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Abstract—The vehicle electrification will have a significant
impact on the power grid due to the increase in electricity
consumption. It is important to perform intelligent scheduling
for charging and discharging of Electric Vehicles (EVs). Havever,
there are two major challenges in the scheduling problem. Fst,
it is challenging to find the globally optimal scheduling salition
which can minimize the total cost. Second, it is difficult to
find a distributed scheduling scheme which can handle a large
population and the random arrivals of the EVs. In this paper,
we propose a globally optimal scheduling scheme and a locgll
optimal scheduling scheme for EV charging and discharging.
We first formulate a global scheduling optimization problem in
which the charging powers are optimized to minimize the tota
cost of all EVs which perform charging and discharging during
the day. The globally optimal solution provides the globaly
minimal total cost. However, the globally optimal scheduling
scheme is impractical since it requires the information on he
future base loads and the arrival times and the charging peds
of the EVs that will arrive in the future time of the day. To
develop a practical scheduling scheme, we then formulate adal
scheduling optimization problem, which aims to minimize tte
total cost of the EVs in the current ongoing EV set in the local
group. The locally optimal scheduling scheme is not only s¢able
to a large EV population but also resilient to the dynamic EV
arrivals. Through simulations, we demonstrate that the loally
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I. INTRODUCTION

optimal scheduling scheme can achieve a close performance The automotive industry is heavily investing in Plug-in

compared to the globally optimal scheduling scheme.

Index Terms—Optimal scheduling, electric vehicle, charging
and discharging, Vehicle-to-Grid (V2G), convex optimizaion,
distributed solution, smart grid

NOMENCLATURE
N Interval set
M Set of Electric Vehicles (EVS)
MCHG Charging-only EV set
MV2¢ Vehicle-to-Grid (V2G) EV set
Tomi Charging power of EVin in interval ¢
T Charging period of EVin

T Length of an interval

Eini Initial energy of EVm

Ecop Battery capacity of EVin

Efin Final energy of EVm

pmaz Maximum charging power

Yim Final energy ratio of EVin

F Charging-interval matrix

Zi Total load in interval

LY Real base load in interval

LbF Forecasted base load in interval
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Hybrid Electric Vehicles (PHEVs) and fully Electric Vehad
(EVs) mainly in order to reduce the CO2 emissions and oll
dependency of current automotive technology. The vehicle
electrification will have significant impacts on the poweidgr
due to the increase in electricity consumption.

The overall load profile of electric system will be changed
due to the introduction of EV charging and discharging. The
charging of a large population of EVs has a significant impact
on the power grid. It have been estimated that the total
charging load of the EVs in US can reach 18% of the US
summer peak at the EV penetration level of 30% [1]. On the
other hand, an EV can also provide energy to the power grid
by discharging the battery, which is known as Vehicle-tadGr
(V2G) [2]. An intelligent scheduling scheme can optimally
schedule the EV charging patterns such that the load profile
of the electric system can be effectively flattened. Thid wil
reduce potential capital costs and minimize operationaisco
Intelligent scheduling for EV charging and discharging has
become a vital step towards smart grid implementation [3][4
The essential principle in intelligent scheduling is tohase
the load profile by charging the EV battery from the grid at
the time when the demand is low and discharging the EV
battery to the grid when the demand is high. However, it
is challenging to schedule the patterns of EV charging and
discharging in an optimal way. First, it is difficult to findeh
globally optimal scheduling solution which can minimizeath



