned “channel” matrix. The second problem can be tackled
by relaxing the constraint set I/ to the whole Z™, i.e., searching
over the whole lattice A instead of only the lattice code C (or
lattice decoding). In general, lattice decoding is another source
of suboptimality. Nevertheless, once the boundary region is re-
moved, we have the freedom of choosing the lattice basis which
is more convenient for the search algorithm. This change of lat-
tice basis is accomplished by right preprocessing. Finally, the
tree structure is obtained by factorizing the resulting combined
channel-lattice matrix in upper triangular form, as in classical
sphere decoding. Overall, left and right preprocessing combined
with lattice decoding are a way to reduce complexity at the
expense of optimality. Fortunately, it turns out that an appro-
priate combination of these elements yields significant saving
in complexity with very small degradation with respect to the
ML performance. Thus, it yields a very attractive decoding so-
lution. While the outstanding performance of appropriate pre-
processing and lattice decoding can be motivated via rigorous
information-theoretic arguments [20], [21], [28], here we are
more concerned with the algorithmic aspects of the decoder and
we shall give some heuristic motivation based on “signal-pro-
cessing” arguments.

Finally, we note that the notion of complexity adopted in this
work does not capture the complexity of the preprocessing stage
(mostly cubic in the lattice dimension). In practice, this assump-
tion is justified in slowly varying channels where the complexity
of the preprocessing stage will be shared by many transmission
frames (e.g., a wired ISI channel or a wireless channel with sta-
tionary terminals). If the number of these frames is large enough,
i.e., the channel is slow enough, the preprocessing complexity
can be ignored compared to the complexity of the tree-search
stage which has to be independently performed in every frame.
Optimizing the complexity of the preprocessing stage, however,
is an important topic, especially for fast-fading channels.

A. Taming the Channel: Left Preprocessing

In the case of uncoded transmission (G = I), QR decom-
position of the channel matrix H (assuming rank(H) = m)
allows one to employ a simple recursive detection algorithm of
the information symbols z. Indeed, @ is the feedforward matrix
of the zero-forcing decision feedback equalizer (ZF-DFE) [11].
In general, sphere decoders can be seen as ZF-DFEs with some
reprocessing capability of their tentative decisions.

It is well known that ZF-DFE is outperformed by the
MMSE-DFE in terms of signal-to-interference-plus-noise ratio
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(SINR) at the decision point, under the assumption of correct
decision feedback [29]. This observation motivates the pro-
posed approach for left preprocessing [27]. This new matrix can
be obtained through the QR decomposition of the augmented

channel matrix
H .

where Q e R(+m)Xm hag orthonormal columns and R is
upper triangular. Let @, be the upper n X m part of @, then
Q, and R; are the MMSE-DFE forward and backward filters,
respectively [20]. The transformed CLPS

H=2 (11)

min |y — R;Gz|? (12)
xzcld

with ' = (QTr — Ryv) is not equivalent to (5) since, in gen-
eral, @, does not have orthonormal columns. The additive noise
w = 9 — R1Gx in (12) contains both a Gaussian component,
given by Qsz and a non-Gaussian (signal-dependent) compo-
nent, given by (Q1 H — Ry)(c + v). Nevertheless, for lattice
codes such that cov(e+v) = I, it can be shown that cov(w) = I
[20]. Hence, the additive noise component w in (12) is still
white, although non-Gaussian and data dependent. Therefore,
the minimum distance rule (12) is expected to be only slightly
suboptimal.# On the other hand, the augmented channel matrix
H in (11) has always rank equal to m and it is well conditioned,
since R{Rl = I + HTH. Therefore, in some sense we have
tamed the channel at the (small) price of the non-Gaussianity of
the noise. The better conditioning achieved by the MMSE-DFE
preprocessing is illustrated later in Fig. 1 (b) and (c).

B. Inducing Sparsity: Right Preprocessing

In order to obtain the tree structure, one needs to put B1G
in upper triangular form R (e.g., via QR decomposition).
The sparser the matrix R, the smaller the complexity of the
tree search algorithm. For example, a diagonal R means that
symbol-by-symbol detection is optimal, i.e., the tree search
reduces to exploring a single path in the tree. Loosely, if one
adopts a depth-first search strategy, then a sparse R will lead to
a better quality of the first leaf node found by the algorithm.5
Consequently, the algorithm finds the closest point in a shorter
time [4].

While we have no rigorous method for relating the “spar-
sity” of R to the complexity of the tree search, inspired by deci-
sion feedback equalization in ISI channel, we define the sparsity
index of the upper triangular matrix R as follows:

m 2
1T

Z] —1;-1 ] ( 1 3)

i€{1,...,m} Tii

where 7; ; denotes the (¢, j)th element of R. One can argue that

the smaller S(R) the sparser R (e.g., S(R) = 0 for R diag-

onal).The goal of right preprocessing is to find a change of basis

4This argument can be made rigorous by considering certain classes of lattices
of increasing dimension, Voronoi shaping and random uniformly distributed
dithering common to both the transmitter and the receiver, as shown in [20],
[21].

SMore details on the different search strategies are reported in Section IV.
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Fig. 1.

st 0 0 0 0 0 0 O

937

s 0 0 0 0 0 0 O

(d)

The effect of left preprocessing on the lattice (parts (b) and (c)) and the right preprocessing on the information set (parts (a) and (d)). (a) The translated

Z? lattice and the lattice code (Z2 + v) N R.. (b) The received lattice after channel distortion(multiplication by H) (R7#(Z> 4 v) and R, R). (c) The received
lattice after MMSE-DFE left preprocessing (Rarvse(Z2 + ¢) and RyseR). (d) Boundary control after right preprocessing. (U~1(Z2 N (R — v))).

of the lattice { R1Gz : £ € Z™}, such that the new lattice gener-
ator matrix S satisfies S = QR with S(R) as small as possible.
This amounts to finding a unimodular matrix 7" (i.e., the entries
of T and T ! are integers) such that R{G = QRT with Q
unitary and S(R) minimized over the group of unimodular ma-
trices. This optimization problem appears very difficult to solve;
however, there exist many heuristic approaches to find unimod-
ular matrices that give small values of S(R). Examples of such

methods, considered here, are lattice reduction, column permu-
tation, and a combination thereof.

Lattice reduction finds a reduced lattice basis, i.e., the
columns of the reduced generator matrix S have small norms
and are as orthogonal as possible.® The most widely used reduc-

SFor more details on the different notions and methods of lattice reduction,
the reader is referred to [30].
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tion algorithm is due to Lenstra, Lenstra, and Lovasz (LLL) [31]
and has a polynomial complexity in the lattice dimension. An en-
hanced version of the LLL algorithm, namely, the deep insertion
modification, was later proposed by Schnorr and Euchner [9].
LLL with deep insertion gives a reduced basis with significantly
shorter vectors [30]. In practice, the complexity of the LLL
with deep insertion is similar to the original one even though it
is an exponential time algorithm in the worst case sense [30].

Another method for decreasing S(R) consists of ordering the
columns of R @G, i.e., by right-multiplication by a permutation
matrix X. In the sequel, we shall use the V-BLAST greedy
ordering strategy proposed in [11], [32]. This algorithm finds
a permutation matrix X such that R{G = QRY maximizes
min; rzi. Since

R'R=32""G'RIR,Gx™*
ie., the set {3 ; 3 1,...,m} depends only on R;G
and not on X, by maximizing the minimum rfz this algorithm
miminizes S(R) over the group of permutation matrices (a sub-
group of the unimodular matrices).

Lattice reduction and column permutation can be com-
bined. This yields a unimodular matrix ' = ¥T';, where T';
is obtained by lattice-reducing R1G and ¥ by applying the
V-BLAST greedy algorithm on the resulting reduced matrix
R.GT;".

