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Abstract— Sphere decoding has been suggested by a number
of authors as an efficient algorithm to solve various detection
problems in digital communications. In some cases the algorithm
is referred to as an algorithm of polynomial complexity without
clearly specifying what assumptions are made about the problem
structure. Another claim is that, although worst case complexity
is exponential, the expected complexity of the algorithm is polyno-
mial. Herein we study the expected complexity where the problem
size is defined to be the number of symbols jointly detected and
our main result is that the expected complexity is exponential
for fixed SNR, contrary to previous claims. The sphere radius, a
parameter of the algorithm, must be chosen to ensure a non-
vanishing probability of solving the detection problem. This
causes the exponential complexity since the squared radius must
grow linearly with problem size. The rate of linear increase is
however dependent on the noise variance and thus the rate of the
exponential function is strongly dependent on the SNR. Therefore
sphere decoding can be efficient for some SNR and problems of
moderate size, even though the number of operations required by
the algorithm strictly speaking always grows as an exponential
function of the problem size.

Index Terms— ML detection, sphere decoding, expected com-
plexity, large deviation theory.

I. INTRODUCTION

MAXIMUM likelihood (ML) detection of digital mes-
sages in general requires joint detection of an entire

block of symbols [1]. For problems of certain structure effi-
cient algorithms, such as the Viterbi algorithm, can success-
fully be applied. In general however, when no exploitable
structure is at hand, the detection problem is very computation-
ally intensive. Such hard instances of the detection problem
arise in for example multiuser detection (MUD) problems in
code division multiple access (CDMA) [2], [3] and linear
dispersive space time block coding (LD-STBC) [4].

Consequently, there has recently been a growing interest in
sphere decoding for ML detection in digital communications
[5]–[7]. Sphere decoding, or the Fincke-Pohst algorithm [8],
[9], offers large reductions in computational complexity for
the class of computationally hard combinatorial problems
that arise in the aforementioned (ML) detection problems.
In [8] it is shown that the complexity of sphere decoding,
under certain assumptions, is polynomial in the problem size
meaning that there is a polynomial function of the problem
size that bounds the number of operations required by the

algorithm. The assumptions made in [8] were however made
in another context and are not generally applicable to the ML
detection problem encountered in digital communications [10].

The primary topic treated in this paper, as in [10], [11], is
the expected number of operations required by the algorithm
where the expected value is computed over the channel and
noise realizations as well as the possible transmitted messages.
The problem size will be defined as the number of symbols,
m, that are jointly detected and the constellation size for
each symbol, L, will be kept fixed. As shown in [10] the
expected complexity, C(m) = C(m, ρ), of the sphere decoder
is dependent both on the size, m, and the SNR, ρ. It is
also shown in [10] that, when the SNR is high, the expected
number of operations required by the sphere decoder can be
approximated by a polynomial function for small m. However,
there does not exist, for any fixed ρ, a polynomial upper bound
on C(m) which holds for all m. Therefore, the algorithm is
strictly speaking not of polynomial expected complexity under
the usual definition [12], [13]. This result is proven herein by
deriving exponential lower bounds on C(m) for a large class
of ML detection problems.

In [10] an exact expression for the expected number of
operations required by the sphere decoder is obtained. How-
ever, this expression is hard to interpret and increasingly
difficult to compute for larger problem sizes. Therefore it is
not straightforward to see whether the expression tends to
infinity as an exponential or a polynomial function. This paper
differs from [10] since here, rather than studying an exact
expression, the asymptotic behavior of C(m) is considered.
Specifically we show that the expected number of operations
tends to infinity as Lγm where γ ∈ (0, 1] is some small factor
dependent on ρ. This can be compared to full search for which
the number of operations tend to infinity as Lm. However, for
large SNR the factor γ � 1 and therefore Lγm is close to 1
when m is small. This means that for large ρ and small m the
complexity C(m) is dominated by polynomial terms which is
consistent with the results of [10].

A main contribution of this paper is to derive a way to com-
pute γ for the specific case considered in [10]. Determining γ
is valuable since it provides useful insight into which problem
sizes, m, can be considered small. The problem structure
considered herein is properly defined in Section II and sphere
decoding algorithm is explained in Section III. After a brief
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discussion about the definition of expected complexity in
Section IV an expression, suitable for asymptotic analysis,
is developed in Section V. This expression serves as the
basis for a theorem in Section VI, which shows that C(m)
tends to infinity as an exponential function for a large class
of detection problems. This class of problems includes the
problem considered in [10] as a special case. In Section V,
attention is restricted to the specific problem in [10] and a
method for computing the asymptotic approximation of C(m)
is developed using the theory of large deviations. These results
are illustrated by examples in Section VIII.

II. PROBLEM DEFINITION

In this section a generic model for the communication
system is introduced. The generality of the model is chosen
such that it includes the examples of CDMA [3] and LD-STBC
[4] mentioned in the introduction. Furthermore it extends to
multiple input multiple output (MIMO) systems, both in the
flat fading and the frequency selective, block transmission,
scenario [7]. Also, intersymbol interference (ISI) problems
on a finite impulse response channel are included although
in some of these cases sphere decoding may not be the best
choice of algorithm. Note that all results, up to Section VII,
hold in this general context.

