
THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS 
345 E. 47th St, Now York. N.Y. 10017 96-TA-39 

The Society shall not be responsible for statements or opinions advanced in papers or discussion at meetings of the Society or of its Divisions or 
Sections. or printed in its publications. Discussion is printed only if the paper is published in an ASME Journal. Authorization to photocopy 
material for internal or personal use under circumstance not falling within the fair use provisions of the Copyright Act is granted by ASME to 
libraries and other users registered with the Copyright Clearance Center (CCC) Transactional Reporting Sernce provided that the base lee of 
$0.30 per page is paid directly to the CCC, 27 Congress Street, Salem MA 01970. Requests fcc special permission or bulk reproduchan should be ad-
dressed to the AS1AE Technical Publishing Depatment 

Copyright 0 1896 by ASME 	 NI Rights Reserved 	 Printed in USA 

NEURAL NETWORKS FOR THE DIAGNOSTICS OF 
GAS TURBINE ENGINES 

I. 

1 	111111111111 p11111111111 
G. TORELLA+ 	G. LOMBARDO* 

+Italian Air Force Academy 80078 Pozzuoli Napoli Italia 
*Universita di Palermo Palermo Italia 

Abstract 
The paper describes the activities carried 

out for developing and testing Back Propagation 
Neural Networks (BPNN) for the gas turbine engine 
diagnostics. 

One of the aims of this study was to analyze 
the problems encountered during training using 
large number of patterns. 

Each pattern contains information about the 
engine thermodynamic behaviour when there is a 
fault in progress. 

Moreover the research studied different 
architectures of BPNN for testing their capability 
to recognize patterns even when information is 
noised. 

The results showed that it is possible to set-
up and optimize suitable and robust Neural 
Networks useful for gas turbine diagnostics. The 
methods of Gas Path Analysis furnish the necessary 
data and information about engine behaviour. 

The best architecture, among the ones 
studied, is formed by 13, 26 and 47 neurons in the 
input, hidden and output layer respectively. The 
investigated Nets have shown that the best 
encoding of faults is the one using a unitary 
diagonal matrix. 

Moreover the calculation have identified 
suitable laws of learning rate factor (LRF) for 
improving the learning rate. 

Finally the authors used two different 
computers. The first one has a classical architecture 
(sequential, vectorial and parallel). The second one  

is the Neural Computer, SYNAPSE-1, developed by 
Siemens. 

I.-INTRODUCTION 
The diagnostic is one powerful tool for the 

maintenance of gas turbine engines. During engine 
operating life, the activities based on effective 
Engine Condition Monitoring allow early 
intervention assuring the security margins. 
Moreover, by permitting the maintenance only 
when it is necessary, diagnostics avoid unnecessary 
and expensive engine stops and save both human 
and money resources. 

Obviously information about the engine 
behavior makes possible and easy the engine 
diagnostics. 

Unfortunately, sometimes the causes of 
engine malfunction and the right interventions must 
be detected by poor information. 
Moreover the values used for diagnostics may be 
either approximate or, at the worst, incorrect. 
Nevertheless the diagnostics must proceed and the 
maintenance must start. 

Neural Networks are one of the Artificial 
Intelligence fields and they are particularly useful 
for many tasks [1-3]. 

They work satisfactorily also with poor and 
inaccurate information therefore they might give an 
important help to diagnostics and fault detection. 

The specialized literature and different 
authors have shown the possibility of using Neural 
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Networks for fault isolation and for diagnostics in 
different fields. [1-11] 

This paper deals with the activities carried 
out for developing, testing and using Neural 
Networks for engine diagnostics. The methods, the 
techniques and the computer programs for Gas Path 
Analysis give the necessary data about the engine 
behaviour. 

The main aims of this research were: 
• the analysis of the possibility of setting-

up reliable, flexible and robust Neural 
Networks having high ability to detect 
the right fault even if information about 
engine behaviour is poor and/or affected 
by noise; 

• the study of training problems linked to 
the use of a large number of patterns; 

• the analysis of some architectures of 
Neural Networks; 

• the utilization of two different type of 
computers: a 'classical' computer and a 
Neural-Computer. The scope was the 
comparison of benefits offered by each 
type. 

