
1

Software-Based Failure Detection and Recovery in
Programmable Network Interfaces

Yizheng Zhou, Vijay Lakamraju, Israel Koren, and C. M. Krishna

Abstract� Emerging network technologies have complex net-
work interfaces that have renewed concerns about network
reliability. In this paper, we present an effective low-overhead
fault tolerance technique to recover from network interface
failures. Failure detection is based on a software watchdog
timer that detects network processor hangs and a self-testing
scheme that detects interface failures other than processor hangs.
The proposed self-testing scheme achieves failure detection by
periodically directing the control �ow to go through only active
software modules in order to detect errors that affect instructions
in the local memory of the network interface. Our failure recov-
ery is achieved by restoring the state of the network interface
using a small backup copy containing just the right amount of
information required for complete recovery. The paper shows
how this technique can be made to minimize the performance
impact to the host system and be completely transparent to the
user.

Index Terms� Programmable Network Interface Card (NIC),
Single Event Upset (SEU), radiation induced faults, failure
detection, failure recovery, self-testing.

I. INTRODUCTION

Nowadays, interfaces with a network processor and large local
memory are widely used [16], [18], [19], [20], [21], [22], [23].
The complexity of network interfaces has increased tremendously
over the past few years. A typical dual-speed Ethernet controller
uses around 10K gates whereas a more complex high-speed
network processor such as the Intel IXP1200 [24] uses over
5 million transistors. As transistor counts increase, single bit
upsets from transient faults, which arise from energetic particles
such as neutrons from cosmic rays and alpha particles from
packaging material, have become a major reliability concern [1],
[2], especially in harsh environments [3], [4] such as deep space.
The typical fault rate in deep space for two Myrinet Network
Interface Cards (NICs) is 0.35 faults/hour [4]. When a solar �are
is in progress, the fault rate in interplanetary space can be as
great as 6.87 faults/hour for two Myrinet NICs [4]. These also
affect systems on earth, especially far away from the equator [5].
Because this type of fault does not re�ect a permanent failure of
the device, it is termed soft. Typically, a reset of the device or
a rewriting of the memory cell results in normal device behavior
thereafter. Soft-error-induced network interface failures can be
quite detrimental to the reliability of a distributed system. The
failure data analysis reported in [6] indicates that network-related
problems contributed to approximately 40% of the system failures
observed in distributed environments. As we will see in the
following sections, soft errors can cause the network interface

Yizheng Zhou, Israel Koren and C.M. Krishna are with the Department of
Electrical and Computer Engineering, University of Massachusetts, Amherst,
MA 01002.

Vijay Lakamraju is with the United Technologies Research Center, East
Hartford, CT 06108.

to completely stop responding, function improperly, or greatly
reduce network performance. Quickly detecting and recovering
from such failures is therefore crucial for a system requiring
high reliability. We need to provide fault tolerance for not only
the hardware in the network interface, but also its local memory
where the network control program (NCP) resides.

In this paper, we present an ef�cient software-based fault
tolerance technique for network failures. Software-based fault
tolerance approaches allow the implementation of dependable
systems without incurring the high costs resulting from designing
custom hardware or using massive hardware redundancy. How-
ever, these approaches impose some overhead in terms of reduced
performance and increased code size: it is important to ensure that
this overhead have a minimal performance impact.

Our failure detection is based on a software-implemented
watchdog timer to detect network processor hangs, and a
software-implemented concurrent self-testing technique to detect
other failures. The proposed self-testing scheme detects failures
by periodically directing the control �ow to go through program
paths in speci�c portions of the NCP in order to detect errors
that affect instructions or data in the local memory as well as
other parts of the network interface. The key to our technique
is that the NCP is partitioned into various logical modules and
only active logical modules are tested, where an active logical
module is the collection of all basic blocks that participate in
providing a service to a running application. When compared with
testing the whole NCP, testing only active logical modules can
limit signi�cantly the impact on application performance while
still achieving good failure detection coverage. When a failure is
detected by the watchdog timer or the self-testing, the host system
is interrupted and a fault tolerance daemon woken up to start a
recovery process [7].

The central philosophy behind our failure recovery is to save
enough network-related state information in the host so that the
state of the network interface can be correctly re-established in
the case of a failure. Clearly, the challenge here is to provide
for this �checkpointing� with as little performance degradation as
possible. In our technique, the �checkpointing� is a continuous
process in which the applications make a copy of the required
state information before sending the information to the network
interface, and update it when the network noti�es the application
that the state information is no longer required. As the numerical
results will show, such a scheme greatly reduces the impact on
the normal performance of the system.

In this paper, we show how the proposed failure detection and
recovery techniques can be made completely transparent to the
user. We demonstrate these techniques in the context of Myrinet,
but as we will see, the approaches are generic in nature and are
applicable to many modern networking technologies.

Yizheng Zhou
Underline

Yizheng Zhou
Underline

Yizheng Zhou
Underline

Yizheng Zhou
Underline



2

II. MYRINET: AN EXAMPLE PROGRAMMABLE NETWORK
INTERFACE

Myrinet [16] is a high bandwidth (2Gb/s) and low latency
(∼6.5µs) local area network technology. A Myrinet network
consists of point-to-point, full-duplex links that connect Myrinet
switches to Myrinet host interfaces and other switches.

Fig. 1 shows the organization and location of the Myrinet NIC
in a typical architecture. The card has an instruction-interpreting
RISC processor, a DMA interface to/from the host, a link interface
to/from the network and a fast local memory (SRAM) which
is used for storing the Myrinet's NCP and for packet buffering.
The Myrinet's NCP is responsible for buffering and transferring
messages between the host and the network and providing all
network services.

Basic Myrinet-related software is freely available from Myri-
com [17]. The software, called GM, includes a driver for the host
OS, the Myrinet's NCP (GM NCP), a network mapping program,
a user library and Application Program Interfaces (APIs). It is the
vulnerability to faults in the GM NCP that is the focus of this
work, so we now provide a brief description of it.

The GM NCP [17] can be viewed broadly as consisting of
four interfaces: Send DMA (SDMA), SEND, Receive (RECV)
and Receive DMA (RDMA), as depicted in Fig. 2. The sequence
of steps during sending and receiving is illustrated in Fig. 2. When
an application wants to send a message, it posts a send token in the
sending queue (step 1) through GM API functions. The SDMA
interface polls the sending queue, and processes each send token
(step 2) that it �nds. It then divides the message into chunks
(if required), fetches them via the DMA interface, and puts the
data in an available send buffer (step 3). When data is ready in
a send buffer, the SEND interface sends it out, prepending the
correct route at the head of the packet (step 4). Performance is
improved by using two send buffers: while one is being �lled
through SDMA, the packet interface can send out the contents of
the other buffer.

