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Abstract

The Grid is a new paradigm for wide area distributed com-
puting. Management of grid resource information on the
grid is complicated by the fact that grid resources such as
hosts, clusters, virtual organizations, people, mathemati-
cal libraries, software packages, and services have aspects
of their description that change at millisecond rates. This
defining characteristic makes traditional directory service
solutions inappropriate. Our work contributes to the un-
derstanding of resource information representation and re-
trieval in grid computing through the development of a
grid-specific synthetic database benchmark/workload for
a grid resource information repository, and the applica-
tion of the benchmark/workload to three platforms. The
benchmark/workload is a set of queries and ’scenarios’
developed from a platform-neutral data model of grid re-
sources.

The contribution of this paper is threefold: the first is
a synthetic database benchmark/workload. The queries
are meaningful in a grid context, assume an underlying
data model made up of realistic grid resources, and pop-
ulated with realistic data. The second is the application
of the database benchmark on three vastly heterogeneous
“database” platforms: a relational database, mySQL 4.0,
that uses the SQL query language; Xindice 1.1, a native
XML database that uses XPath as its query language; and
MDS2, an LDAP database that uses LDAP as its query
language. The final contribution is a metric that captures
both tangible and less tangible aspects of information re-
trieval. Some of the results we obtain are unexpected;
others provide quantified results to substantiate suspicions
that the grid community already holds.

1 Introduction

The Grid is a new paradigm for wide area distributed com-
puting wherein resources are organized as web services
that can be flexibly and dynamically allocated and ac-
cessed, often to solve problems requiring resources that
span multiple administrative domains [12]. A grid re-
source information repository is any repository of infor-
mation about grid resources such as hosts, clusters, vir-
tual organizations, people, mathematical libraries, soft-
ware packages, and services [8, 14]. This repository might
be a database, a grid registry, or might be information ex-
ported by a grid service. The defining characteristic about
grid resource information that makes traditional direc-
tory service solutions inappropriate is that some resources
have aspects of their description that change at millisec-
ond rates [10]. For instance, a host is often described by
attributes such as the operating system version, chipset,
and amount of memory; attributes that change on the or-
der of every few months or more. Additional attributes,
such as current CPU load and available virtual memory
change far more rapidly, on the order of seconds. Given
the anticipated size of the grid and number of physical re-
sources that are expected to participate, management and
representation of grid resource information is an impor-
tant problem.

Our work contributes to the understanding of re-
source information representation and retrieval in grid
computing through the development of a grid-specific
synthetic database benchmark/workload for a grid re-
source information repository, and the application of the
benchmark/workload to three platforms. The bench-
mark/workload is a set of queries and ’scenarios’ devel-
oped against a data model representing grid resources
that extends the Global Grid Forum [1] (GGF) proposed
GLUE schema [9]. The database schemas for the three
platforms are derived from this single data model using
well-defined derivation rules. The databases are popu-

1



lated with synthetic but realistic data about grid resources.
The data are realistic in terms of the types of entities rep-
resented, the proportions of the entities to one another, and
attribute values that describe the entities. For instance, the
database holds information about 60 clusters, 388 sub-
clusters, 20 users, and 33605 hosts. The queries test a
broad range of database functionality while asking realis-
tic questions. The scenarios are short synthetic workloads
that test query response time of a repository under a work-
load of concurrent query requests and update requests.

The benchmark is applied to three platforms that
could viably host a grid information server: a relational
database, mySQL, that uses the SQL query language;
Xindice [5], a native XML database that uses XPath as its
query language; and MDS2, an LDAP database that uses
LDAP as its query language. Results of the performance
evaluation are assessed on the metric of query response
time and the less tangible but equally important ease of
use. Query response time is the elapsed time from when
a client issues a query and a response is received. Ease
of use attempts to capture the less tangible aspects of a
service by quantifying the amount of work a client must
undertake in order to obtain desired information. Ease of
use is expressed in terms of total amount of data returned
to a user, and number of queries that must be written to
describe the needed data. For instance, a request for data
that can be stated in one query and then returns exactly the
needed 1KB of data has a higher ease of use than one that
requires 6 queries to express and returns a total of 1MB
of data that the user must then manipulate. The cost met-
ric, query response time and ease of use, has a decidedly
client focus. This reflects our belief that the final judge
of a service is the level of satisfaction that it provides to a
user.

