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AbstractWe propose a computational model for detecting and localizing instancesfrom an object class in static grey level images. We divide detection into vi-sual selection and �nal classi�cation, concentrating on the former: Drasticallyreducing the number of candidate regions which require further, usually moreintensive, processing, but with a minimum of computation and missed detec-tions. Bottom-up processing is based on local groupings of edge fragmentsconstrained by loose geometrical relationships. They have no a priori semanticor geometric interpretation. The role of training is to select special groupingswhich are moderately likely at certain places on the object but rare in thebackground. We show that the statistics in both populations are stable. Thecandidate regions are those which contain global arrangements of several localgroupings. Whereas our model was not conceived to explain brain functions, itdoes cohere with evidence about the functions of neurons in V1 and V2, suchas responses to coarse or incomplete patterns (e.g., \illusory contours") and toscale and translation invariance in IT. Finally, the algorithm is applied to faceand symbol detection.1 IntroductionApproximately 150 milliseconds after visual input is presented, or within several tensof milliseconds after local processing in V1, cells in IT signal that an object has beendetected and a location has been selected in a �eld of view larger than the fovea.Assuming a speci�c detection task is required, the decision is rapid but might bewrong. Additional processing might reveal that the desired object is not in the vicinityof the �rst location and a sequence of locations may need to be inspected. Therefore,in a very short period of time, local information is processed in a region somewhatlarger than the fovea in order to identify \hot spots" which are likely, though notcertain, to contain a desired object or class of objects. Final determination of whether2



these candidate locations correspond to objects of interest requires intensive highresolution processing after foveation. This scenario - visual selection (or selectiveattention) and sequential processing - is widely accepted in the literature; see Thorpeet al. (1996), Desimone et al. (1995), Lueschow et al. (1994), Van Essen & Deyoe(1995), Ullman (1996).In arti�cial vision, the problem of detecting and localizing all instances from ageneric object class, such as faces or cars, is referred to as object detection. Our goalis an e�cient algorithm for object detection in static grey level scenes, emphasizingthe role of visual selection. By this we mean quickly identifying a relatively small setof poses (position, scale, etc.) which account for nearly all instances of the object classin an image. Experiments are presented illustrating visual selection in complex scenes,as well as the �nal classi�cation of each candidate as \object" or \background." Wealso explore connections between our computational model and evidence for neuronalresponses to \illusory" contours or otherwise incomplete image structures in whichfragmentary data is su�cient for activation. We argue that, due to spatial regularity,it is more e�cient and robust not to �ll in missing fragments.Here is a synopsis of the approach: Bottom-up processing is based on local featuresde�ned as 
exible groupings of nearby edge fragments. The object class is representedby a union of global spatial arrangements, this time among several of the local fea-tures and at the scale of the objects. Photometric (i.e., grayscale) invariance is builtinto the de�nition of an edge fragment. Geometric invariance results from explicitdisjunction (ORing): The local groupings are disjunctions of conjunctions of nearbyedge fragments and the global arrangements are disjunctions of conjunctions of thelocal ones. In principle we entertain all possible local features, a virtually in�nitefamily. The role of training is to select dedicated local groupings which are each rarein the \background population" but moderately likely to appear in certain places onthe object. We will provide evidence that a very small amount of training data maysu�ce to identify such groupings. 3



Visual selection is based on an image-wide search for each global arrangement inthe union over a range of scales and other deformations of a reference arrangement.Each instance signals a candidate pose. Accurate visual selection is then feasible dueto the favorable marginal statistics and to weak dependence among spatially distantgroupings. It is fast because the search is coarse-to-�ne and the indexing in posespace is driven by rare events, namely the global arrangements; in addition, thereis no search for \parts" (or other sub-classi�cation task) and no segmentation perse. The result of an experiment in face detection is shown in Figure 1. The lefthandpanel shows the regions containing �nal detections. The righthand panel is a grayscalerendering of the logarithm of the number of times each pixel in the image is accessedfor some form of calculation during visual selection; the corresponding image for manyother approaches, e.g., those based on arti�cial neural networks, would be constant.Part of this program is familiar. The emphasis on groupings and spatial rela-tionships, the use of edges to achieve illumination invariance, the general mannerof indexing and the utility of statistical modeling have all been explored in objectrecognition; some points of contact will be mentioned shortly. Moreover, the generalstrategy for visual selection goes back at least to Lowe (1985) and others who em-phasized the role of selecting groupings based on their statistical or \non-accidental"properties.What seems to be new is that our approach is purely algorithmic and statistical.The groupings have no a priori semantical or geometrical content. They are chosenwithin a very large family based solely on their statistical properties in the object andbackground populations. They are also more primitive and less individually infor-mative than the model-based features generally found in computer vision algorithms.For example, we use the term \edge fragment" even though the marked transitionshave no precise orientation. Moreover, the groupings do not necessarily correspond tosmooth object contours and other regular structures (such as corners and lines) thatare often the target of bottom-up processing. In other words, there is no geometrical4