2.-THE SELECTION OF NEURAL 
NETWORK AND THE RELATED PROBLEMS 

Neural Nets are information processing 
systems that have certain performance 
characteristics in common with biological Neural 
Systems. Elemental units, called artificial neurons, 
form the nets. The different arrangements of 
neurons and the connections among them define a 
particular Neural Network. 

The analysis of different types of Neural 
Networks, the experience heaped-up during past 
studies by authors and specific literature [9] 
showed that different types of networks have 
capability for fault diagnosis. 

Each Neural Net has advantages and 
disadvantages. For instance BPNNs must be trained 
again for learning new patterns: The Adaptive 
Resonance Theory Neural Network has not this 
problem. 

On the other side BPNNs seem to be quite 
robust and has capability to work satisfactorily 
even with poor data. 

This paper consider the use of the Back 
Propagation Neural Networks (BPNN) for the 
diagnostics of gas turbine engines [12-14]. 

BPNNs are multilayered networks formed by 
units (the neurons) arranged in different layers. 

There are one input layer, one or more hidden 
layers and one output layer. 

The number of units of input layer is 
strictly linked to the number of available 
information about engine health. The studied Nets 
had 13 units. This means that all nets use 13 
parameters describing the thermodynamic 
behaviour of engine. 

This paper considered networks having only 
one hidden layer. This choice was suggested by 
necessity to reduce the time for training Nets. 

There are not fixed and sure criteria for 
selecting the number of elements of hidden layer. It 
should be useful to use few units for reducing the 
time of training. Nevertheless convergence 
problems might arise [11]. The result of previous 
studies suggested to use 26 or 52 neurons in the 
hidden layer. 

Owing to the very long time for training, a 
larger number of hidden neurons was not 
considered. 

Finally the number of units of output layer 
is variable and it is strictly linked to the criterion 
used for encoding the faults. 

Therefore the different architecture are 
characterized by the encoding of faults and by the 
number of element of hidden units. 

One of the aim of this study was the 
selection of the best BPNNs among the ones 
studied. 

As previously stated one of the scope of this 
paper was to increase the number of patterns in 
order to study the problems linked to training. 

The literature contains results about the 
application of Neural Networks to fault diagnosis 
using 140 patterns [9]. 

During this research was used a number of 
patters ranging from 47 to 4324. 

Each patter contains the values of 
parameters describing the thermodynamic 
behaviour of the engine when there is a fault in 
progress. 

During this study two different sets of 
patterns were used. The first one describes the 
effects of different faults of engine behaviour. The 
second one, the largest one, contains disturbed 
patterns derived from all patterns used in the first 
set. 

The following section discusses the criteria 
used for developing and evaluating the used 
patterns. 
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2.1-The training of BPNNs and the 
criteria for selecting the patterns for training 

Learning or training is the most important 
and critical activity carried out during Network 
development because it strongly influences the 
final qualities of Nets. 

From a computational point of view, the 
training allows to calculate the values of the 
strength of connections among the neurons. The 
BPNNs derive their name from the procedure used 
for training. It is depicted in Fig. 1. 

Jt1, NUMBER OF EPOCHS 

STOP 
LEARNING ) 

Neural Networks for diagnostics use 
patterns containing the variations of engine 
thermodynamic and performance parameters, with  

respect to the same values of a 'healthy' engine, 
when known faults are active. Therefore the 
training procedure may start when patterns, 
describing known situations and faults, are 
available. 
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One source furnishing the necessary patterns 
is the engine simulation. It permits the calculation 
of many patterns containing information about the 
engine behaviour when there are one or more faults 
in progress [15-17]. For this aim the authors used 
the codes for simulating the engine working 
developed in the past. These programs are based on 
a set of non-linear equations describing the 
thermodynamic cycle of engine, on the state vector 
technique and on the component matching criterion. 

The results of calculations are usually 
collected in files called 'matrices of influence' 
[18-19]. 