The contribution of this paper is threefold: the first is
a synthetic database benchmark/workload. The queries
are meaningful in a grid context, assume an underlying
data model made up of realistic grid resources, and popu-
lated with realistic data. The composition of the query set
addresses numerous orthogonal interests: simple queries
versus complex, queries that test specific features versus
those that could be posed by an actual user, sequential
access versus concurrent access, small return sets ver-
sus large. The second contribution is the application of
the database benchmark on three vastly heterogeneous
“database” platforms: relational, XML, and LDAP. The
repository deployed on each is mid-sized, representing
something that a single organization might deploy as a
single server for all its resource information. The final
contribution is the complex metric that quantifies the less
tangible aspects of information retrieval. We argue that
this metric based on query response time and ease of use
is more meaningful in service-based environments such as

the Grid than are more traditional single variable metrics
such as throughput.

Some of the results we obtain are unexpected; others
provide quantified results to substantiate suspicions that
the grid community already holds.

The paper is organized as follows: following imme-
diately is a discussion of related work. Section 3 intro-
duces the data model underlying the synthetic database
benchmark/workload. Section 4 introduces the bench-
mark/workload following an organization of grouping the
queries into logical subsets for ease of understanding. In
Section 5 we discuss the performance evaluation, consist-
ing of performance evaluation, including the execution of
the benchmark/workload against the three database plat-
forms, and observations that can be drawn from the exper-
iment. Section 6 offers concluding remarks and a glimpse
at future work.

2 Related Work

The University of Wisconsin benchmark [7] was devel-
oped to evaluate the performance of off the shelf relational
database management systems. It was applied against
a relatively small database of synthetic tables and data,
and queries were designed solely to test features of the
database. The Transaction Processing Council’s decision
support benchmark (TPC-H) [15] is an application spe-
cific benchmark for decision support. It is closest to ours
in spirit, but does not capture the unique dynamic needs
of a grid information service. The XMark project [16]
provides a framework to assess the abilities of an XML
database.

A number of people have examined aspects of perfor-
mance of the Grid Information Server, an early server
for resource information. The definitive reference im-
plementation of a Grid Information Server for the Grid
has been Globus MDS [8] and earlier versions. MDS is
widely deployed on grids across the world. MDS2, the
version used in this study, is organized as a hierarchi-
cal architecture of lower level Grid Resource Informa-
tion Servers (GRIS), connected to one or more higher-
level index servers (GIIS). Multi-layer hierarchies of 4-
5 levels are not uncommon [2]. MDS2 and earlier ver-
sions employed the LDAP information model and pro-
tocol. The new release of the Globus Toolkit, which is
a reference implementation for the Global Grid Forum
OGSA [18] grid services architecture, shifts management
of grid resource information onto the registries, which like
UDDI [19], are directory services for discovery of web
services. Information management is also shifted onto the
resource itself, which is responsible for providing a web
service that exports the information about the resource.

Smith [17] examined MDS performance using different
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versions of LDAP. The work predates MDS’ hierarchical
GRIS/GIIS architecture so the main result of the paper
is exposing LDAP’s poor performance under even minor
update loads. Aloisio et. al [3] studied the MDS grid
information server and conducted experiments that were
focused on simple tests of the Grid Index Information
Service (GIIS). Schopf [22] recently examined the scal-
ability of three information servers, MDS2, RGMA [11],
and Hawkeye of the Condor system [6], all of which are
tightly coupled to monitoring systems from which they
obtain input data. These systems were subject to scala-
bility testing under increasing user loads and focused on
the ability of the system to handle increasing connection
load. A single, simple query used is throughout. Schopf’s
work complements ours; ours is focused on a broad set of
queries and scenarios issued against a rich data set.

3 Resource Information Data
Model

The resource information data model is a database
platform-neutral representation of the entities in a system
and the relationships that exist between them. The data
model is neutral in that it allows relationships to be ex-
pressed between entities but does not mandate how these
relationships should be implemented. A relationship be-
tween a user account and a subcluster might be repre-
sented as a separate table of rows showing subclusters to
which a user has access, or might be implemented as a
nested pointer in an object.