overall charging cost, especially in the presence of a lar@g scheduling for charging only, and 2) scheduling for both
EV population. Second, the scheduling scheme is requireddiearging and discharging.
have the capacity to efficiently handle the random arrivéls o In charging-only scheduling, the scheduler tries to opténi
the EVs. the energy flow from the grid to the battery of the EV. In [5],
In the recent literature, a number of scheduling schemes ®hrestheet al. optimized the EV battery charging during the
EV charging and discharging have been proposed [5][6][7][8ow-cost off-peak period to minimize the charging cost ie th
However, the scheduling schemes in [5][6] only dealt witbontext of Singapore. The paper in [9] examined the problem
battery charging without V2G function. Though the existingf optimizing the charge trajectory of a PHEV, defined as the
work on V2G scheduling [7][8] tried to optimize the chargingime and the rate with which the PHEV obtains electricity
and discharging powers to minimize the cost, their methoels &rom the power grid. In [1], a decentralized charging cohtro
essentially centralized algorithms, which may not be &ldta algorithm was proposed to schedule charging for large @opul
for the EV charging and discharging systems with a larg®ns of EVs. The paper in [10] optimized EV battery charging
population and dynamic arrivals. behavior to minimize charging costs, achieving satisfacto
In this paper, we propose a globally optimal schedulingtate-of-energy levels, and optimal power balancing. Mets
scheme and a locally optimal scheduling scheme for EA. in [6] presented smart energy control strategies for chargi
charging and discharging. Our contributions are summarizeesidential PHEVS, aiming to minimize the peak load and
as follows. flatten the overall load profile. The impact of different bayt
« We formulate a global scheduling optimization problentharging rates of EVs on the power quality of smart grid
which aims to minimize the total cost for charging albistribution systems was studied in [11]. In [12], Clemenal.
EVs within the day. The optimization problem is a conveproposed coordinated charging with stochastic programmin
optimization problem, which can be solved efficientlywhich was introduced to represent the error in the load
The globally optimal scheduling scheme determines ttierecasting.
optimal charging powers for all EVs for all intervals by In charging and discharging scheduling, the schedules trie
solving a singleglobal scheduling optimization problem to optimize the bidirectional energy flows: from the grid to
thus obtaining the globally minimal total cost. the EV battery and from the EV battery to the grid. Binary
« We formulate a local scheduling optimization problenparticle swarm methods were employed to optimize the V2G
for the EVs in the local group. Based on thecal scheduling in a parking lot to maximize the profit [7][8][13]
scheduling optimization problgnwe develop a locally Sortommeet al. proposed an unidirectional regulation at the
optimal scheduling scheme, which is performed in aamggregator, in which several smart charging algorithmsewer
independent and distributed way. The locally optimaxamined to set the point about which the rate of chargewarie
scheduling scheme is very appropriate for the EV chargkhile performing regulation [14]. The paper in [16] devetop
ing and discharging systems with a large population arah aggregator for V2G frequency regulation with the optimal
dynamic arrivals. The performance of the locally optimatontrol strategy, which aims to maximize the revenue. Jang
scheduling scheme is lower than but very close to that ef al. proposed a method for an analytic estimation of the
the globally optimal scheduling scheme. probability distribution of the Procured Power Capacitp (),
The globally optimal scheduling scheme provides the globased on which the optimal contract size was decided [17].
ally minimal total cost. However, the globally optimal sdué  The paper in [18] presented a real-time model of a fleet of
ing scheme is impractical since it requires the informatian plug-in vehicles performing V2G power transactions. In][19
the future base loads and the arrival times and the chargi®igpgh et al. demonstrated that the coordinated charging and
periods of the EVs that will arrive in the future time of thedischarging of EVs can improve the voltage profile and reduce
day. Though the locally optimal scheduling scheme perforriize power transmission loss. The paper in [15] discussed the
a little worse than the globally optimal scheduling scheine, vehicle to grid integration and described the vehicle4tio-g
it is a practical scheme which can efficiently handle a largg@mmunication interface.
EV population and dynamic EV arrivals. Therefore, the lcal
optimal scheduling scheme is the final solution suggested in [1l. GLOBAL SCHEDULING OPTIMIZATION
the paper. With the globally minimal total cost provided by |, this section, we formulate a global scheduling optimiza-
the globally optimal scheduling scheme, we can find out thg, for EV charging and discharging based on a real-time

optimality gap between the two schemes. _pricing model. The solution to the optimization problem -pro

The remainder of the paper is organized as follows. Sectigpjes a globally optimal scheduling scheme which minimizes
Il discusses the related work. In Section Ill, we formulate a the total cost.

solve the global scheduling optimization problem. In Satti
IV, we formulate and solve the local scheduling optimizatio

problem. The simulation results are presented in Section 4y, System Models

and the conclusions are drawn in Section VI. We study the battery charging and discharging of EVs
during a day, which is evenly divided into a set of intervals.
Il. RELATED WORK The interval set is denoted Y. The length of an interval

Depending on the direction of energy flow, existing worlis denoted byr. We assume that the charging or discharging
on EV charging scheduling can be classified into two classggwer in an interval is kept unchanged. In this paper, weddivi



Arrival tirrle of EVm DeparturTe time of EVhn N, respectively. The elements &f are defined as

01 2 3 4 5 6 7 8 9=21 22 23 24time

1, ifinterval i falls within the charging period’,,

fmi = of EV m,
Charging period of EVn 0, otherwise.
@
Fig. 1. Charging period of EVn In this paper, we consider the scheduling of EV charging

and discharging in a small geographic area. In our real-

time pricing model, we make two assumptions: 1) the losses

between nodes are small and thus neglectable, and 2) there is
the day into 24 intervals such that the interval length i®giv no congestion in transmission. The two assumptions allow us
by 7 =1 hour. to neglect the spatial variation of the electricity pric&fe

The set of the EVs, which perform charging and dischargirﬁfcmdty price at a time instant is the same regardlesh®f
during the day, is denoted HyI. The EV setM consists of C arging location. The optimizations of EV charging based o
two sets: 1) the charging-only EV sBCH&, which includes only temporal variation but not spatial variation of theceri
the EVs that only charge their battery and do not provide th@ve be seen in [1][6]. The electricity price is modeled as
battery energy to the grid, and 2) the V2G EV 3d"2G, @ linear function of the instant load [1], which is given as
which includes the EVs that perform both battery charginf§!lows.

and battery discharging. We had = MCHE + MV2C The 9(zt) = ko + k12, 2
charging or discharging power of EM in intervali is denoted
by x,,; (Ym € M,Vi € N). In order to unify the notation,
we just callz,,; the charging power of EVn in intervali. If
Tm; > 0, it means that EVin charges its battery in interval
i. If x,,; < 0, it means that EVin discharges its battery in
interval i. The EVs in the charging-only s&I““¢ always
satisfy z,,; > 0 since they do not discharge their battery
any time. On the other hand, the EVs in the V2G bt 2¢
may have a positive, zero, or negative charging pawgy in
intervali (Vi € N) since they have bidirectional energy flow.
between the battery and the power grid.

wherek is the intercept and; is the slope, which are both
non-negative real number, angdis the total load at time.

