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Rear-Lamp Vehicle Detection and Tracking in
Low-Exposure Color Video for Night Conditions

Ronan O’Malley, Edward Jones, Member, IEEE, and Martin Glavin, Member, IEEE

Abstract—Automated detection of vehicles in front is an integral
component of many advanced driver-assistance systems (ADAS),
such as collision mitigation, automatic cruise control (ACC),
and automatic headlamp dimming. We present a novel image
processing system to detect and track vehicle rear-lamp pairs in
forward-facing color video. A standard low-cost camera with a
complementary metal–oxide semiconductor (CMOS) sensor and
Bayer red–green–blue (RGB) color filter is used and could be uti-
lized for full-color image display or other color image processing
applications. The appearance of rear lamps in video and imagery
can dramatically change, depending on camera hardware; there-
fore, we suggest a camera-configuration process that optimizes the
appearance of rear lamps for segmentation. Rear-facing lamps are
segmented from low-exposure forward-facing color video using
a red-color threshold. Unlike previous work in the area, which
uses subjective color threshold boundaries, our color threshold
is directly derived from automotive regulations and adapted for
real-world conditions in the hue–saturation–value (HSV) color
space. Lamps are paired using color cross-correlation symmetry
analysis and tracked using Kalman filtering. A tracking-based
detection stage is introduced to improve robustness and to deal
with distortions caused by other light sources and perspective
distortion, which are common in automotive environments.
Results that demonstrate the system’s high detection rates, operat-
ing distance, and robustness to different lighting conditions and
road environments are presented.

Index Terms—Computer vision, driver assistance, tail-lamp
detection, vehicle detection, video processing.

I. INTRODUCTION

R ECENT statistics suggest that night conditions are an
important area of focus for road safety. In the European

Union, almost one third (32.7%) of road fatalities occur during
hours of darkness [1]. Demand for advanced driver-assistance
systems (ADAS) is expected to grow, as consumers grow in-
creasingly safety conscious, and insurance companies and leg-
islators begin to recognize the positive impact that such systems
could have on accident rates. Automotive manufacturers have
begun to introduce automatic cruise control (ACC) systems,
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which are mainly implemented with active sensors, such as
radar. A forward-facing color camera could be a low-cost
alternative or complementary technology to such active systems
while also possibly fulfilling supplementary functions, such as
lane-departure warning, pedestrian detection, or image display.

While driving at night, vehicles on the road in front are
primarily visible by their red-color rear-facing tail and brake
lamps. While all vehicles will differ in appearance, with differ-
ent styles and designs of rear-facing lamps, they must adhere to
automotive regulations. Worldwide regulations [2] (excluding
regulations in the United States [3], which are less stringent)
specify limits for color and brightness of rear vehicle lamps.
While previous rear-lamp detection systems manually define
subjective color and brightness thresholds, we utilize these
regulations by deriving image processing system parameters
from them. The regulations state that rear lamps must be placed
symmetrically and in pairs; however, there is no specifica-
tion restricting the shape of rear automotive lamps, and due
to recent advances in light-emitting diode (LED) technology,
lamp manufacturers are departing from conventional shapes
of tail and brake lamps. Therefore, our detection method is
cognizant of the regulations and is shape independent. As the
appearance of rear lamps in video and imagery can dramatically
change, depending on camera hardware, we suggest a camera-
configuration process that optimizes the appearance of rear
lamps for segmentation.

The target applications of this technology are ADASs, such
as collision mitigation, ACC, and automatic headlamp dim-
ming. While other elements may be required for a complete and
comprehensive system (such as the classification of oncoming
headlamps for automatic headlamp dimming systems), detec-
tion of rear lamps is a core component of each of the outlined
potential target applications. The requirements of systems such
as these are primarily the following: robust detection and track-
ing of vehicles in front, achievement of this within a reasonable
distance, a low rate of false positive detections, and a measure
of the distance between host and target vehicles. Systems
should also be modular in nature and not tied to specific camera
hardware. It is beneficial to use standard color cameras as they
are of low cost, readily available, and practical, as the color
video produced can be used for other ADAS utilizing color data
and for full color display purposes. The layout of the remainder
of this paper is given as follows: In Section II, we present a
review of literature in the area of automotive vehicle detection,
with particular emphasis on visual cameras and dark condi-
tions. Section III outlines the camera-configuration process.
The rear-lamp detection algorithm is described in Section IV.
The tracking and tracking-based detection system elements are
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described in Section V. Experimental results are presented in
Section VI. We conclude and consider possibilities for future
work in Section VII.

II. STATE OF THE ART

The techniques commonly employed for vehicle detection
under daylight conditions have comprehensively been reviewed
in [4]. Most of the features employed for daylight vehicle
detection have limited use under dark conditions and at night.
Vehicle shadows, horizontal and vertical edges, and corners
are difficult or impossible to detect in darkness, and the most
significant preceding vehicle features in dark environments are
rear-facing lamps.