Similarly, two receive buffers are present. One of the receive
buffers is made available for receiving an incoming message by
the RECV interface (step 5), while the other could be used by
RDMA to transfer the contents of a previously received message
to the host memory (step 6). The RDMA then posts a receive
token into the receiving queue of the host application (step 7).
A receiving application on the host asynchronously polls its
receiving queue and carries out the required action upon the
receipt of a message (step 8).

The GM NCP is implemented as a tight event-driven loop. It
consists of around 30 routines. A routine is called when a given
set of events occur and a speci�ed set of conditions are satis�ed.
For example, when a send buffer is ready with data and the packet
interface is free, a routine called send chunk is called. It is also
worth mentioning here that a timer routine (L timer) is called
periodically, when an interval timer present on the interface card
expires.

Flow control in GM is managed through a token system.
Both sends and receives are regulated by implicit tokens, which
represent space allocated to the user process in various internal
GM queues. A send token consists of information about the
location, size and priority of the send buffer and the intended
destination for the message. A receive token contains information
about the receive buffer such as its size and the priority of the
message that it can accept. A process starts out with a �xed

number of send and receive tokens. It relinquishes a send token
each time it calls GM to send a message, and a receive token with
a call to GM to receive a message. A send token is implicitly
passed back to the process when a callback function is executed
upon the completion of the sending, and a receive token is passed
back when a message is received from the receive queue.

System

Bridge


Host

Processor


System

Memory


RISC

DMA


Interface


Fast Local Memory


Link

Interface


Address
 64-bit data


Myrinet Host Interface Card


Myrinet

LAN

Link


IO Bus


Fig. 1. Simpli�ed Block Diagram of the Myrinet NIC.

SDMA


RDMA


L_timer


Sending Queue


Receiving Queue


1


2


3


6


7


8


Send buffer 1


Send buffer 2


Receive buffer 2


Receive buffer 1

RECV


SEND

4


5


GM NCP


Sequence of sending a packet


Sequence of receiving a packet


Fig. 2. Simpli�ed View of the GM NCP.

III. FAILURE DETECTION

In the context of the Myrinet card, soft errors in the form
of random bit �ips can affect any of the following units: the
processor, the interfaces and more importantly, the local SRAM,
containing the instructions and data of the GM NCP. Bit �ips may
result in any of the following events:

• Network interface hangs � The entire network interface
stops responding.

• Send/Receive failures � Some or all packets cannot be sent
out, or cannot be received.

• DMA failures � Some or all messages cannot be transferred
to or/and from host memory.

• Corrupted control information � A packet header or a
token is corrupted.

• Corrupted messages.
• Unusually long latencies.

The above list is not comprehensive. For example, a bit �ip
occurring in the region of the SRAM corresponding to the
resending path will cause a message to not be resent when a



3

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

1 10 100 1000 10000 100000 1e+06

La
te

nc
y 

(u
se

c)

Message Length (bytes)

Fault-free GM
GM with a fault

(a) Unusually Long Latencies Caused by a Fault.

0

5

10

15

20

25

30

35

40

1 10 100 1000 10000 100000 1e+06

B
an

dw
id

th
 (

M
B

yt
es

/s
)

Message Length (bytes)

Fault-free GM
GM with a fault

(b) Bandwidth Reduction Caused by a Fault.

Fig. 3. Examples of Fault Effects on Myrinet's GM.

corresponding acknowledgment was not received. Experiments
also reveal that faults can propagate from the network interface
and cause the host computer to crash. Such failures are outside
the scope of this paper, and are the subject of our current ongoing
research.

Fig. 3 shows how a bit-�ip fault may affect message latency and
network bandwidth. The error was caused by a bit-�ip that was
injected into a sending path of the GM NCP. More speci�cally,
one of the two sending paths associated with the two message
buffers was impacted, causing the effective bandwidth to be
greatly reduced. To achieve reliable in-order delivery of messages,
the GM NCP generates more message resends, and this greatly
increases the effective latency of messages. Since no error is
reported by the GM NCP, all host applications will continue as
if nothing happened. This can signi�cantly hurt the performance
of applications, and in some situations deadlines may be missed.

Some of the effects of soft-error-induced bit �ips are subtle. For
example, although cyclic-redundancy-checks (CRC) are computed
for the entire packet, including the header, there are still some
faults that may cause data corruption. When an application wants
to send a message, it builds a send token containing the pointer
to the message and copies it to the sending queue. If the pointer
is affected by a bit �ip before the GM NCP transfers the message
from the host, an incorrect message will be sent out. Such errors
are dif�cult to detect and are invisible to normal applications.

Even though the above discussion was related to Myrinet, we
believe that such effects are generic and apply to other high-
speed network interfaces having similar features, i.e., a network
processor, a large local memory and an NCP running on the
interface card. We detail our approach in the next subsection.

A. Failure Detection Strategy
Our approach to detecting interface hangs is based on a simple

watchdog, but one which is implemented in software and uses the
low-granularity interval timers present in most interfaces.

Since the code size of the NCP is quite large, it is chal-
lenging to ef�ciently test this software to detect non-interface-
hang failures. We exploit the fact that applications generally
use only a small portion of the NCP. For instance, the GM
NCP is designed to provide various services to applications,
including reliable ordered message delivery (Normal Delivery),
directed reliable ordered message delivery which allows direct
remote memory access (Directed Delivery), unreliable message
delivery (Datagram Delivery), setting an alarm, etc. Only a few

...


...


A


B
 ...


Routine 1


...


...


D


E
 ...


F


Routine 2


G


Routine 3


C


Network Control Program


Fig. 4. Logical Modules and Routines.

of the services are concurrently requested by an application. For
example, Directed Delivery is used for tightly-coupled systems,
while Normal Delivery has a somewhat larger communication
overhead and is used for general systems; it is rare for an
application to use both of them. Typically an application only
requests one transport service out of the seven types of transport
services provided by the GM NCP. Consequently, only about 10%
to 20% of the GM NCP instructions are �active� when serving a
speci�c application. Other programmable NICs, such as the IBM
PowerNP [18], have similar characteristics.

Based on this observation, we propose to test the functionalities
of only that part of the NCP which corresponds to the services
currently requested by the application: this can considerably
reduce failure detection overhead. Moreover, because a fault
affecting an instruction which is not involved in serving requests
from an application would not change the �nal outcome of the
execution, our scheme avoids signaling these harmless faults. This
reduces signi�cantly the performance impact, compared to other
techniques such as those that periodically encode and decode the
entire code segment [13].

To implement this failure detection scheme we must identify
the �active� parts of the NCP for a speci�c application. To assist
the identi�cation process, we partition the NCP into various
logical modules based on the type of services they provide.
A logical module is the collection of all basic blocks that
participate in providing a service. A basic block, or even an
entire routine, can be shared among multiple logical modules.
Fig. 4 shows a sample NCP which consists of three routines.
The dotted arrow represents a possible program path of a logical



4

module and an octagon represents a basic block. All the shaded
blocks on the program path belong to the logical module. In our
implementation, we examined the source code of the GM NCP
and followed all possible control �ows to identify the basic blocks
of each logical module. This time-consuming analysis has been
done manually, but could be automated by using a code pro�ling
tool similar to GNU gprof.