As observed before, the unimodular right multiplication does
not change the lattice but may significantly complicate the
boundary control. In fact, we have

i =

min |y — R, Gx|? = min |y’ — QRTz|?
xzelU zeU
= min |Q"y — Rz|*.

(14)
zeTU

The new constraint set T/ might be even more complicated to
enforce than the original information set/ (see Fig. 1(d)). How-
ever, it is clear that although modifying the boundary control
may resultin a significant complexity increase for ML decoding,
lattice decoding is not affected at all, since TZ™ = 7™.

C. Forming the Tree

The final step in preprocessing is to expose the tree structure
of the problem. In this step, QR decomposition is applied on the
transformed combined channel and lattice matrix QITH GT ',
after left and right preprocessing. The upper triangular nature of
R means that a tree search can now be used to solve the CLPS
problem. Fig. 2 illustrates an example of such a tree.

Here, we wish to stress that our approach for exposing the
tree is fundamentally different from the one traditionally used
for codes over finite alphabets (e.g., linear block codes, convo-
lutional codes, trellis coset codes in AWGN channels). Here, we
operate over the field of real numbers and consider the lattice
corresponding to the joint effect of encoding and channel dis-
tortion. In the conventional approach, the tree is generated from
the trellis structure of the code alone, and hence, does not allow
for a natural tree search that handles jointly detection (the linear
channel) and decoding. In fact, joint detection and decoding is
achieved at the expenses of an increase of the overall system
memory (joint trellis), or by neglecting some paths in the search
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X
10
(Root n:ode)

1

'3
R

Level 0 Level 1 Level 2 Level 3 Level 4

Fig. 2. Tree representation of the paths searched by sequential decoding
algorithms in the case m = 4

(e.g., by per-survivor reduced state processing). Since operating
on the full joint trellis is usually too complex, both the proposed
and the conventional per-survivor (reduced state) approach are
suboptimal, and the matter is to see which one achieves the best
performance—complexity tradeoff.

For the sake of convenience, in the following we shall denote
again by y the channel output after all transformations, i.e., the
tree search is applied to the CLPS problem mingezm |y — Rx|?
with R in upper triangular form. The components of vectors and
matrices are numbered in reverse order, so that the preprocessed
received signal can finally be written as

Y Tm,m Tm,1 o
’ :m 0 Tm—1,m—1 Tm—1,1 m
1 | ' ' 431
Y 0 A 0 71,1
W
+ o], as

w1

Notice that after preprocessing the problem is always squared,
of dimension m, even though the original problem has arbitrary
m and n. Throughout the paper, we consider a tree rooted at a
fixed dummy node zy. The node at level & is denoted by the label
z¥ = (11,22,...,71). Moreover, every node ¥ is associated
with the squared distance Zle w;(x}), where

2

7;
w;i (#7) = |yi — Zri,jl'j
=

(16)

The difference between the transmitted codeword & and any
valid codeword « is denoted by Z, i.e., z = & — .

We hasten to stress that the preprocessing steps highlighted
in Sections III-A—C are for a general setting. In some special
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cases, some steps can be eliminated or alternative options can
be used. Some of these cases are listed hereafter.

1. Upper Triangular Code Generator Matrix:
In this case, after taming the channel, H — Rj, the
new combined matrix R, G is also upper triangular and
can be directly used to form the tree without any further
preprocessing (if one decides against right preprocessing).

2. Uncoded V-BLAST:

For the uncoded V-BLAST systems (i.e., G = I), ap-
plying the MMSE-DFE greedy ordering of [33], [32] may
achieve better complexity of the tree search stage than ap-
plying MMSE-DFE left preprocessing, lattice reduction,
and greedy ordering of the final QR decomposition. This
is especially true for large dimensions, where lattice re-
duction is less effective [4].

3. The Hermite Normal Form Transformation:

Ultimately, any hardware implementation of the decoder
requires finite arithmetics. In this case, all quantities are
scaled and quantized such that they take on integer values.
While all the preprocessing steps in Sections III-A—C can
be easily adapted to finite arithmetics, there exist other ef-
ficient transformations for integral matrices that may yield
smaller complexity over the ones mentioned above. For
example, one can apply the Hermite normal form (HNF)
[30] directly on the scaled (and quantized) matrix THG,
such THG = RT, with T unimodular and R upper
triangular with the property that each diagonal element
dominates the rest of the entries on the same row (i.e.,
T >ri; >0, =1,...,m 3 =14+1,...,m) In-
terestingly, the HNF transformation improves the sparsity
index and reduces the preprocessing to a single step.

IV. THE TREE SEARCH STAGE

After proper preprocessing, the second stage of the CLPS cor-
responds to an instance of searching for the best path in a tree. In
this setting, the tree has a maximum depth mm, and the goal is to
find the node(s) at level m that has (have) the least squared dis-
tance Y i, w;(z}). Visiting all leaf nodes to find the one with
the least distance is either prohibitively complex (exponential
in m), or not possible, as with lattice decoding. The complexity
of tree search can be reduced by the BB algorithm [34], [35]
which determines if an intermediate node :lr’f, on extending, has
any chance of yielding the desired leaf node. This decision is
taken by comparing the cost function assigned to the node by the
search algorithm, against a bounding function. In the following
subsection, we propose a generic tree search stage, inspired by
the BB algorithm, that encompasses many known algorithms for
CLPS as its special cases. We further use this algorithm to clas-
sify various tree search algorithms and elucidate some of their
structural properties.

A. Generic Branch and Bound Algorithm

Before describing the proposed algorithm, we first need to
introduce some more notation.

e ACTIVE is an ordered list of nodes.
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s f(x%) € Ris the cost function of any node z¥ in the tree,
and t € R™*! is the bounding function.

+ Any node z¥ in the search space of the search algorithm
is a valid node, if f(zV) < t.

* A node is generated by the search algorithm if the node
occupies any position in ACTIVE at some instant during
the search.

* “sort” is arule for ordering the nodes in the list ACTIVE.

e “gen” is a rule defining the order for generating the child
nodes of the node being extended.

* ¢g; and go are rules for tightening the bounding function.

* At any instant, the leaf node with the least distance gen-
erated by the search algorithm so far in the search process
is stored in Z.

*  We define the search complexity of a tree search algorithm
as the number of nodes generated by the algorithm.

* Two search algorithms are said to be equivalent if they
generate the same set of nodes.

* A BB algorithm whose solution is guaranteed to be (one
of) leaf node(s) with least distance is called an optimal
BB algorithm. If the solution is not guaranteed to have
the least distance to ¢ among all leaf nodes, then the BB
algorithm is a heuristic BB algorithm.

We are now ready to present our generic branch and bound
(GBB) search algorithm.

GBB(f7 t7 30Tt7 gen, gi, 92):

1. Create the empty list ACTIVE, and place the root node in .
ACTIVE. Setn. «— 1
2. Let ¥ be the top node of ACTIVE.
If 2% is a leaf node (k = m), then
t— gl(t7 f(xrln)) and

& «— arg min (Z w;(xh), Z w; (5:;)) .
=1 =1
Remove z7* from ACTIVE.
Go to step 4.
If % is not a valid node, then remove z¥ from ACTIVE.
Go to step 4.
If all valid child nodes of ¥ have already been generated,
then remove z* from ACTIVE. Go 1o step 4.

Generate a valid child node m'f 1 oof z’f , not generated
before, according to the order gen, and place it in
ACTIVE. Set n. < n.+1.Sett «— go(t,n., ACTIVE).
Update f(z}), f(z™).

3. Sort the nodes in ACTIVE according to sort.

4. If ACTIVE is empty, then exit. Else, Go to step 2.

In GBB, g; allows one to tighten the bounding function when
a leaf node reaches the top of ACTIVE, whereas g» allows for
restricting the search space in heuristic BB algorithms. For ex-
ample, setting

g2(t, net, ACTIVE) = [—00, —00, ..., —oc]”

will force the search algorithm to terminate when the number of
nodes generated increases beyond a tolerable limit on the com-
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plexity given by n. ;. Whenever a leaf node reaches the top of
ACTIVE, % is updated if appropriate. Now, we use GBB to clas-
sify various tree search algorithms in three broad categories.
This classification highlights the structural properties and ad-
vantages/disadvantages of the different search algorithms.

