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Abstract—Cognitive Radio (CR) is a promising technology
that can alleviate the spectrum shortage problem by enabling
unlicensed users equipped with CRs to coexist with incumbent
users in licensed spectrum bands while causing no interference
to incumbent communications. Spectrum sensing is one of the
essential mechanisms of CRs and its operational aspects are being
investigated actively. However, the security aspects of spectrum
sensing have garnered little attention. In this paper, we identify
a threat to spectrum sensing, which we call the primary user
emulation (PUE) attack. In this attack, an adversary’s CR trans-
mits signals whose characteristics emulate those of incumbent
signals. The highly flexible, software-based air interface of CRs
makes such an attack possible. Our investigation shows that a
PUE attack can severely interfere with the spectrum sensing
process and significantly reduce the channel resources available
to legitimate unlicensed users. To counter this threat, we propose
a transmitter verification scheme, called LocDef (localization-
based defense), which verifies whether a given signal is that of an
incumbent transmitter by estimating its location and observing
its signal characteristics. To estimate the location of the signal
transmitter, LocDef employs a non-interactive localization scheme.
Our security analysis and simulation results suggest that LocDef
is effective in identifying PUE attacks under certain conditions.

Index Terms—Cognitive Radio, Communication System Secu-
rity, Primary User Emulation Attack, Localization, Spectrum
Sensing, Wireless Sensor Network.

I. INTRODUCTION

The need to meet the ever-increasing spectrum demands of
emerging wireless applications and the need to better utilize
spectrum have led the Federal Communications Commission
(FCC) to revisit the problem of spectrum management. In
the conventional spectrum management paradigm, most of
the spectrum is allocated to licensed users for exclusive
use. Recognizing the significance of the spectrum shortage
problem, the FCC is considering opening up licensed bands
to unlicensed operations on a non-interference basis to licensed
users. In this new paradigm, unlicensed users (a.k.a. secondary
users) “opportunistically” operate in fallow licensed spectrum
bands without interfering with licensed users (a.k.a. primary
or incumbent users), thereby increasing the efficiency of
spectrum utilization. This method of sharing is often called
Dynamic Spectrum Access (DSA).

A preliminary version of portions of this material has been presented in [6].
This work was supported in part by the National Science Foundation under
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Cognitive Radios (CRs) [12], [17] are seen as the enabling
technology for DSA. Unlike a conventional radio, a CR has the
capability to sense and understand its environment and proac-
tively change its mode of operation as needed. CRs are able
to carry out spectrum sensing for the purpose of identifying
fallow licensed spectrum—i.e., spectrum “white spaces”. Once
white spaces are identified, CRs opportunistically utilize these
white spaces by operating in them without causing interference
to primary users.

The successful deployment of CR networks and the re-
alization of their benefits will depend on the placement of
essential security mechanisms in sufficiently robust form to
resist misuse of the system. Ensuring the trustworthiness
of the spectrum sensing process is a particularly important
problem that needs to be addressed. The key to addressing
this problem is being able to distinguish primary user signals
from secondary user signals in a robust way. Recall that, in
a CR network, secondary users are permitted to operate in
licensed bands only on a non-interference basis to primary
users. Because the primary users’ usage of licensed spectrum
bands may be sporadic, a CR must constantly monitor for the
presence of primary user signals in the current operating band
and candidate bands. If a secondary user (with a CR) detects
the presence of primary user signals in the current band, it
must immediately switch to one of the fallow candidate bands.
On the other hand, if the secondary user detects the presence
of an unlicensed user, it invokes a coexistence mechanism1 to
share spectrum resources.

The above scenarios highlight the importance of a CR’s abil-
ity to distinguish between primary user signals and secondary
user signals. Distinguishing the two signals is non-trivial, but
it becomes especially difficult when the CRs are operating
in hostile environments. In a hostile environment, an attacker
may modify the air interface of a CR to mimic a primary user
signal’s characteristics, thereby causing legitimate secondary
users to erroneously identify the attacker as a primary user. We
coin the term primary user emulation (PUE) attack to refer
to this attack. There is a realistic possibility of PUE attacks
since CRs are highly reconfigurable due to their software-
based air interface [12]. To thwart such attacks, a scheme
that can reliably distinguish between legitimate primary signal

1For example, in IEEE 802.22, the Coexistence Beacon Protocol is used to
achieve self-coexistence amongst overlapping 802.22 cells.
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transmitters and secondary signal transmitters masquerading
as primary users is needed. In hostile environments, such
a scheme should be integrated into the spectrum sensing
mechanism to enhance the trustworthiness of the sensing
result.