The total load in interval consists of two parts: 1) the
base loadZ?, which represents the load of all electricity
consumptions in interval except EV charging, and 2) the
charging loady;, which represents the load of EV charging in
3htervali. We assume that the base loAfi remains constant
in interval i. The charging load in interval is given by
syi = ZmeM_ Tmi fmi. If the load from the grid to Fhe batteries
of the EVs is greater than that from the batteries of the EVs
to the grid in intervali, the charging loady; is positive.
The arrival time of EVin, denoted by?"", is the time when Otherwise, it is negative. The total load in intervak given
EV m is plugged into the charging station. The departutgy z; = Lb + 1y, = L? + > mem Tmifmi. Since both the base
time of EV m, denoted bytZ°?, is the time when EVm load L! and the charging power,,; (¥m € M,Vi € N)
is plugged out of the charging station. The charging perigdmain constant in interval the total loadz; is constant in
of EV m, denoted byT;,, is the period in which EVm interval;.
charges or discharges its battery. Since we divide the timeln this paper, we define the charging cost in interal
into multiple intervals, we define the charging peridg of denoted asC;, as the total amount of the money that the
EV m as the set of continuous intervals that fall betweetustomers pay for charging and discharging of their EVs in
the arrival timet2’” and the departure tim&!? of EV m, interval i. Based on the pricing model, the charging cost in
as illustrated in Fig. 1. The initial energy of EM, denoted intervali (Vi € N) is given by
by E", is defined as the battery energy at the arrival time

%" The battery capacity of EVi is denoted byE<e?. The Ci = Jralho tkljt)dzt b ke (3)
final energy of EVm, denoted byE/i", is defined as the = (kozi + 527) — (koLi + F(L3)?).

battery energy at the departure timigf”. The final energy as shown in Equation (3), the charging c@%tcan be positive
E,{;" is no larger _than the battery capaciyf;;”. We define negative. If the charging loag}, given byy; = z; — L?,
a final energy ratioof EV m as v, = E%H/Efﬁl_p where iy interval i is positive, the charging cosf; is positive.

0 < v, < 1. The charging station can automatically dEte‘étherwise, it is negative.

the arrival time, the initial energy and the battery capaoit

EV m when the EV is connected to the charging station. The _ ]

departure time and the final energy ratio of EVare provided B- Problem Formulation and Solution

to the charging station by the user of BN before charging In order to find a globally optimal scheduling scheme for
is started. The charging station can determine the chargihg EVs that perform charging and discharging during the day
period T,,, of EV m from the parameterg’” andt??. EV we make the following assumptions: 1) the arrival time ared th
m performs charging and discharging activities during thgeparture time of each EV in the EV s®f are known (this
charging periodl’},,. To represent the relationship between this realistic in the case where each EV user signs the charging
charging/discharging activities and the intervals, werdefh contract and bring in the EV at a designated time); 2) the
charging-interval matrixf ¢ {0,1}/M>INI where M| and initial energy and the final energy of the battery for each EV
|N| denote the number of elements in the Bétand the set in the EV setM are known; 3) the base load in each interval



of the day is known; and 4) a central controller collects ladf t utility company
information and then performs the scheduling optimizaton  __--_ - E-—=;<~——-~\
The total cost is defined as the sum of the charging costs Local Corl / )

over the interval seN. The total cost is then given by I/ s

Crot = 2ien G k k (4) -
= Yien((kozi + 527) — (koL + 5 (L)?)).

Theglobal scheduling optimization problecan be stated as

to minimize the total cost of the EVs which perform charging \

and discharging during the day, by optimizing the total load !

z; inintervali (Vi € N) and the charging power,,,; (Vm € *\Group 1
M, Vi € N), subject to the relationship between the total load SNee--

in an interval and the charging power of an individual EV,
the instant energy constraints, the final energy consgaamd Fig. 2. _ lllustration of communications and controls in tledlly optimal
the lower bound and the upper bound of the charging pow%crhedu“ng scheme

Mathematically, the optimization problem can be formulate

as follows. IV. LOCAL SCHEDULING OPTIMIZATION
Minimize The globally optimal scheduling scheme gives the globally
' ki N minimal total cost. However, the globally optimal schedgl

> ((kozi + %) = (koLi + - (L3)%)) (5a) scheme is impractical due to the following reasons. Firs, t

i€N EVs that will arrive in the future time of the day are unknown

subject to at the current moment. Second, the base load in the future

=L+ Z Comi fomis Vi € N, (5b) time of the day is unknown at the current moment. Third, it is
gt not scalable for a centralized scheduling scheme in whieh th

central controller may be overrun by a large number of EVs.