The data model used in our work is based on the GGF
proposed GLUE schema v8 as of October 2002 [9]. The
GLUE schema defines entities representing clusters, sub-
clusters, hosts, processors, jobs, and computing Elements
to name a few (see Figure 1.) We gathered use cases by
talking to managers of production high performance com-
puting systems for the purpose of having in the benchmark
queries that are realistic. It is through this process that we
decided to extend the GLUE schema with entities repre-
senting people, user accounts, and communication chan-
nels between machines. Since taking the snapshot of the
GLUE schema, some of our extensions have become part
of the GLUE data model.
The key to understanding the diagram in Figure 1 is to fo-
cus on the ComputingElement, Cluster, SubCluster, and
Host hierarchy that runs vertically down the figure. A
ComputingElement, which can be thought of intuitively
as a queue in a batch scheduling system, serves one or
more Clusters, while a Cluster has one or more Computin-
gElements. A SubCluster belongs to one or more Clus-
ters, and to zero or more SubClusters. A Host belongs
to one or more SubClusters. Entities such as MainMem-

ComputingElement

-Name : char

-UniqueId [key] : char

-GRAMVersion : char

-HostName : char

-GatekeeperPort : char

-TotalCPUs : int

-RunningJobs : int

-TotalJobs : int

-WaitingJobs : int

-WorstResponseTime : double

-EstimatedResponseTime : double

-Status : enum

-FreeCPUs : int

Policy

-MaxWallClockTime : int

-MaxCPUTime : int

-MaxTotalJObs : int

-Priority : int

-PolicyType [key] : char

GlueSE

-GlueSEUniqueId [key] : char

-GlueSEName : char

-GlueSEPort : int

-GlueSEHostingSL : char

AppSource

-Location [key] : char

-Pathname [key] : char

-Filename[key] : char

-Fileformate : char

Job

-GlobalId [key] : char

-LocalId : char

-GlobalOwner : char

-LocalOwner : char

-Status : enum

Cluster

-ClusterName : char

-ClusterId [key] : char

ClusterMembership

-ClusterId [key] : char

-UserId [key] : int

Users

-UserId [key] : char

-Name : char

-Email : char

-OrganizationalUnit : char

UserAccounts

-UserId [key] : char

-CertificateId [Uni] : int

-Certificateauthority : char

-ActivationDate : Date

-ExpirationDate : Date

-PublicKey : blob

SubCluster

-SubClusterName : char

SubClusterId : char

Host

-Hostname : char

-HostId [key] : char

-SMPLoad1Min : double

-SMPLoad5Min : double

-SMPLoad15Min : double

-ProcLoad1Min : double

-ProcLoad5Min : double

-ProcLoad15Min : double

Endpoint

-HostId : char

-Port [key] : int

-Protocol [key] : char

-Addr [key] : char

Connection

-Num_Hops : int

-Latency_RoundtripDelay_Ping : double

-Bandwidth_Avail_TCP_SingleStream : double

-Packetloss : int

-Traceroute : blob

-Endpoint1_Port : int

Endpoint1_Protocol : char

-Endpoint1_Addr : char

-EndPoint2_Port : int

-Endpoint2_Protocol : char

-Endpoint2_Addr : char

-ConnectionId [key] : int

Benchmark

-S100 : float

-SF00 : float

-BenchmarkId [key] : int

MainMemory

-SubClusterId [key] : char

-RAMSize : int

-RAMAvailable : int

-VirtualMemorySize : int

-VirtualMemoryAvailable : int

StorageDevice

-SubClusterId [key] : char

-Name : char

-Type : char

-TransferRate : int

-Size : int

-AvailableSpace : int

Application

-Proctype : int

-Arch : char

-OS : char

-Minosv : int

-Version : char

-Owner : char

-Status : enum

-Pid [key] : int

-Source_location : char

-Source_filename : char

-Source_pathname : char

-RunTimeEnvironment : char

Processor

-Vendor : char

-Model : char

-Version : char

-ClockSpeed : char

-InstructionSet : char

-OtherProcessingDescription : char

-CacheL1 : int

-CacheL1I : int

-CacheL1D : int

-CacheL2 : int

-ProcessorId [key] : char

OperatingSystem

-Name : char

-Release : char

-Version : char

-OSId [key] : char

NetworkAdapter

-Name : char

-IPAddress [key] : char

-MaxTransmissionUnit : char

-OutBoundIP : enum

-InBoundIP : enum

Architecture

-PlatformType : char

-SMPSize : int

--ArchitectureId [key] : int
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Figure 1: UML data model used by benchmark/workload.

ory and Processor are attributes grouped functionally that
describe a SubCluster. A Connection represents a com-
munication channel such as a TCP socket that is currently
active between two endpoints.

