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Abstract—The vehicle electrification will have a significant
impact on the power grid due to the increase in electricity
consumption. It is important to perform intelligent scheduling
for charging and discharging of Electric Vehicles (EVs). However,
there are two major challenges in the scheduling problem. First,
it is challenging to find the globally optimal scheduling solution
which can minimize the total cost. Second, it is difficult to
find a distributed scheduling scheme which can handle a large
population and the random arrivals of the EVs. In this paper,
we propose a globally optimal scheduling scheme and a locally
optimal scheduling scheme for EV charging and discharging.
We first formulate a global scheduling optimization problem, in
which the charging powers are optimized to minimize the total
cost of all EVs which perform charging and discharging during
the day. The globally optimal solution provides the globally
minimal total cost. However, the globally optimal scheduling
scheme is impractical since it requires the information on the
future base loads and the arrival times and the charging periods
of the EVs that will arrive in the future time of the day. To
develop a practical scheduling scheme, we then formulate a local
scheduling optimization problem, which aims to minimize the
total cost of the EVs in the current ongoing EV set in the local
group. The locally optimal scheduling scheme is not only scalable
to a large EV population but also resilient to the dynamic EV
arrivals. Through simulations, we demonstrate that the locally
optimal scheduling scheme can achieve a close performance
compared to the globally optimal scheduling scheme.

Index Terms—Optimal scheduling, electric vehicle, charging
and discharging, Vehicle-to-Grid (V2G), convex optimization,
distributed solution, smart grid

NOMENCLATURE

N Interval set
M Set of Electric Vehicles (EVs)
MCHG Charging-only EV set
MV 2G Vehicle-to-Grid (V2G) EV set
xmi Charging power of EVm in interval i
Tm Charging period of EVm
τ Length of an interval
Eini

m Initial energy of EVm
Ecap

m Battery capacity of EVm
Efin

m Final energy of EVm
Pmax Maximum charging power
γm Final energy ratio of EVm
F Charging-interval matrix
zi Total load in intervali
Lb

i Real base load in intervali
LbF

i Forecasted base load in intervali
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yi Charging load in intervali
k0 Intercept in the real-time pricing model
k1 Slope in the real-time pricing model
Ci Cost for EV charging in intervali
Q(i) Previous-interval set of intervali
B Group set
H

(i)
k Ongoing EV set at the beginning of intervali

in groupk
W

(i)
k Sliding window at the beginning of intervali

in groupk
H

(i)CHG

k Charging-only EV set at the beginning of in-
terval i in groupk

H
(i)V 2G

k V2G EV set at the beginning of intervali in
groupk

tarr
m Arrival time of EV m
tdep
m Departure time of EVm
tC−s
m Start time of the charging period of EVm
tC−e
m End time of the charging period of EVm

I. I NTRODUCTION

The automotive industry is heavily investing in Plug-in
Hybrid Electric Vehicles (PHEVs) and fully Electric Vehicles
(EVs) mainly in order to reduce the CO2 emissions and oil
dependency of current automotive technology. The vehicle
electrification will have significant impacts on the power grid
due to the increase in electricity consumption.

The overall load profile of electric system will be changed
due to the introduction of EV charging and discharging. The
charging of a large population of EVs has a significant impact
on the power grid. It have been estimated that the total
charging load of the EVs in US can reach 18% of the US
summer peak at the EV penetration level of 30% [1]. On the
other hand, an EV can also provide energy to the power grid
by discharging the battery, which is known as Vehicle-to-Grid
(V2G) [2]. An intelligent scheduling scheme can optimally
schedule the EV charging patterns such that the load profile
of the electric system can be effectively flattened. This will
reduce potential capital costs and minimize operational costs.
Intelligent scheduling for EV charging and discharging has
become a vital step towards smart grid implementation [3][4].
The essential principle in intelligent scheduling is to reshape
the load profile by charging the EV battery from the grid at
the time when the demand is low and discharging the EV
battery to the grid when the demand is high. However, it
is challenging to schedule the patterns of EV charging and
discharging in an optimal way. First, it is difficult to find the
globally optimal scheduling solution which can minimize the
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overall charging cost, especially in the presence of a large
EV population. Second, the scheduling scheme is required to
have the capacity to efficiently handle the random arrivals of
the EVs.

In the recent literature, a number of scheduling schemes for
EV charging and discharging have been proposed [5][6][7][8].
However, the scheduling schemes in [5][6] only dealt with
battery charging without V2G function. Though the existing
work on V2G scheduling [7][8] tried to optimize the charging
and discharging powers to minimize the cost, their methods are
essentially centralized algorithms, which may not be suitable
for the EV charging and discharging systems with a large
population and dynamic arrivals.

In this paper, we propose a globally optimal scheduling
scheme and a locally optimal scheduling scheme for EV
charging and discharging. Our contributions are summarized
as follows.

• We formulate a global scheduling optimization problem,
which aims to minimize the total cost for charging all
EVs within the day. The optimization problem is a convex
optimization problem, which can be solved efficiently.
The globally optimal scheduling scheme determines the
optimal charging powers for all EVs for all intervals by
solving a singleglobal scheduling optimization problem,
thus obtaining the globally minimal total cost.

• We formulate a local scheduling optimization problem
for the EVs in the local group. Based on thelocal
scheduling optimization problem, we develop a locally
optimal scheduling scheme, which is performed in an
independent and distributed way. The locally optimal
scheduling scheme is very appropriate for the EV charg-
ing and discharging systems with a large population and
dynamic arrivals. The performance of the locally optimal
scheduling scheme is lower than but very close to that of
the globally optimal scheduling scheme.