Vehicular rear lamps appear as some of the brightest regions
in a frame of night-time automotive video; therefore, it is
common for image processing techniques for lamp detection to
begin with some form of thresholding. Grayscale or brightness
thresholding is a common starting point [5]–[8]. The resultant
pixels are then grouped and labeled to analyze characteristics,
such as area, position, and shape. Further filtering is required as
there are many potential light sources that are not rear vehicle
lamps, such as street lamps, headlamps of oncoming vehicles,
and reflections from signs.

Employing a red-color filter has been shown to be an effec-
tive way to remove nonvehicle light sources. Many different
color spaces with widely varying parameters have been used
to segment red-color light regions from images; however, all
have been based on subjective color boundaries. No known
previous research detects automotive rear lamps based on the
red-color limits set out by regulations. The most common
approach makes use of the red–green–blue (RGB) color space
[9]–[13]. Separate RGB thresholds for brightness and redness
are implemented in [12], whereas in [9], only the red channel
of the RGB data is analyzed. However, bright nonred lights can
have a significant red-color component; therefore, analysis of
the red channel alone is not sufficient for red-color threshold-
ing. The RGB color space has also been used for detection of
red vehicle lamps under daylight conditions [14].

The RGB color space is not ideal for the task of color
thresholding; it is difficult to set and manipulate color pa-
rameters due to high correlation between the R, G, and B
channels [15]. Other research in the area has opted to use
other color spaces for a red-color threshold to overcome this
difficulty. Cabani et al. use the L∗a∗b color space to segment
red vehicle lamps [16], because it requires only two-color
threshold operations, compared with three for RGB, and is
hence more computationally efficient. However, this advantage
is somewhat negated as the data must first undergo a color space
transformation. The red-color threshold parameters were also
subjectively chosen. Grayscale algorithms can also be applied
using only the lightness channel L. The YCbCr space is used to
detect the redness of lamps in [17], where the red-difference
chroma channel Cr is analyzed to distinguish which bright
areas are red light sources.

The appearance of rear lamps in captured video and im-
agery is highly dependent on the camera settings and sensor
characteristics and varies widely among previous work. It has

been observed that tail lamps usually appear as white regions
with red surroundings as they can partially saturate image
sensors [9], [11]. The perimeter of the saturated white regions
is analyzed in [11], and if the surrounding area is comprised
mostly of red pixels, it is regarded as a potential rear lamp.

The task of detecting tail lamps can considerably be aided
by utilizing novel and nonstandard camera hardware. Current
commercial systems use custom novel hardware filters. Non-
Bayer patterns with combinations of red and clear filters have
proven to be effective in detecting red lamps and differentiating
between tail lamps and other light sources [18], [19]. Another
commercial system uses two coated lenses (with one blocking
red light and one allowing only red light to pass) to focus
incoming light onto different parts of a single imaging sensor
[20], [21]. While custom hardware can have performance ad-
vantages, these cameras cannot produce color images; there-
fore, they cannot be reused for other ADASs that use color
image processing and have limited use in terms of displaying
video to the driver. Custom hardware also adds cost and com-
plexity to automotive systems.

Physical assumptions have been used to filter potential light
candidates and aid the detection process. It has been assumed
that rear lamps are circular or elliptical in shape [5], [13], [22].
However, the shape of rear lamps is not specified in the regu-
lations, and as LED automotive lamps become more prevalent,
rear lamps are being manufactured in radically different shapes.
The average target vehicle is assumed to be approximately
170 cm wide in [13], and the width/height aspect ratio of a
highway vehicle is assumed to be approximately 2.0. In [11],
the assumption that most rear lamps are 70–90 cm above the
ground is made. Lane detection is commonly employed to focus
attention and prioritize an area of the frame [11], [13], [23].

Once tail-lamp candidates have been detected in an image,
a system must be put in place to pair them to associate the
detected lamps with a target vehicle. A close vertical position
[13] and a similar area [11] of lamp regions have been used
as the pairing criteria. In [10], the aspect-ratio constraints of
resulting bounding boxes are considered since it can be as-
sumed that the resulting box will generally be relatively flat and
wide. In [5], comparisons between the horizontal and vertical
coordinates of candidates are examined, coupled with a search
for a license plate between them. Alcantarilla et al. detected
headlights reliably up to 50 m in grayscale video [8] utilizing a
support vector machine classifier.

Symmetry is commonly used to filter potential candidates
[24] and create lamp pairs for vehicle detection, because the
rear of a vehicle is symmetrical under all lighting conditions. In
[25], symmetry is calculated within a candidate bounding box
and considered with several other features in a weighted fusion
process. In [9], the symmetry axis is the vertical axis of the
tracking window.