1) Breadth-First Search: GBB becomes a breadth-first
search (BrFS) if ¢1 (¢, f(2}*)) = t, and the cost function f of
any node, once determined, is never updated. Ultimately, all
nodes x¥ whose cost function along the path ¥ does not rise
above the bounding function, are generated before the algo-
rithm terminates, unless the go function removes their parent
nodes from ACTIVE. Now, we can establish the equivalence
between various sphere/sequential decoders and BrFS.

The first algorithm is the Pohst enumeration strategy re-
ported in [8]. In this strategy, the bounding function ¢ consists
of equal components Cy, where C| is a constant chosen before
the start of search,” and the cost function of a node :t’f is
f(xk) = 3F | wi(x}). Therefore, all nodes ¥ in the search

space that satisfy

k

> wi (1) < Co (17)
i=1

are generated before termination. Generating the child nodes in
this strategy is simplified by the following observation. For any
parent node ¥, the condition Zfill w;(zh) < Cp for the set
of generated child nodes implies that the (k + 1)th component
of the generated child nodes lies in some interval [ag, a;]. The
second example is the statistical pruning (SP) decoder which is
equivalent to a heuristic BrFS decoder. Two variations of SP are
proposed in [36], the increasing radii (IR) and elliptical pruning
(EP) algorithms. The IR algorithm is a BrFS with the bounding
function t = {t1,...,tmn}, where ¢, 1 < k < m are constants
chosen before the start of the search. The cost function for any
node in IR is the same as in Pohst enumeration. The EP algo-
rithm is given by the bounding functiont = {1,..., 1}, and the
cost function for the node z} given by

fahy = 3 i)
=1k

e

where e, 1 < k < m are constants. More generally, when
g2(-) = t, i.e., g2 is not used, the resulting BrFS algorithm
is equivalent to the Wozencraft sequential decoder [37] where,
depending on the cost function, the decoder can be heuristic or
optimal.

The M-algorithm [17] and T'-algorithm [38] are also exam-
ples of heuristic BrFS. Here, however, g» serves an important
role in restricting the search space. In both algorithms, sort is
defined as follows. Any node in ACTIVE at level & is placed
above any node at level k£ + 1, and nodes in the same level are
sorted in ascending order of their cost functions. In the M -algo-
rithm, after the first node at level k£ + 1 is generated (indicating
that all valid nodes at level k have already been generated), g-
sets £y, to the cost function of the Mth node at level & (where M

TFor the sake of simplicity, we assumed in the above classification that the
bounding function is chosen such that at least one leaf node is found before the
search terminates. If, however, no leaf node is found before the search termi-
nates, the bounding function is relaxed and the search is started afresh.
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is an initial parameter of the M -algorithm). In the T-algorithm,
g2 sets ty, to (f(Z¥) + T), where Z¥ is the top node at level k
in ACTIVE, and T is a parameter of the T-algorithm. After
is tightened in this manner, all nodes in ACTIVE at level £ that
satisfy f(z¥) > t; are rendered invalid, and are subsequently
removed from ACTIVE.

In general, BrFS algorithms are naturally suited for applica-
tions that require soft outputs, as opposed to a hard decision on
the transmitted frame. The reason is that such algorithms output
an ordered? list of candidate codewords. One can then compute
the soft outputs from this list using standard techniques (e.g.,
[39], [40]). Here, we note that in the proposed joint detection
and decoding framework, soft outputs are generally not needed.
Another advantage of BrFS is that the complexity of certain
decoders inspired by this strategy is robust against variations
in the SNR and channel conditions. For example, the M -algo-
rithm has a constant complexity independent of the channel con-
ditions. This property is appealing for some applications, es-
pecially those with hard limits on the maximum, rather than
average, complexity. On the other hand, decoders inspired by
the BrFS strategy usually offer poor results in terms of the av-
erage complexity, especially at high SNR. One would expect a
reduced average complexity if the bounding function is varied
during the search to exploit the additional information gained as
we go on. This observation motivates the following category of
tree search algorithms.

2) Depth-First Search: GBB becomes a depth-first search
(DFS) when the following conditions are satisfied. The sorting
rule sort orders the nodes in ACTIVE in reverse order of gener-
ation, i.e., the last generated node occupies the top of ACTIVE,
and

g1 (¢ f (&) = [min (t1, f (£7")) ..., min (. f (@7))]" .

As in BrFS, the cost function of any node, once generated, re-
mains constant. Even among algorithms within the class of DFS
algorithms, other parameters, like gen and g, can significantly
alter the search behavior. To illustrate this point, we contrast in
the following several sphere decoders which are equivalent to
DEFS strategies.

The first example of such decoders is the modified Viterbo—
Boutros (VB) decoder reported in [4]. In this decoder, g2 (+) =,
and the cost function for any node z¥ is

k
f@h) = wil@}).
=1

For any node ¥ and its corresponding interval [ag, ;] for valid
child nodes, the function gen generates the child node with ag
as its (k + 1)th component first. Our second example is the
Schnorr—Euchner (SE) search strategy first reported in [6]. This
decoder shares the same cost functions and g» with the modi-
fied VB decoder, but differs from it in the order of generating
the child nodes. For any node z% and its corresponding interval
[ao, a1] for the valid child nodes, let

o A ap + a1
" 2

-‘ and 6 2 sign(wyi1(zhth)).

8The list is ordered based on the cost function of the different candidates.
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Then, the function gen in the SE decoder generates nodes ac-
cording to the order {a,,, @m + 0, am — O,y + 26, ...},

Due to the adaptive tightening of the bounding function,
DFS algorithms have a lower average complexity than the
corresponding BrFS algorithms with the same cost functions,
especially at high SNR. Another advantage of the DFS approach
is that it allows for greater flexibility in the performance—com-
plexity tradeoff through carefully constructed termination
strategy. For example, if we terminate the search after finding
the first leaf node, i.e., n. = m, then we have the MMSE-DFE
Babai point decoder [27]. This decoder corresponds to the
MMSE-DFE solution aided with the right preprocessing stage.
It was shown in [27] that the performance of this decoder is
within a fraction of a decibel from the ML decoder in systems
with small dimensions. The fundamental weakness of DFS
algorithms is that the sorting rule is static and does not exploit
the information gained thus far to speed up the search process.

3) Best-First Search: GBB becomes a best-first search
(BeFS) when the following conditions are satisfied. The nodes
in ACTIVE are sorted in ascending order of their cost functions,
and

g1 (t, f (ET)) = [min (tlv f (.’BT)) yree ,min (tm'/ f (xT))]T :

Note that in BeFS, the search can be terminated once a leaf node
reaches the top of the list, since this means that all interme-
diate nodes have cost functions higher than that of this leaf node.
Thus, the bounding function is tightened just once in this case.
The stack algorithm [41], [42] is an example of BeFS decoder
obtained by setting g2(-) = ¢, and defining the cost function of
any node in ACTIVE at any instant as follows: If z¥ is a leaf
node, then f(z¥) = —oo. Otherwise, we let m’ffgl be the best
child node of ¥ not generated yet, and define /

k+1

fah) = wilzy}t) — bk +1)
=1

where we refer to b € R as the bias. Because of the efficiency
of the sorting rule, BeFS algorithms are generally more efficient
than the corresponding BrFS and DFS algorithms. This fact is
formalized in the following theorems. Theorem 1 establishes the
efficiency of the stack decoder with b = 0 among all known
sphere decoders.

Theorem 1 [43]: The stack algorithm with b = 0 generates
the least number of nodes among all optimal tree search algo-
rithms.