The globally optimal scheduling scheme provides the glob-
ally minimal total cost. However, the globally optimal schedul-
ing scheme is impractical since it requires the informationon
the future base loads and the arrival times and the charging
periods of the EVs that will arrive in the future time of the
day. Though the locally optimal scheduling scheme performs
a little worse than the globally optimal scheduling scheme,it
it is a practical scheme which can efficiently handle a large
EV population and dynamic EV arrivals. Therefore, the locally
optimal scheduling scheme is the final solution suggested in
the paper. With the globally minimal total cost provided by
the globally optimal scheduling scheme, we can find out the
optimality gap between the two schemes.

The remainder of the paper is organized as follows. Section
II discusses the related work. In Section III, we formulate and
solve the global scheduling optimization problem. In Section
IV, we formulate and solve the local scheduling optimization
problem. The simulation results are presented in Section V,
and the conclusions are drawn in Section VI.

II. RELATED WORK

Depending on the direction of energy flow, existing work
on EV charging scheduling can be classified into two classes:

1) scheduling for charging only, and 2) scheduling for both
charging and discharging.

In charging-only scheduling, the scheduler tries to optimize
the energy flow from the grid to the battery of the EV. In [5],
Shresthaet al. optimized the EV battery charging during the
low-cost off-peak period to minimize the charging cost in the
context of Singapore. The paper in [9] examined the problem
of optimizing the charge trajectory of a PHEV, defined as the
time and the rate with which the PHEV obtains electricity
from the power grid. In [1], a decentralized charging control
algorithm was proposed to schedule charging for large popula-
tions of EVs. The paper in [10] optimized EV battery charging
behavior to minimize charging costs, achieving satisfactory
state-of-energy levels, and optimal power balancing. Metset
al. in [6] presented smart energy control strategies for charging
residential PHEVs, aiming to minimize the peak load and
flatten the overall load profile. The impact of different battery
charging rates of EVs on the power quality of smart grid
distribution systems was studied in [11]. In [12], Clementet al.
proposed coordinated charging with stochastic programming,
which was introduced to represent the error in the load
forecasting.

In charging and discharging scheduling, the scheduler tries
to optimize the bidirectional energy flows: from the grid to
the EV battery and from the EV battery to the grid. Binary
particle swarm methods were employed to optimize the V2G
scheduling in a parking lot to maximize the profit [7][8][13].
Sortommeet al. proposed an unidirectional regulation at the
aggregator, in which several smart charging algorithms were
examined to set the point about which the rate of charge varies
while performing regulation [14]. The paper in [16] developed
an aggregator for V2G frequency regulation with the optimal
control strategy, which aims to maximize the revenue. Jang
et al. proposed a method for an analytic estimation of the
probability distribution of the Procured Power Capacity (PPC),
based on which the optimal contract size was decided [17].
The paper in [18] presented a real-time model of a fleet of
plug-in vehicles performing V2G power transactions. In [19],
Singh et al. demonstrated that the coordinated charging and
discharging of EVs can improve the voltage profile and reduce
the power transmission loss. The paper in [15] discussed the
vehicle to grid integration and described the vehicle-to-grid
communication interface.

III. G LOBAL SCHEDULING OPTIMIZATION

In this section, we formulate a global scheduling optimiza-
tion for EV charging and discharging based on a real-time
pricing model. The solution to the optimization problem pro-
vides a globally optimal scheduling scheme which minimizes
the total cost.

A. System Models

We study the battery charging and discharging of EVs
during a day, which is evenly divided into a set of intervals.
The interval set is denoted byN. The length of an interval
is denoted byτ . We assume that the charging or discharging
power in an interval is kept unchanged. In this paper, we divide
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Fig. 1. Charging period of EVm

the day into 24 intervals such that the interval length is given
by τ = 1 hour.

The set of the EVs, which perform charging and discharging
during the day, is denoted byM. The EV setM consists of
two sets: 1) the charging-only EV setMCHG, which includes
the EVs that only charge their battery and do not provide the
battery energy to the grid, and 2) the V2G EV setMV 2G,
which includes the EVs that perform both battery charging
and battery discharging. We haveM = MCHG +MV 2G. The
charging or discharging power of EVm in intervali is denoted
by xmi (∀m ∈ M, ∀i ∈ N). In order to unify the notation,
we just callxmi the charging power of EVm in interval i. If
xmi > 0, it means that EVm charges its battery in interval
i. If xmi < 0, it means that EVm discharges its battery in
interval i. The EVs in the charging-only setMCHG always
satisfy xmi ≥ 0 since they do not discharge their battery at
any time. On the other hand, the EVs in the V2G setMV 2G

may have a positive, zero, or negative charging powerxmi in
interval i (∀i ∈ N) since they have bidirectional energy flows
between the battery and the power grid.