The current research and standardization efforts suggest that
one of the first applications of CR technology will be its use
for DSA of fallow TV spectrum bands. FCC is considering
opening up TV bands for DSA because TV bands often
experience lower and less dynamic utilization compared to
other primary user networks such as cellular networks [9]. In
the paper, we focus on a scenario in which a primary user
network is composed of TV transmission towers and receivers
placed at fixed locations. In such a setting, the location of a
given transmitter (along with other factors) can be utilized to
determine whether the transmitter is a primary transmitter or
a PUE attacker.

Estimating the location of a wireless device is a well
studied problem [7], [13], [15], [18], [26]. However, local-
ization of primary user transmitters in the context of DSA
is not a trivial problem when one considers the requirement
prescribed by FCC [8], which states that no modification to
the incumbent system should be required to accommodate
opportunistic use of the spectrum by secondary users. For this
reason, conventional approaches, such as embedding signed
location information in a primary user’s signal or employing
an interactive protocol between an primary signal transmitter
and a localization device, cannot be used.

In this paper, we propose a transmitter verification scheme,
called LocDef (localization-based defense), which utilizes both
signal characteristics and location of the signal transmitter to
verify primary signal transmitters. A robust non-interactive
localization scheme is introduced to detect PUE attacks and
pinpoint PUE attackers. The localization scheme utilizes an
underlying wireless sensor network (WSN) to collect snap-
shots of received signal strength (RSS) measurements across
a CR network. By smoothing the collected RSS measurements
and identifying the RSS peaks, one can estimate the the
transmitter locations. We describe, in detail, the technique for
localizing transmitters both in and out of the range of the
WSN. We also discuss the security properties of the localiza-
tion scheme and evaluate its performance using simulations.

The main contribution of this work is twofold. First, we
identify a security issue that poses a serious threat to CR
networks. The existing body of research on CR network
security is very small. The work presented in this paper is
a contribution to this body of research. Second, the paper
proposes LocDef as a transmitter verification scheme that
is capable of detecting PUE attacks and pinpointing PUE
attackers. As the core component of LocDef, the proposed
non-interactive localization scheme can be employed in hostile
environments. LocDef can be integrated into existing spectrum
sensing schemes to enhance the trustworthiness of the sensing
decisions.

The rest of the paper is organized as follows. In Section II,
we describe the PUE attack in detail. In Section III, we present
the high-level structure of LocDef. As a major component
of LocDef, a robust non-interactive localization scheme is

detailed and its security properties are discussed in Section IV.
Simulation results are shown in Section V and related research
is summarized in Section VI. In Section VII, we conclude the
paper and discuss future work.

II. SECURITY THREATS IN CR NETWORKS AND
THE PUE ATTACK

The emergence of the DSA paradigm and software/cognitive
radio technology raises new security implications. The dis-
tinguishing aspects of CR systems and networks can be
exploited or attacked by adversaries. For instance, spectrum
access-related functionalities of CR networks are vulnera-
ble to attacks. Besides the PUE attack, spectrum access-
related security threats include attacks against cooperative
spectrum sensing [11], [16], [24], [27] and attacks against
self-coexistence mechanisms. Although cooperative spectrum
sensing can significantly improve the accuracy of spectrum
sensing compared to individual sensing, it raises a security
concern: a subset of the CR terminals may report false
sensing measurements due to malfunctioning or malicious
radio software, thus increasing the likelihood of incorrect
sensing decisions. The problem of devising a cooperative
spectrum sensing scheme that is robust against such a threat
is challenging. Self-coexistence mechanisms are needed in
overlapping coverage areas of CR networks to minimize self-
interference and utilize spectrum efficiently. Unfortunately,
adversaries can modify/forge self-coexistence control packets
to exploit self-coexistence mechanisms, which can result in
drastic reduction of network capacity. What makes the task of
protecting self-coexistence control packets, using conventional
cryptosystems, difficult is the need to use an “inter-operator”
key management system. It is likely that the networks that
contend for spectrum (via self-coexistence mechanisms) will
be managed by different wireless service operators. Designing
and maintaining an inter-operator key management system
could be complex and expensive. In addition to spectrum
access-related security threats, software-centric signal process-
ing by (software-based) CR systems also raises new security
implications. For instance, the download process of the radio
software needs to be secured. Moreover, the radio software
itself needs to be tamper resistant once it is downloaded on
the radio terminal so that software changes cannot be made to
cause a radio to operate with parameters outside of those that
were approved. To date, most of the aforementioned problems,
especially spectrum access-related security threats, have not
been addressed—in this paper, we address one of them: PUE
attacks.