For each of the logical modules, we must choose and trigger
several requests/events to direct the control �ow to go through
all its basic blocks at least once in each self-testing cycle so
that the functionality of the network interface is tested and errors
are detected. For example, in Myrinet interfaces, large and small
messages would direct the control �ow to go through different
branches of routines because large messages would be fragmented
into small pieces at the sender side and assembled at the receiver
side, while small messages would be sent and received without the
fragmenting and assembling process. We use loopback messages
of various sizes to test the sending and receiving paths of the
NCP concurrently. During this procedure, the hardware of the
network interface involved in serving an application is also tested
for errors. The technique can, in addition, be used to test other
services provided by network interfaces such as setting an alarm,
by directing the control �ow to go through basic blocks providing
these services. Such tests are interleaved with the application's use
of the network interface.

To reduce the overhead of self-testing, we implement an
Adaptive and Concurrent Self-Testing (ACST) scheme. We insert
a piece of code at the beginning of the NCP to identify the
requested types of services and start self-testing for the corre-
sponding logical modules. The periodic self-testing of a logical
module should start before it serves the �rst request from the
application(s) to detect possible failures; this causes a small delay
for the �rst request. For a low-latency NIC such as Myrinet,
this delay would be negligible. Furthermore, we can reduce this
delay by letting the application packets follow on the heels of the
self-testing packets. If a logical module is idle for a given time
period, the NCP would stop self-testing it. A better solution can
be achieved by letting the NCP create lists for each application
to track the type of services it has requested, so that when an
application completes and releases network resources, which can
be detected by the NCP, the NCP could check the lists and stop
the self-testing for the logical modules that provide services only
to this completed application.

LANai


SDMA
 Send


RDMA
 Recv


L_timer


Host
 Switch


DMA

Region


DMA

Region


Fig. 5. Data Flow of Self-Testing.

B. Implementation
The software-implemented watch-dog timer makes use of a

spare interval timer to detect interface hangs. One of them, say
IT1, is �rst initialized to a value just slightly greater than 800µs,

which is the maximum time between the L timer routine invo-
cations during normal operation. The L timer routine is modi�ed
to reset IT1 whenever it is called. The interrupt mask register
provided by the Myrinet NIC is modi�ed to raise an interrupt
when IT1 expires. Thus, during normal operation, L timer resets
IT1 just in time to avoid an interrupt from being raised. When the
NIC crashes/hangs, the L timer routine is not executed, causing
IT1 to expire and an interrupt to be raised, signaling to the host
that something may be wrong with the network interface. Such a
scheme allows the host to detect NIC failures with virtually no
overhead.

This detection technique works as long as a network interface
hang does not affect the timer or the interrupt logic. This is
supported by our experiments: over an extensive period of testing,
we did not encounter a single case of a fault that has affected the
timer or the interrupt logic. In fact, this simple failure detection
mechanism was able to detect all the interface hangs in our
experiments. While it is not impossible that a fault might affect
these circuits, our experience has shown this to be extremely
unlikely.

In what follows, we demonstrate and evaluate our self-testing
scheme for one of the most frequently used logical modules in
the GM NCP, the Normal Delivery module. Other modules have a
similar structure with no essential difference, and the self-testing
of an individual logical module is independent of the self-testing
of other modules.

To check a logical module providing a communication service,
several loopback messages of a speci�c bit pattern are sent
through the DMA and link interfaces and back so that both the
sending and receiving paths are checked. Received messages are
compared with the original messages, and the latency is measured
and compared with normal latencies. If all of the loopback
messages are received without errors and without experiencing
unusually long latencies, we conclude that the network interface
works properly.

We have implemented such a scheme in the GM NCP. We
emulate normal sending and receiving behavior in the Normal
Delivery module. This is done by posting send and receive tokens
into the sending and receiving queues, respectively, from within
the network interface, rather than from the host. The posting of the
tokens causes the execution control to go through basic blocks in
the corresponding logical module, so that errors in the control �ow
path are detected. Similarly, some events such as message loss or
software-implemented translation look-aside buffer misses, which
might concurrently happen during the sending/receiving process
of the Normal Delivery module, are also triggered within the NIC
to test the corresponding basic blocks. We can emulate different
sets of various requests/events to go through most of the basic
blocks. To reduce the overhead, we made an attempt to trigger as
few requests/events as possible.

Fig. 5 shows the data �ow of the self-testing procedure. When
the GM driver is loaded, two extra DMA regions are allocated for
self-testing purposes. The shaded DMA region is initialized with
prede�ned data. We added some code at the end of the timer
routine (L timer) to trigger requests/events for each self-testing
cycle. The SDMA interface polls the sending queues, and when
some tokens for self-testing are found, the interface starts to fetch
the message from the initialized DMA region, and passes chunks
of data to the SEND interface. For our self-testing, messages are
sent out by the SEND interface to the RECV interface at the same



5

node. Then, messages are transferred to the other DMA region.
Finally, after a predetermined interval when L timer is called,
messages are transferred back to the network interface. During
this procedure, we can check the number of received messages,
messages' contents, and latencies. Such a design insures that both
directions of the DMA interface and link interface are tested as
well as the network processor and NCP. Note that such a scheme
does not interact with the host processor and hence has minimal
overhead. Because the size of the self-testing code is negligible
when compared with the size of the GM NCP, the performance
impact is minor.

Self-testing can also be implemented using an application
running in the host with no modi�cation to the GM NCP. Such
an implementation would impose an overhead to the host system
that we avoid with our approach. Also, a pure application-level
self-testing would be unable to test some basic blocks that would
otherwise be tested with our self-testing implemented in the GM
NCP, such as the resending path, because of its inability to trigger
such a resending event.

Clearly, it is only when the injected faults manifest themselves
as errors that this approach can detect them. Faults which are
�silent� and simply lurk in the data structures would require a
traditional redundancy approach, which is outside the scope of
our work.

Since all the modi�cations are within the GM NCP, the API
used by an application is unchanged so that no modi�cation to
the application source code is required.

IV. FAILURE RECOVERY

Recovery from a network interface failure primarily involves
restoring the state of the interface to what it was before the
failure. However, simply resetting the interface, reloading and
restarting the NCP would not be suf�cient as it can cause
duplicate messages to be received or messages to be lost.