The following result compares the heuristic stack algorithm,
i.e., b > 0, with a special case of the IR algorithm [36], where
the bounding function takes the form ¢, = bk + 6.

Theorem 2: The IR algorithm with cost function {t : t; =
bk + 6} generates at least as many nodes as those generated by
the stack algorithm when the same bias b is used.

Proof: Appendix C

At this point, it is worth noting that in our definition of search
complexity, we count only the number of generated nodes, i.e.,
nodes that occupy some position in ACTIVE at some instant.
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In general, this is a reasonable abstraction of the actual compu-
tational complexity involved. However, in the stack algorithm,
for each node generated, the cost functions of two nodes are up-
dated instead of one; one for the generated node, and one for the
parent node. Thus, the comparisons in Theorems 1 and 2 are not
completely fair.

Finally, we report the following two advantages offered by the
stack algorithm. First, it offers a natural solution for the problem
of choosing the initial radius (or radii), which is commonly en-
countered in the design of sphere decoders (e.g., [4]). By set-
ting all the components of ¢ to oo, it is easy to see that we are
guaranteed to find the closest lattice point while generating the
minimum number of nodes (among all search algorithms that
guarantee finding the closest point). Second, it allows for a sys-
tematic approach for trading off performance for complexity. To
illustrate this point, if we set b = 0, we obtain the closest point
lattice decoder (i.e., best performance but highest complexity).
On the other extreme, when b — oo, the stack decoder reduces
to the MMSE-DFE Babai point decoder discussed in the DFS
section (the number of nodes visited is always equal to ). In
general, for systems with small m, one can obtain near-optimal
performance with a relatively large values of b. As the number of
dimensions increases, more complexity must be expended (i.e.,
smaller values of b) to approach the optimal performance.

B. Iterative Best-First Search

In Section IV-A, our focus was primarily devoted to com-
plexity, defined as the number of nodes visited by the tree search
algorithm. Another important aspect is the memory require-
ment entailed by the search. Straightforward implementation
of the GBB algorithm requires maintaining the list ACTIVE,
which can have prohibitive lengths in certain applications.
This motivates the investigation of modified implementations of
these search strategies that are more efficient in terms of storage
requirements. The BrFS and DFS sphere decoders discussed
in Sections IV-Al and IV-A.2 lend themselves naturally to
storage efficient implementations. Such implementations have
been reported in [8], [4], [27], [6], [36], [44], [45].

In order to exploit the complexity reduction offered by BeFS
strategy in practice, it is therefore important to seek modified
memory-efficient implementations of such algorithms. This can
be realized by storing only one node at a time, and allowing
nodes to be visited more than once. The search in this case
progresses in contours of increasing bounding functions [46,
Fig. 4], thus allowing more and more nodes to be generated
at each step, finally terminating once a leaf node is obtained.
The Fano decoder [47] is the iterative BeFS variation of the
stack algorithm. Although the stack algorithm and the Fano de-
coder, with the same cost functions, generate essentially the
same set of nodes [46], the Fano decoder visits some nodes
more than once. However, the Fano decoder requires essentially
no memory, unlike the stack algorithm. Appendix A provides
an algorithmic description of the Fano decoder and a brief de-
scription of the relevant parameters. Overall, the proposed de-
coder consists of left preprocessing (MMSE-DFE), right prepro-
cessing (combined lattice reduction and greedy ordering), and
QR decomposition, followed by the Fano (or stack) search stage
for lattice, not ML, decoding.
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V. ANALYTICAL AND NUMERICAL RESULTS

To illustrate the efficiency and generality of the proposed
framework, we utilize it in three distinct scenarios. First, we
consider uncoded transmission over MIMO channels (i.e.,
V-BLAST). Here, we present analytical, as well as simulation,
results that demonstrate the excellent performance—complexity
tradeoff achieved by the proposed Stack and Fano decoders.
Then, we proceed to coded MIMO systems and apply tree
search decoding to two different classes of space—time codes.
Finally, we conclude with trellis coded transmission over ISI
channels.

A. The V-BLAST Configuration

Unfortunately, analytical characterization of the perfor-
mance—complexity tradeoff for sequential/sphere decoders
with arbitrary HG and U still appears intractable. To avoid this
problem, we restrict ourselves in this section to uncoded trans-
mission over flat Rayleigh MIMO channels. In our analysis, we
further assume that ZF-DFE preprocessing (i.e., QR decompo-
sition of H) is used. The complexity reductions offered by the
proposed preprocessing stage are demonstrated by numerical
results.

Theorem 3: The Stack algorithm and the Fano decoder with
any finite bias b achieve the same diversity as the ML decoder
when applied to a V-BLAST configuration with » = n—m > 0.
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Proof: Appendix D.

Theorem 4: In a V-BLAST system with Q2-QAM, the av-
erage complexity per dimension of the stack algorithm for a
sufficiently large bias b is linear in m when the SNR p grows
linearly with . and 7 = n — m > 0.

Proof: Appendix E.

Thus, one can achieve linear complexity with the stack algo-
rithm by allowing the SNR to increase linearly with the lattice
dimension. To validate our theoretical claims, we further report
numerical results in selected scenarios. In our simulations, we
assume that the channel matrix is square and choose the SE enu-
meration as the reference sphere decoder for comparison pur-
poses. In Fig. 3, the average complexity per lattice dimension
and frame error rate of the Fano decoder with b = 1 and the
SE sphere decoder are shown for different values of SNR in a
20 x 20 16-QAM V-BLAST system. Thus, for m = 40, the
Fano decoder can offer a reduction in complexity up to a factor
of 100. Moreover, the performance of the Fano decoder is seen
to be only a fraction of a decibel away from that of the SE de-
coder, which achieves ML performance. We also see that the
frame error rate curves for both the Fano decoder and the SE
(ML) decoder have the same slope in the high-SNR region, as
expected from our analysis. Fig. 4 compares the complexity and
performance of the MMSE-DFE and ZF-DFE Fano decoders
ina 30 x 30 4-QAM V-BLAST system (i.e., m = 60). In
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the figure, the complexity of the MMSE-DFE Fano decoder is
shown to be orders of magnitude lower than the ZF-DFE Fano
decoder. The figure also demonstrates the poor performance of
the MMSE-DFE Babai decoder in this setup. We will come back
to this decoder in Fig. 8. Fig. 5 shows the complexity per dimen-
sion of the ZF-DFE Fano decoder vs. number of dimensions for
4-QAM V-BLAST system, when the SNR p increases linearly
with . The complexity per dimension of the ZF-DFE Fano de-
coder for large m does not increase w.r.t m, when n = ﬁ is
held constant. For the parameters chosen (Q = 2,b = 2), the
upper bound on the stack decoder complexity in (79) holds true
for n > 9.87. Fig. 5 also shows the upper bound in (80) for
1 = 9.88. From the figure, we see that the bound is quite loose

(since the complexity of the Fano decoder is higher than that of
the stack decoder, the complexity curve of the stack algorithm
lies below that of the Fano decoder).

Fig. 6 reports the dependence of the complexity of the Fano
decoder on the value of b. The complexity attains a local min-
imum for some b* > 1, and for large values of b, the com-
plexity of the ZF-DFE Fano decoder decreases as b is increased.
The error rate, however, increases monotonically with b and ap-
proaches that of the ZF-DFE Babai decoder as b — oo. Fig. 7
shows the dependence of performance and complexity of the
MMSE-DFE Fano decoder on the value of stepsize. As the
step size is increased, the complexity of the MMSE-DFE Fano
decoder decreases and its error rate increases. Based on the
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performance—complexity tradeoff required, one can choose an
appropriate step size for the MMSE-DFE Fano decoder. In all
our V-BLAST simulations, the step size was chosen to be 5.
For small dimensions, the performance of the MMSE-DFE
Babai decoder is remarkable. Fig. 8 compares the performance
of this decoder with the ML performance fora 4 x 4, 4-QAM
V-BLAST system. We also report the performance of the
Yao—Wornell and Windpassinger—Fischer (YWWF) decoder
which has the same complexity as the MMSE-DFE Babai
decoder [48], [49]. It is shown that the performance of the
proposed decoder is within a fraction of a decibel from that of
ML decoder, whereas the algorithm in [48], [49] exhibits a loss
of more than 3 dB.