One of the major technical challenges in spectrum sensing
is the problem of precisely distinguishing primary user signals
from secondary user signals. To distinguish the two signals,
existing spectrum sensing schemes based on energy detec-
tors [5], [19] implicitly assume a “naive” transmitter verifica-
tion scheme. When energy detection is used, a secondary user
can recognize the signals of other secondary users but cannot
recognize primary user signals. When a secondary user detects
a signal that it recognizes, it assumes that the signal is that of
a secondary user; otherwise it determines that the signal is that
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of a primary user. Under such an overly simplistic transmitter
verification scheme, a selfish or malicious secondary user (i.e.,
an attacker) can easily exploit the spectrum sensing process.
For instance, a PUE attacker may “masquerade” as an primary
user by transmitting unrecognizable signals in one of the
licensed bands, thus preventing other secondary users from
accessing that band.

There exist alternative techniques for spectrum sensing, such
as matched filter and cyclostationary feature detection [4].
Devices capable of such detection techniques are able to
recognize the intrinsic characteristics of primary user signals,
thus enabling them to distinguish those signals from those of
secondary users. However, such detection techniques are still
not robust enough to counter PUE attacks. To defeat cyclo-
stationary detectors, an attacker may make its transmissions
indistinguishable from primary user signals by transmitting
signals that have the same cyclic spectral characteristics as
primary user signals. For example, when the nodes of a
TV broadcast network are primary users, an attacker may
emit signals that emulate TV signals. This attack scenario
is possible since low-power, portable TV UHF transmitters
can be readily obtained as commercial off-the-shelf (COTS)
products. If an attacker uses such a transmitter to transmit
signals, CRs that receive the signal will falsely identify the
attacker’s signal as that of a primary user2.

In PUE attacks, the adversary only transmits in fallow
bands. Hence, the aim of the attackers is not to cause inter-
ference to primary users, but to preempt spectrum resources
that could have been used by legitimate secondary users.
Depending on the motivation behind the attack, a PUE attack
can be classified as either a selfish PUE attack or a malicious
PUE attack.

• Selfish PUE attacks: In this attack, an attacker’s objective
is to maximize its own spectrum usage. When selfish
PUE attackers detect a fallow spectrum band, they prevent
other secondary users from competing for that band by
transmitting signals that emulate the signal characteristics
of primary user signals. This attack is most likely to be
carried out by two selfish secondary users whose intention
is to establish a dedicated link.

• Malicious PUE attacks: The objective of this attack is to
obstruct the DSA process of legitimate secondary users—
i.e., prevent legitimate secondary users from detecting and
using fallow licensed spectrum bands, causing denial of
service. Unlike a selfish attacker, a malicious attacker
does not necessarily use fallow spectrum bands for its
own communication purposes. It is quite possible for
an attacker to simultaneously obstruct the DSA process
in multiple bands by exploiting two DSA mechanisms
implemented in every CR. The first mechanism requires
a CR to wait for a certain amount of time before
transmitting in the identified fallow band to make sure
that the band is indeed unoccupied. Existing research
shows that this time delay is non-negligible [5], [24]. The

2Note that a TV UHF transmitter may not be very energy efficient. For
example, today’s typical 2.2W TV UHF transmitter requires a 20W power
supply.

second mechanism requires a CR to periodically sense the
current operating band to detect primary user signals and
to immediately switch to another band when such signals
are detected. By launching a PUE attack in multiple bands
in a round-robin fashion, an attacker can effectively limit
the legitimate secondary users from identifying and using
fallow spectrum bands.

Both attacks could have disruptive effects on CR networks.
(Their disruptive effects will be studied using simulation in
Section V.) To thwart PUE attacks, one needs to first detect
the attack. In the next section, we describe a transmitter
verification scheme that can be integrated into a spectrum
sensing scheme to detect PUE attacks under certain conditions.