Consider the maximum likelihood (ML) detection of a mes-
sage s̄, drawn from an m-dimensional L-PAM constellation
Dm

L , which is sent across a linear channel and disturbed by
additive noise. The received signal, x ∈ R

m, is given by

x = Hs̄ + v (1)

where H ∈ R
m×m is the channel matrix and v ∈ R

m is the
additive noise. The channel matrix, H, is assumed randomly
drawn from some distribution and known to the receiver. The
noise, v, is assumed to be white Gaussian noise, i.e. each
component of v is assumed independently drawn from a
normal, N (0, σ2), distribution. The message s̄ belongs to the
set Dm

L defined as

Dm
L =

{

−L − 1

2
,−L − 3

2
, . . . ,

L − 3

2
,
L − 1

2

}m

.

That is, each element of s̄ takes one of L different values,
which are at integer spacing and centered around 0.

Under the above assumptions the ML estimate of s̄ is well
known to be [1]

ŝML = argmin
s∈Dm

L

‖x − Hs‖2 (2)

and for a general H this problem is known to be NP-hard [14].
In (1) the channel matrix, H, is assumed to be a square and

real valued matrix. This assumption simplifies the theoretical
development of this paper. However, the results extend to the
case of tall matrices, i.e. if H is an R

n×m matrix for some
n ≥ m. The reason for this is that such a problem can be
rewritten in the form of (1) by projecting the problem onto
the column space of H. The case of m > n, even though
some of the results hold with slight modifications, will not be
considered and from here on it shall be assumed that m = n.

The case of complex valued H, s̄, and v can be rewritten
in the above form under the additional assumption that each
component of v is circularly symmetric complex Gaussian.
More specifically, by expanding the problem dimensionality a
complex valued problem can be written as

[

<(x)
=(x)

]

=

[

<(H) =(H)
−=(H) <(H)

] [

<(̄s)
=(̄s)

]

+

[

<(v)
=(v)

]

(3)

where <(x) and =(x) denote the real and imaginary parts of x

respectively. This means that QAM constellations are included
in the framework of this paper.

Herein we define the SNR, ρ, at the receiver as

ρ =
E
{

‖Hs̄‖2
}

E {‖v‖2} (4)

where in the above, and in the following, all messages s̄ are
assumed to be drawn with the same probability. That is, s̄ is
uniformly distributed on Dm

L . Also, an additional assumption
will be made concerning the distribution of H. To be specific,
it will be assumed that there exist some constant c, independent
of m, such that

E
{

‖hi‖2
}

≤ c2 ∀ i ∈ [1,m] (5)

where hi is the ith column of H. The interpretation of this
assumption is that each symbol is transmitted with finite
energy. While it is clear that this assumption is satisfied for
most systems of practical interest it is important to explicitly
state when the asymptotic properties of C(m) are considered.

III. SPHERE DECODING

This section is intended to give sufficient understanding of
the sphere decoding algorithm for the reader to follow the
complexity computations of the following sections. It will also
introduce some important notations and concepts. The purpose
of this section is not to explain the implementational aspects
of sphere decoding, these are discussed in for instance [8] or
[10], [11].

Sphere decoding solves (2) by searching only over those
points that satisfy a constraint of the form

‖x − Hs‖2 ≤ r2. (6)

In other words, sphere decoding only considers points that lie
inside a hypersphere of radius r. An efficient way to check this
criterion, referred to as the Phost Strategy [8], is as follows.

Let QR = H be the QR factorization of the channel
matrix H, i.e. R is an upper right triangular matrix and Q

an orthogonal matrix. Due to the invariance of the `2 norm to
orthogonal transforms the constraint of (6) can be rewritten as

‖Rs − QTx‖2 ≤ r2.

Let p ∈ R
m be given by

p = p(s) = Rs − QTx (7)

where emphasis has been placed on the fact that p is a function
of s. Equation (6) can now be written as

m
∑

i=1

p2
i ≤ r2 (8)



3

PSfrag replacements k=0
k=1

k=2
k=3

k=4

Fig. 1. Illustration of sphere decoding search tree for 2-PAM constellation
with m = 4. The nodes visited by sphere decoding are shown in black.

where pi is the ith entry of p. Due to the upper triangular
structure of R the ith entry of p, pi, is a function only of
sj , j = i, . . . ,m, where sj is the jth entry of s. Since p2

i is
positive

m
∑

i=m−k+1

p2
i ≤ r2, k = 1, . . . ,m (9)

follows from (8) and in particular for k = 1

p2
m(sm) ≤ r2. (10)

Since p2
m(sm) is a (positive semidefinite) quadratic function

in sm this gives upper and lower bounds for the values that
can be assigned to sm without violating (6). For each choice
of sm

p2
m−1(sm−1, sm) ≤ r2 − p2

m(sm) (11)

provides upper and lower bounds on sm−1 and in general

p2
i (si, . . . , sm) ≤ r2 −

m
∑

j=i+1

p2
j (sj , . . . , sm) (12)

gives upper and lower bounds on si given si+1, . . . , sm.
If full search is illustrated as a search tree where each

path trough the tree correspond to a possible message, s, then
sphere decoding can be viewed as a pruning algorithm on this
tree where a subtree can be rejected at some depth k based
on violation of the constraint given by (12). This is shown in
Figure 1 for a 2-PAM constellation.

Sphere decoding traces down branches of the search tree
until (12) is violated. At this point the algorithm backtracks
and proceeds down a different branch. The efficiency of sphere
decoding hinges on the ability to reject entire subtrees high up
in search tree. The number of operations required by the sphere
decoding algorithm is given by the number of nodes visited
in the tree as well as the number of operations required per
node. However, in this paper the complexity of the algorithm
is defined as follows.