In the context of Myrinet, reliable transmission is achieved
through the use of sequence numbers. These numbers are main-
tained solely by the GM NCP and are therefore transparent to
the user. If the NCP is reloaded and restarted upon a failure, the
state of the connections and the sequence numbers are lost, and
messages can not be retransmitted reliably. To illustrate this, Fig. 6
shows the schematic of a typical control �ow in a GM application
while Fig. 7 shows what might happen if a fault occurs and the
NCP is reloaded. Suppose that the sending node crashes when an
ACK is in transit. After recovering from the failure, since all state
information is lost, the sender may try to resend the message with
an invalid sequence number. The receiver would reply by sending
a NACK with the expected sequence number. At this point,
if the sender resends the message with this sequence number,
the receiver would incorrectly accept a duplicate message. This
problem arises due to the lack of redundant state information.
If information concerning all streams of sequence numbers was
stored in some stable storage, the GM NCP could then use
this information during recovery to send out messages with the
correct sequence numbers and avoid duplicate messages. The key,
however, is to manage such information redundancy so that the
performance of the network is not greatly impacted.

Messages could also be lost. Suppose the faulty node is a
receiver. Then, there is not much state information that needs
to be restored, because the Myrinet programming model is
connectionless in that the sender does not explicitly set up a

connection with the receiver. The receiver in GM sends out an
ACK as soon as it receives a valid message. This can lead to
faulty behavior as shown in Fig. 8. Consider the case when the
NIC crashes after the send of the ACK is complete but before
the entire message has been transferred to the host memory. This
can happen if the DMA interface is not free and so the DMA
operation is delayed. The receiver will never receive that message
again because as far as the sender is concerned, it received the
ACK for the message and noti�ed the application that the send
was successful. The sender would not resend the message and so,
as far as the receiver is concerned, the message is lost forever. This
problem arises because of the lack of a proper commit point for
a send-receive transaction. The receiver should send out an ACK
only when the message has been copied to its �nal destination.

Even though these problems were observed in the context of
Myrinet, similar problems would very likely happen in other
programmable network interfaces.

Sender
 Receiver

User process prepares messages


User process sets send token


NIC fetches message


NIC sends message


NIC receives ACK


NIC passes event to user process


User process handles notification event


User process reuses send buffer


User process provides receive buffer


User process sets recv token


NIC receives message


NIC sends ACK


NIC passes message


User process handles notification event


User process reuses send buffer


NIC passes event to user process


Fig. 6. A Typical Control Flow.

Sender
 Receiver

User process prepares messages


User process sets send token


NIC fetches message


NIC sends message


Driver reloads GM NCP


Driver sets pending send tokens


User process provides receive buffer


User process sets recv token


NIC receives message


NIC sends ACK


NIC passes message


User process handles notification event


User process reuses send buffer


NIC receives message


NIC goes down


NIC fetches message


NIC sends message


NIC receives NACK


NIC resends message


NIC passes event to user process


NIC sends NACK


NIC receives duplicate message


Fig. 7. The Case of Duplicate Messages.

A. Recovery Strategy
The above discussion indicates that reloading the NCP alone

does not guarantee correct recovery. What is required is to restore
the state of the network interface to a point that guarantees the
correct handling of future messages as well as messages in �ight
at the time of failure.

Since we are considering only network interface failures, a
suf�ciently safe place for storing the required network interface
state is the host's memory. To tolerate interface failures, the
host should duplicate all the state information and messages in



6

Sender
 Receiver

User process prepares messages


User process sets send token


NIC fetches message


NIC sends message


NIC receives ACK


NIC passes event to user process


User process handles notification event


User process reuses send buffer


User process provides receive buffer


User process sets recv token


NIC receives message


NIC sends ACK


NIC goes down


Driver reloads GM NCP


Driver sets recv tokens


NIC never receives lost message


Fig. 8. The Case of Lost Messages.

the host memory with regard to all outstanding sending and
receiving events before the next operation in the control �ow
until the corresponding events �nish, irrespective of whether or
not the same information has already been present in the network
interface. For example, when the network interface on the receiver
side receives a message, it should �rst transfer the message to its
host and then send an ACK to the sender. This ensures that we
can have a copy of the message in the host memory; if a failure
happens during the receiving process, we can �nd a commit
point during recovery, that is, both sender and receiver agree on
which packet has been delivered. The implementation may vary
from interface to interface, but the basic idea mentioned here
should be the same for all programmable NICs. The challenge,
however, is in recognizing the minimal necessary information to
set a recovery point for communication pairs to avoid message
duplication and message loss.

Our recovery scheme works for all the failures mentioned in
the section on failure detection, except for those causing the
corruption of data and control information. This is because of
the relatively long failure detection latency in these cases. For
such failures, before the recovery process starts, the corrupted
data or information may have already been passed to the host
application. To account for these failures, we could use our fault
tolerance scheme in conjunction with the checkpointing of the
application. When a corruption failure is detected, we could �rst
reset the NIC and then roll back the host application to the last
checkpoint. As we will see in the following section, the fraction of
corruption failures is small, so we can still achieve fast recovery
in most cases. Since the checkpointing of host applications has
been widely studied, we will not discuss it here.

B. Implementation
Apart from the sequence numbers, it is also important to keep

a copy of the send and receive tokens. As discussed earlier, a
process implicitly relinquishes a send token (and passes it to the
interface) when a call to a GM API function is made to send
a message, and gets it back when the send is successfully com-
pleted. A send token consists of information about the location,
size and priority of the send buffer and the intended destination
for the message. It is important to keep an updated copy of all
the send tokens that are in possession of the interface so that
this information can be used during failure recovery to resend the
messages that have yet to be acknowledged. Similar is the case
with the receive tokens. Keeping a copy of the forfeited receive
tokens allows us to notify the Myrinet interface of all the pinned-
down DMA regions that have not yet been �lled by the interface.

In our implementation, extra space is allocated by the user
process to maintain a copy of the send token queue and the receive
token queue. When a call to any of the GM API functions is made
to send a message, a copy of the send token is added to the queue.
Since the size of a token is small, the overhead is insigni�cant.
The process also stores a copy of the receive token when it
provides receive buffers. The host also needs to have a copy of the
sequence numbers used for each connection. This is achieved by
having the user process generate the sequence number and pass
it through the send token to the Myrinet interface. The GM NCP
now uses these sequence numbers rather than generating its own.
If messages are to be assigned sequence numbers strictly on a
per-connection basis to maintain the original GM protocol, all the
processes on a node sending messages to the same remote node
need to be synchronized so that a continuous stream of sequence
numbers for the connection is obtained. Such a synchronization
can, however, introduce unnecessary overhead. A simple solution
to this is to generate independent streams of sequence numbers for
each remote node on a per-port basis. This generation can be done
entirely within a single process but requires that the receiver now
acknowledge on a per-port basis rather than on a per-connection
basis. Thus, the receiver now has to keep an ACK number for
every connection-port pair. The extra memory requirement is,
however, not large since GM allows only 8 ports per node. This
is the main deviation from the original GM structure, as depicted
in Fig. 9.

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���
���

���
���
���
���

��
��
��

��
��
��

���
���
���
���

���
���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���
���

���
���
���
���

��
��
��

��
��
��

���
���
���
���

���
���
���
���

...