At night time, symmetry is a useful tool for classifying
and pairing rear lamps as regulations state that they must be
symmetrical and placed in pairs. In [23], correlation between
potential headlamp pairs is calculated to assess symmetry.
Lights belonging to the same vehicle have high correlation
values as they will have very similar size, shape, and luminance
values. Correlation is frequently used in computer vision for
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matching detections against a template or searching an image
for a template. The assumption that the target vehicle will ap-
pear symmetrical is based on the assumption that it is pointing
in approximately the same direction as the host vehicle so
that foreshortening is negligible [12]. However, this assumption
is not valid when there are perspective distortions, e.g., in
situations such as overtaking maneuvers, lane changes, or sharp
bends. Symmetry of rear-lamp pairs can be affected when other
vehicle lamps are engaged, such as turn signal lamps, or when
other light sources appear close to the rear lamps, such as
oncoming headlamps. No known prior work addresses the issue
of these frequently occurring distortions.

Temporal continuity of video data can be used to improve
detection rates and the robustness of vehicle detection systems.
Kalman filtering is a well-known approach for target tracking,
which uses a Gaussian distribution density to represent the
target. It estimates the state of a dynamic system from a series
of incomplete or noisy measurements and can continue tracking
through short occlusions [26]. It uses the previously estimated
state and the current measurement (if available) to estimate the
current state of the system. The Kalman filter has been used for
multivehicle tracking [27]. A vehicle lamp’s trajectory has been
used to distinguish it from static lights, such as street lamps and
reflective road signs [28]. In [29], a mean-shift estimator is used
for tracking vehicles during daytime. Bayesian templates, in
conjunction with a Kalman filter, are used in [30] for tracking
of vehicles during daylight conditions. A particle filter is used
in [25] to merge multiple target cues, including tail lamps.

III. CAMERA CONFIGURATION

Differences between acquisition systems can have a substan-
tial effect on the properties of the captured images. The color
and intensity of pixels from rear lamps will vary, depending
on the properties of the camera that captures the image and its
configuration. This problem has not directly been addressed in
any known prior work, meaning that results cannot accurately
be replicated or verified, and a technique cannot easily be
transferred to different camera hardware. We propose a two-
stage camera configuration: First, we set a static exposure level
based on an ANSI photography standard so that the light levels
do not saturate the camera sensor, ensuring that maximum color
information is available in the captured image frame. Second,
we consider color consistency so that the device-dependent
digital color data can be compared with the device-independent
visible light color boundaries defined in automotive regulations.
These configurations also ensure that images of rear lamps are
not affected by ambient lighting conditions.

A. Exposure Control

Control of camera exposure is essential to the process of
photographing light sources. With too low an exposure, the
target can appear too dark, such that the image detail can be lost.
With too high an exposure, the intensity of the light can cause
saturation in the image, where color and shape information
can be lost. By default, most cameras typically implement an
automatic exposure control algorithm. However, these algo-
rithms are generally optimized for daylight operation and are

Fig. 1. Example of (a) video frame captured with the automatic exposure
control enabled and (b) video frame captured using a lower static exposure
[EV100 = 10]. Note how the rear lights in (a) saturate, resulting in the lights
appearing white, whereas, in (b), the color of the red lights is preserved.
However, in (b), much of the lower intensity background detail from the scene
is not present, due to the lower exposure.

not suited for detecting color light sources at night. In images
captured with automatic exposure, rear lamps typically appear
oversaturated. This “blooming” effect, where lamps appear
as large saturated regions [see Fig. 1(a)], has been noted by
others and has even been used for detection [11]. However, this
saturation is generally considered to be undesirable as all color
information is lost in saturated pixels and the appearance of
vehicle lamps significantly changes between different lighting
conditions, as the exposure is adjusted to compensate for overall
scene light level changes, such as going between lit and unlit
environments.

High dynamic range (HDR) cameras have been used to detect
traffic signals at night [31]. HDR cameras intelligently fuse
high- and low-exposure images, which results in an image that
captures detail of high- and low-intensity regions. Since we are
only interested in the high-intensity parts of the image for this
application, we can replicate some of this HDR functionality
by setting a low exposure with regular camera hardware to
ensure that the color detail of high-intensity light sources is
captured. The result of this is that lower intensity detail, which
is not of interest to this system, is lost in the resultant scene.
This reduction in low-intensity detail further simplifies the
lamp segmentation process; an example of the image from this
configuration is shown in Fig. 1(b).