B. Coded MIMO Systems

In this subsection, we consider two classes of space—time
codes. The first class is the LD codes which are obtained by ap-

plying a linear transformation (over C) to a vector of pulse am-
plitude modulation (PAM) symbols. For convenience, we follow
the setup of Dayal and Varanasi [50], where two variants of the
threaded algebraic space—time (TAST) constellations [22] are
used in a 3 X 1 MIMO channel. This setup also allows for
demonstrating the efficiency of the MMSE-DFE preprocessing
in solving underdetermined systems. In [50], the rate-1 TAST
constellation uses 64-QAM inputs at a rate of one symbol per
channel use. The rate-3 TAST constellation, on the other hand,
uses 4-QAM inputs to obtain the same throughput as the rate-1
constellation. As observed in [50], one obtains a sizable perfor-
mance gain when using rate-3 TAST constellation under ML
decoding. The main disadvantage, however, of the rate-3 code
is that it corresponds to an underdetermined system with six-
excess unknowns which significantly complicates the decoding
problem. Fig. 9 shows that the performance of the proposed
MMSE-DFE lattice decoder is less than 0.1 dB away from the
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TABLE 1
COMPLEXITY RATIO OF THE PROPOSED ALGORITHM FOR RATE-3 TAST
CONSTELLATION OVER RATE-1 TAST CONSTELLATION IN A
3 x 1 MIMO SYSTEM

24
31

26
23

28
16

30
12

SNR (dB) || 22
¥ 41

ML decoder for both cases. In order to quantify the complexity
reduction offered by our approach, compared with the general-
ized sphere decoder (GSD) used in [50], we measure the average
complexity increase with the excess dimensions. If we define

A Average complexity of decoding rate-3 constellation

~ Average complexity of decoding rate-1 constellation
(18)

then a straightforward implementation of the GSD, as outlined
in [51], for example, would result in v = O(4%). In fact, even-
with the modification proposed in [50], Dayal and Varanasi
could only bring this number down to v = 460 at an SNR of
30 dB. In Table I, we report y for the proposed algorithm at
different SNRs, where one can see the significant reduction in
complexity (i.e., from 460 to 12 at an SNR of 30 dB). Based
on experimental observations, we also expect this gain in com-
plexity reduction to increase with the excess dimension m — n.

The second space—time coding class is the algebraic codes
proposed in [13]-[15]. This approach constructs linear codes,
over the appropriate finite domain, and then the encoded sym-
bols are mapped into QAM constellations. The QAM symbols
are then parsed and appropriately distributed across the transmit
antennas to obtain full diversity. It has been shown that the com-
plexity of ML decoding of this class of codes grows exponen-
tially with the number of transmit antennas and data rates. Here,
we show that the proposed tree search framework allows for an

efficient solution to this problem. Fig. 10 shows the performance
of MMSE-DEFE lattice decoding for two such constructions of
space—time codes, i.e., Golay space—time code for two transmit
antennas and the companion matrix code for three transmit an-
tennas [13]. In both cases, the performance of the MMSE-DFE
lattice decoder is seen to be essentially the same as the ML
performance. In the proposed decoder, we use the lattice A ob-
tained from underlying algebraic code through Construction A.
The ML performance, obtained via exhaustive search in Fig. 10
is not feasible for higher dimensions due to exponential com-
plexity in the number of dimensions.

C. Coded Transmission Over ISI Channels

In this subsection, we compare the performance of the
MMSE-DFE Fano decoder with the Per-Survivor-Processing
(PSP) algorithm for convolutionally coded transmission over
IST channels. The MMSE-DFE Fano decoder uses the Con-
struction A lattice obtained from the convolutional code. For
this scenario, it is known that PSP achieves near-ML frame
error rate performance [52]. Fig. 11 compares the frame and
bit error rates for a 4-state, rate-1/2 convolutional code with
generator polynomials given by (5,7) and code length 200,
over a five-tap ISI channel. The channel impulse response
was chosen as (0.848,—0.424,0.2545,—0.1696,0.0848).
The Fano decoder with b = 1.2 and step size 5 is seen to
achieve essentially the same performance as the PSP algo-
rithm for this code, with reasonable search complexity over
the entire SNR range. We again note that the loss in lattice
decoding as opposed to finite search space is negligible, due to
MMSE-DFE preprocessing of the channel prior to the search.
The complexity (number of nodes generated in the search)
of the PSP decoder is the same as that of a Viterbi algorithm
for the convolutional code alone. Therefore (neglecting trellis
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Fig. 10. Performance of MMSE-DFE lattice decoding and ML decoding for algebraic space—time codes.
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Fig. 11. Frame and bit error rate curves for the MMSE-DFE Fano and PSP algorithms for convolutional codes over an ISI channel. CC 1 and CC 2 denote the

4-state and 1024-state CC, respectively. The curves denoted by “Int.” indicate interleaving after convolutional coding.

boundaries), the complexity per dimension of the PSP decoder
is R, x S x B, where R, is the rate of the convolutional code,
S the number of states, and B the number of branches per state
in the code trellis. Thus, for the (5,7) code, the complexity
of the PSP decoder is four nodes per dimension. Notice that
the complexity of PSP algorithm is constant with SNR but
increases exponentially with the code constraint length. On the
contrary, the complexity of the MMSE-DFE Fano decoder de-
pends on SNR but it is essentially independent of the constraint
length. Fig. 11 also shows the performance of the MMSE-DFE
Fano decoder for a rate-1/2, 1024-state convolutional code
with generator polynomials (4672, 7542), with the same frame
size. Due to the increased constraint length, the performance
is significantly better (with almost no increase in complexity).
The complexity of PSP algorithm, on the other hand, is 1024
nodes per dimension for this code. Fig. 11 also reports the
performance of the MMSE-DFE Fano decoder when applied
to an interleaved coded system over the ISI channel. This

figure shows the performance gain offered by interleaving (i.e.,
the performance now is within a decibel from the idealized
AWGN scenario). The price is an increased complexity of
the MMSE-DFE Fano algorithm. The complexity increase
due to interleaving is approximately x2 in this setup. Since
interleaving destroys the time-ordering of the symbols input
to the ISI channel, the PSP approach is not applicable with
interleaving. Alternative schemes such as turbo equalization
[53] still require a Bahl-Cocke—Jelinek—Raviv (BCJR) decoder
with the same trellis complexity of the convolutional code
alone, plus a soft-output detector for the ISI channel alone.
Fig. 12 shows the complexities of the MMSE-DFE Fano and
the PSP decoders for the cases considered in this section. For
the 4-state convolutional code, the MMSE-DFE Fano decoder
has an average complexity in the same range as that of the PSP
decoder over the same code. However, for the 1024-state CC,
the complexity of the MMSE-DFE Fano decoder is orders of
magnitude lesser than that of the PSP decoder.



MURUGAN et al.: A UNIFIED FRAMEWORK FOR TREE SEARCH DECODING

T T T T T T T T T

10° A A A A A A A A A

—6— CC 1, MMSE-DFE Fano

—&— CC 2, MMSE-DFE Fano

- © - CC 1 with Int., MMSE-DFE Fano
© |- &-CC 2 with Int, MMSE-DFE Fano
:{ —=g—CC 1, PSP
—A—(CC 2, PSP

Complexity per dimension

SNR

Fig. 12. Complexities of MMSE-DFE Fano and PSP for convolutional
codes over an ISI channel. CC 1 and CC 2 denote the 4-state and 1024-state
CC, respectively. The curves denoted by “Int.” indicate interleaving after
convolutional coding.