III. A TRANSMITTER VERIFICATION SCHEME FOR
SPECTRUM SENSING

Before describing the transmitter verification scheme for
spectrum sensing, we state some of the assumptions that form
the foundation of the scheme. The primary user is assumed
to be a network composed of TV signal transmitters (i.e.,
TV broadcast towers) and receivers. A TV tower’s transmitter
output power is typically hundreds of thousands of Watts [27],
which corresponds to a transmission range from several miles
to tens of miles. We assume that the secondary users, each
equipped with a hand-held CR device, form a mobile ad
hoc network. Each CR is assumed to have self-localization
capability and have a maximum transmission output power
that is within the range from a few hundred milliwatts to a
few watts—this typically corresponds to a transmission range
of a few hundred meters. An attacker, equipped with a CR,
is capable of changing its modulation mode, frequency, and
transmission output power.

Based on the above assumptions, we propose a transmitter
verification scheme for spectrum sensing that is appropriate
for hostile environments; the transmitter verification scheme
is illustrated in Fig. 1. In the network model under considera-
tion, the primary signal transmitters are TV broadcast towers
placed at fixed locations. Hence, if a signal source’s estimated
location deviates from the known location of the TV towers
and the signal characteristics resemble those of primary user
signals, then it is likely that the signal source is launching a
PUE attack. An attacker, however, can attempt to circumvent
this location-based detection approach by transmitting in the
vicinity of one of the TV towers. In this case, the signal’s
energy level in combination with the signal source’s location
is used to detect PUE attacks. It would be infeasible for an
attacker to mimic both the primary user signal’s transmission
location and energy level since the transmission power of the
attacker’s CR is several orders of magnitude smaller than that
of a typical TV tower. Once an instance of a PUE attack has
been detected, the estimated signal location can be further used
to pinpoint the attacker.

As Fig. 1 shows, the transmitter verification scheme includes
three steps: verification of signal characteristics, measurement
of received signal energy level, and localization of the signal
source. To date, the technical problems related to the first
two steps, in the context of CR networks, have attracted a
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Fig. 1. A flowchart of the transmitter verification scheme.

lot of attention [1]. In contrast, there is very little existing
research that directly addresses the third step. Therefore, in the
following discussions, we focus on the problem of transmitter
localization. This problem—called by various names such
as location estimation, location identification, localization,
positioning etc.—has been studied extensively in the past.
The primary signal transmitter localization problem (which is
referred to as the PST localization problem hereafter), how-
ever, is more challenging for two reasons. First, the following
requirement must be met: no modification should be made to
primary users to accommodate the DSA of licensed spectrum.
Because of this requirement, including location information
in a primary user’s signal is not a viable solution. The re-
quirement also excludes the possibility of using a localization
protocol that involves interaction between a primary user and
the localization device(s). Thus, the PST localization problem
becomes a non-interactive localization problem. Second, it is
the transmitter but not the receiver that needs to be localized.
When a receiver is localized, one does not need to consider the
existence of other receivers. However, the existence of multiple
transmitters may add difficulty to transmitter localization. In
the next section, we describe the proposed solution to the non-
interactive PST localization problem in detail.

IV. NON-INTERACTIVE LOCALIZATION OF PRIMARY
SIGNAL TRANSMITTERS

A. Existing Localization Techniques

Before introducing the proposed localization system, in
this subsection, we first summarize conventional localization
techniques in wireless networks and then discuss how these
techniques should be improved to address the PST localization
problem in CR networks.

The conventional localization approaches are based on one
or several of the following techniques: Time of Arrival (TOA),
Time Difference Of Arrival (TDOA), Angle of Arrival (AOA),
and RSS.

GPS [26] is a typical localization system based on TOA. A
mobile node receives signals from satellites that contain their
location and time information. Based on the information, the
node can calculate its own position.

TDOA is a passive localization technique that utilizes the
difference between the arrival times of pulses transmitted by
a transmitter but does not rely on any knowledge of the
pulse transmission time. The technique measures the time
differences at multiple receivers with known locations and
subsequently computes a location estimate [7].

In the AOA technique, a receiver measures the angel of
arrival from two or more transmitters. If the locations of the
transmitters are known, the receiver can calculate its own
location using triangulation [18]. Using the same principle,
angle of arrival information to multiple receivers can be used
to determine the transmitter’s location.