or topological analysis of contours and object boundaries. (See Figure 3.) Nor isthere an abstract concept of a \good grouping" as in Gestalt psychology.In addition, we argue that visual selection, if not �nal classi�cation, can be ac-complished with object representations which are very coarse and sparse comparedwith most others, for example 3D geometric models, structural descriptions based on\parts" Winston (1970), Biederman (1985) and \pictorial representations" Ullman(1996). The \face graphs" in Maurer & von der Malsburg (1996) are closer in spirit,although the \jets" (outputs from multiple Gabor �lters) at the graph vertices aremore discriminating than our local groupings; also, the representation there is muchdenser, perhaps because the application, namely face recognition, is more challenging.Our representation of pose space (a three point \basis" or local coordinate sys-tem) is the same as in geometric hashing Lamdan et al. (1988), wherein the localfeatures are a�ne invariants (e.g., sharp in
ections and concavities) and objects arerepresented by hash tables indexed by feature locations. But again our frameworkis inherently nondeterministic: Features may or may not be visible on the objects,regardless of occlusion or other degrading factors, and are characterized by proba-bility distributions. In addition, the global arrangements are more than a list; it isthe geometrical constraints which render them \rare" in the background population.The statistical framework in Rojer & Schwartz (1992) is similar, although they donot suggest a systematic exploration of local features. Finally, there are shared prop-erties with arti�cial neural networks Rowley et al. (1998), Sung & Poggio (1998), forexample the emphasis on learning and the absence of formal models. However, ouralgorithm is not purely \bottom-up" and our treatment of invariance is explicit; wedo no expect the system to learn about it, or about weak dependence or coarse-to-�neprocessing. These properties are \hard-wired."In the following section the object detection and visual selection problems areformulated more carefully. In Section 3 we delineate the statistical and invarianceproperties we require of our local and global features. The local edge groupings and5



Figure 1: Left: Regions containing �nal detections. Right: A grayscale rendering of thelogarithm of the number of times each pixel in the image is accessed for some form ofcalculation during visual selection.global arrangements are de�ned in Section 4. Training and object representations arediscussed in Section 5. In Section 6 we describe how to search for these represen-tations and identify candidate regions in an invariant manner; �nal classi�cation ofthese regions as object or background is explained in Section 7. Section 8 is devotedto a statistical analysis of the features, especially their densities in natural images,which motivates the choice of particular parameter values and allows us to estimateerror rates. In Section 9 we present some experiments on face and symbol detection,demonstrating some robustness to occulsion during the selection stage. Section 10is devoted to connections with brain modeling, especially evidence for similar typesof coarse processing in the visual cortex and the role of grouping and segmentation;we also comment brie
y on suitable neural network-type architectures for e�cientimplementation. The �nal section summarizes the main strengths and weaknesses ofthe proposed model.
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2 Problem FormulationThe problem is to detect objects of a speci�c class, e.g., faces, cars, a handwritten \5",any digit, etc. In order to narrow the scope we assume static gray level images, andhence do not utilize color, depth or motion cues. However, since our initial processingis edge-based, one way to incorporate such information would be to replace intensityedges by those resulting from discontinuities in color, depth or motion. Moreover, wedo not use context. Thus, the detection is primarily shape-based.We assume that the object appears at a limited range of scales, say �25% ofsome mean scale, and at a limited range of rotations about a reference orientation(e.g., an upright face). Other poses are accommodated by applying the algorithm topre-processed data; for example we detect faces at scales larger than the referenceone by simple downsampling.We want to be more precise about the manner in which a detected object islocalized within the image. Since the given range of scales is still rather wide andsince we also desire invariance to other transformations, for instance local linear andnonlinear image deformations, it is hardly meaningful to identify the pose of an objectwith a single degree of freedom. Instead we assign each detection a basis - three points(six degrees of freedom) which de�ne a local coordinate system. Consequently, inaddition to translation, there is an adjustment for scale and other small deformations.Of course this extended notion of localization increases the number of poses by severalorders of magnitude; within the class of transformations mentioned above, the numberof bases in a 100� 100 image is on the order of ten million.Assume that each image in a training set of examples of the object is registeredto a �xed reference grid in such a way that three distinguished points on the objectare always at the same �xed coordinates, denoted z1; z2; z3. As an example of threedistinguished points on a face, consider the \centers" of the two eyes and the mouth.Typically we use a reference grid of about 30 � 30 pixels and expect the smallestdetection to be at a scale of around 25 � 25. Each possible image basis (b1; b2; b3)7



then determines a unique a�ne map which carries zi to bi for i = 1; 2; 3. In addition,the reference grid itself is carried to a subimage, or \region-of-interest" (ROI), aroundthe basis.The ROI plays the role of a segmented region. In particular, there is no e�ort todetermine a silhouette or a subregion consisting more or less exactly of object pixels.Note also that we do not search directly for the distinguished points; they merelyde�ne localization. We �nd that a search for either a silhouette or for special pointsduring a chain of processing leading up to recognition is highly unreliable; in fact, itmay only be when the object as a whole is detected that such attributes can actuallybe identi�ed.Visual selection means identifying a set of candidate ROIs; the ultimate problemis to classify each one as \object" or \background," which may not be easy withhigh accuracy. However, given the drastic reduction of candidates, presumably the�nal classi�cation of each candidate could be allotted considerable computationalresources. Moreover, this �nal classi�cation can be greatly facilitated by registeringthe image data in the ROI to the reference grid using the a�ne map mentioned above.For example, in our previous work, the �nal classi�cation was based on trainingdecision trees using registered and normalized gray level values, and the computervision literature is replete with other methods, such as those based on neural networks.However, this is not the main focus of this paper. The theme here is the reductionof the number of ROI's which require further and intensive processing from severalmillions to several tens, and with a minimum of computation and missed detections.3 Feature AttributesOur local features are binary, point-based image functionals which are de�ned modulotranslation. Moreover, the set of all occurrences on an image-wide basis is regardedas the realization of a point process, assumed to be stationary in the background8