Previous work in traffic-signal detection at night has uti-
lized a low static exposure value (EV) [32]; however, most
research in automotive lamp detection does not address the
issue of exposure control. Camera exposure is determined by
three parameters: 1) exposure time (shutter speed); 2) aperture
(F-number); and 3) sensitivity (ISO value). An EV [33] can be
calculated from these variables. This value can be transferred
between cameras to ensure equivalent levels of exposure be-
tween different hardware. EV is defined by

EVISO = log2

N2

t
(1)

where N is the aperture stop, t is the exposure time, and
ISO is the camera sensitivity. The ANSI photography standard
exposure guide [34] recommends an EV100 of 9–10 for neon
lights and other bright signs. We propose adopting this value
for exposure control, setting a static EV of 10 for the task
of detecting automotive rear lamps. This is comparable to the
manually calibrated static EV of 12.3 set in [32] for traffic
signal detection.
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The regulations specify that the minimum acceptable inten-
sity of tail lamps is 4 cd, whereas the maximum acceptable
intensity of brake lamps is 185 cd. To investigate the suitability
of our chosen static exposure setting, we considered images of
two extreme situations: 1) brake lamps at the shortest operating
distance and 2) tail lamps at the maximum operating distance.
With this exposure configuration, at 3 m, brake lamps will
partially saturate in the image, with typically 10%–15% of
the pixels saturating. Although saturation is not desirable, an
amount of it is tolerated by the lamp segmentation algorithm
outlined in Section IV. If exposure were to be lowered until
there was no saturation in the lamp image at close range, the
maximum operating distance of the system would be reduced.
The maximum operating distance was determined by analyzing
tail-lamp images at various known distances. Experiments have
shown that the maximum distance that tail lamps can reliably be
detected with our configuration is 50 m, with initial detection
between 50 and 80 m. At greater distances, tail lamps appear
to be too dim or are too small in area to be reliably detected.
Therefore, this exposure setting offers a satisfactory tradeoff
between the close-distance saturation level and the maximum
operating distance.

Ambient lighting conditions are usually a significant factor in
photography when configuring a camera. The color and inten-
sity of ambient light are usually important factors to consider,
and video cameras typically implement automatic exposure
and white balance algorithms by default to compensate for
changes in ambient lighting. Objects in the scene being cap-
tured are visible, because they reflect some of this ambient light.
However, when photographing a light source such as a tail
lamp, the lamp is visible because of the light emitted from its
light source. The intensity of ambient light reflected from the
surface of the lamp is negligible by comparison. Therefore, with
a static exposure configuration, changes in ambient lighting
conditions, such as driving from a lit to an unlit area of road,
do not have a significant effect on the appearance of the lamps.

B. Color Configuration

The camera is configured to disable all automatic color-
processing operations, including automatic white balance, as
this artificially distorts color information. The gray-world as-
sumption used in most automatic white balance algorithms is
not a valid assumption at night. We set a manual white balance
to the reference white point of the color gamut of the camera.
Our camera hardware uses PAL color specification, for which
the white point is the CIE Standard Illuminant D65 (6500 K).
This configuration ensures that ambient scene illumination is
not a significant factor in color representation. The influence of
reflected light from external light sources on the captured pixel
color of the tail and brake lamps is negligible.

IV. RED LIGHT DETECTION

In this section, we describe the structure of our image
processing algorithm that extracts and pairs rear vehicle lamps
from frames of forward-facing automotive video. Bright ob-
jects such as street lamps, traffic signals, turn signal lamps,
oncoming headlamps, and reflections from road infrastructure

Fig. 2. CIE 1931 xy chromaticity diagram showing the regulation limits of
light for red rear automotive lamps.

are filtered out while retaining the rear lamps of target vehicles
as regions of interest (ROIs). Segmented red lamps are then
paired to associate them with a target vehicle.

A. Deriving HSV Color Threshold

The trichromatic coordinates specifying the regulation color
for red rear lamps [2] are defined by the following inequalities:

Limit toward yellow : y ≤ 0.335 (2)
Limit toward purple : y ≥ 0.980 − x. (3)

These inequalities can be observed on the CIE xy chromatic-
ity diagram in Fig. 2, with the area of acceptable visible light
encompassed by the two linear limits. To derive color threshold
parameters from these limits, we transform the enclosed region
into the PAL RGB color space (the gamut of our camera
hardware). The thresholds specified in the regulations and the
chromaticity diagram are in 2-D xy space. However, this is a
2-D representation of the 3-D xyY color space, and the lumi-
nance dimension Y is omitted from the diagram. For conversion
to RGB, we transform all luminance values. The transform of
this 3-D CIE xyY region to PAL RGB is conducted through the
CIE XY Z color space [35]. The first step is to convert the xyY
region to XY Z using the following:

X =
xY

y
(4)

Z =
(1 − x − y)Y

y
(5)

Y(XY Z) = Y(xyY ). (6)

The luminance dimensions in these spaces are the same; hence,
they have the same symbol. This XY Z space is then converted
to PAL RGB (7)–(9)

[r g b] = [X Y Z][M ]−1 (7)
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Fig. 3. (a) Rear-lamp regulation red-color region transformed into RGB space. (b) RGB scatter plot of pixels from a database of tail and brake lamp images.