The data model is a necessary starting point from which
database specific schemas are derived. The act of deriv-
ing a specific schema from a data model represented as a
UML diagram is defined by well known rules [20], though
the same experienced judgment required to develop good
data models in the first place is needed to ensure a com-
pliant representation of the derivation. We use the term
schema to describe the description of all entities and re-
lationships in a particular database. The term has another
common meaning as a definition of syntax for an XML
document type. The data model is also a necessary start-
ing point for the benchmark itself since the representation
of a request for data (a query) encoded in a language more
precise than English requires knowledge of the underly-
ing data representation. The benchmark is the topic of the
next section.

Terminology used when referring to entities in a data
model is very dependent on the implementation. As
shown in Table 1, what is known as a ’table’ in a rela-
tional database is referred to as an ’entry’ in LDAP and a
’collection’ in Xindice. Whereas an individual instance or
member of a relational table is called a ’tuple’, in LDAP
it is called an ’object’, and in Xindice it is called a ’doc-
ument’. For purposes of this paper, we use the term ’col-
lection’ to refer to a collection of instances, and ’object’
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to refer to a data element. These are shown italicized in
the table. We refer to the fields that describe a member as
attributes.

Relational LDAP Xindice

collection level table entry collection
member level tuple object document

Table 1: Terminology for three data models.

The databases are populated with pseudo synthetic val-
ues informed from several large MDS dumps dated be-
tween November 2000 and January 2002 that we ob-
tained. Each of the three database platforms hold the
same entities and relationships. The number of instances
of entities and relationships is also held constant across
the three platforms. A database platform contains 34 enti-
ties/relationships and 81684 instances. In following with
the standard adopted by the GLUE schema, a relation be-
tween two entities is represented as a separate collection.
The distribution of instances among the entities shown in
Figure 1 are given in Table 2 for a sampling of the entities.

Collection Number of Objects

Cluster 20
UserAccounts 60
ComputingElement 106
Subcluster 345
Application 600
Connection 12200
Host 29743

Table 2: Object distribution for the major collections.

4 Grid Resource Bench-
mark/Workload

The kinds of queries and updates issued against a grid
resource repository can vary widely, limited only by the
user’s knowledge of the query language, the expressive-
ness of the query language, and limitations of the underly-
ing implementation. Our goal is a set of queries that when
taken as a whole exercise several orthogonal axes: simple
queries versus complex, queries that test specific search
support versus those that could be posed by a user, se-
quential versus concurrent access; small return set versus
large. The intent is to provide a synthetic database work-
load that is both broad and representative of actual work-
loads so as to accurately assess the strengths and weak-
nesses of different grid resource information repositories.
This section introduces the benchmark/workload.

The synthetic database benchmark is built upon a data
model of entities and relationships. This would be the
case for any database benchmark. The key is that the
benchmark is developed against a data model-neutral rep-
resentation of entities and relationships so the benchmark
has no bias in that regard. The synthetic database work-
load that we developed consists of 16 queries and updates
and four scenarios. The queries/updates are grouped into
five major categories: scoping, index, join, selectivity, and
base operations; the grouping is for purposes of ease of
understanding. Over half the queries are paired for pur-
poses of testing the presence or absence of a feature (e.g.,
an index). Features not undergoing testing are controlled
across the pairs.

Scoping. A scope defines a starting point for a search.
It is relevant in schemes having a nested or hierarchical
organization. By stating the starting scope of a query, (i.e.,
starting point in a tree), one can restrict query evaluation
to a particular subtree. As this often results in increased
efficiency in hierarchically organized data, scoped queries
should perform well in hierarchal databases (i.e., MDS2,
Xindice.)

The ’scoping’ queries consist of two pairs of queries
(four queries in total.) The first pair tests over a smaller
object collection and the scope is set at one level above
the desired objects. Specifically, the scoped query asks for
all subclusters for a given cluster whereas the non-scoped
query asks for the subclusters directly. The subcluster ta-
ble is of moderate size, that is, 345 objects.