...

...

... ...

(a)

...

...

...

... ...

(b)

User Process

NI

Fig. 9. (a) All Streams are Multiplexed into a Single Connection
(b) Independent Streams per Connection

Another difference from the original GM is with regard to the
commit point on the receiver side. In our implementation, we
delay the sending of an ACK to after the DMA of the message into
the user's receiver buffer is complete. This increases the network
overhead of the message but, as the results in Section V show,
the impact on performance is small. Since the receiver must also
keep a copy of the ACK number for every stream, the network
processor needs to notify the host of the sequence number of the
message that has just been ACKed. This is done by including the
sequence number as part of the event posted by the Myrinet into
the user process's receive queue. The receiver, at this time, also
deletes the corresponding copy of the receive token. Similarly, on
the sender side, the copy of the send token is removed just before
the callback function for that send token is invoked.



7

In summary, no substantial modi�cations to the GM protocol
were needed. All the changes were implemented within the GM
library functions, thus making them transparent to the user. Based
on our experience with Myrinet, we expect that the implementa-
tion will not be dif�cult for other NICs.

V. EXPERIMENTAL RESULTS

Our experimental setup consisted of two Pentium III machines
each with 256MB of memory, a 33MHz PCI bus and running
Redhat Linux 7.2. The Myrinet NICs were LANai9-based PCI64B
cards and the Myrinet switch was type M3M-SW8.

A. Failure Coverage
We used as our workload a program provided by GM to send

and receive messages of random lengths between processes in
two machines. To evaluate the coverage of the self-testing of
the modi�ed GM, we developed a host program which sends
loopback messages of various lengths to test latency and check
for data corruption. We call it application-level self-testing to
distinguish it from our NCP-level self-testing. This program
follows the same approach as the NCP-level self-testing, that is, it
attempts to check as many basic blocks as possible for the Normal
Delivery module. The application-level self-testing program sends
and receives messages by issuing GM library calls, in much the
same way as normal applications do. We assume that, if such a
test application is run in the presence of faults, it will experience
the same number of faults that would affect normal applications.
Based on this premise, we use the application-level self-testing
as baseline and calculate the failure coverage ratio to evaluate
our NCP-level self-testing. The failure coverage ratio is de�ned
as the number of failures detected by the NCP-level self-testing
divided by the number of failures detected by the application-
level self-testing. When calculating the failure coverage ratio, we
did not count the failures that are not covered by the proposed
technique, such as host crashes. To make the baseline application
comparable to the NCP-level self-testing, we concurrently trigger
exception events within the GM NCP to direct the control �ow
to cover basic blocks handling exceptions, so that the baseline
application can detect all the failures that can be detected by the
NCP-level self-testing.

The underlying fault model used in the experiments was
primarily motivated by Single Event Upsets (SEUs) which were
simulated by �ipping bits in the SRAM. Such faults disappear on
reset or when a new value is written to the SRAM cell. Since the
probability of multiple SEUs is low, we focus on single SEUs in
this paper. To emulate a fault that may cause the hardware to stop
responding, we injected stuck-at-0 and stuck-at-1 faults into the
special registers in the NIC. The time instances at which faults
were injected were randomly selected. After each fault injection
run, the GM NCP was reloaded to eliminate any interference
between two experiments.

To evaluate the effectiveness of our NCP-level loopback with-
out testing exhaustively each bit in the SRAM and registers, we
performed the following three experiments:

• Exhaustive fault injection into a single routine (the
frequently executed send chunk).

• Injecting faults into the special registers.
• Random fault injection into the entire code segment.

The data structures which can make up a signi�cant fraction of
the GM NCP state were not subjected to fault injection because

the proposed technique does not provide adequate coverage for
them. This kind of faults would need a traditional redundancy
approach.

In all the experiments mentioned in this section, only the
Normal Delivery logical module was active and checked. The
workload program and the application-level self-testing program
requested service only from this module. If a fault was injected
in the Normal Delivery module, it would be activated by the
workload program; if not, the fault would be harmless and have
no impact on the application. The injection of each fault was
repeated 10 times and the results averaged.

B. Results
The routine send chunk is responsible for initializing the packet

interface and setting some special registers to send messages out
on the Myrinet link. The entire routine is part of the Normal
Delivery module.

There are 33 instructions in this routine, totaling 1056 bits.
Faults were sequentially injected at every bit location in this
routine. Columns 2 to 4 of Table I show a summary of the results
reported by NCP-level self-testing for these experiments. Column
2 shows the number of detected failures, column 3 shows the
failures as a fraction of the total faults injected, and column 4
the failures as a fraction of the total failures observed. About
40% of the bit-�ip faults caused various types of failures. Out of
these, 30.5% were network interface hangs, which were detected
by our watchdog timer, 1.7% of these failures caused a host crash,
and the remaining 67.8% were detected by our NCP-level self-
testing. The failure coverage ratio of the NCP-level self-testing
of this routine is 99.3%.

For our next set of experiments, we injected faults into the
special registers associated with DMA. Columns 5 to 7 of Table
I show a summary of the results. The GM NCP sets these registers
to fetch messages from the host memory to the SRAM via the
DMA interface. There are a total of 192 bits in the SDMA
registers, containing information about source address, destination
address, DMA length and some �ags. We sequentially injected
faults at every bit location. From the results, it is clear that
the memory-mapped region corresponding to the DMA special
registers is very sensitive to faults. In these experiments, faults
propagated to the DMA hardware or even the host computer and
caused fatal failures. Since the total number of register bits is only
several hundred, orders of magnitude smaller than the number of
instruction bits, the probability that a fault hits a register bit and
causes a host crash is very low. Even though 35.4% of the failures
from injecting faults in registers resulted in a host crash, they
account for a very small fraction of the total number of failures.
The failure coverage ratio of this set of experiments is 99.2%.

The third set of results (columns 8 to 10 of Table I) shows
how the NCP-level self-testing performs when faults are randomly
injected into the entire code segment of the GM NCP. We injected
1430 faults at random bit locations, but only 88 caused failures.
27.3% of these failures were network interface hangs detected by
our watchdog timer, 9.1% caused a host crash, and the remaining
63.6% of the failures were detected by our NCP-level self-testing.
The failure coverage ratio is about 95.6%. From the table we see
that a substantial fraction of the faults do not cause any failures
and thus have no impact on the application. This is because
the active logical module, i.e., Normal Delivery, is only one
part of the GM NCP. This reinforces the fact that self-testing



8

Send chunk Registers Entire Code Seg.