The arrival time of EVm, denoted bytarr
m , is the time when

EV m is plugged into the charging station. The departure
time of EV m, denoted bytdep

m , is the time when EVm
is plugged out of the charging station. The charging period
of EV m, denoted byTm, is the period in which EVm
charges or discharges its battery. Since we divide the time
into multiple intervals, we define the charging periodTm of
EV m as the set of continuous intervals that fall between
the arrival timetarr

m and the departure timetdep
m of EV m,

as illustrated in Fig. 1. The initial energy of EVm, denoted
by Eini

m , is defined as the battery energy at the arrival time
tarr
m . The battery capacity of EVm is denoted byEcap

m . The
final energy of EVm, denoted byEfin

m , is defined as the
battery energy at the departure timetarr

m . The final energy
Efin

m is no larger than the battery capacityEcap
m . We define

a final energy ratioof EV m as γm = Efin
m /Ecap

m where
0 ≤ γm ≤ 1. The charging station can automatically detect
the arrival time, the initial energy and the battery capacity of
EV m when the EV is connected to the charging station. The
departure time and the final energy ratio of EVm are provided
to the charging station by the user of EVm before charging
is started. The charging station can determine the charging
periodTm of EV m from the parameterstarr

m and tdep
m . EV

m performs charging and discharging activities during the
charging periodTm. To represent the relationship between the
charging/discharging activities and the intervals, we define a
charging-interval matrixF ⊂ {0, 1}|M|×|N| where |M| and
|N| denote the number of elements in the setM and the set

N, respectively. The elements ofF are defined as

fmi =







1, if interval i falls within the charging periodTm

of EV m,
0, otherwise.

(1)
In this paper, we consider the scheduling of EV charging

and discharging in a small geographic area. In our real-
time pricing model, we make two assumptions: 1) the losses
between nodes are small and thus neglectable, and 2) there is
no congestion in transmission. The two assumptions allow us
to neglect the spatial variation of the electricity prices.The
electricity price at a time instant is the same regardless ofthe
charging location. The optimizations of EV charging based on
only temporal variation but not spatial variation of the price
have be seen in [1][6]. The electricity price is modeled as
a linear function of the instant load [1], which is given as
follows.

g(zt) = k0 + k1zt, (2)

wherek0 is the intercept andk1 is the slope, which are both
non-negative real number, andzi is the total load at timet.

The total load in intervali consists of two parts: 1) the
base loadLb

i , which represents the load of all electricity
consumptions in intervali except EV charging, and 2) the
charging loadyi, which represents the load of EV charging in
interval i. We assume that the base loadLb

i remains constant
in interval i. The charging load in intervali is given by
yi =

∑

m∈M xmifmi. If the load from the grid to the batteries
of the EVs is greater than that from the batteries of the EVs
to the grid in intervali, the charging loadyi is positive.
Otherwise, it is negative. The total load in intervali is given
by zi = Lb

i + yi = Lb
i +

∑

m∈M xmifmi. Since both the base
load Lb

i and the charging powerxmi (∀m ∈ M, ∀i ∈ N)
remain constant in intervali, the total loadzi is constant in
interval i.

In this paper, we define the charging cost in intervali,
denoted asCi, as the total amount of the money that the
customers pay for charging and discharging of their EVs in
interval i. Based on the pricing model, the charging cost in
interval i (∀i ∈ N) is given by

Ci =
∫ zi

Lb
i

(k0 + k1zt)dzt

= (k0zi + k1

2 z
2
i ) − (k0L

b
i + k1

2 (Lb
i)

2).
(3)

As shown in Equation (3), the charging costCi can be positive
or negative. If the charging loadyi, given by yi = zi − Lb

i ,
in interval i is positive, the charging costCi is positive.
Otherwise, it is negative.

B. Problem Formulation and Solution

In order to find a globally optimal scheduling scheme for
the EVs that perform charging and discharging during the day,
we make the following assumptions: 1) the arrival time and the
departure time of each EV in the EV setM are known (this
is realistic in the case where each EV user signs the charging
contract and bring in the EV at a designated time); 2) the
initial energy and the final energy of the battery for each EV
in the EV setM are known; 3) the base load in each interval
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of the day is known; and 4) a central controller collects all the
information and then performs the scheduling optimization.

The total cost is defined as the sum of the charging costs
over the interval setN. The total cost is then given by

Ctot =
∑

i∈N Ci

=
∑

i∈N((k0zi + k1

2 z
2
i ) − (k0L

b
i + k1

2 (Lb
i)

2)).
(4)

Theglobal scheduling optimization problemcan be stated as
to minimize the total cost of the EVs which perform charging
and discharging during the day, by optimizing the total load
zi in interval i (∀i ∈ N) and the charging powerxmi (∀m ∈
M, ∀i ∈ N), subject to the relationship between the total load
in an interval and the charging power of an individual EV,
the instant energy constraints, the final energy constraints, and
the lower bound and the upper bound of the charging power.
Mathematically, the optimization problem can be formulated
as follows.

Minimize
x,z

∑

i∈N

((k0zi +
k1

2
z2

i ) − (k0L
b
i +

k1

2
(Lb

i )
2)) (5a)

subject to

zi = Lb
i +

∑

m∈M

xmifmi, ∀i ∈ N, (5b)

0 ≤ Eini
m +

∑

k∈Q(i)

τxmkfmk ≤ Ecap
m , ∀m ∈ M, ∀i ∈ N,

(5c)

Eini
m +

∑

i∈N

τxmifmi ≥ γmE
cap
m , ∀m ∈ M, (5d)

0 ≤ xmi ≤ Pmax, ∀m ∈ MCHG, ∀i ∈ N, (5e)

− Pmax ≤ xmi ≤ Pmax, ∀m ∈ MV 2G, ∀i ∈ N. (5f)

In the optimization problem (5), the objective function (5a)
to be minimized is the total cost of the EVs which perform
charging and discharging during the day. Constraints (5b)
represent the relationship between the total load in an interval
and the charging power of an individual EV. Constraints (5c)
are the instant energy constraints, which require the energy
of EV m (∀m ∈ M) at the end of intervali (∀i ∈ N),
given by Ei

m = Eini
m +

∑

k∈Q(i) τxmkfmk, to be no less
than 0 and no larger than the battery capacityEcap

m of EV
m. Constraints (5d) are the final energy constraints, which
require the final energy of EVm (∀m ∈ M), given by
Efin

m = Eini
m +

∑

i∈N τxmifmi, to be no less than the specified
energy level, which is given byγmE

cap
m . Constraints (5e)

specify the lower bound0 and the upper boundPmax of
the charging powerxmi for the EVs in the charging-only set
MCHG. Constraints (5f) specify the lower bound(−Pmax)
and the upper boundPmax of the charging powerxmi for the
EVs in the V2G setMV 2G.