The second scoping query spans three levels of the
ComputingElement-Cluster-SubCluster-Host hierarchy to
retrieve information from the much larger Host table (ap-
proximately 30000 objects). The Host table describes all
hosts, or individual computers, served by the grid resource
information repository.

Indexing. Query response times are often dramatically
improved when indexes are used. Indexes provide fast
access for queries that request indexed attributes. Our
query set includes one index pair, that is a pair of queries
wherein the independent variable is whether or not the re-
quested value is indexed.

Selectivity. The selectivity of a query is the number of
objects returned. According to DeWitt [7], coverage of
the performance domain can be achieved with queries that
return 1 tuple, 1% of tuples, and 10% of tuples. These
queries execute over the Connection table which contains
information about 12200 active network connections.

Joins Joins occur when a user requests information that
resides in more than one table. Joins can occur either
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across tables, or as multiple joins over a single table. The
latter is called a self-join and occurs when a user asks for
more than one instance of a particular resource. For in-
stance, a user could request four hosts that meet a specific
criteria such as amount of memory. Our query benchmark
includes two distinct (i.e. non-paired) join queries: the
first queries over six collections; the second query is a
realistic job submission query, specifically, a user is seek-
ing a subcluster wherein the needed software environment
exists, the job owner has an account, and the binary is res-
ident. The purpose of this latter query is not to test a dif-
ferent aspect of a system, but to ask a realistic, grid related
question; one that might be posed by a scientist desiring
to find a specific set of nodes on which her binary can and
is allowed to execute.

Other Operations. The two final queries in the bench-
mark are connection request and update request. Connec-
tion request is a request to the database that consists only
of a connection request followed immediately by a dis-
connection request. Update updates a single attribute in a
set of objects that match a particular condition.

The benchmark consists of a set of scripts for each
database. The mySQL scripts are issue SQL queries and
are written in Perl. They communicate with the database
using the mySQL C API. The Xindice queries are writ-
ten in XPath. The scripts are written in Java and interface
with Xindice using XML:DB. The MDS queries are writ-
ten in the LDAP query language. The scripts are written
in C and interface to MDS2 using the LDAP protocol. All
scripts iterate 1000 and 10000 times. The full number of
iterations was not achieved in practice for all platforms.
Even at 1000 iterations Xindice in particular had exces-
sive execution times that prevented the completion of the
script. The call to the database is blocking. There is no
delay between calls. For queries that are implemented as
multiple calls to the database, query timing terminates the
moment the final result set is produced.

Scenarios. A scenario is a scripted synthetic workload
issued over a controlled time duration consisting of con-
current query and update requests. Scenarios are a key
part of the benchmark as they expose the sensitivity of
query response time to increasing update rates. We noted
earlier that dynamic data attributes that require millisec-
ond updates to stay current is a unique feature of grid in-
formation repositories, hence the scenarios expose an im-
portant aspect of performance of a database platform. A
scenario is scripted as follows: in Phase I, a number of
concurrent clients are started. A client repeatedly issues
a blocking query request to the database. This phase is to
determine response time under no update load. In Phase
II, update clients are added and execute concurrently. The

updates and queries execute for the duration of Phase II
before the updates are terminated. The query clients then
continue alone for Phase III. The final phase captures the
lingering effects of the updates.

The total scenario execution time is on the order of 10’s
of minutes. Specifically, for the results presented here,
a scenario runs for a duration of 10 minutes. Query re-
sponse time is sampled every 20 seconds, at time ti where
0 < i < 1200 and i mod 20 = 0. Query response time is
defined as:
t0: query response time at t0 is 0 (t0 = 0)
t1� tn : query response time for ti, i ! = 0, is the aver-

age of query responses received in the interval (ti�1; t1].
If no query responses received in the interval, then

queryResponseTime(ti) = queryResponseTime(ti�1)

The definition accommodates the case of no query responses re-
ceived over an interval. This case is common, particularly for
complex queries over Xindice and MDS where a 20-40 second
interval may not be large enough to capture even a single query
response.