Definition 1: The complexity of sphere decoding is the
expected number of nodes visited in the search tree where
the expected value is computed over the channel H, noise, v,
and transmitted message, s̄.

It should be clear that the radius, r, of the sphere must be
chosen such that at least one of the possible paths through the
tree reaches the bottom or no points s will satisfy (6). In a
communications application it is often enough to require that
this happens with high probability.

In [10] a good way to choose r is given as follows. Note
that for the message sent, s̄,

‖x − Hs̄‖2 = ‖v‖2 (13)

is a χ2
m distributed variable. The radius could thus be chosen

such that
Pr
{

‖v‖2 ≤ r2
}

= 1 − ε (14)

for some ε � 1 related to the target error probability. For this
reason the radius, r, will in this paper be assumed to satisfy

r2 ≥ E
{

‖v‖2
}

= mσ2. (15)

If this is not fulfilled, the probability of finding s̄ inside the
sphere would tend to zero as m grew large. Note that one of
the assumptions in [8] which leads to a polynomial complexity
result is that r remains fixed and independent of m. From
(15) it can be seen that such an assumption is not realistic
in the digital communications scenario since it would render
the algorithm useless as m grows. The constraint of (15) is
however unfortunately what causes the exponential complexity
as will be shown in Section VI.

Finally, it is debatable whether the chosen complexity
measure, i.e. the expected complexity, is the most judicious
choice. However, since there exist choices of H for which
the number of nodes visited range from m to Lm the best or
worst case complexity does not provide good insight into the
behavior of the algorithm. For this reason the expected number
of nodes is used in the definition above. Additional justification
of this complexity measure is also given by remark 4 at the
end of Section VII.

IV. COMPLEXITY

Before entering into a discussion about the complexity of
the sphere decoder it is useful to provide a formal definition
of the concept of polynomial expected complexity. It is also
important to remember that the expected complexity of the
sphere decoder is dependent on the probability distribution of
the channel matrix, H, and whenever the expected complexity
is discussed it is implicitly assumed that there is some under-
lying distribution of H.

A function f(m) is said to be O(g(m)) if there exist some
finite c and m′ such that [13]

f(m) ≤ cg(m) for all m ≥ m′. (16)

Assume that some sequence of probability distributions of the
channel matrixes H ∈ R

m×m for m = 1, 2, . . . is given and
let C = C(m) be the expected, or average, number of nodes
visited by the sphere decoder. Then the sphere decoder is said
to be of polynomial expected complexity [12], [13] if C(m)
is O(mk) for some fixed k. Note that this can not be true if
there exist an exponential lower bound on C(m) for all m and
that the existence of such a lower bound is shown herein.

Some care should be taken when considering C(m) for
finite m and comparing this to asymptotic statements such
as polynomial expected complexity. This is illustrated by the
fact that the function C(m) may be well approximated by a
polynomial function for all m of practical interest even when
the algorithm is, strictly speaking, not of polynomial expected
complexity. Consider for example the function

(m2 + m + 1)2γm
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for some small γ > 0. This function is well approximated by
a polynomial function for moderate m but is not O(mk) for
any k. That in fact the expected number of operations required
by the sphere decoder, for large ρ and moderate m, can be
approximated by a polynomial function is what is shown in
[10], [11] and experimentally verified in [15]. There is however
no finite SNR, ρ, for which the exponential term vanishes
completely. The point is that there is always some m for which
the sphere decoder is more computationally intensive then a,
possibly suboptimal, polynomial time algorithm but that this
m might be large.

Finally, C(m) is the expected number of nodes visited by
the sphere decoder and is referred to as the expected com-
plexity of the algorithm. However, recall that all statements
about polynomial or exponential complexity always refer to
the asymptotic nature of C(m).

V. COMPUTING THE EXPECTED COMPLEXITY

To compute the expected complexity of the algorithm it is
convenient to first view the number of nodes, N , visited by the
algorithm as a function of H, v and s̄ and thereafter compute
the expected complexity, C, as

C = E {N} . (17)

In this section it is shown that the number of nodes, N , itself
can be written as the expected value of a function of s, where
s is a randomly selected path through the search tree. By doing
so an expression for C which now includes an expected value
computed over H, v, s̄ and s can be obtained. To prove this is
largely an exercise in reordering summations but the benefit
will in the following sections be made clear by the use of
standard tools from probability theory to obtain useful results
about the complexity.

To simplify the notation the following notation will be used.
Let x be a vector in R

m. Then x
j
i will denote the vector in

R
j−i+1 of the components xi through xj . i.e.

x
j
i =

[

xi · · · xj

]T
.

Furthermore, no difference in notation will be made between
stochastic variables and their realization. Thus, e.g.

Es {g(s)} =
∑

s

f(s)g(s)

were f(s) is the probability mass function of s when in fact the
s on the left hand side of the equation is a stochastic variable
and the right hand side is the sum over all realizations of s. The
stochastic variable over which the expected value is computed
will be indicated as above when necessary. Furthermore, the
notation

∑

s
j

i

(18)

will be used to denote the sum over all possible combinations
of symbols i through j of the vector s, i.e. a sum over Lj−i+1

components.
As stated in Section III the complexity of the algorithm is

given by the expected number of nodes in the search tree. It

turns out that it is convenient to define the depth in the search
tree at which a particular path is cut off.