Fa
ilu

re
s

%
Fa

ul
ts

%
Fa

ilu
re

s

Fa
ilu

re
s

%
Fa

ul
ts

%
Fa

ilu
re

s

Fa
ilu

re
s

%
Fa

ul
ts

%
Fa

ilu
re

s

Host Computer Crash 7 0.7 1.7 46 24.0 35.4 8 0.56 9.09
NCP Hung (By WT) 128 12.1 30.5 10 5.2 7.7 24 1.68 27.27
Send/Recv Failures 151 14.3 36.0 0 0.0 0.0 21 1.47 23.86
DMA Failures 21 2.0 5.0 26 13.5 20.0 12 0.84 13.64
Corrupted Ctrl Info. 0 0.0 0.0 3 1.6 2.3 1 0.07 1.14
Corrupted Message 5 0.5 1.2 45 23.4 34.6 8 0.56 9.09
Unusually Latency 107 10.1 25.5 0 0.0 0.0 14 0.98 15.91
No Impact 637 60.3 � 62 32.3 � 1342 93.85 �
Total 1056 100.0 100.0 192 100.0 100.0 1430 100.00 100.00

TABLE I
RESULTS OF FAULT INJECTION.

for the entire NCP is mostly unnecessary. By focusing on the
active logical module(s), our self-testing scheme can considerably
reduce the overhead.

Due to uncertainties in the state of the interface when injecting
a fault, repeated injections of the same fault are not guaranteed to
have the same effect. However, the majority of failures displayed
a high degree of repeatability. Such repeatability has also been
reported elsewhere [25].

Fault

injected


Interrupt

raised


Interrupt

latency


Interrupt

handled


FTD

woken up


GM NCP

reloaded


FAULT event(s)

posted


Per-process

recovery started


Handling of

send tokens


Per-process

recovery started


Context-switch

overhead


Handling of

send tokens


Fault

detection


time


FTD

recovery


time


Per-process

recovery time


Fig. 10. The Timeline of the Fault Recovery Process.

C. Recovery Time and Effectiveness
The complete recovery time is the sum of the failure detection

time and the time spent in our Fault Tolerance Daemon (FTD) and
the user process' failure handler for restoring the state, as shown
in Fig. 10. The failure detection time was measured as the time
from the fault injection to the time when the FTD is woken up by
the driver. It is a function of the maximum time between L timer
invocations and the interrupt latency. We will ignore the interrupt
latency, because it is negligible (∼13µs) compared to 800µs for
the watchdog timer interval and the self-testing intervals. The
FTD recovery time consists of the time required to reload the
GM NCP and restore routing and page hash tables and posting the
Fault Detected event in each open port's receive queue. Averaging
over a number of experiments revealed a value of ∼765, 000µs for
the FTD recovery time, with ∼500, 000µs being spent in reloading
the GM NCP.

The rest of the recovery time depends on the number of
open ports at the time of failure. The per-port recovery time is
primarily a function of the execution time of the Fault Detected
event handler. Our experimental results show that this value
is ∼900, 000µs. It is arguable whether the time for handling
the restored send tokens by the network processor needs to be
accounted for in the recovery time. This would however be a
function of the number of send tokens that have been restored.

The experiments were repeated using our Fault Tolerant GM
(FTGM). Except for corruption failures and interface hangs,
FTGM was able to recover from all other failures. While all
the network interface hangs were correctly detected, there were
only �ve cases out of the 286 hangs that FTGM was not able to
properly recover from. We are currently investigating these cases.

D. Performance Impact
The performance of a network is usually measured using three

principal metrics:
• Bandwidth measures the sustained data rate available for

large messages.
• Latency is usually calculated as the time to transmit from

source to destination.
• Host-CPU utilization measures the overhead borne by the

host-CPU in sending or receiving a message.
GM provides a set of programs that can be used to evaluate

these metrics. The workload for our experiments involved both
hosts sending and receiving messages at the maximum rate possi-
ble. Measurements were performed as bi-directional exchanges of
messages of different lengths between processes in two machines.

We �rst experimented with only the failure detection scheme
and evaluated its performance impact, in this section we will refer
to this modi�ed GM software as Failure Detection GM (FDGM).
For each message length of the workload, messages were sent
repeatedly for at least 10 seconds and the results were averaged.

Fig. 11(a) compares the bandwidth obtained with GM and
FDGM for different message lengths. The reason for the jagged
pattern in the middle of the curve is that GM partitions large
messages into packets of at most 4KB at the sender and re-
assembles them at the receiver. Fig. 11(b) compares the point-
to-point half-round-trip latency for messages of different lengths.
For this experiment, the NCP-level self-testing interval was set to
5 seconds. The �gures show that FDGM imposes no appreciable
performance degradation with respect to latency and bandwidth.

Yizheng Zhou
Underline



9

0

5

10

15

20

25

30

35

40

1 10 100 1000 10000 100000 1e+06

B
an

dw
id

th
 (

M
B

yt
es

/s
)

Message Length (bytes)

GM
FDGM

(a) Bandwidth.

0

2000

4000

6000

8000

10000

12000

14000

1 10 100 1000 10000 100000 1e+06

La
te

nc
y 

(u
se

c)

Message Length (bytes)

GM
FDGM

(b) Latency.

Fig. 11. Comparison of the Original GM and FDGM.

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5B
an

dw
id

th
 D

iff
er

en
ce

 (
M

B
yt

es
/s

)

Interval of Self-Testing (seconds)

(a) Bandwidth Difference vs. Interval Length.

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

La
te

nc
y 

D
iff

er
en

ce
 (

us
ec

s)

Interval of Self-Testing (seconds)

(b) Latency Difference vs. Interval Length.

Fig. 12. Performance Impact for Different Self-Testing Intervals.

55

60

65

70

75

80

85

90

95

1000 10000 100000 1e+06

B
an

dw
id

th
 (

M
B

yt
e/

s)

Message Length (bytes)

GM
FTGM

10

100

1000

1 10 100 1000 10000 100000

La
te

nc
y 

(u
se

c)

Message Length (bytes)

GM
FTGM

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1000 10000 100000 1e+06

D
iff

er
en

ce
 (

M
B

yt
e/

s)

Message Length (bytes)
(a) Bandwidth.

0

0.5

1

1.5

2

2.5

3

1 10 100 1000 10000 100000

D
iff

er
en

ce
 (

us
ec

)

Message Length (bytes)
(b) Latency.

Fig. 13. Comparison of the Original GM and FTGM.

Yizheng Zhou
Underline

Yizheng Zhou
Underline

Yizheng Zhou
Underline



10

We also studied the overhead of the NCP-level self-testing
when the test interval is reduced from 5 to 0.5 seconds. Experi-
ments were performed for a message length of 2KB. The latency
of the original GM software is 69.39µs, and its bandwidth is
14.71MB/s. Fig. 12 shows the bandwidth and latency differences
between GM and FDGM. There is no signi�cant performance
degradation with respect to latency and bandwidth. For the
interval of 0.5 seconds, the bandwidth is reduced by 3.4%, and the
latency is increased by 1.6%, when compared with the original
GM.