5 Performance Evaluation

In the performance evaluation we undertook the application of
our synthetic query benchmark/workload to three database plat-
forms: mySQL 4.0, Xindice 1.1, and MDS 2 (GT 2.2.) MySQL
is configured with the InnoDB back end. InnoDB tables sup-
port foreign keys, provide ACID properties, row-level locking,
and non-locking read in SELECTS for increased concurrency
and performance. Xindice 1.1 is an XML open source database.
Unlike Xindice 1.0, which was a standalone server, 1.1 is boot-
strapped from an Apache Tomcat server. Based on results not
reported here, we saw large reductions in query response times
from Xindice 1.0 to 1.1; much of which can be attributed to the
significant performance improvements in 1.1. The performance
overhead of passing through the web server, however, is roughly
10% as reported on the Xindice users mailing list on April 2003
by a frequent contributor. MDS2 is configured as a single GRIS
talking to a single GIIS with GRIS and GIIS co-located on the
same dual processor server. All queries are issued against the
GIIS.

The underlying hardware for all three databases is a dual pro-
cessor Dell Poweredge 6400 Xeon server, 2GB RAM, 100 GB
Raid 5, RedHat 7.3. The client platform is a Sun Blade 1000,
SunOS 5.8; access is through switched Fast Ethernet. Each
database is implemented as a standalone server and the client
scripts are standalone clients on a separate machine.

Consistency across the databases is ensured so that a query
issued against a relational database that returns 1000 tuples will
also return 1000 documents when issued against the Xindice
database. To ensure this consistency, the databases are popu-
lated in a chained fashion starting from a single Perl script used
to create tables and indices in mySQL then to populate the ta-
bles. Xindice is created and populated from a script that reads
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and processes a dump of the mySQL database. MDS2 is created
from a PHP script closely modeled on the mySQL Perl script;
the PHP script creates an LDIF file, the format recognized by
LDAP, that is then read by a simple provider external to MDS
that reads the LDIF file and pipes the file to the stdout pipe on
which the GRIS is waiting. Standalone XML schema compli-
ance checking is performed using Xerces [4] during population
of the Xindice database but no checking is performed during per-
formance evaluation. This chaining has proved to be extremely
useful when the databases needed upgrading or when a consis-
tent state needs to be restored.

It should be noted that MDS2 query response times are ap-
proximated. We are resolving an issue in getting MDS2 to scale
to the size of database that we use in this experiment. To obtain
the results shown here, we interpolated from measurements done
on database sizes of 5%, 10%, and 25% of the full size. We will
refine these numbers as progress is achieved.

5.1 Query Response Time

Query response time is a measure of the amount of time it takes
for a server to complete a query request and return the result
set. For the queries in the benchmark (not scenarios), since
query scripts are nonthreaded and blocking, a script executes
one query at at time. The query response times, captured in Fig-
ures 2 through 6, show results organized by the query groups
described in Section 4. Listed across the X-axis of each are the
individual queries and their results for the three different plat-
forms. If a query is part of a binary pair, its pair resides to its
right and is prefaced with ’non’. The Y-axis plots query response
time in milliseconds. It is important to note that the Y-axis scale
is logarithmic.
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Figure 2: Scoped: scoping limits a search to a particular
subtree. Hierarchical databases should show good results
for scoped queries (but not non-scoped.)

We are surprised by the scoping results shown in Figure 2.
Scoping should favor hierarchical databases because scope lim-
its the search space. This is not the case with Xindice for non-
ScopedHosts. What appears to be overshadowing the benefits of
scope is the number of XPath queries that must be issued to the

database in order to implement one higher level query. From re-
sults reported in [21], we observed a linear correlation between
the number of XPath queries that must be issued per query and
the query response time.

The indexed results of Figure 3 show a clear benefit of using
index support in mySQL and Xindice. MDS2 does not use the
native index support of openLDAP [13] but instead employs a
cache in the GIIS and serves requests from cache. Hence there
is no difference between the indexed and non-indexed queries
for MDS. Due to difficulties in getting data to stay in the GIIS
caches, the MDS numbers shown are all satisfied out of cache.
Our solution is to give the cached data objects extended times to
live; this was required in order to get the queries to not fail as
objects disappeared.
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Figure 3: Indexed: indexed is a query over an in-
dexed attribute; nonIndexed queries over a non-indexed
attributes. Data repositories that employ indexes, mySQL
and Xindice in this case, should perform significantly bet-
ter for an indexed query than a nonindexed one. MDS
uses a cache instead of indexes.

Selectivity is defined as the number of objects that satisfy a
query. From the measurements shown in Figure 4, we can con-
clude that query response time is not sensitive to number of ob-
jects returned for both mySQL and Xindice.