Fig. 4. Rear-lamp regulation red-color region mapped to conical HSV color space. (a) Highlighted section represents the derived color threshold value limits.
(b) Conical HSV scatter plot of pixels from a database of tail and brake lamp images.

where [M ]−1 is the inverse transformation matrix. This can be
calculated from the reference primary coordinates of the color
system, which, for PAL RGB, results in

[M ]−1 =

⎛
⎝

3.240454 −0.969265 0.055643
−1.537138 1.875010 −0.204025
−0.498531 0.041555 1.057225

⎞
⎠ . (8)

The final RGB values are calculated using the gamma value
of the color space γ, which, for PAL RGB, is 2.2

R = r
1
γ , G = g

1
γ , B = b

1
γ . (9)

The resulting regulation color region in RGB space is shown
in Fig. 3(a). Observe the “tail” segments splitting from the
main region. These artifacts are the result of clipping at the
maximum R level. This is because the regulation color region
specified extends outside the color gamut of the most common
RGB spaces used in digital imaging, such as sRGB, PAL,
and NTSC.

A database of 300 tail and brake lamp images was created
to observe the color distributions of rear-lamp pixels. Fig. 3(b)
shows an RGB distribution of pixels from this database. It can
be observed from this scatter plot that red rear-lamp pixels do
not directly conform to the derived regulation region. To adapt
the regulation color region to real-world images, we convert it
into the hue–saturation–value (HSV) color space as it is more
intuitive to adjust and manipulate the threshold parameters than
RGB. HSV is best represented as an inverted cone, with hue
(tint) as the angle (0◦–360◦), saturation (shade) as the radius
(0–1), and value (tone) as the perpendicular height (0–1). The

TABLE I
HSV COLOR THRESHOLD VALUES

color red is located around the hue value of 0◦. We convert the
regulation color region from RGB to the HSV space [36]. This
is shown in Fig. 4(a).

The H threshold limits were directly extracted from the
limits of this distribution. The V component of the distribu-
tion spans the entire range of possible values. However, it is
undesirable to allow the entire range of V values through the
color threshold, as hue and saturation are inaccurate and unpre-
dictable at very low levels of V , and many background pixels
would be allowed through. We therefore block the lowest V
values from the threshold. Fig. 4(b) shows an HSV scatter plot
of pixels taken from the database of tail and brake lamp images.

While the regulations specify fully saturated color for rear
lamps, the saturation component of a color is somewhat depen-
dent on the intensity of the incident light. It can be observed
from Fig. 4(b) that pixels from the database of lamp images
occupy a range of saturation values. We derive the S threshold
limit from a histogram of these saturation levels. A Gaussian
curve was fit to the histogram data, and the threshold was estab-
lished at 0.4645, which is the lower 95.4% normal probability
point (μ − 2σ). These final threshold values are presented in
Table I and overlaid on Fig. 4(a).

The input frame is median filtered to reduce noise before
performing a color threshold with these values. This produces
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Fig. 5. (a) and (c) Low-exposure forward-facing night video frames and
(b) and (d) their resulting binary images from the HSV color threshold and mor-
phological closing. Tail and brake lamps are successfully extracted, whereas
other light sources are excluded.

a binary image indicating the position of red lamp pixels in
the image. This is morphologically closed to remove noise and
merge together closely located lamp segments, which may have
been segmented by the color threshold. Examples of the result
of this color thresholding are presented in Fig. 5. Red tail and
brake lamp light sources are successfully extracted, whereas
other common light sources, such as street lamps and signs, are
excluded.

B. Light Candidate Pairing

Although the shape of automotive rear lamps is not specified
by regulations, rear-lamp pairs must be symmetrical. Image
cross correlation has previously been used in automotive vision
systems for headlamp detection [23] and template matching of
vehicles [9]. We use fast normalized cross correlation [37] to
measure the symmetry between rear-lamp candidates. Corre-
lation is calculated along the direction of a line adjoining the
center of each light, as in [23]. This compensates for differences
in roll angle between host and target vehicles caused by subtle
variations in road surface and camera placement. One of the
lamp regions is horizontally mirrored and used as the template
T ; this is then compared against the image of the potential
matching lamp I . The cross-correlation matrix γ is calculated
between two lamp image segments by