These files are the main data of codes for 
engine diagnostics and they derive from the criteria 
of Gas Path Analysis used in Engine Condition 
Monitoring [18-19]. 

Each row of a matrix is the replay of engine 
to the decay of one or more performance of engine 
component. As an example: a row shows the 
variation of engine performance when the fault  

causes the decrease of compressor efficiency, 
another row the contemporary decay of efficiency 
of compressor and turbine, etc. Therefore each row 
is a pattern useful for the training of Neural 
Networks for engine diagnostics. 

013'i/ionsly each column represents the 
variation of each parameter of engine (thrust, 
rotational speed, exhaust gas temperature, 
compressor delivery pressure, etc.) due to the decay 
of component performance. 

The engine studied was a 600 SHP single 
spool turboshaft engine with a power turbine. 

For this study the codes for engine 
simulation gave 47 basic patterns for the training 
of BPNNs; some of the simulated faults are shown 
in Table 1. 

The basic patterns describe the engine 
behaviour when the faults cause the variation of 
one, two or three performance of engine 
components. 

TABLE 1 
FAULT EFFECTS (component performance variation) 
(+) Increase, (-) Decrease 

1 COMPRESSOR EFFICIENCY (-) 
2 COMPRESSOR PRESSURE RATIO (-) 
3 COMPRESSOR CAPACITY (-) 
4 GAS GENERATOR TURBINE EFFICIENCY 

(-) 

5 GAS GENERATOR TURBINE CAPACITY 
( 4 ) 

6 POWER TURBINE EFFICIENCY (-) 
7 POWER TURBINE CAPACITY (+) 
8 GAS GENERATOR TURBINE EFFICIENCY (-) and CAPACITY (+) 
9 POWER TURBINE EFFICIENCY (-) and CAPACITY (+) 

The data whose variations are stored in each 
element of a row of matrix of influence are the 
most important performance and thermodynamic 
parameters of engine. Table 2 shows the parameters 
considered here. 

Some of these data are directly obtained 
from experimental facilities: test beds and airborne 
data acquisition systems. From the analysis of these 
data, carried out by suitable computer codes, it is 
possible to obtain the values of parameters not 
directly measurable. 

The dimensions of starting matrix of 
influence, containing all patterns used for training,  

are 47x13. The matrix was evaluated for fixed 
values of both fuel flow and power turbine 
rotational speed. 

Other matrices were developed during the 
setting-up and the tests BPNN for improving and 
testing the robustness and ability of Nets. 

The training of BPNNs required the coding 
of each fault. This study used different criteria. 

The first one was based on a 6 bit binary 
code of the fault and Table 3 shows part of the 
coding for some faults. 
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TABLE 3 
6 BITS CODING OF FAULTS 

000001 decay of compressor efficiency 
000010 decay of compressor pressure ratio 
000011 decay of compressor capacity 

101110 increase of burner and interduct pressure losses 
101111 increase of intake, burner and interduct pressure losses 

TABLE 4 
UNITARY DIAGONAL MATRIX FOR FAULT CODING 

10000000...00000 decay of compressor efficiency 
01000000...00000 decay of compressor pressure ratio 
00100000...00000 decay of compressor capacity 

00000000...00010 increase of burner, and interduct pressure losses 
00000000...00001 increase of intake, burner and interduct pressure losses 

TABLE 2 
ENGINE PERFORMANCE and THERMODYNAMIC PARAMETERS 

1 POWER 
2 PRESSURE RATIO 
3 EXHAUST GAS TEMPERATURE 
4 SPECIFIC FUEL CONSUMPTION 
5 INLET MASS FLOW RATE 
6 COMPRESSOR EXHAUST PRESSURE 
7 COMPRESSOR EXHAUST TEMPERATURE 
8 GAS GENERATOR ENTHALPY DROP 
9 TURBINE INLET TEMPERATURE 
10 GAS GENERATOR TURBINE EXHAUST TEMPERATURE 
11 GAS GENERATOR TURBINE EXHAUST PRESSURE 
12 GAS GENERATOR ROTATIONAL SPEED 
13 POWER TURBINE PRESSURE DROP 

The second criterion was based on the construction 
of a matrix whose element are all set to zero except 
one whose value is I. The position of this non-zero 

digit in the row indicates the fault. The final matrix 
was an unitary diagonal matrix and Table 4 shows a 
part of this matrix with the related faults. 
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Finally a third coding criterion stated that 
each fault were described by a 13 elements vector. 
The first 4 elements contained the tens and the 
successive 9 elements contained the units. 