ini cap .
0< By + Z i fmk < B, ¥m € M, Vi € N, In this section, we formulate a local scheduling optimizati

keQ 5 problem, which relaxes the assumptions used in the global
o (5¢) scheduling optimization problem (5). The solution to the
EM + ZT$mifmi > Y ESP Nm € M, (5d) local scheduling optimization problem is a locally optimal
iEN scheduling scheme, which can achieve the performance close
0 < s < P™ ¥m € MYHY Vi e N, (5e) to that in the globally optimal scheduling scheme. Compared
_pmar < g o< Pt i e MVY26 Vi e N, (5f) to the globally optimal scheduling scheme, the locally ioyati

- o ) scheduling scheme is practical and scalable.
In the optimization problem (5), the objective function \5a

to be minimized is the total cost of the EVs which perform ] )
charging and discharging during the day. Constraints (58) Problem Formulation and Solution
represent the relationship between the total load in amiake In the globally optimal scheduling scheme, since we assume
and the charging power of an individual EV. Constraints (5¢hat we have the global knowledge of the information about
are the instant energy constraints, which require the gnethe EVs and the base load within the day, we can find the
of EV m (Vm € M) at the end of interval (Vi € N), optimal charging powers at each interval by solving the glob
given by B}, = EI' + 3, qw T%mk fmk, t0 be no less scheduling optimization problem (5) only once. In the Ibcal
than 0 and no larger than the battery capadit§/? of EV  optimal scheduling scheme, we do not know the information
m. Constraints (5d) are the final energy constraints, whiaif the future load and the future EVs. We propose a locally
require the final energy of EVin (Vvm € M), given by optimal scheduling scheme to find the optimal charging pswer
Eln = FiMig 3" TTmi [mi, t0 be no less than the specifiedn the next interval for the local EVs by using a sliding wimdo
energy level, which is given byy,, ES%?. Constraints (5e) mechanism.
specify the lower bound and the upper bound™** of In the locally optimal scheduling scheme, we perform the
the charging powet,,,; for the EVs in the charging-only setscheduling optimization based on groups. A group of EVs
MCEHE | Constraints (5f) specify the lower bourfe- P™2*) includes the EVs in one location or multiple nearby locadion
and the upper boun&™* of the charging power,,,; for the For example, the EVs which perform charging and discharging
EVs in the V2G setM"?¢. in a parking lot can be classified into a group, and the EVsin a
In the optimization problem (5), the objective function Y5aresidential garage can be classified into another grougelibe
is convex, and all the constraint functions are linear. €fm@e a Local Controller (LC) for each group. The communications
the optimization problem (5) is a convex optimization peh| and controls in the locally optimal scheduling scheme due-l
which can be solved efficiently with the interior point metiso trated in Fig 2. The local controller establishes commutivoa
[20]. The solution to the optimization problem (5) providesonnections with the central controller located in theitytil
the globally optimal scheduling scheme for EV charging antbmpany and the charging stations at the local site. Thd loca
discharging during the day. controller receives the forecasted loads for the day froen th



_ Charag period of PV 4 estimated by averaging the base loads of the same interval of
 ETT e the recent days with similar weather conditions. The fosee
Charging periof of v 1 base load is denoted by:” for j € w,
o 1 4 3 ; s 5 7 :8 921 2’2 2:3 2’4 ;me .B-ased F)n the cu(rir)ent ongoing EV sHlff) and the curr-ent
Sidng window shd_mg vv_lndow W7, we formulate thelocgl scheduling
Current time instant optimization problenfor the current moment in group. The

optimization problem can be stated as to minimize the total
Fig. 3. lllustration of the ongoing EV set and the sliding ddw in the cost of the EVs in the current ongoing EV SHI? during
locally optimal scheduling scheme the current sliding windowv'”, by optimizing the total load

z; ininterval j (Vi € W,(f)) and the charging powet,,, ;

(1) s (4) i i i
central controller. The local controller communicatesveach (7 € H;.",Vj € W), subject to the relationship between
the total load in an interval and the charging power of an

charging station in real time to collect the EV information, = ° i . _
based on which it performs scheduling optimization and thdidividual EV, the instant energy constraints, the finalrgge
instructs each local EV to charge or discharge the battetty wFOnStraints, and the lower bound and the upper bound of the
the optimal charging powers. charging power. Mathematically, the optimization probleam

We denote the group set 9. Since each local controller be formulated as follows.
performs scheduling independently, we will just study thejinimize
scheduling optimization in groug (vk € B). The local o
controller does not know the future arrivals of the EVs i_n ((koz; + ﬁzf) _ (k:oLg-F + E(L?_F)?)) (7a)
the group. Therefore, we propose to update the chargin w 2 2
powers at the beginning of each interval by using a slidiné F
window. At the beginning of interval (Vi € N), we need Subject to

to first determine the current ongoing EV s’ and the z; = LbF + 3" ;% j e W, (7b)
current sliding windoWW,?). Let the current time°“” be the meH?)