γ =
∑
x,y

(
T (x, y) − T̄

) (
I(x, y) − Ī

)
σT σI

(10)

where T̄ and Ī are the mean values of T and I , respectively, and
σT and σI are the standard deviations of T and I , respectively.
To utilize color information, correlation matrices are calculated
for R, G, and B channels, and the mean is calculated. A lamp
pair is classified as a valid vehicle if the maximum value in
the cross-correlation matrix γ is greater than a threshold γmin.
The value for this was derived from the distribution of the
correlation coefficients for a database of 300 images containing
valid vehicle lamp pairs, as shown in Fig. 6. A Gaussian curve

Fig. 6. Histogram illustrating the distribution of cross-correlation values γ
from a database of vehicle images and a Gaussian curve fit to the data
(μ = 0.9381, σ = 0.0421, μ − 2σ = 0.8538, and RMSE = 2.192).

Fig. 7. Result of rear-lamp cross-correlation pairing process. (a) Original low-
exposure forward-facing image. A vehicle is clearly visible by its tail lamps.
(b) Median filtered image of the left tail lamp. (c) Median filtered and hori-
zontally mirrored image of the right lamp. (d) Result of the normalized cross
correlation γ. The maximum value is located at the center and is 0.97, indicating
a 97% correlation and a valid vehicle lamp pair.

Fig. 8. (a) Valid vehicle tail lamp pair and correlation γ = 0.8874.
(b) Similarly sized lamps from different vehicles and correlation γ = 0.5771.

was fit to the histogram data, and the threshold was established
at the lower 95.4% probability point (μ − 2σ). This results in a
pairing correlation threshold of γmin = 0.8538. This approach
is a size- and shape-independent method of pairing detected
lamps. Fig. 7 shows example lamp images and the resulting
cross-correlation matrix. Examples of a valid lamp pair, a
pair of similarly sized nonidentical lamps, and their respective
correlation values are shown in Fig. 8.
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There are many benefits to using cross correlation to pair
light candidates. This method is not directly dependent on the
result of the threshold stage. The binary result of the threshold is
used only to generate ROIs in the source image for correlation.
Some pairing algorithms apply heuristics to the properties of
the binary thresholded regions such as comparison of vertical
position or centroid, region size or area, and bounding box
aspect ratio. These methods are dependent on, and sensitive to,
the result of the threshold. Further issues with these methods
are that they do not consider color or intensity information
and that they may not produce a numerical parameter that is
representative of how well two regions are matched. If they do,
and several properties are analyzed, a method must be formed
to weigh or average the parameters. Our cross correlation
utilizes the color data from the source image and produces a
single numerical parameter, indicating how well the regions
are matched. These methods can also be sensitive to the size
and shape of target regions. More advanced methods attempt to
fit an axis of symmetry to candidate pairs. This can be quite
processing intensive and is more appropriate for symmetry
analysis in more complex situations, such as vehicle detection
in daylight conditions.

V. TRACKING AND TRACKING-BASED DETECTION

A. Kalman Filter Tracking

We perform tracking to smooth detection noise and vehicle
movement noise, to interpolate position during short periods
where detection has failed, and to predict the future position of
targets, thus aiding temporal association between frames. For
tracking, we use the Kalman filter [38], [39], a least-squares
estimation of linear movement with an efficient implementa-
tion, as it only requires the tracking estimate from one previous
frame to be stored in memory.

Once classified as vehicles, we track targets using the four
parameters of a bounding box surrounding the lamp pair
(x-position, y-position, width, and height); these form a state
vector x̂. First, predictions of the state vector x̂− and state error
covariance matrix P− are generated for a target at time k, i.e.,

x̂−
k = Ax̂k−1 (11)

P−
k = APk−1A

T + Q (12)

where A is the state transition matrix, and Q is the process noise
covariance matrix. These predictions are then used to associate
detections in the current frame with targets being tracked. These
system measurements z are used to correct and update the
corresponding trackers. The Kalman gain K is computed by

Kk = P−
k HT

(
HP−

k HT + R
)−1

(13)

where H is the matrix that relates the true state space with the
measurement space, and R is the measurement noise covariance
matrix. This Kalman gain is then used to correct the previous
estimate of state and error covariance, i.e.,

x̂k = x̂−
k + Kk

(
zk − Hx̂−

k

)
(14)

Pk = (I − KkH)P−
k . (15)

Fig. 9. (a)–(d) Frames from a video of a close-range vehicle progressing
through 45◦ right turn. (e)–(h) Enlarged view of the perspective distortion
undergone by the left tail lamp during the maneuver.

The measurement covariance parameter R determines the
sensitivity of the tracker to updates. Higher values of mea-
surement covariance will mean less weighing on the current
measurements and smoother movement, whereas lower values
will mean heavier weighing on the current measurements and
a more responsive tracker. However, if this parameter is too
low, the tracker can become unstable during occlusions and
detection failures, and therefore, there is a tradeoff when choos-
ing a value for R. For our video data (720 × 576 pixels and
25-Hz frame rate), an R value of 0.1 was found to be suitable for
ensuring that the vehicle tracker was responsive yet remained
stable during noise caused by variations in road terrain.