Definition 2: Given H, v, s̄ and some path through the tree,
s, the search depth, d, is defined as

d = sup{k ∈ Z | k ∈ [0,m] , ‖pm
m−k+1‖2 ≤ r2} (19)

where pm
m+1 = 0 by definition and p is given by (7).

The search depth, d, is an integer valued function of H, v, s̄
and s with values in the range 0 to m. This will sometimes be
emphasized by writing out the arguments, i.e. d = d(s) if the
dependence on the search path is important for the argument. It
should also be noted that d is dependent on the search radius.

Lemma 1: For fixed H, v and s̄, the number of nodes
visited, N , in the search tree is given by

N =
Es

{

Ld(s)+1
}

− 1

L − 1
(20)

where d = d(s) is defined as above and s is a random variable
uniformly distributed on Dm

L .
Proof: Let Pk(sm

m−k+1) be an indicator function that
equals 1 if ‖p(s)m

m−k+1‖2 ≤ r2 and 0 otherwise. Note that
Pk is a function of sk, . . . , sm only. Also, for purely notational
purposes, let

∑

sm
m+1

x =
∑

s0
1

x = x.

Then, by summing over all possible nodes and using the
indicator function, Pk(sm

m−k+1), the number of nodes is given
by

N
a
=

m
∑

k=0





∑

sm
m−k+1

Pk(sm
m−k+1)





b
=

m
∑

k=0





∑

s
m−k
1

L−(m−k)
∑

sm
m−k+1

Pk(sm
m−k+1)





= L−m
m
∑

k=0

Lk

[

∑

s

Pk(sm
m−k+1)

]

=
∑

s

L−m
m
∑

k=0

LkPk(sm
m−k+1)

c
=
∑

s

L−m

d(s)
∑

k=0

Lk

d
=
∑

s

L−m (Ld(s)+1 − 1)/(L − 1). (21)

In the above, (a) is the summation of all nodes visited at depth
k in the search tree for k = 0, . . . ,m, (b) follows since

∑

s
m−k
1

L−(m−k) = 1 (22)

and (c) follows from

Pk(sm
m−k+1) = 1 ⇒ Pl(s

m
m−l+1) = 1 if k ≥ l, (23)

and

Pk(sm
m−k+1) = 0 ⇒ Pl(s

m
m−l+1) = 0 if k ≤ l. (24)
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The last equality, (d), is the expression for the sum of a
geometric series and the last line equals the definition of the
expected value in the lemma. This concludes the proof.

Theorem 1: The expected complexity, C, of sphere decod-
ing, where the expected value is computed over H, s̄ and v,
is

C =
E
{

Ld+1
}

− 1

L − 1
(25)

where d is defined as above and s is uniformly distributed over
Dm

L .
Proof: The complexity, C, is by definition the expected

number of nodes in the search tree. That is

C = EH,̄s,v {N} (26)

and from Lemma 1

C = EH,̄s,v

{

Es

{

Ld(s)+1
}

− 1

L − 1

}

=
E
{

Ld+1
}

− 1

L − 1
(27)

which concludes the proof.
Remark 1: The complexity is given by the statistics of the

search depth, d, along random paths. This implies, by the
above and Jensen’s inequality, that whenever the expected
search depth, E{d}, grows linearly with the problem size the
algorithm will be of exponential complexity.

VI. LOWER BOUND ON THE EXPECTED COMPLEXITY

As commented at the end of the previous section, the
expected complexity grows exponentially in m, if it can be
shown that E{d} grows linearly with m. This is done in this
section under an additional assumption that each symbol is
transmitted with finite energy. As pointed out earlier these
assumptions are valid for most communications problems of
practical interest. In particular, they hold for the systems
considered in [6], [7], [10], [11].

Theorem 2: Assume that the noise v, channel H, and sent
symbol s̄ are independently drawn, that all symbols s̄ are
equally likely and that there exists some c such that the random
channel matrix H ∈ R

m×m satisfies

E
{

‖hi‖2
}

≤ c2 ∀ i ∈ [1,m] (28)

where hi is the ith column vector of H. The expected
complexity of the sphere decoding algorithm is then bounded
below by

C(m) ≥ Lηm − 1

L − 1
, η =

1

2

(

c2(L2 − 1)

6σ2
+ 1

)−1

. (29)

Hence, under these assumptions, the complexity grows expo-
nentially in the problem size.

Proof: Imposing the system model (1) on (7) yields

p = R(s − s̄) − QTv = R(s − s̄) + v̄ (30)

where the components of v̄ are i.i.d. Gaussian with variance
σ2. Note that

Pr {d < k} = Pr
{

‖pm
m−k+1‖2 > r2

}

. (31)

By Markov’s inequality [16]

Pr
{

‖pm
m−k+1‖2 > r2

}

≤ E
{

‖pm
m−k+1‖2

}

r2
(32)

which implies

Pr {d ≥ k} = 1 − Pr {d < k}

≥ 1 − E
{

‖pm
m−k+1‖2

}

r2

≥ 1 − E
{

‖pm
m−k+1‖2

}

mσ2
(33)

where the last inequality comes from r2 ≥ mσ2 as given by
(15). Due to the assumption of independent symbols

E
{

‖pm
m−k+1‖2

}

= E
{

‖(R(s − s̄) + v̄)m
m−k+1‖2

}

=

m
∑

i=m−k+1

E
{

(si − s̄i)
2
}

E
{

‖(ri)
m
m−k+1‖2

}

+ E
{

v̄2
i

}

(34)

were ri is the ith column of R. Since ri = QThi and Q is
an orthogonal matrix it follows from the assumptions that