For instance the codes of fault 3 and fault 
33 are: 

0 0 0 0 0 0 1 0 0 0 0 0 0 fault 3 
0 1 0 0 0 0 1 0 0 0 0 0 0 fault 33 

3.-THE  DEVELOPMENT OF NEURAL 
NETWORKS 

The 	study 	followed 	two 	different 
approaches. The first one dealt with the 
development, testing and use of BPNN by using 
computers ranging from Personal to high speed 
computers with advanced architecture. 

The second approach considered the use of a 
Neural Computer: the Siemens SYNAPSE 1. 

The aim of this double choice was to study 
and to observe the difference in developing the 
BPNNs and in testing their ability and robustness 
in fault recognition. This way two different 
philosophies were compared and enough data, for 
selecting the more effective way for developing 
BPNNs, were collected. 

3.1-The 'classical' computer approach 
The study began with the selection of 

patterns for the BPNN training. The 47x13 matrix 
of influence furnished the first set of patterns. 

For improving the robustness of Neural 
Network, the training used two more sets of 
patterns derived from the original matrix (47x13 
matrix). This way it was possible to study the 
behavior of BPNN when it must works with either 
uncompleted patterns or with patterns containing 
wrong data. 

Therefore the second set contained 658 
patterns; 611 of them were obtained form the basic 
47 patterns by setting, one by one, each element of 
each row equal to zero. 

The third set contained 4324 patterns; 4277 
of them were obtained considering, from time to 
time, two elements of each row of basic 47 patterns 
equal to zero. Finally both sets contained the basic 
47 patterns 

Finally, for controlling the quality of BPNN 
learning, the matrix shown in Table 4 was used as 
the set of output patterns. 

The successive step of BPNN development 
dealt with the definition of its architecture. The 
considered BPNN has one input layer with 14 
neurons (13 for each engine parameter + 1 bias 
neuron); one hidden layer with 52 neurons (51+1 
bias) and one output layer with 47 units. When 
the sets of input and output patterns were 
constructed the training procedure started. 

In the past, several Networks were 
developed by using personal computers and the 
studies considered comparatively few patterns (8- 
17). 

The present research considered a larger 
number of patterns so the training time become 
very high (from 10 hours to several days) so a 
faster computer, the CONVEX 3880 a vectorial-
parallel supercomputer with 1024 Megabyte RAM 
and 8 processors, was used. 

The faster computer performed training only 
because the test on robustness and ability of 
BPNNs were carried out by Personal Computers 
with 486 66 Mhz microprocessors. 

During the training, the following problems 
appeared and required attention and solution. 

The first problem was to improve the speed 
of calculation. 

One important parameter of BPNN learning 
iterative procedure is the learning rate factor (LRF) 
controlling the updating of neuron weights between 
two successive epochs. 

When the Network used few patterns the 
LRF had a fixed values. The training with 47 
patterns used satisfactorily a value equal to 0.05. 
The training required 28606 epochs in about 10 
hours (it is the total time shared with other 
applications). 

When the number of patterns increased to 
658 and 4324 it was necessary to use variable LRF. 
In fact the study showed that it is convenient to use 
high value of learning factor at the beginning of 
learning phase and lower values in the final part of 
the learning phase. This way, at the beginning, the 
variation of weights between two successive steps 
is large and the between the calculated and the 
actual patterns decreases quickly. When the 
learning proceeds there is the necessity to decrease 
the variation of weight so the LRF must be lower. 