B. Tracking-Based Detection

It was observed from preliminary testing that extended de-
tection failure was commonly a result of the distortion of the
symmetry between target rear lamps. Rear-facing lamps can
become distorted by external light sources, such as oncoming
headlamps or turn signal lamps. Because of our low-exposure
configuration, there is significantly less blooming than systems
that utilize automatic exposure control. However, distortion in
the appearance of lamps remains an issue. The symmetry of
a target may also be disrupted due to perspective distortion,
where there is a difference in yaw angle between the host and
target vehicles.

These distortions can cause symmetry checks to fail, because
the lamps may no longer appear to be symmetrical, i.e., they
are no longer the same size, shape, or color. We address this
problem by examining predicted tracker areas when they fail
to update with a new detection. The cross correlation between
pixels in the current predicted target location and lamp regions
from the previous detection is calculated. If there is a correla-
tion greater than 70% for at least one of the lamps, the tracker is
updated with the new location. This adds extra robustness to the
system for situations where symmetry is distorted, but at least
one of the lamps maintains its appearance.

This technique also ensures that the tracking mechanism
continues to update during perspective distortions when the
appearance of both lamps slowly changes. An example case of
perspective distortion of a turning vehicle is shown in Fig. 9.
The enlarged view of the left tail lamp shows that it reduces in
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TABLE II
SUMMARY OF EXPERIMENTAL RESULTS—BY ENVIRONMENT TYPE

size and horizontally condenses as the vehicle turns. As this
gradually happens (with respect to the video frame rate), an
average correlation of 82% is maintained between lamp images
between frames, and the vehicle is tracked throughout the turn.

VI. RESULTS

Experimental data were captured using a forward-facing
camera mounted inside the host vehicle, behind the rear view
mirror. The color video was captured using a regular camera
with a CMOS sensor and a Bayer RGB filter. It should be noted
that a Bayer RGB sensor effectively has one third the spatial
resolution of a grayscale sensor, such as that used in [8], and
two thirds of the spatial resolution of the clear/red sensor used
in [18]. The video was processed at a resolution of 720 ×
576 pixels at 25 Hz. More than 5 h of on-road video were
captured, comprising speeds ranging from 0 to 100 km/h. We
present video results categorized into three environment sets:
1) urban; 2) rural; and 3) motorway, with each set containing
30 video segments of 20 s in duration. In total, 45 000 test
images containing vehicles, which were taken from 5 h of
on-road video, were processed, and the results were manually
classified. Video segments categorized as urban were captured
in lit, inner city, and suburban environments. Video segments
in the rural category were captured on unlit country roads,
whereas motorway environment video segments were recorded
on lit and unlit multilane dual carriageways and motorways.

Table II presents the detection rates before and after tracking
and the false positive rates for each environment type. We
define detection rate as the number of frames with successful
detection and pairing of valid vehicle lamp pairs out of the
total number of frames. The detection rate after tracking is
the number of frames where the tracker successfully updates
with new detection measurements or tracking-based detection
measurements out of the total number of frames. Finally, the
false positive rate is the total number of false detections in
proportion to the total number of frames. Fig. 10 contains
several result frames from the experimental data set.

We can deduce from these results that detection results do
not widely vary between environments. Slightly higher post
tracking detection rates in urban and motorway environments
may be attributed to the generally consistent road surface,
which reduces camera shake, simplifying the tracking process.
The highest false positive rate was from video data recorded
in an urban environment. False positives were most commonly
caused by background light sources, such as street lamps and
other road vehicle lamps. The majority of false positive detec-
tions appear for only single frames and are easily filtered. The
rural environment presented the fewest number of false posi-

Fig. 10. Successful vehicle detection result frames and enlarged view (inset),
representative of results from the experimental data set. These vehicles are
detected at distances of (a) 4 m, (b) 15 m, (c) 59 m, and (d) 72 m.

Fig. 11. Results of successful tracking-based detection (a) when one of the tail
lamps is distorted because of a turn signal lamp or (b) when both are distorted
due to perspective distortion when the target vehicle is turning at an angle.

tives, which can be attributed to the relatively few background
light sources, compared with the other environments.

The tracking algorithm increases the detection rate for
two reasons: First, failed detections are frequently only for
a small number of frames. In these situations, the tracking
algorithm prediction is used until the target is redetected.
Second, tracking-based detection has demonstrated robustness
to distortions caused by background light sources, as well as
perspective distortion caused by the target vehicle’s relative
position or yaw angle. Fig. 11 shows examples of successful
tracking-based detection in both of these scenarios.