E
{

‖(ri)
m
m−k+1‖2

}

≤ c2. (35)

Also
E
{

(si − s̄i)
2
}

=
L2 − 1

6
(36)

and E
{

v̄2
i

}

= σ2 which yields

E
{

‖pm
m−k+1‖2

}

≤ k

(

L2 − 1

6
c2 + σ2

)

= βk (37)

for
β =

(

L2 − 1

6
c2 + σ2

)

(38)

which together with (33) yields

Pr {d ≥ k} ≥ 1 − βk

mσ2
. (39)

Introducing n = bmσ2/βc and the stochastic variable ν with
a probability distribution

Pr {ν = k} =
1

n
for k = 0, . . . , n − 1 (40)

yields

Pr {d ≥ k} ≥ 1 − k

mσ2/β
≥ 1 − k

bmσ2/βc
= 1 − k

n
= Pr {ν ≥ k} (41)

for k = 0, . . . , n− 1. The result trivially holds for k > n− 1.
From this it follows that

E {d} ≥ E {ν} =

n−1
∑

k=0

k

n
=

1

2
(n − 1)

≥ 1

2
(
mσ2

β
− 2) =

m

2β/σ2
− 1 = ηm − 1. (42)

By Jensen’s inequality [16] and since Lx is a convex function

E
{

Ld+1
}

≥ LE{d+1} ≥ Lηm (43)
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which concludes the proof.
Remark 2: The constraint on H in Theorem 2 implies that

the SNR is bounded. The contrary is not necessarily true,
i.e. there may be choices of H where the SNR, according to the
definition herein, remains bounded but the expected norm of
some columns tend to infinity as m grows large. The constraint
is chosen such that these, degenerate cases are excluded. Also
note that it is the expected value of the norm, not the norm
itself, which is bounded in the theorem.

VII. THE COMPLEXITY EXPONENT

Theorem 2 states that the complexity is exponential in m
by giving an exponential lower bound. At the same time a
trivial upper bound on the complexity is given by Lm. It is
therefore reasonable to assume that the complexity of sphere
decoding lies somewhere between these bounds and that there
exist some γ ∈ (0, 1] such that the complexity is given by

C(m) � Lγm (44)

where the exact meaning of � is that for any ε > 0 there is
an M such that

L(γ+ε)m > C(m) > L(γ−ε)m ∀ m ≥ M.

Note that by this notation only the linear term in the exponent
is considered and that C(m) can be multiplied by any poly-
nomial function without changing the asymptotic expression.
The same expression will thus hold if the number of numer-
ical operations required by the algorithm is considered as a
measure of the complexity. This is a direct consequence of
the fact that the number of operations per node is bounded by
a polynomial function [8].

The existence of γ however depends on the particular
problem, that is the statistics of H, v and s̄ and how these
vary with problem size. To be more precise, the limit

γ = lim
m→∞

1

m
logL C(m) (45)

must exist for the above to be applicable. From Theorem 2
it is known that for any system that satisfies the assumptions
made in the theorem, the limit, γ, is strictly positive if it does
exist. To compute γ is not a trivial task and it seems unlikely
that there will exist closed form expressions for γ for any but
trivial systems.

However, the virtue of obtaining an exact value for γ lies in
that it indicates for which problem sizes, m, sphere decoding is
applicable. An interesting interpretation of γ is as a reduction
of effective problem size. That is, γm may be considered the
effective problem size when the sphere decoder is compared
to full search, i.e. if γ = 1/2 the problem sizes which are
considered feasible may be doubled if the sphere decoder is
applied instead of full search.

For some choices of H the theory of large deviations [17]
may be effectively applied to prove the existence of and
numerically compute γ. This will be done in this section under
the assumptions that the elements of H are independently
drawn from a normal distribution. This is the same assumption
as is made in [10] and [11]. For the remainder of this section
it shall be assumed that H is an m×m matrix of independent

normally distributed elements with zero mean and variance
m−1. The reason for this particular choice of variance is to
make the SNR, ρ, independent of problem size. That is

ρ =
E
{

‖Hs̄‖2
}

E {‖v‖2} =
L2 − 1

12σ2
. (46)

Note that the choice of scaling s̄, H or v to keep the SNR fixed
is completely arbitrary and does not affect the results. Also,
throughout this section it shall be assumed that r2 = mσ2,
see Remark 3. The main result of the section is given by
Theorem 3.

The model for H used throughout this section is reasonable
for some communication problems, especially in wireless com-
munications under Rayleigh fading assumptions. Furthermore
the model makes the mathematics tractable which allows
further insight into the complexity of sphere decoding.