In the optimization problem (5), the objective function (5a)
is convex, and all the constraint functions are linear. Therefore
the optimization problem (5) is a convex optimization problem,
which can be solved efficiently with the interior point methods
[20]. The solution to the optimization problem (5) provides
the globally optimal scheduling scheme for EV charging and
discharging during the day.

Group 1

LC1

Local Controller (LC) 1

Group n

LCn

Utility company

LC2

Central controller

Group 2

Charging station

Fig. 2. Illustration of communications and controls in the locally optimal
scheduling scheme

IV. L OCAL SCHEDULING OPTIMIZATION

The globally optimal scheduling scheme gives the globally
minimal total cost. However, the globally optimal scheduling
scheme is impractical due to the following reasons. First, the
EVs that will arrive in the future time of the day are unknown
at the current moment. Second, the base load in the future
time of the day is unknown at the current moment. Third, it is
not scalable for a centralized scheduling scheme in which the
central controller may be overrun by a large number of EVs.

In this section, we formulate a local scheduling optimization
problem, which relaxes the assumptions used in the global
scheduling optimization problem (5). The solution to the
local scheduling optimization problem is a locally optimal
scheduling scheme, which can achieve the performance close
to that in the globally optimal scheduling scheme. Compared
to the globally optimal scheduling scheme, the locally optimal
scheduling scheme is practical and scalable.

A. Problem Formulation and Solution

In the globally optimal scheduling scheme, since we assume
that we have the global knowledge of the information about
the EVs and the base load within the day, we can find the
optimal charging powers at each interval by solving the global
scheduling optimization problem (5) only once. In the locally
optimal scheduling scheme, we do not know the information
of the future load and the future EVs. We propose a locally
optimal scheduling scheme to find the optimal charging powers
in the next interval for the local EVs by using a sliding window
mechanism.

In the locally optimal scheduling scheme, we perform the
scheduling optimization based on groups. A group of EVs
includes the EVs in one location or multiple nearby locations.
For example, the EVs which perform charging and discharging
in a parking lot can be classified into a group, and the EVs in a
residential garage can be classified into another group. There is
a Local Controller (LC) for each group. The communications
and controls in the locally optimal scheduling scheme are illus-
trated in Fig 2. The local controller establishes communication
connections with the central controller located in the utility
company and the charging stations at the local site. The local
controller receives the forecasted loads for the day from the
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Fig. 3. Illustration of the ongoing EV set and the sliding window in the
locally optimal scheduling scheme

central controller. The local controller communicates with each
charging station in real time to collect the EV information,
based on which it performs scheduling optimization and then
instructs each local EV to charge or discharge the battery with
the optimal charging powers.

We denote the group set byB. Since each local controller
performs scheduling independently, we will just study the
scheduling optimization in groupk (∀k ∈ B). The local
controller does not know the future arrivals of the EVs in
the group. Therefore, we propose to update the charging
powers at the beginning of each interval by using a sliding
window. At the beginning of intervali (∀i ∈ N), we need
to first determine the current ongoing EV setH

(i)
k and the

current sliding windowW(i)
k . Let the current timetcur be the

beginning of intervali (∀i ∈ N). Each EV has a charging
period. The start time and the end time of the charging period
of EV m is denoted bytC−s

m and tC−e
m , respectively. If EV

m satisfies tC−s
m ≤ tcur and tC−e

m > tcur, we say that
EV m belongs to the current ongoing EV setH

(i)
k . The

current sliding windowW
(i)
k at the beginning of intervali

is defined as the set of the consecutive intervals between
the start timetW−s

i and the end timetW−e
i of the sliding

window. The start time of the sliding window is always given
by tW−s

i = tcur, and the end time of the sliding window is
defined bytW−e

i = max{tC−e
m |m ∈ H

(i)
k }. Fig. 3 illustrates

the ongoing EV set and the sliding window at the beginning of
interval 2. As shown in Fig. 3, EV 1 has completed charging
sincetC−s

1 ≤ tcur and tC−e
1 ≤ tcur. EVs 2, 3, and 4 satisfy

tC−s
m ≤ tcur and tC−e

m > tcur. Therefore the current ongoing
EV set is given byH(2)

k = {EVs 2, 3, 4}, and the current
sliding window is given byW(2)

k = {intervals2, 3, 4, 5, 6}.

EV m (∀m ∈ H
(i)
k ) performs charging and discharging

activities during its charging period. At the beginning of
interval i (∀i ∈ N), we define a charging-interval matrix
F(i) ⊂ {0, 1}|H

(i)
k

|×|W
(i)
k

| whose elements are given by

f
(i)
mj =







1, if interval j falls within W
(i)
k and within

the charging period of EVm,
0, otherwise.

(6)
In order to determine the charging powers in the current

sliding window, we need to know the base loads in the sliding
window W

(i)
k , which can be forecasted using similar-day

approach, regression methods or time-series methods [21].
In this paper, we adopt the similar-day approach [21], in
which the base load in each interval of the sliding window is

estimated by averaging the base loads of the same interval of
the recent days with similar weather conditions. The forecasted
base load is denoted byLbF

j for j ∈ W
(i)
k .