Such results agree with expectations. The total size of our self-
testing messages is about 24KB which is negligible relative to
the high bandwidth of the NIC. Users can determine accordingly
the NCP-level self-testing interval, taking into consideration per-
formance and failure detection latency.

We then incorporated both the failure detection and recovery
schemes and evaluated the performance impact, and we refer
to this version of the modi�ed GM software as Fault Tolerance
GM (FTGM). For each message length of the workload, a large
number of messages (we used 1000 here) were sent repeatedly
and results were averaged.

Fig. 13(a) shows that the sustained bidirectional data rate
for GM as well as FTGM approaches an asymptotic value of
∼ 92MB/s for long messages. FTGM follows very close on the
heels of GM and imposes no appreciable performance degradation
with regards to bandwidth.

Fig. 13(b) compares the point-to-point half-round-trip latency
of messages of different lengths. Here again, the performance
of FTGM is not far behind the original GM. The short-message
latency, a critical metric for many distributed-computing applica-
tions, is about 11.5µs for GM and 13.0µs for FTGM, averaged
over message lengths ranging from 1 byte to 100 bytes. These
latencies consist of a host component and a network interface
component. While the host component is a combination of
the host-CPU execution time and the PCI latency, the network
interface component is a combination of the network processor
execution time and the packet interface latency. FTGM was
designed to minimize the amount of extra information being
transferred through DMA from the host memory to the NIC
memory. Moreover, there is absolutely no change in the packet
header and no extra information is sent with the packet. Therefore,
the effect on the PCI latency and the packet interface latency in
the network processor is minimal. The modi�cation in the GM
NCP that affects the critical path the most is the delay in sending
the ACK after the DMA is complete. Since the ACK needs to
be delayed only when a receive token is returned to the user, a
multiple-packet message can be made to take full advantage of the
network bandwidth by not waiting for the DMA to be complete,
thus allowing several packets of the same message to be in-�ight
at the same time. For small messages, however, the extra delay
comes mainly from the host-CPU utilization. This factor is most
evident in protocols employing a host-level credit scheme for �ow
control such as FM [27].

Minimizing the host-CPU utilization was one of our principal
design objectives. Information posted on the Myricom website
indicates that the measured overhead on the host for sending
(receiving) a message is about 0.3µs (0.75µs). In FTGM, the
send and receive token housekeeping contributes the most to the
increase in delay. It is around 0.25µs for the send and around
0.4µs for the receive. The extra overhead for the receive is be-

GM FTGM
Bandwidth 92.4MB/s 92.0MB/s
Latency 11.50µs 13.00µs

Host (send) 0.30µs 0.55µs
Host (recv) 0.75µs 1.15µs
NCP 6.00µs 6.80µs

TABLE II
COMPARISON OF VARIOUS PERFORMANCE METRICS BETWEEN GM AND

FTGM.

cause the receiver has to update two hash tables for every receive:
one containing the receive tokens and the second containing
ACK numbers for each stream. Table II summarizes the results
presented in this section.

VI. RELATED WORK

Chillarege [26] proposes the idea of a software probe to help
detect failed software components in a running software system
by requesting a certain level of service, from a set of functions
and/or modules and checking the response to the request. This
paper however, presents no experimental results to evaluate the
ef�ciency and performance impact. Moreover, since it considers
general systems, there is no discussion devoted to minimizing the
performance impact and improving the failure coverage as we do
in this paper.

Several approaches have been proposed in the past to achieve
fault tolerance by modifying only the software. These approaches
include Self-Checking Programming [8], Algorithm Based Fault
Tolerance (ABFT) [9], Assertion [10], Control Flow Checking
[11], Procedure Duplication [12], Software Implemented Error
Detection and Correction (EDAC) code [13], Error Detection by
Duplicated Instructions (EDDI) [14], and Error Detection by Code
Transformations (EDCT) [15]. Self-Checking Programming uses
program redundancy to check its own behavior during execution.
It results from either the application of an acceptance test or
the comparison of the results of two duplicated runs. Since the
message passed to a network interface is completely nondeter-
ministic, an acceptance test is likely to exhibit low sensitivity.
ABFT is a very effective approach, but can only be applied
to a limited set of problems. Assertions perform consistency
checks on software objects and re�ect invariant properties for an
object or set of objects, but effectiveness of assertions strongly
depends on how well the invariant properties of an application
are de�ned. Control Flow Checking cannot detect some types
of errors, such as data corruption, while Procedure Duplication
only protects the most critical procedures. Software Implemented
EDAC code provides protection for code segments by periodically
encoding and decoding instructions. Such an approach, however,
would involve a substantial overhead for a network processor
because the code size of an NCP might be several hundreds of
thousands of bytes. Although it can detect all the single bit faults,
it is an overkill because many faults are harmless. Moreover, it
cannot detect hardware errors. EDDI and EDCT have a high error
coverage, but have substantial execution and memory overheads.

VII. CONCLUSION

This paper describes a software-based low-overhead fault toler-
ance scheme for programmable network interfaces. Failure detec-
tion is achieved by a watchdog timer that detects network interface



11

hangs, and a built-in self-testing that detects non-interface-hang
failures. The proposed self-testing directs the control �ow to go
through the active logical modules; during this procedure, the
functionality of the network interface, essentially the hardware
and the active logical modules of the software, are tested. The
idea behind our failure recovery scheme is to keep a copy of just
the right amount of network interface state information in the host
so that the state of the network interface can be restored upon
failure. The proposed fault tolerance scheme can be implemented
transparently to applications.

The basic idea underlying the presented failure detection and
recovery techniques is quite generic and can be applied to
other modern high-speed networking technologies that contain a
microprocessor and local memory, such as IBM PowerNP [18],
In�niband [19], Gigabit Ethernet [20], [21], QsNet [22] and ATM
[23], or even other embedded systems.

ACKNOWLEDGMENT

This work has been supported in part by a grant from a joint
NSF and NASA program on Highly Dependable Computing (NSF
grant CCR-0234363, NASA grant NNA04C158A).

REFERENCES

[1] J.F. Ziegler, et al., �IBM Experiments in Soft Fails in Computer
Electronics (1978-1994),� IBM Journal of Research and Development,
vol. 40, No. 1, pp. 3-18, Jan. 1996.

[2] S.S. Mukherjee, J. Emer, S.K. Reinhardt, �The Soft Error Problem:
An Architectural Perspective,� Proceedings of the 11th International
Symposium on High-Performance Computer Architecture, pp. 243-247,
Feb. 2005.

[3] Remote Exploration and Experimentation (REE) Project.
http://www-ree.jpl.nasa.gov/.

[4] A.V. Karapetian, R.R. Some, J.J. Beahan, �Radiation Fault Modeling and
Fault Rate Estimation for a COTS Based Space-borne Supercomputer,�
IEEE Aerospace Conference Proceedings, vol. 5, pp. 5-2121- 5-2131 ,
Mar. 2002.