It will now be shown how to compute the limit of (45) from
the statistics of the search depth, d. It is convenient to first
normalize d by the problem size. Therefore let the normalized
search depth, zm, be

zm =
dm

m
(47)

where the notation d = dm is used to emphasize the depen-
dence on m. Under the above assumptions on H it can be
shown that

zm
P−→ µ (48)

for some µ as m → ∞, i.e. zm converges in probability to
µ. By Jensen’s inequality [16] this provides a lower bound on
the expected complexity since

E
{

Ldm
}

= E {Lmzm} ≥ LmE{zm} ≥ L(µ−ε)m (49)

for large m and small ε > 0. Unfortunately this lower bound
is not tight, not even asymptotically. Tighter bounds may be
obtained by considering that for any a a lower bound on
E {Lmzm} is given by

E {Lmzm} ≥ Pr {zm ≥ a}Lam. (50)

Since zm converges in probability to µ it is known that

lim
m→∞

Pr {zm ≥ a} = 0 for a > µ. (51)

It is possible to show that the convergence to this limit is
exponential. That is for a ≥ µ,

lim
m→∞

1

m
ln Pr {zm ≥ a} = −Iz(a) (52)

for some function Iz(a) which is called the rate function for
zm where some properties of the rate function are Iz(a) ≥ 0
and Iz(µ) = 0. Introducing Iz(a) into (50) yields

E {Lmzm} ≥ e−(Iz(a)+ε)mLam = L(a−(Iz(a)+ε)/ ln L)m

(53)
for large m and arbitrary small ε > 0. By choosing a = µ
the bound of (49) is obtained. Better bounds may be obtained
by optimizing (53) over a. Using large deviation theory it can
be shown that the best bound obtained by this optimization
is asymptotically tight. To be precise, by Varadhan’s integral
Lemma [17, 2.12],

E
{

emg(zm)
}

� eξm (54)
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for any bounded continuous function g(a) where

ξ = sup
a

(g(a) − Iz(a)). (55)

Let g(a) = a ln L for a ∈ [0, 1], then

E {Lmzm} = E
{

emzm ln L
}

= E
{

emg(zm)
}

. (56)

The complexity of sphere decoding is thus asymptotically
given by

C(m) � Lγm (57)

where

γ = sup
a

(g(a) − Iz(a))/ ln L

= sup
a∈[µ,1]

{a − Iz(a)/ ln L}. (58)

The last equality comes from the fact that Iz(µ) = 0 and
Iz(a) ≥ 0. The rest of this section will be devoted to the,
numerical, computation of Iz(a) for a ∈ [µ, 1]. This derivation
will heavily rely on results from large deviation theory. The
most useful concepts of this theory, as well as an introduction
to the subject, can be found in [17]. Finally, before presenting
the proofs, two useful definitions will be given.

Definition 3: Let uk be a stochastic variable defined by

uk =
1

k

k
∑

i=1

6(si − s̄i)
2

L2 − 1
(59)

for k ≥ 1 where si and s̄i are independent and uniformly
distributed on DL.

The normalization of uk is chosen such that E{uk} = 1
independent of k and L. Also by the law of large numbers

uk
a.s.−→ 1 as k → ∞, (60)

where a.s.−→ denotes almost sure convergence.
Definition 4: Let wk be a normalized χ2

k distributed
stochastic variable, that is

wk =
1

k

k
∑

i=1

y2
i (61)

where yi are i.i.d. N (0, 1).
By the law of large numbers

wk
a.s.−→ 1 as k → ∞. (62)

Lemma 2: For r2 = mσ2, the probability that the normal-
ized search depth, zm, is larger than some a ≥ 0 is given
by

Pr {zm ≥ a} = Pr
{

(2ρa2uk + a)wk ≤ 1 + O(k−1)
}

(63)

where
k = dame = am + τ (64)

for some roundoff error τ ∈ [0, 1) and where O(k−1) tends
to zero as k grows large.

Proof: First note that

Pr {zm ≥ a} = Pr {dm ≥ am} = Pr {dm ≥ dame} (65)

where the last equality comes from the fact that dm is integer
valued. With k given as above

P = Pr {dm ≥ k} = Pr
{

‖pm
m−k+1‖2 ≤ mσ2

}

. (66)

The first step is to express the distribution of ‖pm
m−k+1‖2 in

terms of uk and wk. To accomplish this, let Q1 ∈ R
m×m−k

be the first m−k columns of Q, and Q2 ∈ R
m×k be the k last

columns of Q. Let equivalent definitions apply to H. Using
QT

2 H1 = 0 which is a consequence of the QR-factorization,
pm

m−k+1 can be written as

pm
m−k+1 = QT

2 (H2(s
m
m−k+1 − s̄m

m−k+1) + vm
m−k+1). (67)

The vector q ∈ R
m given by

q = H2(s
m
m−k+1 − s̄m

m−k+1) + vm
m−k+1 (68)

is a rotationally invariant, normally distributed, vector with a
variance of

m
∑

i=m−k+1

(si − s̄i)
2

m
+ σ2 (69)

per dimension. Even though q is not statistically independent
of Q2 it is statistically independent of the space spanned by
the columns of Q2. This can be seen by considering the fact
that the columns of Q2 span the orthogonal complement of
the space spanned by the columns of Q1, that Q1 is uniquely
given by H1 and that H1 is independent of H2. A rigorous
proof of this is given in [11].

Multiplication by QT
2 is equivalent to projection of q onto a

linear subspace of dimension k and therefore, by introducing
y ∈ R

k, the statistics of ‖pm
m−k+1‖2 are the same as the

statistics of
(

k
∑

i=1

si − s̄i)
2

m
+ σ2

)

‖y‖2 (70)

if y is a vector of i.i.d. N (0, 1) distributed entries. Inserting
the above, together with the definitions of uk and wk into (66)
yields

P = Pr

{(

k(L2 − 1)

6m
uk + σ2

)

kwk ≤ mσ2

}

. (71)

Using

m =
k − τ

a
, (72)

(46), and dividing both sides by kσ2/a yields, after some
algebra,

P = Pr
{

(2ρa2uk + a)wk ≤ 1 + O(k−1)
}

. (73)

The term O(k−1) is due to the roundoff error τ . However,
this effect tends to zero as m, and k, grows large. Ignoring
the error term, (73) is obtained by substituting m = k/a into
(71) and normalizing by kσ2/a. This concludes the proof.