VI. CONCLUSION

A central goal of this paper was to introduce a unified
framework for tree search decoding in wireless communica-
tion applications. Toward this end, we identified the roles of
two different, but interrelated, components of the decoder;
namely, 1) Preprocessing and 2) Tree Search. We presented a
preprocessing stage composed of MMSE-DFE filtering for left
preprocessing and lattice reduction with column ordering for
right preprocessing. We argued that this preprocessor allows
for ignoring the boundary control in the tree search stage while
entailing only a marginal loss in performance. By relaxing the
boundary control, we were able to build a generic framework
for designing tree search strategies for joint detection and
decoding. Within this framework, BeFS emerged as a very
efficient solution that offers many valuable advantages. To
limit the storage requirement of BeFS, we rediscovered the
Fano decoder as our proposed tree search algorithm. Finally,
we established the superior performance—complexity tradeoff
of the Fano decoder analytically in a V-BLAST configuration
and demonstrated its excellent performance and complexity in
more general scenarios via simulation results.

APPENDIX A
THE FANO DECODER

In this appendix, we obtain the cost function used in the Fano
decoder from the Fano metric defined for tree codes over general
point-to-point channels, and give a brief description of the Fano
decoder and its properties.

A. Generic Cost Function of the Fano Decoder
For the transmitted sequence Z, let
y=Ri+w (19)

be the system model, as in Section II. In (19), the noise sequence
w is composed of i.i.d Gaussian noise components with zero
mean and unit variance.
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For a general point-to-point channel with continuous output,
the Fano metric of the node .'l:’f can be written as [54]

1) =t Pl 0t (e)
p(y?)

where H(z%) is the hypothesis that ¥ form the first & symbols

of the transmitted sequence.

For 1 < k < m, if Pr(H(2?%)) is uniform over all nodes z¥
that consist of the first £ components of any valid codeword in C,
from (20), the cost function for the Fano decoder for our system
model (19) can be simplified as

e (20)

= ()
£ ah) = = (oh) =log | S em =

k J
> j=1W;j (371)
+—"=. (21
2

Since summation over :z"f in (21) is not feasible, we use the fol-

lowing approximations: first, log(>" a;) ~ log(max(a;)), so

the sum can be approximated by the largest term. Second, for

moderate to high SNRs, the transmitted sequence is actually the

closest vector with a high probability, i.e., the largest term cor-

responds to the transmitted sequence. Thus, (21) can be approx-
imated as

w5(=1) PHE

Zk

= Th 27

log Ee 2 ~ -t
::f

5 (22)

After averaging (22) over noise samples and scaling, we have

f () = éwj (:z:{) — k.

In general, the cost function for the Fano decoder can be
written in terms of the parameter b, the bias, as

B. The Algorithm

The operation of the Fano decoder with no boundary control
(lattice decoding) follows the following steps.

Step 1: (Initialize) Set k — 0,T — 0,& — x¢.
Step 2: (Look forward) x’f"'l — (2%, 141), where T4 is
the (k + 1)th component of the best child node of z¥.
o Step 3:
If f(2y™) < T,
If k + 1 = m (leaf node), then & = x7*; exit.
Else (move forward), k — k + 1.
If f(zh™1) > T - A,
while f(zF) < T — A, T — T — A (tighten
threshold).
Go to step 2.
Else
If (k= 0or f(z¥=1) > T), T — T + A (cannot move
back, so relax threshold).
Go to step 2.
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Else (move back and look forward to the next best node)

z¥ — {2¥71 11}, where z}, is the last component of
the next best child node of z¥~*.

k—k—1.

Go to Step 3. O

Note that T' (i.e., the threshold) is allowed to take values only
in multiples of the step size A (i.e., 0,£A, £2A,...). When
a node is visited by the Fano decoder for the first time, the
threshold 7 is tightened to the least possible value while main-
taining the validity of the node. If the current node does not have
a valid child node, then the decoder moves back to the parent
node (if the parent node is valid) and attempts moving forward
to the next best node. However, if the parent node is not valid,
the threshold is relaxed and attempt is made to move forward
again, proceeding in this way until a leaf node is reached.

The determination of best and next best child nodes is sim-
plified in CLPS problem; the child node generation order gen
in SE enumeration (Section IV-A2) generates child nodes with
cost functions in ascending order, given any node .

C. Properties of the Fano Decoder

The main properties of the Fano decoder used in our analysis
are [54] as follows.

1. A node z¥ is generated by the Fano decoder only if its
cost function is not greater than the bound 7'.

2. Let fj; be the maximum cost function along the trans-
mitted path. The bound T is always less than (fa; + A),
where A is the step size of the Fano decoder; that is,

max{T} < T 2 fu+ A

All nodes that are generated by the Fano decoder are neces-
sarily those with cost function less than the bound 7', by Prop-
erty 1. However, even though the cost function of some node
2% may be smaller than the bound, the node itself might not be
visited when bound takes the value 7T'. If any of the cost func-
tions along the path {z],r < k} increases above T, the node
x7 is not generated and thus z* is not visited. Hence, this is not
a sufficient condition for a node to be generated.

Moreover, in Property 2, the bound T is always lesser than
(far + A), where f}, is the maximum cost function along any
path of length m. A tighter bound is obtained only when the
maximum cost function corresponding to the path with the least
£ ischosen. However, fj along the transmitted path is usually
easier to characterize statistically than f},.

APPENDIX B
PROPERTIES OF THE STACK DECODER

For any node z¥ in the tree, let

k
hab) 23" wiah) - bk
=1

For the stack algorithm, the cost function of any node in AC-
TIVE at any instant is defined as follows: If x’f is a leaf node,
then f(x}) = —oc. Otherwise, we let z} " be the best child
node of &} not generated yet, and define f(zf) = h(z)h').
We note that i of any node, once generated, remains constant
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throughout the algorithm, and f of any node is nondecreasing
as the algorithm progresses.

Proposition 1: Let&x(* = (Z1, ... T, ) be the path chosen by
the stack algorithm, and z7* = (z1,...,,,) be any path in the
tree. Then

max h (i{) < max h (.'E{) . (23)
1<5<m 1<5<m

Proof: On the contrary, assume there exists a path

(Z1,%2, ..., T, Tdt1, - - -, Em ) that does not satisfy (23). Here,

the path is assumed to share the same nodes with the chosen

path until level d, and diverges from the chosen path z from

level d + 1 onwards. Since this path does not satisfy (23)

max h (i‘{) > max h (:i‘]l) .
d+1<j<m d+1<j<m
Let Z¥, k > d, be the node for which maxg41<j<m h(Z]) oc-
curs. Then, we have
h(@h) > h(#]),
Since Z" is the chosen path, the node Z¥ is generated at some
instant before the search terminates. Just before ¥ is generated,
f(@E1) = h(x¥), since T¥ is the best child node of ! not
generated yet. Moreover, since hS:i:’f ) > h(#{T), the node ¢
with cost function f(Z¢) = h(£{™") appears at the top of the
stack at some instant before Z¥ is generated. Therefore, 5:(11+1 is
generated before Z¥ is generated. Since the search does not ter-
minate before Z¥ is generated, applying the same argument, one
sees that all the nodes 5:‘1“2, ..., &]" are generated before Z¥ is
generated. However, once &/ is generated by the stack algo-
rithm, the search terminates, with (Z1, ..., Zd, £d41,---,%m)
as the chosen path, thus leading to a contradiction. Since 1 <
d < m can take any value, the inequality in (23) is satisfied by
all paths.