population in a statistical sense. Instances of this process have no a priori semanticinterpretation and hence there is no sub-recognition problem implicit in their com-putation. In particular there is no such thing as a \missed detection" at the featurelevel. Their utility for visual selection depends on the following attributes:� LI: Stability: A signi�cant degree of invariance to geometric deformations andto gray level transformations representing changes in illumination.� LII: Localization: Appearance in a speci�ed small region on a signi�cantfraction (e.g., one-half) of the registered training images of the object.� LIII: Low Background Density: Realizations of the point process shouldbe relatively sparse in generic background images.The �rst two properties are linked. Suppose, for example, that all images of theobject corresponded to smooth deformations of a template. Then stability wouldimply that a local feature which was well-localized on the template should be presentnear that characteristic location on a sizable fraction of the examples. In the nextsection we will exhibit an enormous family of local features with property LI, inSection 5 we will explain how to select a small subset of these based on training datawhich satisfy LII, and in Section 8 we show to select the model parameters in orderto achieve LIII.Global information is essential. Complex objects are di�cult to detect (and dis-tinguish from one another) even when coherent \parts" are individually recognized,and recognizing parts independently of the whole object is itself a daunting challenge.For example, although faces can be detected at low resolution, it might be very dif-�cult to identify say a left eye based only on the intensity data in its immediatevicinity, i.e., outside the context of the entire face; see the example and discussionin Ullman (1996). Furthermore, local features do not provide information about thepose, except for translation. 9



A global arrangement in a registered training image is the conjunction (simulta-neous occurrence) of a small number of local features subject to the constraint thattheir locations in the reference grid are con�ned to speci�ed regions. An instance ofa global arrangement in a test image occurs in the ROI of a basis if the locationsof the local features fall in their distinguished regions in the local coordinate systemdetermined by the basis. This will be made more precise later on. The properties weneed are these:� GI: Coverage: A small collection (union) of such arrangements \covers" theobject class in the range of scales and rotations in which the object is expectedto appear in the scene.� GII: Rare Events: The arrangements are very rare events in a generic scene,i.e., in general background images.The precise meaning of GI is that a very high percentage of images of the objectexhibit at least one global arrangement after registration to the reference grid. Inother words, the union of the arrangements is nearly an invariant for the object class.During selection, the object instances which are detected are those which are coveredby at least one global arrangement. Hence this \coverage probability" is lower boundon the false negative rate of the entire detection process. The coverage probability isdirectly determined by the joint statistics of the local features on registered images ofthe object class, together with the degree of invariance introduced in the de�nition ofthe arrangements, i.e., the amount of \slack" in the relative coordinates of the localfeatures; see Section 8.Property GII - limiting the number of \hot spots" - is of course related to falsepositive error, as will be explained more fully in Section 8. Statistical characteristicsof the global arrangements in \natural scenes" are determined by the density andhigher order moments of the point processes corresponding to the local features.10



Figure 2: Left: Two examples of local edge groupings with Nedges = 2 edges in additionto the center one, each allowed to lie anywhere in a subregion of size Npixels � 10. Right:A global grouping of three local ones; the small circles represent the subregions in the edgegroupings and the large dotted circles represent the analogous subregions for the globalarrangement; see 4.2).4 GroupingsAll features presented below are de�ned in terms of coarsely oriented edge detectors.A great many edge detectors have been proposed and some of these with enoughgrayscale invariance would su�ce for our purposes. The one we use is based oncomparisons of intensity di�erences and is consequently invariant to linear transfor-mations of the grey scale, insuring the photometric part of LI. There are four edgetypes, corresponding roughly to vertical and horizontal orientation and two polarities;the details are in Amit et al. (1998) and are not important for the discussion here,except to note that the orientation is not very precise. For example, the \vertical"edge responds to any linear boundary over a ninety degree range of orientations.4.1 Edge GroupingsThe local features are 
exible spatial arrangements of several edge fragments, orga-nized as disjunctions of local conjunctions of edges. Each feature is de�ned in terms11



Figure 3: Examples of 9� 9 subimages centered at instances of local features (edge group-ings) identi�ed for faces. Left: Samples of one local feature from an image without faces.Right: The same thing for another local feature.of a \central edge" of some type, and a number Nedges of other edge types which areconstrained to lie in speci�c subregions within a square neighborhood of the loca-tion of the center edge. The local feature inherits the location of the central edge.The sizes of the subregions are all the same and denoted by Npixels. Typically thesubregions are wedge-shaped as indicated in Figure 2. Disjunction - allowing theNedges edges to 
oat in their respective subregions - is how geometric invariance (LI)is explicitly introduced at this level; there is also disjunction at the global level asindicated earlier.The frequency of occurrence of these groupings depends on Nedges, Npixels and theparticular spatial arrangement. Among the set of all possible edge groupings - thegeneric feature class - most are simultaneously rare in both object and backgroundimages. When speci�c groupings are selected according to their frequency in trainingexamples of a particular object, they appear to be loosely correlated with evidencefor contour segments, or even relationships among several segments. In Figure 3we show subimages of size 9 � 9 which contain two particular groupings commonin faces. The one on the left is typically located at the region of the eyebrows; thegrouping involves some horizontal edges of one polarity above some others of theopposite polarity. These instances were chosen randomly from among all instances in12