From Lemma 2 and the almost sure convergence of uk and
wk to 1 it follows that, assuming a > 0 and noting that k → ∞
as m → ∞,

lim
m→∞

Pr {zm ≥ a} = 1 (74)

if
(2ρa2 + a) < 1 ⇔ a <

√
8ρ + 1 − 1

4ρ
(75)
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and that
lim

m→∞
Pr {zm ≥ a} = 0 (76)

if

(2ρa2 + a) > 1 ⇔ a >

√
8ρ + 1 − 1

4ρ
. (77)

In other words µ is given by

µ =

√
8ρ + 1 − 1

4ρ
. (78)

Now, assuming that a > µ, let

Sa =
{

(u,w) | (2ρa2u + a)w ≤ 1
}

. (79)

The set Sa is the set of all combinations of (uk,wk) such that
the criterion of (73), ignoring O(k−1), is satisfied. It can be
shown, by applying the Gärtner-Ellis Theorem [17, D.11] to
the vector valued stochastic variable (uk, wk), that

lim
k→∞

1

k
ln Pr {(uk, wk) ∈ Sa}

= − inf
(u,w)∈Sa

{Iu(u) + Iw(w)} (80)

where, for u ≤ 1,

Iu(u) = − lim
k→∞

1

k
ln Pr {uk ≤ u} (81)

and, for w ≤ 1,

Iw(w) = − lim
k→∞

1

k
ln Pr {wk ≤ w} . (82)

Iu(u) and Iw(w) are the rate functions corresponding to
uk and wk respectively. A technical note, to aid rigorous
verification of the above claim, is that since uk and wk are
independent, the rate function of (uk, wk) is the sum of Iu(u)
and Iw(w) and that equality holds in (80) since Iu(u) and
Iw(w) are continuous on the boundary of Sa. The intuition
behind (80) is that among all the combinations of (uk, wk) that
satisfy (uk, wk) ∈ Sa the probability of the event is dominated
by most probable combination.

Since uk and wk are normalized sums of i.i.d. random
variables their respective rate functions can be obtained by
Chernoff’s Theorem [17] as

Iu(u) = sup
θ

[

uθ − ln E
{

eθu1
}]

(83)

and
Iw(w) = sup

θ

[

wθ − ln E
{

eθw1
}]

(84)

respectively. Unfortunately there is no closed form expression
for Iu(u) for L > 2. It is however possible to numerically
compute it by writing the expected value as a sum over all
possible values of u1 and numerically maximizing the obtained
expression. For the special case where L = 2, u1 is simply a
Bernoulli random variable which takes on the values 0 and 2
with equal probability. The rate function for this case is given
by [17]

Iu(u) =
u

2
ln(

u

2
) + (1 − u

2
) ln(1 − u

2
) + ln 2. (85)

For Iw(w) the supremum can be computed by first noting

E
{

eθw1
}

= E
{

eθy2
1

}

=
1√

1 − 2θ
(86)

where y1 is N (0, 1). Maximizing

wθ + ln
√

1 − 2θ (87)

over θ yields

Iw(w) =
w − 1

2
− 1

2
ln w (88)

for w > 0.
An important note to make is that Iu(u) and Iw(w) are

continuous and nonicreasing in the range (0, 1]. This follows
since they are rate functions for sums of i.i.d. random variables
[17]. For this reason the infimum of (80) will be taken for
(u,w) satisfying

(2ρa2u + a)w = 1, u ≤ 1, w ≤ 1. (89)

In other words, by parametrization this reduces to an op-
timization problem over one variable. However, the above
does not guarantee that the criterion function is unimodal.
In fact, there are choices of a, L and ρ for which it is not.
Extensive testing however suggest that this does not pose a
serious problem, at least not for the examples given in Section
VIII. In other words, the rather simple optimization routines
used to produce the numerical examples in the paper seem to
find the global optimum without any difficulty. Also, for most
parameter values considered here, the function is unimodal.

Theorem 3: Let the channel matrix, H ∈ R
m×m consist of

i.i.d. normally distributed entries, v be white Gaussian and the
sent message s̄ be uniformly distributed on Dm

L . Also let the
sphere radius, r, satisfy r2 = mσ2. Then the complexity of
sphere decoding, for fixed SNR, is

C(m) � Lγm (90)

where
γ = sup

a∈[µ,1]

{a − Iz(a)/ ln L} (91)

and
Iz(a) = a inf

(u,w)∈Sa

{Iu(u) + Iw(w)} (92)

for Sa, Iu(u) and Iw(w) given by (79), (83), and (88)
respectively and where µ is given by (78).

Proof: Considering the previous discussion the only thing
left to prove is the expression for Iz(a). By Lemma 2 and the
previous results

− Iz(a) = lim
m→∞

1

m
ln Pr {zm ≥ a}

= lim
k→∞

a

k − τ
ln Pr

{

(2ρa2uk + a)wk ≤ 1 + O(k−1)
}

= lim
k→∞

a

k
ln Pr

{

(2ρa2uk + a)wk ≤ 1
}

= lim
k→∞

a

k
ln Pr {(uk, wk) ∈ Sa}

= −a inf
(u,w)∈Sa

{Iu(u) + Iw(w)}. (93)



9

0 5 10 15 20 25 30

10−1

100

PSfrag replacements

γ

ρ [dB]

L = 2
L = 4
L = 8
L = 16

Fig. 2. The rate, γ, as a function of the SNR, ρ, for different values of
constellation size, L.