(24)

d<j<m. 25)

Proposition 2: If

d -
max b (af) > max h (.'1;‘1) (26)
then, the node .'B‘ll is not generated.
Proof: First, we show that if
h (x‘ll) > 11<1;:jm<xm h (:i'{) 27)

then z¢ is not generated. Let (27) be true, and assume z¢ is gen-
erated. Then, just before ¢ is generated, its parent node .'1:‘11*1
is at the top of ACTIVE, with cost function f(z{ ') = h(z{).
However, since h(z{) > h(Z]), 1 < j < m, all nodes along the
chosen path are generated before x{ is generated, and hence, the
search terminates before ¢ is generated. Noting that ¢ can be
generated only if all the nodes z1, . .. 4=1 are generated, and

) ml
applying the same argument for :t‘li_l, ..., x}, we have (26).

APPENDIX C
PROOF OF THEOREM 2

Let Arg be the set of nodes generated by the IR algorithm,
where the bounding function £ has components given by ¢, =
bk+0. Let A be the set of nodes generated by the stack decoder
with the bias b. The IR algorithm in Theorem 2 can be defined
with bounding function given by {¢;, = bk + 6,1 < k < m},

and the cost function for any node z¥ given by Zle w;(zh),
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or equivalently, with the bounding function ¢, = ¢ and cost
function (Zle w;(x}) — bk). As in Appendix B, let

k
h(zh) 2 <Z wi(zt) — bk-)

for any path z¥ in the tree. If § is the bound of the IR algorithm,
then any node z% is generated by the algorithm if and only if
all the conditions {h(z1) < & h(z?) < §,...,h(z¥) < 6},
are satisfied (since z¥ is generated only if z1, ..., x’f_l are also

generated). Therefore, / /

— k. J
AR = {xl : lléljagxkh (.’El) < 6} .

Moreover, § should be such that at least one sequence £ € U is
included within the search space.® Let Zir be a leaf node such
that

(28)

s . h ( j) )
LR = arg iréli} (1lgnjagxm T 29)
i.e., Z1g has the least value of maximum cost function among
all paths of length m. If

J
6 < DR h(#] 1r)
then no £ € U lies within the search space, and the search space
is empty. If lattice decoding is used, then the minimum in (29)
is taken over all £ € Z™. Thus, § > maxi<j<m h(Z] g)-
From Appendix B, Proposition 1, the path chosen by the stack
algorithm Z7" satisfies

max h (5:{) < max h (m{) (30)
1<j<m 1<j<m
where z7* is any other path.
From (29) and (30)
) _ i
1%agxmh (zl) = max h (ml,IR) <é. (31)

From Proposition 2 and (31), A, C Ar.

APPENDIX D
PROOF OF THEOREM 3

In this appendix, we derive an upper bound to the frame error
rate for a V-BLAST system with uncoded input (with Q-PAM
constellation for the components), for the Fano decoder that
visits paths in the regular (Q-PAM signal space. The prepro-
cessing assumed here is QR transformation of H.

From Appendix A, part C, any sequence & can be generated
by the Fano decoder only if its cost function is not greater than
(far + A), where fys is the minimum cost function along the
transmitted sequence path and A is the stepsize of the Fano de-
coder. One has

y:Hz:—}—z:Q(IO{)z‘-}-z (32)

90therwise, 6 is increased and search is repeated afresh.
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and therefore,

’!/<—QT'.¢/: (g)a:-l— (w,l;'{l>

where r = n — m is the excess degrees of freedom in the V-
BLAST system. Since the cost function of a leaf node 7" is

(33)

f@P) = wi@}) = bm = |RZ + w], [* — bm

=1

the conditional pairwise error probability of transmitting & and
decoding « at the receiver can be upper-bounded as

PS(QA? — .’E|fM/H) < Pr (Z w; (211) —bm < far + A)

i=1
(34)
=Pr (|R:i: +'w?+1|2 <bm+ far + A)
(35)
where
fJW = HlaX{O, |w::||——i ?— b7 |w;i% 2 - 2b7 R |'w?-|—1|2 - mb}

In (34), the upper bound is due to the fact that in general,
f(@T) < fam + A is only a necessary condition for z7” to be
decoded by the Fano decoder.

In this section, we obtain an upper bound on the frame error
rate P, of the Fano decoder by union bounding (35) over all
possible sequence pairs {Z € U,z € U : & # z} and averaging
over fy; and H

P.<FEp,ms| Y, P(&— a|far, H) (36)
{zcl a4z}
Inequality (35) can be rewritten as
Pe(z—z|fr, H)
R ~ n ? 7|2
<Pr 0 T+wy| <bm +fu+A+|w]|
(37

2

RY. =«
=Pr (‘<0>x+w1

— Wi > <bm+ fa+A— |w?+1|2>

(33)

=Pr (|Hz+2"—|z]> <bm+ fu + A— w4 ) (39)

<Pr(|Hz+z]*—|z|> <bm + A) (40)
since

fM—|'w:l+1|2 :max{—|'wf+1|2, —|"”?+2|2 —b,...,—mb}<0.

The bound in (40) is now independent of fj; and hence,

P.(z — z |H) = Ey,, (Po(z — z|fy, H))
< Pr(|Hz + 2|)* — |z]> < bm + A). (41)
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Let d?(z,z) = |Hz|? represent the squared Euclidean distance
between the lattice points Hz and Hz. Then

Pr(|Hz + z|*> — |2]*> < mb+ A)
o [CHen ), a0 e
1, d*(z,z) < mb+ A
(42)

by Chernoff bound. For d?(&, ) > mb + A, (42) can be sim-
plified as

Pr(|Hz + z|2 — |22 <mb+ A)
—= 2 T, —merA) —2(m
S 67%(d2(£7:))6(mb+A)/4 (44)
since ¢~ (MbHA)* /(84 @2)) < 1 for d2(&,x) > 0. Let
2 min  (H(z —z)%) (45)
1= x; @, €U it] A
The bound in (42) can be simplified as
Pr(|Hz + z|* — |2|?> < mb+ A)
< e 1/8e(mbHA) /A0S A 46)
— 1, qg <mb+ A.

Noting that the bound in (46) is same for all pairs Z, 2 € U,
z # x, we have from (36)

mb+A Je')
P, < / p(q)dg + Qme(me’AW/
0 m

b+A

e~18p(q)dg
(47)

where p(q) is the probability density function (pdf) of ¢. An
upper bound on p(q) is given by [55]

p(g) < px(q)i <7Z> %

k=1

(48)

where p,(q) is the pdf of a scaled chi-square random vari-
able with n degrees of freedom and mean £, where @ =

(Q% —1)/12 (i.e., a random variable that is the sum of squares

of n ii.d. zero-mean Gaussian variables with variance -2-).
Therefore, we have
P, < AQme(mb+A)/4 /OO e(fq/S)
B mb+A
(n/2-1) ,—q/(257) b+ A
q e mo + n
dg+ Ay | ———, = 49
QI (Dygn 4T 7( 202 ’2) )
< AQmelmb+a)/4 /oo o(=a/8)
Jo
(n/2-1) ,—q/(257) b+ A
q e mo + n
dg+ Ay | ———, = 50
X oar(myen T 7( 202 ’2) (50)
AQ™Me(mb+A)/4 b+ A
e <m27+2 g) oD
1+ 72) 7
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where

p Axnl

o’ = o A= Zl A ( )

is a constant independent of ¢ or p, and v(x, a) is the incom-
plete gamma function. If 4 is bounded (i.e., b < M < o0) Vp,
then e(™b+2)/4 i5 also bounded for all p and finite m. The error
performance of the Fano decoder can now be characterized by
the sum of two terms. The dependence of the first error term on
p is of the form p~(*/2) for large values of SNR, and hence has
the same diversity as the ML decoder. For p > M, the
second term can be bounded as

n/2 ma(m
N mb—f—A?E < ma(mb+ A) 6(%_%)
202 72

np
(52)

_ [ ema(mb+ A) n/2 _maCmbia)

=\ =)
(53)

n/2
< (ema(mb + A)) 54)
np

where (52) follows from inequality (61) on the incomplete
gamma function. The second term also has the dependence
p’(”/ 2), and hence, the Fano decoder achieves the same diver-
sity as that of the ML decoder for this system.