beginning of intervali (vi € N). Each EV has a charging (i)ini (i) cap () - (i)

period. The start time and the end time of the charging perioodS B Z Toms fs < Bm € Hy7, 5 € Wi
of EV m is denoted byt —* andt$~¢, respectively. If EV s€Qy)

m satisfiestS=* < ¢ and t§—¢ > t°“r, we say that (7c)
EV m belongs to the current ongoing EV SH,(j). The EWn 4 Z mmjffg > YmESP NYm € ng), (7d)
current sliding WindOWW,(j) at the beginning of interval jew®

is defined as the set of the consecutive intervals between ()CHG

the start timet"’ = and the end time! ¢ of the sliding © = ¥mi =", Vm € Hy ) € Wy, _ (7€)
window. The start time of the sliding window is always given— P < g,,; < P™% ¥m € H,S)VQG,j € W,(j). (7f)
by tiW‘S = t°“", and the end time of the sliding window is
defined byt!" ~¢ = max{tS—¢lm € H,(j)}. Fig. 3 illustrates
the ongoing EV set and the sliding window at the beginning
interval 2. As shown in Fig. 3, EV 1 has completed chargi
sincet{ ™ <t andt{~°¢ < t°*". EVs 2, 3, and 4 satisfy
t&—s < tewr andtS—¢ > teur. Therefore the current ongoing

e ai @ _
Ep(/j_set I.S é;lver? bYH’“ b_ {(E)Vf 2_’3,[’4}’ Iagd3t2e5cgrrent straints (7c) are the instant energy constraints, whichireq
sliding window 1s g|\(/ie)zn YW, = {in er_vas IR s . the energy of EVm (vm € H,({_))_ at the end of intervalj
EVm (Vm_ € .Hk ) performs gharglng and dls.chz_slrgln V) e W,(j)), given byEv(fl)J _ szl)ml_i_z " Txhsf,i”, to
activities during its charging period. At the beginning o 5€Qy 5
. o - L ._be no less than 0 and no larger than the battery capatity
interval i (Vi € N), we define a charging-interval matrix . (i)ini
FO) {0 1}\H§>|x|w;“\ whose elements are given by of EV m. In Constraints (7c)E;,’ " denotes the energy at
’ the beginning of interval, Q,(j) denotes the current previous-
_ 1, if interval j falls within W,(f) and within interval S(.-'.'tt deflr_1ed as tr(li()a set of intervals that b_elong ¢o th
FO = the charging period of EVn current sliding windowW,” but are no later than interval
! 0. otherwise. Constraints (7d) are the final energy constraints, whichireq
(6) the final energy of EVmn (Vm € ng)) to be no less than
In order to determine the charging powers in the curreft.£;,;”. Constraints (7€) specify the lower bouficand the
sliding window, we need to know the base loads in the slidirigPper boundP™* of the charging Powet,; for the EVs
window W,(j), which can be forecasted using similar-dayn the current charging-only EV SH,(;) . Constraints (7f)
approach, regression methods or time-series methods [BHecify the lower boun@—P™¢*) and the upper boung™**
In this paper, we adopt the similar-day approach [21], iof the charging power,,; for the EVs in the current V2G
which the base load in each interval of the sliding window BV setH,(j)VQG.

In the local scheduling optimization problem (7), the objec
tive function (7a) to be minimized is the total cost of the EVs
n? the current ongoing EV s&ﬁ,(j) during the current sliding

\%indow W,(j). Constraints (7b) represent the relationship
between the total load and the charging power of an inditidua
EV in an interval of the current sliding windoVW,ﬁZ). Con-



The local scheduling optimization problem (7) at the besharging and discharging power between any two consecutive
ginning of intervali is a convex optimization problem, whichintervals.
can be solved efficiently with the interior point methods][20 The cost component? of EV m depends on the amount
By solving the optimization problem (7), we obtain optimabf charging and discharging power of EX in each interval
charging powerse;, . (Vm € ng),j € W,(j)), among which of the day, and it is given by
we only accept and execute the optimal charging powgrs

: A _ 2
(Vm € H,(j)) for interval 4, and discard the other charging Vi = Lien By ®)

powersz;, . (Vm € HEJ),j € W,(;),j > 1) which will be whereg is a model parameter, and,; is the charging power
finally updated at the beginning of interval(j > ). of EV m in interval i. As shown in Equation (8), the cost

componenty? of EV m is proportional to the sum of the

. . squares of charging powers over the intervallNetGiven the

B. Distributed Scheduling Protocol same initial energy and the same final energy, the EV which
Based on the local scheduling optimization problem (7), waischarges more energy during the day will have a higher cost

develop a distributed scheduling protocol to implement thmmpared to the one which discharges less energy.