Moreover variable LRF avoid the 
fluctuation of global . value of error. The general 
law used was: 
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A* 'PASS+ B 
LRF — 

IPASS 

TABLE 5 
Different laws of LRF 

LAW I 	A=0.00I 	8=0.099 
LAW 2 	A=0.01 	8=0.98 
LAW 3 	A=0.05 	B=0.94 

The Law 1 avoids the fluctuation of global 
error but the learning speed is too low owing to the 
high number of patterns. 

The Law 2 decreases the initial error very 
quickly but, when the number of learning epochs 
increases, the learning speed decreases very much. 

The Law 3 allows fluctuation of global error 
higher than previous law but the learning speed is 
noticeably increased. Moreover the high value of 
learning rate during the first epochs lowers the 
global error quickly. 

Law 3 was used for the BPNN training with 
658 and 4324 patterns. The total epochs required 
were about 36667 and 21651 respectively. 

3.2-The Neural Computer approach 
The second approach studied the use of the 

neural computer SYNAPSE-1 by Siemens for BPNN 
development. 

SYNAPSE-1 is a neural computer with 
processors arranged in a matrix and it allows 
parallel computation. Its architecture is quite 
different from usual computers therefore it is more 
suitable for Artificial Intelligence applications. 

The training used again three sets of 
patterns. The first was the basic 47x13 matrix. 
Moreover, for studying the robustness 
requirements, two more sets of patterns were used. 
One contained the already used 4324 patterns. The 
third set was built by altering each pattern of 
matrix 47x13. The alteration was performed by 
adding to each element a random quantity 
proportional to its original value. The range of 
random values was between -0.08 and +0.08. Since 
each pattern was changed 17 times, the third set 
contains 799 patterns. 

As regard to the fault coding, BPNNs may 
use either the 6 bits binary coding (Table 3) or the  

• IPASS indicates the number of epochs and different 
laws, deriving from different values of A and B, 
were used, table 5. 

unitary diagonal matrix (Table 4) or the decimal 
coding already described. 

The BPNN development used ECANSE 
(Environment for Computer Aided Neural Software 
Engineering). It is based on the concepts of object 
oriented programming and permits to develop 
Neural Networks by using an user-friendly 
environment containing many objects each carrying 
out a particular activity [20]. 

Owing to its structure ECANSE allows the 
development of Neural Networks even if the user is 
not expert in a particular programming language. 

The aim of SYNAPSE-1 utilization was the 
selection of BPNN showing the highest ability and 
robustness. Moreover particular attention was paid 
to the time necessary for training. The developed 
BPNNs are shown in Table 6. 

The Net 1 and 2 studied the influence of 
number of elements of hidden layer on the 
reliability and robustness of networks. They use a 6 
bits fault coding. 

Net 3 and 6 considered the influence of LRF 
and of fault coding. They used 6 bits and the 
unitary diagonal matrix coding respectively. Both 
nets used the same laws of LRF, table 7. 

ECANSE allowed to train nets 3 and 6 
contemporary. 

The aim of nets 4 and 5 was similar to the 
one of net 1 and 2 but they used unitary diagonal 
matrix for fault coding. 

Nets 7 and 8 considered only 47 faults for 
training. This choice was performed for evaluating 
the influence of both fault coding and of a 'low' 
number of patterns on network robustness and for 
optimizing the learning time. Both nets have 26 
elements in the hidden layers but net 7 used 6 bits. 
binary coding while net 8 used the unitary diagonal 
matrix. 

Moreover both nets used variable LRF. The 
present study showed that the best law' for 
optimizing the learning velocity is the one in Table 
8. 
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TABLE 8 
LRF law used by nets 7 and 8 

LRF = 0.1 

LRF = 0.05 

LRF = 0.01 

LRF = 0.005 

LRF = 0.001 

IPASS <10000 

0000< WASS <100000 

00000< IPASS < 300000 

300000 < IPASS < 900000 

IPASS > 900000 

TABLE 6 
Summary of developed Neural Networks 

network elements of 
layers 

number of 
patterns 

fault coding learning steps 

x106 
NET 1 13-52-6 799 6 bits 20 (23 h) 
NET 2 13-26-6 799 6 bits 31(30 h) 
NET 3 13-52-6 799 6 bits 48 
NET 4 13-52-47 799 table 2 mat. 48 
NET 5 13-26-47 799 table 2 mat. 50 
NET 6 13-52-47 799 table 2 mat. 117 
NET 7 13-26-6 47 6 bits 35 
NET 8 13-26-47 47 table 2 mat. 35 
NET 9 13-52-47 4324 table 2 mat. 52 