The O(k−1) can be omitted at the second step since Iu(u)
and Iw(w) are continuous functions on the boundary of Sa.

Remark 3: In a real application the radius of the sphere
would be chosen as

r2 = αmσ2 (94)

for some α > 1 such that the probability of finding s̄ within
the sphere is high. However, since

Pr
{

‖v‖2 ≤ αmσ2
}

→ 1 as m → ∞ (95)

for any α > 1 Theorem 3 remains true if α = α(m) is chosen
such that

Pr
{

‖v‖2 ≤ αmσ2
}

= 1 − ε (96)

for some small ε, i.e. α → 1 as m → ∞.
Remark 4: The expected complexity as a complexity mea-

sure can be further motivated by the results of this section.
Assume that there is a γ > 0 such that C(m) satisfies (44).
Then for an arbitrarily small δ > 0, by Markov’s inequality
[16],

Pr
{

N ≥ L(γ+δ)m
}

≤ E {N}
L(γ+δ)m

(97)

where N is the number of nodes visited by the algorithm.
Since C = E {N}, there is an ε < δ and an M such that

E {N}
L(γ+δ)m

≤ L(γ+ε)m

L(γ+δ)m
= L(ε−δ)m (98)

for all m ≥ M . Thus,

Pr
{

N ≥ L(γ+δ)m
}

→ 0 as m → ∞. (99)

In other words, the probability that the algorithm is of substan-
tially larger computational complexity than what is predicted
by the expected value tend to zero as m grows large.

0 5 10 15 20 25 30

10−1

100

PSfrag replacements

γ
γ̂

ρ [dB]

Fig. 3. The rate, γ, and γ̂ = m−1 log
L

C(m) for m = 80 and L = 2 as
a function of SNR, ρ.

VIII. EXAMPLES

Theorem 3 of the previous section was used to compute the
rate γ for various choices of L and ρ. The result can be seen
in Figure 2. The curves show, not surprisingly, that the higher
the SNR the lower the decoding complexity. This is a direct
consequence of the choice of search radius as r =

√
σ2m

which decreases with increasing SNR. An intuitive explanation
for this is that for high SNR the received points are tightly
clustered and thus a smaller radius is required to ensure the
same small probability of failure. Figure 2 also shows that, for
this problem at high SNR, an additional 6 dB roughly leads
to a reduction in γ by a factor 2. That is, by adding 6 dB to
the SNR problems of twice the size are made computationally
feasible. Experiments show that this reduction in γ, in general,
is dependent on the particular structure of the problem.

As noted in the introduction, [10] introduces an expression
for computing the exact expected complexity, C(m), for the
problem in Section VII. This expression gets increasingly
cumbersome to compute when increasing the problem size m.
Nonetheless, it can still be used, for moderate m, to compare
the asymptotic results of this paper with the exact value of
C(m). That is, the asymptotic rate, γ, can be approximated
by

γ̂ = m−1 logL C(m) (100)

for some large m. The agreement between this γ̂ and γ is
shown in Figure 3 for m = 80. The correspondence between
Lγm and C(m) is illustrated by Figure 4 for the case of
ρ = 6 dB and L = 2. It can be seen from Figure 4 that the
asymptotic expression Lγm is applicable as an approximation
of the true complexity, C(m), for problems of quite moderate
size. However, as indicated by Figure 3, larger m will be
required for this to be true at high SNR.

From Figure 2 it can also be seen that the reduction in
γ is smaller the larger the constellation size is. An intuitive
explanation for this is that while the SNR is largely dominated
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function of m.

by the constellation points at the edge of the constellation,
the complexity is dominated by instances of s and s̄ that are
close. With increasing constellation size the constellation will
be more dense if the SNR is fixed.

IX. CONCLUSIONS

In this paper it has been shown, by obtaining a lower bound,
that the expected complexity of sphere decoding applied to
a large class of problems is exponential in the number of
symbols jointly detected. This is mainly a consequence of
the fact that to ensure a certain probability of finding a point
within the sphere, the radius of the sphere must grow with
the problem size. Proving the existence of such a lower bound
turns out to be much easier than obtaining the exponential
function that best, or asymptotically, describes the complexity.
It is however, for a simplified problem structure, possible
to compute the exact asymptotic rate of increase for the
complexity using results from large deviation theory. By using
the derived expressions the effect of SNR on the complexity
could be studied more closely. It turns out, not unexpectedly,
that the complexity is significantly reduced by an increased
SNR.

A main point of this paper is that while the complexity of
sphere decoding is exponential this does not necessarily mean
that the algorithm is inefficient. As has been demonstrated
the rate of the exponential function depends on the SNR of
the problem and for high SNR it is quite small. Therefore
sphere decoding can outperform polynomial time algorithms
for many practical problems and is worth consideration. There
will however not be any SNR for which the complexity can,
for all problem sizes, be bounded by a polynomial function.

ACKNOWLEDGEMENTS

We would like to thank our colleagues Cristoff Martin and
Prof. Mikael Skoglund for all their help and support while
writing this paper.

REFERENCES

[1] T. Kailath and H. V. Poor, “Detection of stochastic processes,” IEEE
Trans. Inform. Theory, vol. 44, no. 6, Oct. 1998.
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