Our assumption that the target vehicle is symmetrical gener-
ally holds when it is in the same lane as the host vehicle or at
distances greater than 15 m if in a neighboring lane on a straight
section of the road. Situations where this assumption does not
hold are during sharp bends, turns, interchanges, and the latter
stages of overtaking maneuvers. When the vehicle is already
detected and being tracked before such a maneuver occurs, our
tracking-based detection algorithm maintains detection of the
vehicle while both lamps are still visible. When overtaking a
target vehicle on a straight road, it was found that our algorithm
successfully detected and tracked the target vehicle until it
exited the frame at approximately 10 m, and target vehicles
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TABLE III
SUMMARY OF EXPERIMENTAL RESULTS—BY DISTANCE

TABLE IV
DETECTION PERFORMANCE COMPARISON OF DIFFERENT CAMERAS

were continuously tracked through tight bends as both lights,
although distorted, remain visible.

As the appearance of a target vehicle is highly dependent
on its distance from the camera, the distance is obviously an
important factor to consider in analyzing the performance of the
system. Distance to target vehicles was estimated from video
using the perspective projection equation for a pin-hole camera
model that was used and described in [9] and [8]. Table III
presents the system detection rate after tracking, which was
classified by distance. Our system has a high detection rate
for vehicles up to 50 m away, whereas vehicles are commonly
initially detected between 50 and 80 m. These results are
comparable with the state-of-the-art grayscale results [8].

Failure to detect target vehicles was most commonly caused
by lack of intensity or insufficient resolution of vehicles that
were greater than 50 m away. At these distances, rear lamps can
appear faint and are sometimes not sufficiently intense to satisfy
the color threshold. At the resolution of our data, a vehicle tail
lamp at 80 m may be less than ten pixels in size. Potential
ways to improve on this could be to implement a dynamic
exposure control system to ensure the optimal intensity of
target tail lamps or to process video data captured at a higher
resolution. As megapixel image sensors become more common
in vehicles and automotive embedded hardware advances, in
vehicles, high-definition video processing will become feasible.

To evaluate the sensor independence of the system, test im-
ages were captured at a range of distances using three different
cameras. Each camera was configured according to Section III,
and images were all scaled to the same resolution. While it is
not appropriate to directly compare color threshold results from
different cameras, we can compare them in terms of detection
results for the same test scenarios. Test images of the rear
of a stationary vehicle were taken with each camera at 10-m
intervals of distances from up to, and including, 80 m. The
results of these tests are presented in Table IV. The vehicle
was successfully detected at each distance by each camera
image up to 50 m, demonstrating comparable performance
between different cameras. There were slight differences in
results between cameras at 70 m at the limits of when the
vehicle is first detected.

Transitions from tail lamp to brake lamp and vice versa
are flawlessly handled, and neither detection nor tracking is
interrupted. Numerous target vehicles in the test video were
modern and had LED tail lamps. Their high-frequency pulsed
luminance did not cause problems; they appear with consistent

intensity in each frame and are detected with the same accuracy
as regular bulb lamps.

These results confirm that our system satisfies each of the
requirements of the target automotive safety applications as
set out in Section I. Robust detection of targets is achieved,
with a low occurrence of false positives. An approximation
of the distance to the detected vehicles is calculated, and the
maximum detection distance of the system is comparable with
the state of the art. The system is modular in design and is not
tied to specific camera hardware.

VII. CONCLUSION

In this paper, we have described a system that detects ve-
hicles in front at night using a regular-color forward-facing
camera. We have described the advantages of using standard-
color camera hardware, as opposed to a novel or specialized
platform. We have presented a camera configuration process
that addresses the issues of reproducing and verifying results,
portability between different camera hardware, and ensuring
lamp color information is not lost due to pixel saturation.
Red-color thresholds have been derived from automotive reg-
ulations and adapted to real-world conditions utilizing the
HSV color space, as opposed to subjective color thresholds
or hardware color filters used in related research. We have
presented a shape- and size-independent color image cross-
correlation approach to pairing detected lamps. A Kalman-
filter-tracking algorithm has been implemented to improve
robustness by ensuring continuity of operation through small
detection failures and predicting future location of targets.
A tracking-based detection algorithm has been implemented
to make the system robust to distortions of symmetry. Re-
sults from on-road testing have been presented, demonstrating
the system’s high detection rate and robustness in different
environments.

Future work may include the development of an embedded
implementation of this system incorporating an automatic ex-
posure control algorithm that dynamically ensures optimum
appearance of target lamps. This may extend the operating
range of the system, as well as demonstrate real-time system
performance. High-definition video data may also be investi-
gated as a means to further increase the operating range.
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