NET 10 13-26-47 4324 table 2 mat. 52 
NET 11 13-26-13 47 decimal 20 
NET 12 13-52-13 47 decimal 20 

TABLE 7 
Variation of LRF used by nets 3 and 6 

LRF = al - 2x10 - 6  IPASS 
	

0 < IPASS <10000 
LRF = LRF,, — 2x10-9  IPASS 

	
0000 < IPASS <10millions 

LRF = 0.000 
	

IPASS >10millions 

Nets 9 and 10 considered a very large 
number of patterns (4324) and consider different 
numbers of elements in the hidden layers (52 and 
26). 

Finally nets 11 and 12 studied the influence 
of both hidden layer elements and of decimal fault 
coding. 

4.-THE RESULTS 
This part of paper discusses the results 

obtained with the BPNNs developed by the two 
approaches. 

4.1-The BPNNs developed by 'classical' 
computers 

The weights evaluated by CONVEX 3880 
were used by Personal computers for evaluating the 
quality of BPNNs. 

The first tests dealt with the BPNN 
robustness. The effectiveness of a neural network is 
founded in its capability to isolate the faults even 
when the input information about the engine 
behaviour are wrong and/or incomplete. 

The evaluation of robustness required two 
series of tests. The first one used the same patterns 
employed for training. The second one required a 
new set of patterns whose elements were suitably 
disturbed and altered. Table 9 shows the results of 
first series of tests. 
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Table 9 
Percenta e of faults correctly reco nized by network 

test with 47 
patterns 

test with 658 

patterns 

test 	with 	4324 

patterns 

network trained 
with 47 patterns 100% 52% 15% 

network trained 

with 658 patterns 100% 96% 78% 

network trained 

with 4324 patterns 100% 100% 98% 

The robustness of network is fully 
demonstrated by the first row. The networks 
recognizes all patterns it was trained by and the 
52% of the set containing 658 patterns and 15% of 
set composed by 4324 patterns, This means that 
even if the starting patterns are relatively few (47) 
the networks is able to correctly recognize 342 of 
658 (295 patterns beyond the original 47) and 648 
of 4324 (641 patterns beyond the original 47). In 

other words the net is able to detect the right fault 

Table 10 
Second set of tests for robustness network  

even if the input contains one or two information 
wrong or absent. 

The second series of tests was carried out by 
developing 235 new patterns. They were obtained 
from the basic 47x13 matrix by adding to each 
element of each pattern a noise. One type of noise 

was equal to ±20%,±10%,±5% of original values 

of element. Another type is constantly equal to 

1-0.005,±0.001 for any element of each pattern. 

Table 10 shows the obtained results. 

noise 

t.20% 

noise 

±10% 

noise 

±5% 

noise 

±0.005 

noise 

±0.0.01 
Network 
trained 	with 
658 patterns 55% 50% 89% 87% 100% 

Networks 
trained 	with 
4324 patterns 

54% 64% 74% 81% 98% 

Again BPNNs show a very high degree of 

robustness Infact they recognize the right faults 
even if the input pattern is strongly disturbed. 

4.2-The BPNNs developed by Neural-
Computer 

Table 11 shows the most significant results 
about the ability of nets in recognizing the patterns 
and their robustness. Two tests for evaluating the 
net ability were carried out. The first used the basic  

47 patterns. The second one used 149 of the 799 • 
patterns already considered for training. 

The robustness tests were carried out in 
different ways. One test used 47 patterns noised 
proportionally to the values of original elements. 