RSS-based localization techniques arise from the fact that
there is a strong correlation between the distance of a wireless
link and RSS [15], [20]. Specifically, given a transmitter-
receiver pair, RSS can be modeled as a function of transmitted
power and transmitter-receiver distance. Therefore, if a correct
model is used and there are multiple observers taking RSS
measurements from a transmitter, then the transmitter location
can be estimated using the model. For example, Wireless E911
[10] uses “location signature” for localization, i.e., stores and
matches multipath patterns (fingerprints) that mobile phone
signals are known (via on-site calibration) to exhibit at differ-
ent locations.

Among the above techniques, TOA is a receiver-localization
technique and needs to be enhanced to support transmitter
localization so that it can be applied to the PST localization
problem. Such an enhancement is not trivial, especially when
one considers the possibility that a malicious transmitter may
craft its transmitted signal. TDOA and AOA techniques can
both be used for transmitter localization and have relatively
high localization precision. To apply them to the PST local-
ization problem, special care must be taken to consider the
situations where multiple transmitters or an attacker equipped
with a directional antenna exists. The common drawback of
both techniques is the requirement of expensive hardware,
preventing them from a large-scale deployment. In contrast,
RSS-based techniques are more practical for most consumer
premise devices in a CR network. However, for the PST
localization problem in CR networks, one should also consider
the issues of possible manipulation of a malicious transmitter
or multiple transmitters and the innate inaccuracy of RSS
measurement. In the following subsections, we show that these
issues can be addressed by taking many RSS measurements
and properly processing the measured RSS data.

B. Architecture of the Localization System

The basic idea of the proposed localization system uses the
fact that the magnitude of an RSS value typically decreases
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as the distance between the signal transmitter and the receiver
increases [13]. Therefore, if one is able to collect a sufficient
number of RSS measurements from a group of receivers
spread throughout a large network, the location with the peak
RSS value is likely to be the location of a transmitter. The
advantage of this technique is twofold, when it is used for
the PST localization problem in CR networks: it both obviates
modification of primary users and supports localizing multiple
transmitters that transmit signals simultaneously.

The requirement to collect RSS distribution in a network
naturally leads us to resort to an underlying WSN that can
help collect RSS measurements across the network. It should
be noted that the idea of using an underlying WSN to facilitate
the operation of a CR network is not new. For example, in [24],
it was proposed that a spectrum-aware sensor network be used
for distributed spectrum sensing, so that the sensor network
can provide secondary users with information about spectrum
opportunities throughout a network. If sensor nodes in a WSN
have the capability to measure RSS and are aware of their
positions [13], they can be used to solve the PST localization
problem. However, there are two problems that need to be
addressed in order for the aforementioned approach to be
viable.

First, path fading may change over time and a PUE attacker
may constantly change its location or vary its transmission
power to evade localization, thus causing RSS measurements
to fluctuate drastically within a short period of time. This
problem cannot be mitigated by taking the average of mea-
surements taken at different times, since the RSS values
measured at a given position at different times have different
distributions. A possible solution to this problem is to take a
“snapshot” of the RSS distribution in a given network, i.e.,
requiring the sensors of a WSN to take a synchronized RSS
measurements in a given band.

The second problem arises from the fact that RSS usually
varies by a large magnitude (30dB to 40dB) [20] over short
distances. This makes it very challenging to decide the location
of primary users just by reading the raw data in a snapshot
of RSS distribution. We conducted a simulation experiment to
illustrate this problem. A 2000m×2000m network with two
transmitters located at (800m, 1800m) and (1300m, 550m)
was simulated. Each transmitter’s transmission power was
500mW, working at the UHF frequency of 617MHz. The phase
shift between the two transmitters was randomly chosen. A
statistical log-loss signal propagation model, which was shown
to be appropriate for modeling signal propagation behavior in
many situations [23], was employed in the simulation. In this
model, the expected RSS in decibels is given by:

µ = p + β0 + β1 ln s, (1)

where s is the transmitter-receiver distance, p is the transmitted
power in decibels, and β0 and β1 are constant parameters that
need to be calibrated for a specific environment. Note that this
is offsite calibration, and no onsite calibration is required [23].
In the offsite calibration, one needs to tune the parameters
related to the channel environment (e.g., rural, urban, etc.).
Using the model, the distribution of RSS is characterized
as a Gaussian random variable with a mean of µ and a

variance of σ2. In [23], a set of parameters approximating real-
world results were used, where (β0, β1, σ) = (-30.00, -10.00,
10.0). We used the same set of parameters for our simulation.
Fig. 2(a) shows a snapshot of the RSS in dBm. It can be seen
that because of the large variance of the RSS, the snapshot
does not reveal obvious RSS peaks (which can be used as
approximations for the transmitter locations).