Figure 4: Left: All instances of horizontal edges. Right: All instances of a local featurededicated to faces.a complex scene with no faces.The point process determined by any local feature, as localized by the central edge,is a thinning of the point process determined by instances of the central edge type.Each additional edge type in the grouping, and corresponding subregion thins it evenfurther. Figure 4 illustrates the thinning by showing all instances of horizontal edgesof one polarity alongside all instances of a local feature centered at the horizontaledge with Nedges = 3 and Npixels = 10.4.2 Global Groupings - TrianglesGlobal groupings are de�ned in a similar manner to the local groupings. The edgesare replaced by entire local groupings, and the distances between the features canvary in a much larger range. The degree of geometric invariance is again determinedby the degree of disjunction, which in turn depends on the size of the subregions inwhich the local groupings are constrained to lie.We will concentrate on global arrangements of exactly three local features, referredto as \triangles." (This is the minimum number necessary to uniquely determine abasis.) Let us be more speci�c about what it means for a particular triangle � - tripleof local features - to be present \at pixel x0". Denote the \central" local feature by �0and the two others by �1 and �2. Of course �0; �1 and �2 are each local groupings of13



edges. Let B1 and B2 be two boxes centered at the origin; these determine the degreeof disjunction for �1 and �2. Also, let v1 and v2 be two vectors; these determine thelocations of the boxes relative the location of �0, in other words, the overall shapeof the arrangement. Then there is an instance of the triangle � at x0 if feature �0is present at x0, feature �1 is present at some point x1 2 x0 + v1 + B1 and feature�2 is present at some point x2 2 x0 + Rx1�x0v2 + B2, where Rx1�x0 is the rotationdetermined by the vector x1 � x0. The size of B1 is set to accommodate the range ofscales at which the triangle can occur. Once the second point of the triangle is found,the scale is determined and B2 accommodates the residual variability. (See Figure 2.)5 Object Representations and TrainingLet L denote the training set of images. We �rst compute the edge (fragment) mapfor each member of L and then register these maps to a �xed size reference grid, asdescribed in Section 2. In this way, linear variability is essentially factored out. Weare going to induce a collection �i; i = 1; : : : ; Ntypes, of local edge groupings, eachof which is \common" in a certain region of the reference grid (equivalently, of theobject). Recall that Nedges denotes the number of edges in the grouping in additionto the central edge and Npixels denotes the size of the regions in which the edges areallowed to \
oat" (see Figure 2). Fix Nedges, Npixels and let R be a set of candidateregions - small, wedge-shaped neighborhoods of the origin.1. Set feature counter I = 0. Loop over disjoint 5� 5 boxes on the reference grid.For each box B:(a) For each possible combination (e0; e1; R1), where e0; e1 are any possibleedge types and R1 2 R, count the number of training points in L forwhich an instance of the triple occurs in B. This means e0, the centraledge, is located anywhere in B and e1 is located anywhere in R1 relative14



to the location of e0. Pick the triple with highest count and let L1 denotethe set of data points which have an instance of this triple in B. For eachdata point d 2 L1, let xd;t; t = 1; : : : ; nd;1 denote all locations of the �rstedge e0 for which the chosen triple was found. Set j = 2.(b) Loop over all possible pairs ej; Rj and count how many data points d 2Lj�1 have an edge of type ej anywhere in the subregion Rj relative to oneof the locations xd;t; t = 1; : : : ; nd;j�1. Find the pair with highest countand let Lj � Lj�1 denote the data points which have an instance of thispair. For each d 2 Lj, let xd;t; t = 1; : : : ; nd;j denote all the locations ofthe �rst edge for which the pair was found.(c) j  j + 1. If j < Nedges goto (b).2. If jLNedgesj=jLj > � , record the feature �I = (e0; e1; R1; : : : ; eNedges ; RNedges) atthe center of B, say yI . All data points in LNedges have an instance of e0 ata location x 2 B and an instance of ei in region Ri relative to x for eachi = 1; : : : ; Nedges.Set I  I + 1.3. Move to the next box and goto 1.We end up with I local features �i at locations yi. Typically I will be larger thanNtypes and we choose a subset of size Ntypes for which the locations yi are \spread out"over the object. By requiring � to be su�ciently large (e.g., � = :5), we establishthe \localization property" LII. This is the only training which takes place for visualselection. The time required is on the order of minutes for several hundred trainingimages.Each triple (i; j; k); 1 � i < j < k � Ntypes, of selected local features determines a\model" triangle � = �ijk = (yi; yj; yk). The set of these triangles is the object repre-sentation. In Figure 5 we show a collection of randomly deformed Z's, obtained from15



Figure 5: Top Left: A collection of randomly deformed Z's. Top Right: Three local featuresin their reference grid locations, superimposed on an image of the prototype Z. The pairsof black/white rectangles denote an edge. Bottom: One instance of the bottom left localfeature on three unregistered random Z's. They are all found at the correct location. Notethe variability in the instantiation of the local feature.
16



a prototype by applying a random low frequency non-linear deformation and then arandom rotation and skew. We also show a smoothed version of the prototype (whichis not part of the training set) in the reference grid. The three black dots indicatethe basis points z1; z2; z3 (see Section 2). Also superimposed are three local featuresidenti�ed for this class of objects at their model locations in the reference grid. Eachpair of black/white rectangles denotes an edge at one of the four orientations. Thethree local features represent one of the triangles in the model. Note that the actualinstances on training data vary considerably in their locations. However the invari-ance incorporated in the search for these triangles accommodates these variations.The bottom row shows three Z's with an instance of one of the features. The imagesare not registered and the feature was detected on the unregistered images. In a testdata set of 100 perturbed symbols all of these local features were found in over 50%of the symbols at the correct location.6 Invariant SearchThe triangles provide a straightforward mechanism for incorporating invariance intothe search for candidate bases. Given an image and a model triangle � = (yi; yj; yk)for three local features �i; �j; �k, we search for all instances of these local featureswhich form a triangle similar to the model triangle � up to small perturbations anda scaling of +/- 25%. The image-wide search for similar triangles is equivalent to asearch for a global arrangement, see section 4.2 with v1 = (yj � yi); v2 = (yk � yi),and the size of B1 and B2 on the order of a hundred pixels.Given a triple of local features �i; �j; �k at locations yi; yj; yk on the referencegrid, the steps of the search are the following1. Precompute the locations of all local features in the image.2. Assume N instances of local feature �i in the image: xi;1; : : : ; xi;N .17