locally optimal scheduling scheme. The protocol for logall The cost component!’ of EV m depends on the fluctua-

optimal scheduling executed at the local controllés shown tions of charging and discharging powers of EVduring the

in Table I. The functionalities of the central controllerearday, and it is given by

to perform load forecasting and collect the actual charging h IN|

load for each EV. At the beginning of the day, the central Vi = 22 N(Tmi — CU7n(z>1))27 9)

controller forecasts the base loads of the day using SHrml@\yhere|N| represents the number of the intervals in the interval

day approach, and then broadcasts the forecasted base Igggﬁ' andr is a model parameter. As shown in Equation (9),

to all the local controllers. After receiving the forecabtmase the cost component? of EV m is proportional to the sum of
m

loads of the day, the local controllérfor groupk (vk € B) o squared differences of the charging powers between two
performs the scheduling optimization at the beginning @hea,,sec tive intervals over the interval 98t If the charging

!ntervql, starting fro.m the first interval until the Iast_emv_al powers in the two consecutive intervals, interviasd (i — 1)
in the interval selN in sequence. In group at the beginning ¢ . _ 2,...,|N|, have opposite signs, a higher value will

of intervali (Vi € IN), the local controllerk determines the be added to the cost componesf of EV m, compared to

curr)ent ongoing EV seH; and the current sliding window the case in which the charging powers in the two consecutive
W, Since the local controlle: does not know the real jntervals have the same sign. In other words, a change of
base loads in the future intervals, the price in intervélj € charging direction of EVm in interval i (i = 2,...,|NJ)
Wg)) is determined based on the forecasted base load and4f@ls a higher value to the cost componerf. Given the
charging load of the local EVs in the interval. The price igame initial energy and the same final energy, the EV which
interval j varies from(ko+#k: L}") at the beginning of interval frequently switches between charging and dischargingnduri
jto (k0+k1(L§F+Zm€Hm :vmjfﬁj;)) at the end of interval the day will have a higher cost compared to the one which
j. At the end of each interval, each local controller repdrts t does not frequently switch between charging and dischgrgin
actual charging load of each local EV in this interval to the The cost of battery lifetime reductiofor all EVs in the EV

central controller. setM during the day is given by
There are two major advantages for the locally optimaldj = »
scheduling scheme. First, it is scalable. Even when the eamb _ Z’”GM(JZ; 4 F)
of the total EVs is large, each local controller only needs to meMs T IN| 5
take care of the scheduling optimization for the local EVs. PomeM (2oien BT + 2222 N(Tmi — Tm(i-1)))-

(10)
By adding thecost of battery lifetime reductiomo the
total cost, the objective function of the global scheduling
%E)tlmization problem is changed to

Second, it is resilient to the dynamics of EV arrivals. The
locally optimal scheduling scheme collects the EV inforiorat
and then updates the charging powers at the beginning of e
interval, thus responding quickly to the dynamic arriveflshe

EVs. fgso = ZieN((kozi + kg_lZzQ) - (kOLl; =+ k_gl(Lf)Q))
+ ZmEM Z‘zl%l‘\l Baz,;
C_ ) 2
C. Considering the Cost of Battery Lifetime Reduction 2 mem 2= M@mi = TG (11)

The lifetime of the battery of an EV will be reducedThe global scheduling optimization problem considering th
due to frequent charging and discharging. In this sectiam, the cost of battery lifetime reduction is the same as the
consider the theost of battery lifetime reductionaused by optimization problem (5) except a different objective ftioo
EV charging and discharging. We model tbest of battery given by f,., in Equation (11).
lifetime reductionfor EV m, denoted byy,,, as the sum of  The local scheduling optimization problem considering
two cost components: the cost componerjt caused by the the cost of battery lifetime reductionat the beginning of
amount of charging and discharging power in each intervatterval ¢« (vi € N) in group & (Vk € B), is the
and the cost component! caused by the fluctuation ofsame as the optimization problem (7) except a different



TABLE |
PROTOCOL FOR LOCALLY OPTIMAL SCHEDULING EXECUTED AT THE LOCA CONTROLLERK

Initialize: At the beginning of the day, the central conlolforecasts the base loads of the day using similar-dayoagh,
and then broadcasts the forecasted base loads to all tHectotzollers.
At the beginning of intervak, i = 1,2, ..., |IN| where|N| represents the number of intervals in the Bktthe local
controller & does the following:
1. Communicate with each charging station respectivelyottect the EV information,
2. Determine the current ongoing EV ﬂl(j) and the current sliding WindoVW,(j),
3. Determine the current charging-interval matfix®,
4. Find the optimal charging powers’ . (Vm & H,(j)) by solving the local scheduling optimization problem (7),