However, if the variance can be reduced to a sufficiently low
level, the snapshot would clearly indicate the RSS peaks as
illustrated in Fig. 2(b). It is therefore reasonable to conjecture
that if one is able to decrease the variance using an appropriate
data smoothing technique, it may be possible to solve the PST
localization problem by using the aforementioned localization
approach. In the next subsection, we focus on the design of
such a data smoothing technique.

C. The RSS smoothing procedure
Data smoothing techniques [25] aim to capture important

patterns in raw data, while leaving out noise. By smoothing a
snapshot of an RSS distribution in a network, one can decrease
the variance in the raw RSS measurements, thus making it
possible to identify the RSS peaks.

There are three data smoothing techniques that are usu-
ally used to eliminate noise: local averaging, Fourier filters,
and loess fitting. In our RSS smoothing problem, robustness
against outliers is an important requirement for two reasons.
First, the large variance in RSS measurements may result
in a large number of outliers. Second, when an adversarial
environment is considered, compromise of sensor nodes may
lead to false data injection. Among the three data smoothing
techniques, Fourier filters is known to be vulnerable to large
variation. Loess fitting requires a large, densely sampled
dataset and its robustness against outliers depends on careful
design of the weight mechanism used for computing least
squares [25]. In contrast, local averaging, especially when the
median value is taken, provides the best robustness against
outliers. Therefore, we use local averaging, using median
values, to smooth RSS measurement data. The details of the
smoothing technique are described below.

Without loss of generality, we assume that the coverage
area of the WSN is identical to that of a CR network under
consideration, which covers an area of Dx×Dy (m2). Suppose
that we sample a group of “pivot” points that are placed at
the intersections of the vertical and horizontal lines of a two-
dimensional grid, where each element on the grid is a square
with a side of length d. For each pivot point we calculate
a “smoothed” RSS value by calculating the median value
from the set of RSS measurements collected by neighboring
sensor nodes that are located inside an area enclosed by a
circle of radius r centered at the pivot point. See Fig. 3
for an illustration of how the pivot points are positioned.
(Note that the centers of the circles marked with “1’s” denote
pivot point positions.) Once data smoothing is applied to RSS
measurements, one can estimate the positions of the primary
signal transmitters by identifying the positions of the pivot
points that generate “peak” median values.

Next we discuss the details of how to set the values of r
and d and how to identify RSS peak values. We discuss these
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(a) (b)

Fig. 2. RSS distributions obtained from the underlying WSN. (a) A snapshot of the RSS raw-data distribution. (b) The RSS distribution in the network when
σ = 0.

Fig. 3. Using local averaging to smooth RSS measurement.

problems in the context of the statistical log-loss propagation
model described in Subsection IV-B. We assume that the
values of β1 and σ have been estimated3, and the density
of the sensor nodes is ρ (m-2). Suppose that a primary signal
transmitter S is transmitting inside an area defined by a circle
of radius r centered at pivot point x. Our objective is to derive
the values of r and d so that the median RSS value calculated
from x is greater than the RSS value calculated from its
neighboring pivot points, which are located at a distance of
d from point x, by at least mdB at a confidence level of P .

Suppose the circular region of radius r centered at x is R0,
and let R1 denote a circular region centered at a neighboring
pivot point that is at a distance of d (see Fig. 3). In R0, the
expected RSS after averaging4 is:

µ0 = E[p + β0 + β1 ln s]

= p + β0 + β1
πr2

2π∫
0

r∫
0

ln
√

(r cos θ + a)2 + (r sin θ)2rdrdθ,

(2)
where a is the distance between the transmitter to the center

3As mentioned before, the two values can be estimated using the offsite
calibration technique presented in [23].

4Note that for a random variable with Gaussian distribution, its median is
equal to its mean.

of R0. Because a ≤ r and β1 < 0, it holds that

µ0 ≥ p + β0 + β1
πr2

2π∫
0

r∫
0

ln
√

(r cos θ + r)2 + (r sin θ)2rdrdθ

> p + β0 + β1 ln 1
πr2

2π∫
0

r∫
0

√
(r cos θ + r)2 + (r sin θ)2rdrdθ

= p + β0 + β1 ln 8r
3π .