3. For n = 1; : : : ; N; �nd all instances of �j in xi;n + B1; call these xj;1; : : : ; xj;M(M may be 0).� For m = 1; : : : ;M , de�ne Rxj;m�xi;n to be the rotation determined by thevector xj;m � xi;n. For each instance of �k at xk 2 xi;n + Rxj;m�xi;nB2,determine the a�ne map T taking yi; yj; yk into xi;n; xj;m; xk.� Add (Tz1; T z2; T z3) to the list of candidate bases.An important constraint is that the size of the regions B1;B2 used in the image-wide search for the global arrangements be su�ciently large to guarantee that \cov-erage" at the reference pose extends to coverage in global coordinates (see Section8.3 below). Speci�cally, we demand that if the registered ROI of a basis has at leastthree local features �i; �j; �k somewhere in their distinguished neighborhoods in thereference grid, then this ROI will in fact be \hit" in the sense of �nding an instanceof the corresponding global arrangement in the original image coordinates. This isaccomplished by choosing the size of the regions B1;B2 to be on the order of onehundred pixels. Speci�cally, in our applications it was su�cient to take B1 at most11� 11 (to accommodate the required range of scales) and B2 at most 7� 7.7 Final Classi�cationFinal classi�cation means assigning the label \object" or \background" to each candi-date basis. This �nal disambiguation might be more computationally intensive thanselection; this was our experience with detecting faces. One reason is that �nal classi-�cation generally requires both geometric and grey level image normalization whereasvisual selection does not, at least not in our scheme. In our experiments, geometricnormalization means registering the ROI around the basis to the reference grid andgrayscale normalization means standardizing the registered intensity data. Similartechniques have been used elsewhere. After normalization, one typically computes a18



�xed-length feature vector and classi�es the candidates based on standard inductivemethods (e.g., neural networks). The training set contains both \positive" examplesfrom the object class and \negative" examples, which might be false positives fromthe selection stage. In our case we use regions-of-interest which are 
agged by thetriangle search in the types of generic images mentioned earlier.We use classi�cation trees for the �nal step. We recursively partition registeredand standardized edge data. For each location in the reference grid we have four binaryvariables indicating the presence of one of the four edges in a 3� 3 neighborhood ofthat point. When a candidate basis is detected, the associated a�ne transformationmaps the locations of the edges in the ROI of the candidate basis into the referencegrid, yielding a binary feature vector with one component for each of the 4 typesof edges and each pixel in the reference grid. Several tens of trees are grown andaggregated as in Amit & Geman (1997). The use of multiple trees together withphotometrically invariant edge features provides a robust classi�er.Visual selection - the search for the global arrangements - together with �nalclassi�cation stage is therefore highly coarse-to-�ne. One way to see this is that theorganization of each step is tree-structured. For example, the edge fragments arede�ned as conjunctions of comparisons of intensity di�erences, organized as a vine;the search is terminated as soon as one comparison fails. Similarly, the point processdetermined by a local grouping is a thinning of the point process corresponding tothe central edge; if the second edge is not found in the subregion determined by thecentral one (see Figure 2), the search is abandoned, and so forth. Finally, the globalarrangements are strictly scarcer than the constituent local groupings and this searchalso has an underlying tree structure. This explains why the spatial distribution ofprocessing illustrated in Figure 1 is so asymmetric. In contrast, if a neural networkis trained to detect faces at a reference scale and then applied to every (or many)subregions of the image, the corresponding distribution would be more or less 
at.
19



8 Background Densities and Parameter SelectionIn this section we present some empirical results on the \statistics" of the local featuresde�ned above in generic images obtained from the web. These results guide the choiceof parameters in order to obtain conditions LIII;GI;GII, which remain to be veri�ed.8.1 Density of Local FeaturesThe \background density" of local features was estimated from 70 images randomlydownloaded from the web. The local features were chosen by varying the number ofedges Nedges (from 2�7) and the size of the subregions Npixels (from 7�40) and usingdi�erent shapes for the subregions. For each local feature we calculated the densityper pixel, denoted �local, in each of the 70 image and computed the average, ��local,over images. We then regressed the log density on Nedges and Npixels, obtaininglog ��local = �5:96� :64Nedges + :15Npixels (1)with R2 of 95%. It follows that, even at relatively close distances, the dependenceamong the individual edge fragments is su�ciently weak that if Npixels is held �xed,the density itself scales like (e�0:64)Nedges � (0:5)Nedges . In particular, property LIII(low background density) is clearly satis�ed in the ranges of parameters presented inSection 8.3 below.Despite the high correlation, which is due to the averaging over images, there issubstantial variation in the density from image to image. On the natural log-scale thisvariation is of order of �1. In Table 1 we display the mean and standard deviationof the log-density for Npixels = 10 pixels for various values of Nedges. The valueNedges = 0 corresponds to the density of each of the four edges.
20