The join queries shown in Figure 5 measure a repository’s
ability to assemble a result from numerous collections. The re-
sults of the two queries are roughly the same, which is reason-
able since both queries touch the same number of collections.

An interesting observation can be made by comparing the join
results in Figure 5 with the selectivity results of Figure 4. The
join queries take on the order of 2.5 ms for mySQL whereas se-
lectivity1, on the other hand, completes in 53.24 ms. Similarly
for Xindice, joins finish in approximately 1000 ms whereas se-
lectivity1 completes in 38,572.33 ms. The reason is that though
the joins are over six collections, the collections are small, on
the order of hundreds of objects. The collection over which the
selectivity queries are executed contains 12,200 objects. The re-
sults indicate that collection size impacts performance more than
does number of joins.

The update times shown in Figure 6 are for simple, one-
attribute updates. Thus they show an upper bound on the rate at
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Figure 4: Selectivity: selectivity is number of objects re-
turned from a query. Selectivity 1 returns one query from
a collection of 12,200 objects; selectivity 1% returns 1%;
selectivity 10% returns 10%. The three queries together
give an indication of the sensitivity of query response time
to number of objects returned.

which a database can accept updates. For mySQL this rate is 41
updates per second whereas for Xindice the rate is 0.2 updates
per second. The low update rate for Xindice is an overriding
factor in the conclusion we draw that Xindice is generally in-
appropriate as a platform for a grid resource repository. It also
explains the odd behavior shown in the scenarios discussed next.

Scenarios. The scenarios are scripted synthetic workloads
designed to capture the sensitivity of query response time to up-
date load. Each scenario, as depicted in Figures 7 and 8, begins
with the execution of three concurrent query streams. This is
Phase I. Phase II starts three minutes into the run when update
threads start up. In the case of mySQL, ten to fifty update threads
are started. In the case of Xindice, given its exhibited poor up-
date rate, only three update threads are run. In Phase III, the up-
date threads are terminated and the query threads allowed to run
through until the end of the run. As mentioned in the caption of
Figure 6, MDS2 does not support updates through the traditional
client query interface. As such, we forced updates for purposes
of the scenarios by issuing a client query that queried a single
attribute that has a short time to live. In that way, every time the
query is executed, it forces the value to be updated through the
provider mechanism (i.e., LDIF file piped to stdout) described
in paragraph three of Section 5.

Two scenarios are tested. In Scenario1, shown in Figure 7,
the queries are simple in that they do not access the same col-
lection and they touch only small collections. The impact of
update streams is observable in all three cases. MySQL average
query response times are 2-10 millisecond range when no update
threads are running, and increase to 10-100 milliseconds under
the update load. Xindice varies between 1000-2000 milliseconds
when no update threads are running and 2000-4000 milliseconds
when they are. MDS2 results fall between that of mySQL and
Xindice, but the reader is asked to note that the MDS scenario
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Figure 5: Joins: manyRelations touches six different col-
lections in evaluating the query. JobSubmit also touches
six collections in asking a realistic job-related question.
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Figure 6: Other: Update modifies a single attribute in a
subset of a collection. In MDS2 updates through the query
interface are disabled so this query is not able to capture
update time. connect connects to the database, discon-
nects and returns.

is run on a database that is significantly smaller (95% smaller)
than the database size used for the other platforms. We expect
response times to be slower by an order of magnitude or more
when applied to a full sized database. The failure of the MDS2
curve to taper down at the end of the scenario could be due to
a lingering effect of rapid cache refresh being triggered for the
particular attribute after the query request has terminated.

In Scenario 2, the queries are more complex in both dimen-
sions of collection overlap and collection size. As can be seen,
Xindice behavior becomes irregular. Shown across the top of
the graph are response times for two of the three Xindice queries.
These are generally regular through the duration of the run, spik-
ing noticeably during update execution. The large vertical spike
at the end of the graph is the delayed processing of the third
Xindice query. It begins a full two minutes after other activ-
ity has concluded and completes a single execution in an inor-
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dinately long time. The update threads, not shown, behave in
similarly non-uniform ways.
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Figure 7: Scenario1: Average query response time of
three simple queries on small collections, with no over-
lap in access. MDS2 response times are obtained on a
database that is significantly smaller (5%) than the others.
Scenarios show sensitivity of query response time to rapid
updates.
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Figure 8: Scenario2: similar to Scenario1 but for queries
on larger collections and that overlap. MDS2 database is
significantly smaller (5%) of the others.