5. Instruct EVm (Vm € Hg)) to perform charging with the optimal charging powef ; in interval i.

objective function given byfl(;)) = ZjeW,(f) ((koz; + 1600 PRI
k k .
71272) — (kOLsF + %(L?F)Q)) + ZmGH(,:) Zjewl(:') ﬁl'gnj + 1400l . .
w® N =
Zmeng) ZL:; | N(Tmj — Tm(—1))% whereH,(j) is the on- i
; 1200}
going EV set an(NVS) is the sliding window at the beginning E
of intervali. — 1000
The global scheduling optimization problem and the local s ===Real base load
. .. . . . e = » = Forecasted base load
scheduling optimization problem, which consider thest 800 ‘ : : : :
e .- . . . 0 3 6 9 12 15 18 21 24
of battery lifetime reductionare both convex optimization Time (h)
problems. Therefore, they can be solved efficiently with the
interior point methods [20]. Fig. 4. Comparison of the real base load and the forecastsel load
V. SIMULATIONS B. Simulation Results
We perform extensive simulations to evaluate the proposedrhe globally optimal scheduling scheme is a globally op-
scheduling schemes for EV charging and discharging.  timal solution which requires the perfect information. Tdwe

fore, the real base loads are used in the global scheduling
optimization problem. However, in practical systems, thal r
base loads in the future intervals are unavailable. Thelloca
We consider the electric load in a microgrid. We examingptimal scheduling scheme is a practical solution. Theegfo
EV charging and discharging during a day (24 hours) startinige forecasted base loads are used in the local scheduling op
from 12:00 AM in midnight. The day is evenly divided into 24timization problem. The comparison of the real and foreaxhst
intervals. Each interval has a length of 1 hour. The base lobdse loads is shown in Fig. 4. The real base load is obtained
at each interval is simulated by scaling the real load in fitvo by scaling the load in Toronto on August 21, 2009 (Friday)
on August 21, 2009 (Friday) by a factor of 1/1500 [22]. They a factor of 1/1500. The forecasted base load is obtained
unit of the electricity price is Canadian dollar (C$)/kWimda with a similar-day approach, in which we average the loads of
the unit of the cost is C$. In the pricing model shown I8 weekdays in Toronto from August 11, 2009 to August 20,
Equation (2), we set, = 10~* C$/kWh andk; = 1.2x10~* 2009 [22]. Themean relative errobetween the forecasted and
C$/kWh/kW. The battery parameters of the EVs are baseshl base loads, defined as= (1/|N|) Y, | L2 — L2|/L?,
on the specifications of the Chrevolet Volt [23]. The batterig 0.041, which is quite small.
capacity is 16 kWh with electric range up to 64.0 kM [23]. We compare three scheduling schemes: 1) the globally
We assume the same specifications for every EV. The batteptimal scheduling scheme, which is the optimal solution to
energy is required to reach at least 90% of the battery cgpache global scheduling optimization problem (5), 2) the Iyca
at the end of the charging period. The maximum chargirgptimal scheduling scheme, which is the optimal solution to
power for all EVs is set taP™% = 5.0 kW. the local scheduling optimization problem (7), and 3) the
The arrival times, the charging periods, and the initisqual allocation scheme, in which the charging power of
energy of the EVs are modeled as follows. The total numberafi EV in an interval is allocated based on the following
the EVs is set to 200 by default. The arrival times of the EVisriteria: a) charging or discharging of an EV in an interval
are uniformly distributed across the day, and the percentdg is determined based on the electricity price on the previous
arriving vehicles in any hour of the day is less than 15%. Thi#ay, and b) the absolute value of the charging power of the
charging periods of the EVs are uniformly distributed beswe EV is equal in each interval. The comparison is performed
4 and 12 hours. The initial energy of the EVs is uniformlyinder the following simulation setting. The number of the
distributed between 0 and 80% of the battery capacity. total EVs is 200, and all EVs can perform both charging and
To solve the optimization problems (5) and (7), we usaischarging. The total EVs are divided into two groups, and
CVX, a package for specifying and solving convex progranemch group consists of 100 EVs. In order for fair comparison,
[24][25]. the total costs in the three schemes are all calculated tmased

A. Simulation Setting
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the real base loads. The total costs in the globally optimal
scheduling scheme, the locally optimal scheduling scheme
and the equal allocation scheme are 237.26 C$, 240.52 C$,
and 261.88 C$, respectively. The globally optimal schexpli
scheme and the locally optimal scheduling scheme reduce the
total cost by 9.40% and 8.16%, respectively, compared to the ‘
equal allocation scheme. The variation of the charging load 0 0.2
and the total load in each interval in the three schemes is
shown in Fig. 5. We can see from Fig. 5(a) that the global‘ylg. 7
optimal scheduling scheme and the locally optimal scheduli
scheme charge the battery from the grid in the intervals with