Nedges 0 1 2 3 4 5 6mean -3.8 -4.7 -5.2 -5.7 -6.3 -6.9 -7.5std .65 .83 .87 .97 .95 .93 .92Table 1: Mean and standard deviation of local feature log-density over 70 random imagesfor various values of Nedges, with Npixels = 108.2 Density of TrianglesConsider again a triangle based on three local groupings �0; �1; �2. We used the 70images to determine typical triangle densities in real images over a wide range ofsizes for B1;B2 and o�sets v1; v2 (triangle shapes). We searched for all instances ofeach triangle in each image. The density of the global arrangements can be predictedrather well from the density of the local features. If the three point processes de�nedby �0; �1; �2 were actually Poisson, each with the same density �local, and if theseprocesses were mutually independent, then the density of the corresponding trianglewould be �global = �3local � jB1j � jB2j; (2)assuming we ignore small clustering e�ects. In fact, the observed density of the tri-angles nearly obeys this equation. In an additional test we replaced the exponent 3 inthe expression for �global by a parameter � and estimated � by maximum likelihoodbased on the counts of the global arrangements. The maximum is very close to � = 3with negligible variance.Still, there are important exceptions to this seemingly straightforward Poissonanalogy. For example, if �0 and �1 are both horizontal groupings of horizontal edges,and if v1 respects this orientation, then long range correlations become signi�cantand a�ect the estimates given above. Thus, knowing the local densities and given thenear-Poisson nature of the corresponding point processes, one can obtain reasonableupper bounds on the densities of the global arrangements in generic scenes.21



8.3 Choosing the ParametersIn order to estimate the likelihood of a missed detection, and thereby guide the choiceof parameters, we need to estimate the probability that a registered object does nothave any of the triangles (with the vertices in their distinguished neighborhoods).This is equivalent to having less than three of the local features at the speci�ed lo-cations. Recall that in training we kept only those local features which were oversome threshold � . Assuming independence of these features on registered data, andassuming the di�erent fractions are approximately equal, we determine the false neg-ative probability by a simple calculation using the binomial distribution. We canthen choose Ntypes, the number of local features, in order to acquire the \coverageproperty" GI and maintain an acceptable level of error. We note that these esti-mates only require a small amount of training data since only the frequencies of localfeatures are compiled and a degree of invariance is built in.We calculated the frequencies of the special local features identi�ed for faces in atraining set of 300 faces as a function of Nedges and Npixels. For these \common" localgroupings, there is a strong linear relation with the number Nedges of edges and thesize of the regions, Npixels. The regression yielded freq = :57� :09Nedges+ :03Npixels,with R2 = 93%. (Similar behavior is observed for randomly deformed latex symbols.)Choosing Nedges = 3 and Npixels = 10 yields frequencies on the order of 50% which inturn leads to very low false negative rates with only order Ntypes = 10 local features;these are the values used in the experiments reported in the following section aswell as in in Amit et al. (1998). Clearly the local variability of the object class iscrucial in determining these frequencies. However, it is not unrealistic to assumethat, after factoring out linear variability, there are a good number of local groupingswhich appear in approximately 50% of the object images, near a �xed location of thereference grid.With these choices for Nedges; Npixels and Ntypes, the density �local of the localfeatures is then order 10�3. It follows from equation (2) that the density �global of the22



global arrangements is order 10�5. Since there are 120 model triangles, the densityof detected global arrangements (and hence candidate bases) is order 120 � 10�5 �10�3, or approximately several tens per 1002 pixels. Thus we see that, indeed, theconjunctions are very rare events in the background population, which is propertyGII.In summary, it is possible to choose the parameters in order to achieve speci�cconstraints on false alarms, missed detections and computation time. Of course thereare the usual tradeo�s. For example, if Nedges and Npixels are held �xed, then increas-ing Ntypes increases the number of false alarms but decreases the false negative rate,and similarly for Npixels.9 ExperimentsThe selection of candidate bases is determined by an image-wide search for the par-ticular global arrangements which represent the object class, as discussed above.In Figure 6 we show detection experiments including both visual selection and�nal classi�cation, for the LaTeX symbols & and Z and for faces. The two sym-bol detectors are trained with 32 samples. The test images are 250x250 arti�cialscenes which contain 100 randomly chosen and randomly placed symbols in additionto the target one. The negative training examples were extracted from real scenesnot the arti�cial scenes illustrated in Figure 6; consequently, the detection algorithmis independent of the particular statistics or other properties of these synthetic back-grounds. The lefthand panels of Figure 6 show all bases detected in the selectionphase. Observe that a basis represents a precise hypothesis regarding the pose of theobject. Processing time is approximately 20 seconds on a 166Mhz laptop pentiumand 3 seconds on a Sparc 20.For faces we trained on 300 pictures of 30 people (10 images per person) takenfrom the Olivetti database. The algorithm was tested on images from Rowley et23



Figure 6: Top Left: All bases 
agged by the &-detector. Top Right: Final decision. Middle- same thing for a Z detector. Bottom - same thing for the face detector.
24