5.2 Ease of Use
The ease of use metric attempts to capture the less tangible as-
pects of performance of a grid information service, in particular,
the amount of work a client must undertake in order to obtain de-
sired information. That is, the number of queries that a user must
issue, and the amount of processing required on the returned data
that falls upon the user. Though more difficult to quantify, ease
of use is an important metric not only for assessing the friendli-
ness of a grid resource information repository, but for obtaining
early understanding of the workload a service might encounter

when under intense load in production use. For instance, if one
service can respond with the exact data set in one request, and
a second server requires an exchange of six request/response se-
quences before the exact data set is received at the client, the
former will scale better under increased workloads.

The metrics used to quantify ease of use are number of bytes
returned and number of queries needed in order to retrieve the
requested data. These numbers, shown in Tables 3 and 4, are not
independent. Database platforms requiring more queries to ob-
tain data correspondingly return a larger number of bytes. The
problem could lie in limitations in the database platform or in
the query language that the platform supports. For instance, a
hierarchy of collections in Xindice must be searched one collec-
tion at a time; that is, by issuing one XPath query per level. If the
client were interested in all subclusters belonging to the cluster
“titan”, it would have to issue a query to search the ClusterSub-
cluster relationship to retrieve all documents for which “titan” is
a parent cluster. The client would then for each document pro-
cess it to extract the subcluster ID and issue a second query to
retrieve the processor ID from the Processor table.

The problem is exaggerated somewhat by the finer granularity
decomposition of attributes in the GLUE schema. For instance,
Processor, Operating System, and MainMemory are separate ob-
jects. This finer granularity has the advantage of reducing the
size of a database by eliminating redundancies, but for hierar-
chical languages like XPath and LDAP, it comes at a cost of
additional queries.

Description mySQL 4.0 Xindice 1.1 MDS2
(KB) (KB) (KB)

scoping 0.4 - 46.0 7.5 - 549.5 5.6 - 47.3
indexing 9.5 - 11.0 139.8 - 140.9 9.6 - 24.0
selectivity 0.04 - 52.9 0.48 - 691.0 0.03 - 267.0
joins 0.03 - 0.03 40.1 - 131.8 0.98 - 1.9

Table 3: Minimum and maximum number of bytes re-
turned per query group. The MDS numbers are estimated
from smaller database sizes so are shown in italics.

Description mySQL 4.0 Xindice 1.1 MDS2

scoping 1 3 3
indexing 1 2 1
selectivity 1 1 1
joins 1 6 5

Table 4: Maximum number of queries issued to database
per higher-level query.

6 Conclusions and Future Work

There is much more to the assessment of a grid resource infor-
mation repository than what is conveyed by our metric of query
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response time and ease of use. Authentication and access con-
trol, distribution, and replication are a all important issues. Yet
this study contributes a deeper understanding of the impact of
queries, query languages, and workloads on grid resource in-
formation repositories through the development of a synthetic
database benchmark/workload that is tailored to the types of ob-
jects and collections that exist in a grid resource information
repository, and in particular addresses the unique aspect of a
grid information server, namely the rapid update rates that its
dynamic objects must undergo. It is through the inclusion of
scenarios, or scripted synthetic workloads, that we address this
unique aspect. Issues of distribution are ongoing work.

The foremost work on our agenda is to ascertain the limits to
scalability we are witnessing with MDS2 and include our final
assessment in the paper. A nice extension of the work would
be to a XML/relational database. The XML font end would
preserve the benefits of an XML solution, important in a grid
services/OGSA [18] architecture, while addressing the perfor-
mance problems highlighted here of a native XML solution.

A highly distributed partitioning of grid resource information,
such as is used in Globus Toolkit 3.0, addresses the update rate
problem by limiting the number of concurrent queries and up-
dates against any one source, but it incurs a cost in query re-
sponse time where queries must be partitioned and results as-
sembled. We are examining a distributed version of our bench-
mark such that these costs can be quantified.

We are in the process of making the benchmark accessible
via a portal so that others can utilize the results. This future
work can be of broader practical benefit to the Grid community
by tailoring the benchmark to a common subset of the schema
that is supported by multiple sites. Then it would be possible to
use the benchmark for exploratory queries to a grid information
server to assess its current load.
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