(3)
Similarly, in R1, the expected RSS after averaging is

µ1 = p + β0 + β1
πr2

2π∫
0

r∫
0

ln
√

(r cos θ + b)2 + (r sin θ)2rdrdθ

(4)
where b is the distance between the transmitter and the center
of R1. It holds that b ≥ d − r. If we further assume that
d > 2r, it is obvious that

µ1 < p + β0 + β1 ln(d− 2r). (5)

The results from (3) and (5) enable us to calculate a loose
lower bound of the difference between the medians of mea-
sured RSS values in R0 and R1:

∆µ = µ0 − µ1 > |β1| ln[π(
3d

8r
− 3

4
)]. (6)

Because the RSS measurement can be modeled as a Gaussian
random variable [15], [23], ∆µ is also a Gaussian random vari-
able. It has a mean of µ0−µ1 and a variance of 2σ2/(ρπr2).
To obtain a sufficient condition that guarantees the difference
is greater than m at a confidence level P , we first define a
variable x0 that satisfies:

Q(x0) = 1− P, (7)

where the Q-function represents the right-tail probability of a
normalized Gaussian variable. Then based on the properties
of Gaussian variables, a sufficient condition can be derived:

|β1| ln[π( 3d
8r −

3
4 )]−m

√
2σ

· √ρπr ≥ x0. (8)

The values of d and r should satisfy the above condition so that
solving the PST localization problem in CR networks becomes
equivalent to finding the circular regions whose median RSS
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Fig. 4. Illustration of calculating the sample interval.

value is at least mdB greater than those in its neighboring
regions (i.e., the closest region that is sampled in the same
round) that are at a distance of d. If the the topology of WSN
varies, an easy way to adjust the values of d and r is to keep
d/r as a constant while changing the value of r to satisfy (8).

Because the above derivation assumed d > 2r, the sampled
regions cannot cover the entire coverage area of the WSN.
Therefore, multiple rounds of sampling should be performed.
Fig. 3 shows how multiple rounds (nine in total) of sampling
cover the whole area. It is obvious that the total number of
rounds will be O =

⌈
d/(

√
2r)

⌉2
and the distance between

two neighboring samplings will be d/O.
After all rounds of samplings are finished, a set of regions

are identified to have a median RSS value that is at least mdB
greater than those in its neighboring regions sampled in the
same round. This set, R, indicates the approximate locations
of the primary signal transmitters. Next we need to sample
more points within the sets to obtain more precise locations.
The following steps are executed for this purpose:

1) Group the regions in R into a minimum number of mu-
tually exclusive sets R1, R2, . . . , RT so that all regions
in each set Rv (v = 1, 2, . . . , T ) are interconnected5.

2) For the area covered by each Rv , sample all points that
are horizontally or vertically apart by (w·∆), where w is
an integer and ∆ is a sample interval determined by the
sensor density ρ (see below). For each sampled point,
the median is calculated for the RSS measurements over
a circular region centering the point with radius r. The
location of the point with the maximum median RSS
value in Rv is the estimated location of a primary signal
transmitter.

Now, we explain how to decide the value of ∆. The value of
∆ needs to be sufficiently large so that computation overhead
is not exorbitant, while being small enough to capture all
possible variations in RSS measurements between adjacent
samples. Therefore, an appropriate strategy is to expect exactly
one sensor to exist in the non-overlapping area of two circles
centered at two adjacent sampled points. In Fig. 4, this means
that there is one sensor in the shaded area, which results in
the following condition for choosing ∆:

2ρ[(π − 2φ)r2 + r∆ sinφ] = 1, (9)

where φ = arccos[∆/(2r)].

5Suppose we use a set of regions to form a graph. The center of each
region is denoted as a vertex. An edge between two vertexes is drawn if
the corresponding two regions intersect. The set of regions is said to be
interconnected if and only if the formed graph is a connected graph.

D. The Special Case of Out-of-range Primary Users

When an estimated location of a primary signal transmitter
appears close to the border of the WSN, it is possible that
the transmitter is a legitimate user located out of the WSN6.
Given this special case, it is necessary to distinguish whether
a detected transmitter is a PUE attacker located on the border
of the WSN or it is a transmitter of a primary user that
is located out of the range of the WSN. We assume that a
primary user’s location is known ahead of time, since only
TV systems are considered and the location of a TV tower is
public information. Then we develop the following approach
to compute the likelihood that a detected signal is coming
from the primary user’s location and from the border of the
WSN. By comparing the likelihoods of the two events, one
can derive the transmitter’s location.