Figure 7: Top row: Experiments with occluded Z's. Bottom row: Experiments withoccluded faces. The face is found during selection in all three images, but only retainedduring �nal classi�cation in the lefthand one.al. (1998) (for example Figure 1), and images captured on the Sun Videocam (forexample Figure 6). Processing time on a Sparc 20 is approximately .5 seconds per100� 100 subimage. All computation times reported include six applications of thealgorithm at di�erent resolutions obtained by downsampling the original image byfactors ranging from 1 (original resolution) to 1=4. About half of the processing timeis spent in detecting the edges and the local groupings. Both operations are highlyparallelizable.In hundreds of experiments using pictures obtained from the videocam and Row-ley's Rowley et al. (1998) database the false negative rate of the visual selection stageis close to zero. Note that the visual selection part of the algorithm is inherently ro-bust to partial occlusion. Since only three of the model features need to be found, theobject is still detected if parts of it are degraded or occluded. It is hard to quantifythese statements; however, in Figure 7 we show some results.Some faces are lost during �nal classi�cation. The main reason seems to be that25



the �nal classi�er is still trained using the 300 faces in the Olivetti training. This is arather homogeneous data set in terms of lighting conditions, and other characteristics.One would need a larger number of examples of faces to improve the performance ofthis stage. Numerous results can be found at `http://galton.uchicago.edu/�amit/faces'.10 Biological VisionOur model was not conceived to explain how real brains function, although we haveborrowed terms like \visual selection" and \foveation" from physiological and psy-chological studies in which these aspects of visual processing are well-established. Inparticular, there is evidence that object detection occurs in two phases - �rst search-ing for distinguished locations in a rather large �eld of view and then \focusing" theprocessing at these places. In this section we investigate some compelling links be-tween our computational model and work on biological vision. We also consider animplementation using the architecture of arti�cial neural networks.We have assumed that the only source of information for visual selection is greylevel values from a single image; there is no color, motion or depth data. In otherwords, the procedure is entirely shape-based. It is obvious on empirical grounds thathuman beings analyze scenes without these additional cues. In addition, there areexperiments in neuropsychology (e.g., Bultho� & Edelman (1992)) which indicatethat 3D information is not crucial.Our selection model has three clearly distinct levels of computation:� Level I - edge fragments;� Level II - local groupings of fragments;� Level III - global arrangements of local groupings.Level I roughly corresponds to the basic type of processing believed to be performedin certain layers of V1 Hubel (1988). Level II involves more complex operations which26



might relate to processing occurring in V2; and Level III could relate to functions ofneurons in IT. These connections are elaborated in the next two subsections.10.1 Flexible Groupings and Illusory ContoursHow regular are the grey level patterns which activate cells in the brain? There isevidence of cells in various areas which respond to rather general stimuli. For example,in V1 there are responses to edge-like patterns which are orientation-dependent butcontrast- independent Schiller et al. (1976). And in von der Heydt (1995) there isa review of the neurophysiological evidence for V2 cells responsive to \illusory" or\anomalous" contours; even in V1 according to Grosof et al. (1993). These cellsrespond equally well to an oriented line and to an occluded or interrupted line. Theyalso respond to gradings which form the preferred orientation. Finally, cells in IT alsorespond to loose patterns and even to con�gurations which are di�cult to name Fujitaet al. (1992). One interpretation of these experiments is that these cells respond toa 
exible local con�guration of edges constrained by loose geometrical relationships.Activation does not require a complete, continuous contour at a certain orientation;su�cient evidence for the presence of such a contour is enough.This approach seems to be more robust and e�cient than a �nely-tuned search.Consider image contours arising from object boundaries and discontinuities in depth,lighting or shape. Such contours are often partially occluded or degraded by noiseand therefore continuous contours may not be su�ciently stable for visual selection.Moreover, given that one observes a several nearby edge fragments of a certain ori-entation, it appears wasteful to attempt to \�ll in" missing fragments and form amore complete entity. Since objects and \clutter" are locally indistinguishable, theadditional information gain might be small compared, say, to inspecting another re-gion. More speci�cally, detecting three approximately colinear horizontal edges inclose proximity might be a rather unlikely event at a random image location, andhence might sharply increase the likelihood of some non-accidental structure, such27



as an object of interest. However, conditioned on the presence of these three edgefragments, and on the presence of either an object or clutter, the remaining fragmentsneeded to complete the contour might be very likely to be detected (or very unlikelydue to occlusion) and hence of little use in discrimination. The fact that the visualsystem at the very low levels of LGN responds to contrast and not to homogeneousregions of lighting is another manifestation of the same phenomenon. Finally, thecomputation of these 
exible groupings is local and it is not di�cult to imagine asimple feed-forward architecture for detecting them from edge fragment data.10.2 Global Arrangements and InvarianceThere is clear evidence for translation and scale invariance within certain ranges inthe responses of some neurons in IT, Lueschow et al. (1994), Ito et al. (1995). Mostof these neurons do not select highly speci�c shapes. This is demonstrated in theexperiments in Kobatake & Tanaka (1994) and in Ito et al. (1995) where successivesimpli�cations of the selective stimuli, and various deformations or degradations, stillevoke a strong response. Moreover the time between the local processing in V1 andthe responses in IT, which involve integrating information in a rather large �eld ofview and at a large range of scales, is a few tens of milliseconds.Suppose a neuron in IT responds to stimuli similar to the types of global arrange-ments discussed here, and anywhere in the receptive �eld and over a range of scales.Then the speed of the calculation is at least partially explained by the simplicity ofthe structure it is detecting, which is not really an object but rather a more generalstructure, perhaps dedicated to many shapes simultaneously. However, conditionedon the presence of this structure, the likelihood of �nding an object of interest in itsimmediate vicinity is considerably higher than at a random location.Put another way, the neurons in IT seem to have already overcome the problemof \moding out" scale, translation and other types of deformations and degradations.This would appear to be very di�cult based on complex object representations. It28