Based on the current ongoing EV setH
(i)
k and the current

sliding window W
(i)
k , we formulate thelocal scheduling

optimization problemfor the current moment in groupk. The
optimization problem can be stated as to minimize the total
cost of the EVs in the current ongoing EV setH

(i)
k during

the current sliding windowW(i)
k , by optimizing the total load

zj in interval j (∀i ∈ W
(i)
k ) and the charging powerxmj

(∀m ∈ H
(i)
k , ∀j ∈ W

(i)
k ), subject to the relationship between

the total load in an interval and the charging power of an
individual EV, the instant energy constraints, the final energy
constraints, and the lower bound and the upper bound of the
charging power. Mathematically, the optimization problemcan
be formulated as follows.

Minimize
x,z

∑

j∈W
(i)
k

((k0zj +
k1

2
z2

j ) − (k0L
bF
j +

k1

2
(LbF

j )2)) (7a)

subject to

zj = LbF
j +

∑

m∈H
(i)
k

xmjf
(i)
mj, j ∈ W

(i)
k , (7b)

0 ≤ E(i)ini
m +

∑

s∈Q
(j)
k

τxmsf
(i)
ms ≤ Ecap

m ,m ∈ H
(i)
k , j ∈ W

(i)
k ,

(7c)

E(i)ini
m +

∑

j∈W
(i)
k

τxmjf
(i)
mj ≥ γmE

cap
m , ∀m ∈ H

(i)
k , (7d)

0 ≤ xmj ≤ Pmax, ∀m ∈ H
(i)CHG

k , j ∈ W
(i)
k , (7e)

− Pmax ≤ xmj ≤ Pmax, ∀m ∈ H
(i)V 2G

k , j ∈ W
(i)
k . (7f)

In the local scheduling optimization problem (7), the objec-
tive function (7a) to be minimized is the total cost of the EVs
in the current ongoing EV setH(i)

k during the current sliding
window W

(i)
k . Constraints (7b) represent the relationship

between the total load and the charging power of an individual
EV in an interval of the current sliding windowW(i)

k . Con-
straints (7c) are the instant energy constraints, which require
the energy of EVm (∀m ∈ H

(i)
k ) at the end of intervalj

(∀j ∈ W
(i)
k ), given byE(i)j

m = E
(i)ini
m +

∑

s∈Q
(j)
k

τxhsf
(i)
hs , to

be no less than 0 and no larger than the battery capacityEcap
m

of EV m. In Constraints (7c),E(i)ini
m denotes the energy at

the beginning of intervali, Q
(j)
k denotes the current previous-

interval set, defined as the set of intervals that belong to the
current sliding windowW

(i)
k but are no later than intervalj.

Constraints (7d) are the final energy constraints, which require
the final energy of EVm (∀m ∈ H

(i)
k ) to be no less than

γmE
cap
m . Constraints (7e) specify the lower bound0 and the

upper boundPmax of the charging powerxmj for the EVs
in the current charging-only EV setH(i)CHG

k . Constraints (7f)
specify the lower bound(−Pmax) and the upper boundPmax

of the charging powerxmj for the EVs in the current V2G
EV setH(i)V 2G

k .
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The local scheduling optimization problem (7) at the be-
ginning of intervali is a convex optimization problem, which
can be solved efficiently with the interior point methods [20].
By solving the optimization problem (7), we obtain optimal
charging powersx∗mj (∀m ∈ H

(i)
k , j ∈ W

(i)
k ), among which

we only accept and execute the optimal charging powersx∗mi

(∀m ∈ H
(i)
k ) for interval i, and discard the other charging

powersx∗mj (∀m ∈ H
(i)
k , j ∈ W

(i)
k , j > i) which will be

finally updated at the beginning of intervalj (j > i).

B. Distributed Scheduling Protocol

Based on the local scheduling optimization problem (7), we
develop a distributed scheduling protocol to implement the
locally optimal scheduling scheme. The protocol for locally
optimal scheduling executed at the local controllerk is shown
in Table I. The functionalities of the central controller are
to perform load forecasting and collect the actual charging
load for each EV. At the beginning of the day, the central
controller forecasts the base loads of the day using similar-
day approach, and then broadcasts the forecasted base loads
to all the local controllers. After receiving the forecasted base
loads of the day, the local controllerk for groupk (∀k ∈ B)
performs the scheduling optimization at the beginning of each
interval, starting from the first interval until the last interval
in the interval setN in sequence. In groupk at the beginning
of interval i (∀i ∈ N), the local controllerk determines the
current ongoing EV setH(i)

k and the current sliding window
W

(i)
k . Since the local controllerk does not know the real

base loads in the future intervals, the price in intervalj (∀j ∈
W

(i)
k ) is determined based on the forecasted base load and the

charging load of the local EVs in the interval. The price in
intervalj varies from(k0+k1L

bF
j ) at the beginning of interval

j to (k0 +k1(L
bF
j +

∑

m∈H
(i)
k

xmjf
(i)
mj)) at the end of interval

j. At the end of each interval, each local controller reports the
actual charging load of each local EV in this interval to the
central controller.

There are two major advantages for the locally optimal
scheduling scheme. First, it is scalable. Even when the number
of the total EVs is large, each local controller only needs to
take care of the scheduling optimization for the local EVs.
Second, it is resilient to the dynamics of EV arrivals. The
locally optimal scheduling scheme collects the EV information
and then updates the charging powers at the beginning of each
interval, thus responding quickly to the dynamic arrivals of the
EVs.