The noise was selected randomly in three different 
range ±-0.08 +0.15 +0.8. Moreover the test used 611 

patterns derived from the basic ones by setting 
equal to zero, from time to time, one element of 
each pattern. 
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TABLE 11 
Results of calculation for testing the Net robustness 
Net 149 	- 

patterns 
47 

patterns 
noise 
±0.08 

noise 
+0.15 

noise 
±0.8 

611 patterns 

1 86% 85% - 83% 34% 42% 
2 86% 85% - 72% 34% 41% 
3 66% 66% - 64% 40% 43% 
4 98% 98% - 98% 66% 68% 

5 98% 98% 98% 57% 62% 
6 98% 98% - 96% 64% 63% 
7 77% 77% 77% 72% 28% 35% 
8 100% 100% 100% 98% 68% 60% 
9 85% - - - - 31% 

10 74% - _ - - 71% 
11 92% 92% 92% 85% 34% 44% 
12 89% 89% 92% 81% 32% 44% 

The results obtained by nets 5, 6 and 2 and 
3 show that the use of variable LRF helps the 
training and shortens the time of learning. 

This result is already available in literature 
where there are only general indications about the 

\ value of learning rate factor. This study has shown 
that, for our aim, the best laws of variation are the 

I ones shown in table 7 and 8. 
There is an apparent strange results of 

learning time of net 3 and 2, Table 6. The former 
(variable learning rate) requires 48 millions of 
steps while the latter (fixed learning rate) requires 
only 20 millions of steps. The result may be 
explained by thinking that the net 3 and net 6 are 
trained together and the shown time is the total 
training time. 

This study showed that the fault coding 
criterion is very important during Neural Network 
development. 

The comparison of nets 1,2,3 and nets 4,5,6 
shows the best behaviour of unitary matrix coding 
while the comparison of nets 4,5,6 and nets 11,12 
shows that the unitary diagonal matrix coding is 
always better than the decimal one. 

The results show that the best BPNN is net 8 
that has 13 elements in input layer, 26 elements in 
the hidden layer and 47 elements in the output 
layer (the fault coding uses the diagonal unitary 
matrix). 

S.-CONCLUSIONS  
The paper considered BPNNs for the 

diagnostics of gas turbine engines based on 
thermodynamic and performance data obtained by 
the engine Gas Path Analysis. 

The selection of BPNNs was based on the 
fact that these Nets seem to be more robust than 
others. So they might be able to detect the right 
fault even if the information about engine health 
and behaviour is poor and/or noised. 

This study confirmed this behaviour. 
The research considered Neural Nets with 

one input, one hidden and one output layer. 
The number of neurons of input is related to 

the number of information available about engine 
health. This study considered an input layer with 
13 neurons. 

The choice of both the number of hidden 
layer and the elements of each layer is not 
controlled by well defined criteria. This study 
considered 26 and 52 elements in the unique hidden 
layer. 

The number of output elements is related to 
the criterion for encoding the faults. The paper 
considered two different criteria. 

The work confirmed the importance of fault 
coding and the unitary diagonal matrix showed to 
be the best coding criterion. 

The previous considerations lead to some 
architectures and one aim of study was to select the 
best among them. 
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The best architecture, from the robustness 
point of view, had 13, 26 and 47 neurons in the 
input, hidden and output. 

The study used a very large number of 
patterns for training. 

The results confirmed that, when the number 
of patterns is very large, the use of variable LRF is 
essential for reducing learning time. 

The research furnished 	suitable laws of 
LRF for improving the training reducing the 
necessary training. The laws were obtained starting 
from general criterion that during the training the 
LRF must decrease [11]. The laws seem to be 
effective also for a number of patterns larger than 
the one used. 

The comparison of the use of different 
computer has lead to these conclusions: 

The results are the same because the basic 
relations and calculation criteria are the same. 

Even if the value .of training time are not 
available, due to the time sharing characteristics of 
classical computer, this latter is faster than neural 
computer. 

On the other side the neural computer is 
easy to use. Infact, thanks to the ECANSE 
environment and the object oriented programming, 
the shell allows to construct effective Nets even if 
the user is not an expert of computer programming. 
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