[5] The Human Impacts of Solar Storms and Space Weather.
http://www.solarstorms.org/Scomputers.html.

[6] A. Thakur, B.K. Iyer, �Analyze-NOW - An Environment for Collection
of Analysis of Failures in a Network of Workstation,� Proceedings of
the 7th International Symposium on Software Reliability Engineering,
pp. 14-23, Oct. 1996.

[7] V. Lakamraju, I. Koren, C.M. Krishna, �Low Overhead Fault Tolerant
Networking in Myrinet,� Proceedings of the Dependable Systems and
Networks, pp. 193-202, Jun. 2003.

[8] L.L. Pullum, Software Fault Tolerance Techniques and Implementation,
Artech House, 2001

[9] K.-H. Huang, J.A. Abraham, �Algorithm-Based Fault Tolerance for
Matrix Operations,� IEEE Transactions on Computers, vol. C-33, No.
6, pp. 518-528, Dec. 1984.

[10] D.M. Andrews, �Using Executable Assertions for Testing and Fault
Tolerance,� Proceedings of the 9th International Symposium on Fault-
Tolerant Computing, pp. 102-105, Jun. 1979.

[11] S.S. Yau, F.-C. Chen, �An Approach to Concurrent Control Flow
Checking,� IEEE Transactions on Software Engineering, vol. 6, No. 2,
pp. 126-137, Mar. 1980.

[12] D.K. Pradhan, Fault-Tolerant Computer System Design, Prentice Hall,
1996.

[13] P.P. Shirvani, N.R. Saxena, E.J. McCluskey, �Software-Implemented
EDAC Protection against SEUs,� IEEE Transactions on Reliability, vol.
49, No. 3, pp. 273-284, Sep. 2000.

[14] N. Oh, P.P. Shirvani, E.J. McCluskey, �Error Detection by Duplicated In-
structions in Super-scalar Processors,� IEEE Transactions on Reliability,
vol. 51, No. 1, pp. 63-75, Mar. 2002.

[15] B. Nicolescu, R. Velazco, �Detecting Soft Errors by a Purely Software
Approach: Method, Tools and Experimental Results,� Design, Automa-
tion and Test in Europe Conference and Exhibition, pp. 57-62, Mar.
2003.

[16] N.J. Boden, D. Cohen, R.E. Felderman, A.E. Kulawik, C.L. Seitz, J.N.
Seizovic, and W.-K. Su, �Myrinet: A Gigabit-per-Second Local-Area
Network,� IEEE Micro, vol. 15, No. 1, pp. 29-36, Feb. 1995.

[17] Myricom Inc. http://www.myri.com/.
[18] J.R. Allen, B.M. Bass, C. Basso, R.H. Boivie, et al., �IBM PowerNP Net-

work Processor: Hardware, Software, and Applications,� IBM Journal
of Research and Development, vol. 47, No. 2/3, pp. 177-193, Mar./May
2003.

[19] In�niband Trade Association. http://www.in�nibandta.com/.
[20] P. Shivam, P. Wyckoff, and D. Panda, �EMP: Zero-Copy OS-

Bypass NIC-Driven Gigabit Ethernet Message Passing,� Proceedings of
ACM/IEEE Supercomputing 2001 Conference, pp. 49- 49, Nov. 2001.

[21] The Gigabit Ethernet Alliance. http://www.gigabit-ethernet.com/.
[22] The QsNet High Performance Interconnect. http://www.quadrics.com/.
[23] A.T.M. Forum. ATM User-Network Interface Speci�cation, Prentice

Hall, 1995.
[24] T. Halfhill. �Intel Network Processor Targets Routers,� Microprocessor

Report, vol. 13, No. 12, Sep. 1999.
[25] D.T. Stott, M.-C. Hsueh, G.L. Ries, and R.K. Iyer, �Dependability

Analysis of a Commercial High-Speed Network,� Proceedings of the
27th International Symposium on Fault-Tolerant Computing, pp. 248-
257, Jun. 1997.

[26] R. Chillarege, �Self-Testing Software Probe System for Failure Detection
and Diagnosis,� Proceedings of the 1994 conference of the Centre for
Advanced Studies on Collaborative Research, pp. 10, 1994.

[27] R.A.F. Bhoedjang, T. Rühl, H. E. Bal, �User Level Network Interface
Protocols,� IEEE Computer, vol. 31, No. 11, pp. 53-60, Nov. 1998.

Yizheng Zhou received his B.S. degree in Electronics Engineering from
Tsinghua University, China, in 2000, and the M.S. degree in Computer
Engineering from NC State University in 2002. He is currently a Ph.D. student
in Electrical and Computer Engineering at the University of Massachusetts,
Amherst. His research interests include distributed systems, fault tolerance,
and embedded systems.

Vijay Lakamraju is a currently a research scientist at United Technologies
Research Center with a focus on embedded systems, wireless (sensor) net-
working, and fault-tolerant real-time systems. Prior to UTRC, Dr. Lakamraju
was co-founder of BlueRISC, Inc., a startup focusing on ultra low-power
secure embedded microprocessors for energy constrained applications. He
received his Ph.D. in Electrical Engineering from the University of Mas-
sachusetts, Amherst in 2002.

Yizheng Zhou
Underline



12

Israel Koren (S'72 - M'76 - SM'87 - F'91) re-
ceived the B.Sc., M.Sc. and D.Sc. degrees from the
Technion - Israel Institute of Technology, Haifa. He
is currently a Professor of Electrical and Computer
Engineering at the University of Massachusetts,
Amherst. Previously he was with the Technion -
Israel Institute of Technology. He also held visit-
ing positions with the University of California at
Berkeley, University of Southern California, Los
Angeles and University of California, Santa Bar-
bara.

Dr. Koren's current research interests include Fault-Tolerant Techniques and
Architectures, Yield and Reliability Enhancement, and Computer Arithmetic.
He published extensively in several IEEE Transactions and has over 200
publications in refereed journals and conferences. He currently serves on the
Editorial Board of the IEEE Transactions on VLSI Systems, IEEE Computer
Architecture Letters and the VLSI Design Journal. He was a Co-Guest Editor
for three special issues of the IEEE Transactions on Computers, and served
on the Editorial Board of these Transactions between 1992 and 1997. He also
served as General Chair, Program Chair and Program Committee member for
numerous conferences. He is the author of the textbook Computer Arithmetic
Algorithms, A.K. Peters, Ltd., 2002. He is a co-author of the textbook Fault
Tolerant Systems, to be published by Morgan-Kaufman in 2007.

C. Mani Krishna received his Ph.D. from the University of Michigan in 1984.
Since then, he has been on the faculty of the University of Massachusetts
at Amherst. His research interests include real-time systems, distributed
computing, and performance evaluation. He has coauthored texts on real-time
systems and on fault-tolerant computing.