C. Considering the Cost of Battery Lifetime Reduction

The lifetime of the battery of an EV will be reduced
due to frequent charging and discharging. In this section, we
consider the thecost of battery lifetime reductioncaused by
EV charging and discharging. We model thecost of battery
lifetime reductionfor EV m, denoted byψm, as the sum of
two cost components: the cost componentψA

m caused by the
amount of charging and discharging power in each interval,
and the cost componentψF

m caused by the fluctuation of

charging and discharging power between any two consecutive
intervals.

The cost componentψA
m of EV m depends on the amount

of charging and discharging power of EVm in each interval
of the day, and it is given by

ψA
m =

∑

i∈N βx2
mi, (8)

whereβ is a model parameter, andxmi is the charging power
of EV m in interval i. As shown in Equation (8), the cost
componentψA

m of EV m is proportional to the sum of the
squares of charging powers over the interval setN. Given the
same initial energy and the same final energy, the EV which
discharges more energy during the day will have a higher cost
compared to the one which discharges less energy.

The cost componentψF
m of EV m depends on the fluctua-

tions of charging and discharging powers of EVm during the
day, and it is given by

ψF
m =

∑|N|
i=2 η(xmi − xm(i−1))

2, (9)

where|N| represents the number of the intervals in the interval
setN, andη is a model parameter. As shown in Equation (9),
the cost componentψF

m of EV m is proportional to the sum of
the squared differences of the charging powers between two
consecutive intervals over the interval setN. If the charging
powers in the two consecutive intervals, intervalsi and(i−1)
for i = 2, ..., |N|, have opposite signs, a higher value will
be added to the cost componentψF

m of EV m, compared to
the case in which the charging powers in the two consecutive
intervals have the same sign. In other words, a change of
charging direction of EVm in interval i (i = 2, ..., |N|)
adds a higher value to the cost componentψF

m. Given the
same initial energy and the same final energy, the EV which
frequently switches between charging and discharging during
the day will have a higher cost compared to the one which
does not frequently switch between charging and discharging.

Thecost of battery lifetime reductionfor all EVs in the EV
setM during the day is given by

ψ =
∑

m∈M ψm

=
∑

m∈M(ψA
m + ψF

m)

=
∑

m∈M(
∑

i∈N βx2
mi +

∑|N|
i=2 η(xmi − xm(i−1))

2).
(10)

By adding thecost of battery lifetime reductionto the
total cost, the objective function of the global scheduling
optimization problem is changed to

fgso =
∑

i∈N((k0zi + k1

2 z
2
i ) − (k0L

b
i + k1

2 (Lb
i)

2))
+

∑

m∈M

∑

i∈N βx2
mi

+
∑

m∈M

∑|N|
i=2 η(xmi − xm(i−1))

2.
(11)

The global scheduling optimization problem considering the
the cost of battery lifetime reduction is the same as the
optimization problem (5) except a different objective function
given byfgso in Equation (11).

The local scheduling optimization problem considering
the cost of battery lifetime reduction, at the beginning of
interval i (∀i ∈ N) in group k (∀k ∈ B), is the
same as the optimization problem (7) except a different
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TABLE I
PROTOCOL FOR LOCALLY OPTIMAL SCHEDULING EXECUTED AT THE LOCAL CONTROLLERk

Initialize: At the beginning of the day, the central controller forecasts the base loads of the day using similar-day approach,
and then broadcasts the forecasted base loads to all the local controllers.

At the beginning of intervali, i = 1, 2, ..., |N| where|N| represents the number of intervals in the setN, the local
controller k does the following:
1. Communicate with each charging station respectively to collect the EV information,

2. Determine the current ongoing EV setH
(i)
k

and the current sliding windowW(i)
k

,
3. Determine the current charging-interval matrixF(i),

4. Find the optimal charging powersx∗

mi
(∀m ∈ H

(i)
k

) by solving the local scheduling optimization problem (7),

5. Instruct EVm (∀m ∈ H
(i)
k

) to perform charging with the optimal charging powerx∗

mi
in interval i.

objective function given byf (i)
lso =

∑

j∈W
(i)
k

((k0zj +
k1

2 z
2
j ) − (k0L

bF
j + k1

2 (LbF
j )2)) +

∑

m∈H
(i)
k

∑

j∈W
(i)
k

βx2
mj +

∑

m∈H
(i)
k

∑|W
(i)
k

|
j=2 η(xmj − xm(j−1))

2, whereH
(i)
k is the on-

going EV set andW(i)
k is the sliding window at the beginning

of interval i.
The global scheduling optimization problem and the local

scheduling optimization problem, which consider thecost
of battery lifetime reduction, are both convex optimization
problems. Therefore, they can be solved efficiently with the
interior point methods [20].

V. SIMULATIONS

We perform extensive simulations to evaluate the proposed
scheduling schemes for EV charging and discharging.

A. Simulation Setting

We consider the electric load in a microgrid. We examine
EV charging and discharging during a day (24 hours) starting
from 12:00 AM in midnight. The day is evenly divided into 24
intervals. Each interval has a length of 1 hour. The base load
at each interval is simulated by scaling the real load in Toronto
on August 21, 2009 (Friday) by a factor of 1/1500 [22]. The
unit of the electricity price is Canadian dollar (C$)/kWh, and
the unit of the cost is C$. In the pricing model shown in
Equation (2), we setk0 = 10−4 C$/kWh andk1 = 1.2×10−4

C$/kWh/kW. The battery parameters of the EVs are based
on the specifications of the Chrevolet Volt [23]. The battery
capacity is 16 kWh with electric range up to 64.0 kM [23].
We assume the same specifications for every EV. The battery
energy is required to reach at least 90% of the battery capacity
at the end of the charging period. The maximum charging
power for all EVs is set toPmax = 5.0 kW.