a lower demand and discharge the battery to the grid fattery in interval 16, and then charges the battery in vadsr
the intervals with a higher demand to achieve a low total7-24, with a constant charging or discharging power. The
cost. The globally optimal scheduling scheme and the lpcaljiobally optimal scheduling scheme and the locally optimal
optimal scheduling scheme can reshape the total load profdgheduling scheme determine the charging powers by solving
as shown in Fig. 5(b). The globally optimal scheduling sceenthe optimization problems (5) and (7), respectively. Aleth
flattens the total load profile in intervals 1-7 and intenE2s  three schemes enable EV 19 to reach the same final energy,
23 to minimize the total cost. The globally optimal schedgli as shown in Fig. 6(a).
scheme determines the optimal charging powers for all EVs fo Each EV decides whether it is willing to discharge the
all intervals by solving a singlglobal scheduling optimization battery to the grid before starting charging. Thereforehea
problem thus obtaining the globally minimal total cost. Thegv is classified into either the charging-only 37 or the
locally optimal scheduling scheme determines the optimgbG setM 2. We define acharging-only ratioas the ratio
charging powers for a group of EVs for interva(i € N) by  petween the number of EVs in the charging-only &t #¢
solving thelocal scheduling optimization problefor interval and the number of the total EVs. Fig. 7 shows the impact of
i, respectively. The local scheduling optimization problsm the charging-only ratio to the total cost. The increase ef th
formulated based on the local knowledge, while the g|0b@harging-0n|y ratio means more EVs in the Charging-omy set
scheduling optimization problem is formulated based on thgCH¢ and less EVs in the V2G s@1"2¢, thus causing a
global knowledge. Therefore, the total cost obtained in thggher total cost in all three schemes, as shown in Fig. 7.
locally optimal scheduling scheme is close to but alwaygdar  |n the locally optimal scheduling scheme, the local con-
than that in the globally optimal scheduling scheme. troller schedules the EVs in the local group in an independen
We next examine the scheduling of charging power for @and distributed way. We define tlggoup sizeas the number
randomly chosen EV (e.g., EV 19) in Fig. 6. The chargingf the EVs in the group, and evaluate the performance under
period of EV 19 is from interval 16 to interval 24. Asdifferent average group size in Fig. 8. The total number o§ EV
shown in Fig. 6(b), the equal allocation scheme dischatyes fs fixed at 200. Therefore, a larger average group size itelca

@@= Globally optimal scheme
ull= Locally optimal scheme
W Equal allocation scheme

Total cost [C$]
N
o
o

0.8 1

0.4 0.6
Charging-only ratio

Variation of total cost with different charging-gntatio
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a smaller number of groups. The locally optimal scheduling
scheme determines the optimal charging powers for a group/NVe show the impact of load forecasting error in the locally
of EVs for intervali (i € N) based on the local knowledge. Aoptimal scheduling scheme in Fig. 10. In similar-day apphoa
larger group size means more local knowledge availableeat fier load forecasting, the forecasting error depends ondhed
local controller, thus leading to a lower total cost, as smow@f the chosen similar days. In the simulation, we chooseethre
in Fig. 8(a). The highest total cost is obtained in the case ##ts of similar days. The future load in an interval is esteda
group size of 1 EV, in which each local controller has thBY averaging the loads in this interval over the set of thelam
least local knowledge (e.g., only the information of one EVJays. The three sets lead to threean relative errorswhich
and optimizes the charging power of one EV. The lowest totale 0.023, 0.041, and 0.089, respectively. We also find taé to
cost is obtained in the case of group size of 200 EVs, in whi@@st in the locally optimal scheduling scheme in the sinioitat
there is only one central controller, which has the infoiorat When the forecasted loads are assumed to be exactly equal to
of all EVs. If the installation cost of the local controllersthe real loads (e.g., the mean relative error is 0). As shown i
is considered, the case with a larger number of groups (0@- 10, a lower forecasting error leads to a lower total cost
equivalently a smaller average group size) will have a high& the locally optimal scheduling scheme.
installation cost. However, in the case that there are alemal We can see from Fig. 10 that the total cost in the locally
number of groups, each local controller needs to controkemasptimal scheduling scheme approaches closer to that in the
EVs in a larger area, thus introducing a higher cost in dagéobally optimal scheduling scheme when the forecastingrer
communications between the local controller and the EVs &pproaches 0. We can also see from Fig. 8(a) that the totial cos
the group. In Fig. 8(b), we can see that the total load profiie the locally optimal scheduling scheme approaches closer
in the locally optimal scheduling scheme is changed claserto that in the globally optimal scheduling scheme when the
that in the globally optimal scheduling scheme as the aweragverage group size approaches the maximum (e.g., 200 EVs).
group size is increased from 1 to 200 EVs. In an extreme case where the forecasting error is 0 and the
Fig. 9 shows the total load profiles in both the globallgroup size is 200, the total cost obtained in the locallyropti
optimal scheduling scheme and the locally optimal schedulischeduling scheme is 238.28 C$, which is higher than glgball
scheme considering the cost of battery lifetime reducfigre  optimal result (237.256 C$) by 0.43%. The reason is that the
model parameters are set a:= 5 x 10~* C$/kWh? and globally optimal scheduling scheme determines the optimal
n = 1072 C$/kWh2. The charging powers in each intervacharging powers for all EVs for all intervals by solving agii
are obtained by solving the global scheduling optimizatioglobal scheduling optimization problemvhile the extreme
problem or the local scheduling optimization problem witlgase of the locally optimal scheduling scheme determines th
the revised objective function, as described in SectiorCIV- optimal charging powers for all EVs for intervali ¢ N) by
The total costs in the globally optimal scheduling schen asolving thelocal scheduling optimization problefor interval
the locally optimal scheduling scheme considering tost 4, respectively.
of battery lifetime reductiorare 244.58 C$ and 246.14 C$, In the default simulation setting, the number of the total
respectively. EVs is set to 200. In Fig. 11, we vary the number of the EVs
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