The above derivation also applies to the Stack algorithm,
with minor modifications. Since any path £ # Z is de-
coded as the closest point by the stack algorithm only if
h(z) = >, w;(£}) — bm is not greater than fy; (Proposition
1, Appendix B), the conditional pairwise error probability for
the stack decoder is bounded as

Po(z — | far, H) < Pr (zwi (=) _bm<fM> (55)

i=1

=Pr (|Rz+ wy|* < bm+ fur) . (56)

From (35) and (56), the frame error rate of the stack algorithm is
also bounded by (51), with A = 0. Thus, the stack algorithm too
achieves the same diversity as the ML decoder for a V-BLAST
system, for any finite value of b. O

APPENDIX E
PROOF OF THEOREM 4

The following are required for the proof.

A. Wald’s Inequality

Let So = 0,54, S, ... be arandom walk, with

J

:ZXi

=1

where X;s are i.i.d random variables such that Pr(X; > 0) >0,
Pr(X; < 0) > 0,and E(X;) < 0. Let g(\) = E(e™) be
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the moment generating function of X;. Let Ay > 0 be a root of
g(A\) = 1. Then, from Wald’s identity [54]
Pr(Smax > u) < e7 0% (57)
where Syax = max;(S;).
For the random walk with X; = w? —b, where w; ~ N(0, 1),
the above conditions are satisfied if b > 1. The moment-gener-
ating function for X; = w? — b is given by

e—Ab

V1I=2X

From (58), Ay > 0 can be found as the positive root of the
equation

g(A) = (58)

—2Ab = log(1 — 2A).

Notice that since log(1 — 2)) decreases from 0 to —oco as
A increases from 0 to 3,)o satisfies Ao € (0,0.5). Since
maxo<j<m 95 < maxj>oS;, the bound in (57) is also valid
for any stopped random walk.

B. Upper Bound on (8, k)

For a scaled chi-square random variable X with k degrees of
freedom and mean ko2

Pr(X < ) = (2% g)

where 7 is known as the incomplete gamma function. From
Chernoff bound, we have

8k i
, <_27 _) — Pr(X < f) = / px(p)ds  (59)
20 2 0
[ee] efsm
< /0 e_sb,pX(m)d:v (60)
for s > 0. Minimizing (60) over s > 0, we have
M2 (ks k
7(%%) L) g
o k
L, 507 2 5.

C. Proof

Let ¥ be any path in the tree, and
k
hzh) = wi(z}) - bk
=1

as in Appendix B. Let fjs 2 maxj<;<m h(Z]), where Z is the
transmitted sequence. From Appendix B, Propositions 1 and 2,
any node z¥ is generated only if max; <j<j h(2]) is not above
far- Let G(z%) = 1 if the node z¥ is generated before the algo-
rithm terminates, and 0 otherwise. Then, Y, , Zz’f G(z%) is
the number of nodes generated by the stack algorithm, and

Cp = %EfM,H,Z ZZG(‘TIf)

k=1 gk

(62)
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is the average complexity per dimension of the stack algorithm.
Let Ry, . be the lower k X k part of the R matrix, i.e.,

T,k Tk,1
Ry ;. =
0 T1,1
Then, we have
Pr (G (z}) = 1| fur. H)
2
< Pr (\Rk,kfc’f + w:ff\ — bk < fM) (63)

2

— Pr (’ <R8’k> 531; + w71*+k

where » = n — m is the excess degrees of freedom in the
V-BLAST system. From [5], for each k£ < m, one can find an
(r+ k) x k matrix H r+k,% that has the same distribution as the
lower (r + k) x k part of H, and an (r + k) x (r + k) unitary
matrix © %) whose distribution is independent of Ry, 1, such
that

— bk < far + |w’1"|2> (64)

_ om (R
H, = o +k)< 8k>

Let 271 = Q(Hk)wﬁk. The bound in (64) can now be
rewritten as

Pr (G (2}) = 1| far, H) < Pr (\HTM,,C@'; s
2 < far 0k = [w ) 69)
In (65), far + bk — [w/T5|? can be bounded as
Sar+ok— |’w,’:ff 2
=max { bl — |w 35| b(k— 1)~ w
< max{bk, fy}

k|2

L ) ©6)
(67)

where

] U N L Y )} 8
Let § = max{bk, f},}. Equation (65) can be rewritten as

Pr (G (af) = 1] 6. H)

iy = max{0, jw

_ 2
< Pr <\Hr+k,ki’f + 22*’“\ — gt < ﬂ) . (68)
Using Chernoff bound, (68) can be written as
—(qr—0)*/(8qs
Pr (G () = tlap) < { O a2
17 qk S /8

where ¢, = |fI,q+k7k:ilf|2. Since ¢ = 0 along the transmitted
path, the sum in (62) can be expressed as

Cn<l1

(69)

1 m
By >, Y. Pr(G(ah) =1la.8) | 70
kzl{z’f:|§:’f|25£0}

Let n = £. Then, for |52 # 0, qi in (69) is a scaled
chi-square random variable with (r + k) degrees of
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~k |2
.’E . .
freedom and mean ul - I . Since the three random variables,

H T+k’kz’f, z1+ and (3 are independent, averaging (69) over
qr and [ gives

Pr (G (o) = 1)

B gee)
/ p(qk)qu+/ e (o
0

B
bk
< Pr(j = bk) /0 p(qr)dgr

< Eg —A (9 (g ) dgy

(71)

+ / e_(q“_bk)Z/(sq“)p(qk)qu> + Pr(8 > bk). (72)
bk

In (72), Pr(8 > bk) = Pr(f); > bk) < e %% forb > 1
(see Appendix E, part A). Note that imposing the condi-
tion b > 1 allows us to use a reasonably tight bound on
Pr(f;; > bk) that is independent of m. For b < 1, any tight
bound on Pr(f;, > bk) must depend on m.!° The bound in
(72) amounts to counting all the nodes z% in the search space
when 8 > bk. Since Pr(8 > bk) decreases sufficiently fast as
k increases, this upper bound is still tight for our purposes. For
any .'ir]f # 0, (72) can be further simplified as

(G (z ’“) 1))

/ ququ+/ e
0

—(qk—bk)z/(qu)p(qk)qu_{_e—bkko

bk
(73)
bk %) )
S/ p(ax qu+/ e~ (=R /B () ) dgy, + e ~"* 0
0 0
(74)
bk k o
<~ %77“—1— +ebk/4/ e—(Ik/Bp(qk)qu_i_e—bk)\o
nzy? 2 J0
(75)
bka r+k ebk/4 bEX
<~ ==, TR 76
_7<2n, 5 >+(1+41)(T+k)/2—|—e (76)

with (-, -) as the incomplete gamma function. Assuming r > 0,
(76) can be bounded as

K E
bOl bo 2 eb/2 2
Pr (G (z})=1)<| — 17) +<7) 4Pk
£(@(ah) 1)< (e ) e
77
for n > b and any |Z|> # 0. The inequality in (77) follows

from (61). From (62) and (77)

—_— 78
i+ Z) e

10 ater, we will require a stronger condition on b to guarantee the convergence
of the sums in (79).
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k
2

<14 — ZQ’“ (bal >

ol

n eb/2 + e—bkko (79)
(1+15)
1 1
<1+ -
m o\ 1— Q> bna -5
1 1
-|— — + (80)
Q2 1(;:::/” 1 _ Qe—bAO

when b and 7 are sufficiently large, so that all the three sums
converge. The inequality in (79) is true, since the number of
nodes at level k is Q. Since the terms inside the parenthesis in
(80) are all independent of m, the number of nodes visited by
the stack algorithm scales at most linearly, when n > 79, where
7o is the minimum £ ratio required for convergence of the sums
in (79). (]
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