The arrival times, the charging periods, and the initial
energy of the EVs are modeled as follows. The total number of
the EVs is set to 200 by default. The arrival times of the EVs
are uniformly distributed across the day, and the percentage of
arriving vehicles in any hour of the day is less than 15%. The
charging periods of the EVs are uniformly distributed between
4 and 12 hours. The initial energy of the EVs is uniformly
distributed between 0 and 80% of the battery capacity.

To solve the optimization problems (5) and (7), we use
CVX, a package for specifying and solving convex programs
[24][25].
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Fig. 4. Comparison of the real base load and the forecasted base load

B. Simulation Results

The globally optimal scheduling scheme is a globally op-
timal solution which requires the perfect information. There-
fore, the real base loads are used in the global scheduling
optimization problem. However, in practical systems, the real
base loads in the future intervals are unavailable. The locally
optimal scheduling scheme is a practical solution. Therefore,
the forecasted base loads are used in the local scheduling op-
timization problem. The comparison of the real and forecasted
base loads is shown in Fig. 4. The real base load is obtained
by scaling the load in Toronto on August 21, 2009 (Friday)
by a factor of 1/1500. The forecasted base load is obtained
with a similar-day approach, in which we average the loads of
8 weekdays in Toronto from August 11, 2009 to August 20,
2009 [22]. Themean relative errorbetween the forecasted and
real base loads, defined asǫ = (1/|N|)

∑

i∈N |LbF
i −Lb

i |/L
b
i ,

is 0.041, which is quite small.
We compare three scheduling schemes: 1) the globally

optimal scheduling scheme, which is the optimal solution to
the global scheduling optimization problem (5), 2) the locally
optimal scheduling scheme, which is the optimal solution to
the local scheduling optimization problem (7), and 3) the
equal allocation scheme, in which the charging power of
an EV in an interval is allocated based on the following
criteria: a) charging or discharging of an EV in an interval
is determined based on the electricity price on the previous
day, and b) the absolute value of the charging power of the
EV is equal in each interval. The comparison is performed
under the following simulation setting. The number of the
total EVs is 200, and all EVs can perform both charging and
discharging. The total EVs are divided into two groups, and
each group consists of 100 EVs. In order for fair comparison,
the total costs in the three schemes are all calculated basedon
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Fig. 5. Variation of charging load and total load in each interval: (a) the
charging load, and (b) the total load

the real base loads. The total costs in the globally optimal
scheduling scheme, the locally optimal scheduling scheme
and the equal allocation scheme are 237.26 C$, 240.52 C$,
and 261.88 C$, respectively. The globally optimal scheduling
scheme and the locally optimal scheduling scheme reduce the
total cost by 9.40% and 8.16%, respectively, compared to the
equal allocation scheme. The variation of the charging load
and the total load in each interval in the three schemes is
shown in Fig. 5. We can see from Fig. 5(a) that the globally
optimal scheduling scheme and the locally optimal scheduling
scheme charge the battery from the grid in the intervals with
a lower demand and discharge the battery to the grid in
the intervals with a higher demand to achieve a low total
cost. The globally optimal scheduling scheme and the locally
optimal scheduling scheme can reshape the total load profile,
as shown in Fig. 5(b). The globally optimal scheduling scheme
flattens the total load profile in intervals 1-7 and intervals12-
23 to minimize the total cost. The globally optimal scheduling
scheme determines the optimal charging powers for all EVs for
all intervals by solving a singleglobal scheduling optimization
problem, thus obtaining the globally minimal total cost. The
locally optimal scheduling scheme determines the optimal
charging powers for a group of EVs for intervali (i ∈ N) by
solving thelocal scheduling optimization problemfor interval
i, respectively. The local scheduling optimization problemis
formulated based on the local knowledge, while the global
scheduling optimization problem is formulated based on the
global knowledge. Therefore, the total cost obtained in the
locally optimal scheduling scheme is close to but always larger
than that in the globally optimal scheduling scheme.

We next examine the scheduling of charging power for a
randomly chosen EV (e.g., EV 19) in Fig. 6. The charging
period of EV 19 is from interval 16 to interval 24. As
shown in Fig. 6(b), the equal allocation scheme discharges the
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Fig. 6. Variation of energy and charging power of EV 5 in each interval:
(a) the energy, and (b) the charging power
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Fig. 7. Variation of total cost with different charging-only ratio

battery in interval 16, and then charges the battery in intervals
17-24, with a constant charging or discharging power. The
globally optimal scheduling scheme and the locally optimal
scheduling scheme determine the charging powers by solving
the optimization problems (5) and (7), respectively. All the
three schemes enable EV 19 to reach the same final energy,
as shown in Fig. 6(a).

Each EV decides whether it is willing to discharge the
battery to the grid before starting charging. Therefore, each
EV is classified into either the charging-only setMCHG or the
V2G setMV 2G. We define acharging-only ratioas the ratio
between the number of EVs in the charging-only setMCHG

and the number of the total EVs. Fig. 7 shows the impact of
the charging-only ratio to the total cost. The increase of the
charging-only ratio means more EVs in the charging-only set
MCHG and less EVs in the V2G setMV 2G, thus causing a
higher total cost in all three schemes, as shown in Fig. 7.