is more e�cient to use sparse representations for which it is easy to de�ne thosedisjunctions needed for invariance. Scale and deformation invariance are achieved bytaking disjunctions over the angles and distances between the local features; occlusionand degradation invariance are achieved by taking a disjunction over several spatialarrangements (the di�erent triangles).10.3 SegmentationThere is no segmentation in the sense of a processing stage which precedes recognitionand extracts a rough approximation of the bounding contours of the object. The clas-sical \bottom-up" model of visual processing assumes that edge information leads tothe segmentation of objects. This is partly motivated by the widespread assumptionthat local processing carried out in V1 involves the detection, and possibly organi-zation, of oriented edge segments Hubel & Wiesel (1977), Hubel (1988). However,edge detectors do not directly determine smooth, connected curves which delineatewell-de�ned regions and it is now clear to many researchers in both computer and bi-ological vision that purely edge-based segmentation is not feasible in most real scenesvon der Heydt (1995), Ullman (1996), at least not without a tentative interpretationof the visual input.10.4 ArchitectureOur actual implementation of the visual selection algorithm is of course entirely serial.However, suppose we consider the type of multi-layer arrays of processors whichare common in neural models and suppose a large degree of connectivity. Thenwhat sort of architecture might be e�cient for the detection of the types of globalarrangements we have described? In particular, how would one achieve invariance toscale, translation and other transformations with a reasonable number of units andconnections?First it is clear that the edges and local features are easily detected in a parallel29
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Figure 8: The P (i) arrays detect the local features. The dots in the P arrays are pointswhere the corresponding local feature was found. The thick lines in the Q arrays are thelocations activated due to activity in the associated P arrays. The widths of these linescorrespond to the sizes of the boxes Bi. Finally the thick dot in the S array shows whereactivation occurs due to the presence of a su�cient number (3) of active Q arrays.architecture with local processing. \Virtual centers" of global arrangements can alsobe detected using a parallel architecture. The price is loss of some pose information.In other words the object is detected over the range of poses, but the detection isrepresented only through the center and hence information on scale and rotation islost. The idea is the following. For each local features �i; i = 1 : : : ; Ntypes, at locationyi, we determine a region of variation Bi relative to the center of the reference grid,which accommodates the expected variations in scale, rotation etc. The constraintson each of the points relative to the center are now decoupled. Each local feature �ithat is found in a detection array P (i) say at x, activates all the locations in the regionx�Bi in an auxiliary array Q(i). These are all the locations of an object center whichcould produce a feature �i at x, if an object was present there within the allowedrange of poses.The activities in the auxiliary arrays are summed into an array S and thoselocations which exceed some threshold are taken as candidate object centers. This isprecisely a parallel implementation of the generalized Hough transform. The detected30



locations are represented through activities in the retinotopic layer S. A diagramillustrating this architecture is presented in Figure 8. Note that this network isdedicated to a speci�c object representation, i.e. a speci�c list of local features andlocations. In Amit (1998) we show how a �xed architecture with a moderate numberof arrays can accommodate any detection task with a central memory module storingthe representations of the various objects.10.5 Multiple Object ClassesRemarkably, real brains manage to parse full scenes and perform rapid visual selectionwhen no speci�c detection task is speci�ed, i.e., no prior information is provided aboutobjects of interest. Clearly at least thousands of possible object classes are thensimultaneously considered. Perhaps context plays a signi�cant role; see Biederman(1981) and Palmer (1975).More modestly, how might a computer algorithm be designed to conduct an e�-cient search for say tens or hundreds of object classes? Ideally, this would be done insome coarse-to-�ne manner, in which many object classes are simultaneously inves-tigated, leading eventually to �nely-tuned distinctions. Clearly, e�cient indexing iscrucial Lowe (1985).Although we have concentrated here on a single object class, it is evident that therepresentations obtained during training could be informative about many objects.Some evidence for this was discussed in Amit & Geman (1997) in the context of\shape quantization"; decision trees induced from training data about one objectclass were found to be useful for classifying shapes never seen during training.We are currently trying to represent multiple object classes by arrangements oflocal groupings in much the same manner as discussed in this paper for a single objectclass. The world of spatial relationships is exceptionally rich and our previous expe-rience with symbol detection is promising. We expect the number of arrangementsneeded to identify multiple classes, or separate them from each other, will grow log-31



arithmically with the number of classes. The natural progression is to �rst separateall objects of interest from \background" and then begin to separate object classesfrom one another, eventually arriving at very precise hypotheses. The organizationof the computation is motivated by the \twenty questions paradigm"; the processingis tree-structured and computational e�ciency is measured by mean path length.11 ConclusionThe main strengths of the proposed model are stability, computational e�ciency, andthe relatively small amount of training data. For example, in regard to face detection,we have tested the algorithm under many imaging conditions, including "on-line"experiments involving a digital camera in which viewing angles and illumination varyconsiderably and objects can be partially occluded. It is likely that the algorithmcould be accelerated to nearly real-time. One source of these properties is the useof crude, image-based features rather than re�ned, model- based features; any "sub-classi�cation" problems are eliminated. Another source is the explicit treatment ofphotometric and geometric invariance. And �nally there is the surprising uniformityof the "statistics" of these features in both object and background populations, whichcan be learned from a modest number of examples, and which determine error ratesand total computation.The main limitations involve accuracy and generality. First, there is a non-negligible false negative rate (e.g., �ve percent for faces) if the number of regionsselected for �nal classi�cation is of order 10-100. This is clearly well below humanperformance, although comparable to other detection algorithms. Second, we havenot dealt with general poses or 3D aspects; whereas scale and location are arbitrary,we have by no means considered all possible viewing angles. Finally, our model isdedicated to a speci�c object class and does not account for general scene parsing.How is visual selection guided when no speci�c detection task is required and a great32
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