In the locally optimal scheduling scheme, the local con-
troller schedules the EVs in the local group in an independent
and distributed way. We define thegroup sizeas the number
of the EVs in the group, and evaluate the performance under
different average group size in Fig. 8. The total number of EVs
is fixed at 200. Therefore, a larger average group size indicates
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Fig. 8. Performance evaluation under different group size:(a) the total cost,
and (b) the total load

a smaller number of groups. The locally optimal scheduling
scheme determines the optimal charging powers for a group
of EVs for intervali (i ∈ N) based on the local knowledge. A
larger group size means more local knowledge available at the
local controller, thus leading to a lower total cost, as shown
in Fig. 8(a). The highest total cost is obtained in the case of
group size of 1 EV, in which each local controller has the
least local knowledge (e.g., only the information of one EV)
and optimizes the charging power of one EV. The lowest total
cost is obtained in the case of group size of 200 EVs, in which
there is only one central controller, which has the information
of all EVs. If the installation cost of the local controllers
is considered, the case with a larger number of groups (or
equivalently a smaller average group size) will have a higher
installation cost. However, in the case that there are a smaller
number of groups, each local controller needs to control more
EVs in a larger area, thus introducing a higher cost in data
communications between the local controller and the EVs in
the group. In Fig. 8(b), we can see that the total load profile
in the locally optimal scheduling scheme is changed closer to
that in the globally optimal scheduling scheme as the average
group size is increased from 1 to 200 EVs.

Fig. 9 shows the total load profiles in both the globally
optimal scheduling scheme and the locally optimal scheduling
scheme considering the cost of battery lifetime reduction.The
model parameters are set as:β = 5 × 10−4 C$/kWh2 and
η = 10−3 C$/kWh2. The charging powers in each interval
are obtained by solving the global scheduling optimization
problem or the local scheduling optimization problem with
the revised objective function, as described in Section IV-C.
The total costs in the globally optimal scheduling scheme and
the locally optimal scheduling scheme considering thecost
of battery lifetime reductionare 244.58 C$ and 246.14 C$,
respectively.
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Fig. 9. Comparison of total load when considering the cost ofbattery lifetime
reduction
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Fig. 10. Variation of total cost with different load forecasting error

We show the impact of load forecasting error in the locally
optimal scheduling scheme in Fig. 10. In similar-day approach
for load forecasting, the forecasting error depends on the loads
of the chosen similar days. In the simulation, we choose three
sets of similar days. The future load in an interval is estimated
by averaging the loads in this interval over the set of the similar
days. The three sets lead to threemean relative errors, which
are 0.023, 0.041, and 0.089, respectively. We also find the total
cost in the locally optimal scheduling scheme in the simulation
when the forecasted loads are assumed to be exactly equal to
the real loads (e.g., the mean relative error is 0). As shown in
Fig. 10, a lower forecasting error leads to a lower total cost
in the locally optimal scheduling scheme.

We can see from Fig. 10 that the total cost in the locally
optimal scheduling scheme approaches closer to that in the
globally optimal scheduling scheme when the forecasting error
approaches 0. We can also see from Fig. 8(a) that the total cost
in the locally optimal scheduling scheme approaches closer
to that in the globally optimal scheduling scheme when the
average group size approaches the maximum (e.g., 200 EVs).
In an extreme case where the forecasting error is 0 and the
group size is 200, the total cost obtained in the locally optimal
scheduling scheme is 238.28 C$, which is higher than globally
optimal result (237.256 C$) by 0.43%. The reason is that the
globally optimal scheduling scheme determines the optimal
charging powers for all EVs for all intervals by solving a single
global scheduling optimization problem, while the extreme
case of the locally optimal scheduling scheme determines the
optimal charging powers for all EVs for intervali (i ∈ N) by
solving thelocal scheduling optimization problemfor interval
i, respectively.

In the default simulation setting, the number of the total
EVs is set to 200. In Fig. 11, we vary the number of the EVs
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Fig. 11. Performance evaluation under different number of EVs: (a) the total
cost, and (b) the total load

from 100 to 400, and then compare the total cost and the total
load. All EVs are required to reach 90% of the battery capacity
at the end of the charging period. A higher number of EVs
means that a higher amount of energy is required to fill the
battery, thus leading to a higher total cost. The globally optimal
scheduling scheme provides the lowest cost under different
number of EVs. As shown in Fig. 11(a), the locally optimal
scheduling scheme outperforms the equal allocation scheme,
and performs very close to the globally optimal scheduling
scheme, under different number of EVs. Fig. 11(b) shows the
comparison between the base loads without EV charging and
the total loads with different number of EVs using the globally
optimal scheduling scheme. As shown in Fig. 11(b), a higher
number of EVs can reshape the total load profile to be flatter.

VI. CONCLUSIONS

In this paper, we study the scheduling optimization prob-
lem for EV charging and discharging. We first formulate a
global scheduling optimization problem, in which the charging
powers are optimized to minimize the total cost of all EVs
which perform charging and discharging during the day. The
globally optimal solution provides the globally minimal total
cost. However, the globally optimal scheduling scheme is
impractical since it assumes that the arrivals of all EV and the
base loads during the day are known in advance. To develop a
practical scheduling scheme, we formulate a local scheduling
optimization problem, which aims to minimize the total cost
of the EVs in the current ongoing EV set in the local group.
The locally optimal scheduling scheme is performed in an
independent and distributed way, which is not only scalable
to a large EV population but also resilient to the dynamic EV
arrivals. The simulation results demonstrated that the locally
optimal scheduling scheme can achieve a close performance
compared to the globally optimal scheduling scheme.
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