Assume that one transmitter’s position derived in Subsection
IV-C to be (X1, Y1). When (X1, Y1) is located close to the
border of the deployed WSN, we want to know whether it
is more probable that the transmitter is in fact at a known
position (X2, Y2) that is out of the range of the WSN. Assume
that the RSS measurement in the WSN has been smoothed by
taking the median of the RSS values within a circular region
of radius r. We randomly sample K smoothed measurements
across the WSN, with each measurement corresponding to a
location (xk, yk) and a smoothed RSS value Rk (in dBm) from
nk sensors in the region, where k = 1, . . . ,K. As discussed
before, since a reasonable sampling space is ∆, when all
sampling possibilities are considered, the maximum K will be
DxDy/∆2. Then a two-step process is executed to calculate
the likelihood that the transmitter is from (Xh, Yh), where
h = 1, 2. In the first step, a linear optimization operation is
executed to make an estimation of transmission power ph, in
which the difference between the smoothed RSS values and
what are predicted by the log-loss signal propagation model
is minimized.

min
K∑

k=1

(uk + ok)

s.t.∀k = 1, ...,K :
Rk + uk − ok

= ph + β0 + β1 ln
√

(Xh − xk)2 + (Yh − yk)2
uk, ok ≥ 0.

(10)

The variables uk and ok both represent the absolute difference
between Rk and the value predicted by the model. The
formulation of the above linear optimization problem mandates
that when Rk is greater than what is predicted by the model,
uk is zero and ok is the difference. When Rk is smaller, ok is
zero and uk is the difference. The solution to (10) generates
an estimated ph. With the knowledge of ph, the normalized
difference for the scenario that the transmitter is located at
(xh, yh) is computed as

Dh =
1
K

K∑
k=1

|Rk − ph − β0

6Note that since a PUE attacker transmits at relatively low transmission
power, the attacker has been assumed to be always within the range of the
CR network and its underlying WSN so that the attack remains effective.
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−β1 ln
√

(Xh − xk)2 + (Yh − yk)2
∣∣∣ √nk

σ
.

(11)

When (Xh, Yh) is indeed the transmitter’s location, the ex-
pected value of each item in the summation should approach
zero. In contrast, if (Xh, Yh) is not the transmitter’s location,
each item in the summation will deviate from zero. Therefore,
Dh can be used to compare the likelihoods that the transmitter
is at specific locations—i.e., the location of the transmitter is
decided to be (Xh0 , Yh0), where

h0 = arg min
h

Dh. (12)

E. Security Analysis

In this subsection, we explore the security aspects of the
proposed localization system in a hostile environment. In
particular, we consider two categories of potential attacks and
analyze their impacts.

The first category of attacks aim to escape localization by
disrupting RSS measurements. Attackers may manipulate their
signal transmission either temporally or spatially. In temporal
manipulation, an attacker may take either of the following
two approaches. With the first approach, the attacker may
vary its transmission power over time in an attempt to cause
confusion. However, this attack has limited impact since the
proposed localization scheme collects and analyzes a snapshot
of RSS measurement, in which only one transmission power
value is in effect. With the second approach, the attacker may
temporarily stop transmission when it knows that a snapshot of
RSS measurement is being taken. However, RSS measurement
is not only used for localization, but more importantly, it is the
premise of spectrum sensing. To successfully launch a PUE
attack, an attacker’s signal has to be detected in the spectrum
sensing process. Therefore, an attacker cannot benefit from
keeping silent while RSS measurements are being collected.

An attacker has two options to conduct spatial manipulation
of its transmission. As the first option, the attacker can install
a directional antenna so that it is detected by less number
of sensors. Because the attacker’s signal is still detected by
some sensors, the effect of its PUE attack remains unchanged.
On the other hand, less RSS information will lead to vaguer
peak locations in an RSS snapshot, thereby adding difficulty
to localization. In Section V, we will further investigate this
problem using simulation. The second method for spatial ma-
nipulation is to use multiple transmitters deployed at different
locations. Because the signals emitted by the transmitters
interfere with each other, the signal characteristics (e.g., time
of arrival, angel of arrival, RSS) of different transmitters
may be mixed together, causing wrong localization results.
However, the proposed localization system is able to identify
multiple transmitters if multiple RSS peaks are observed. In
Section V, its performance will be evaluated when multiple
transmitters are present.

The second category of attacks disrupt localization by
injecting false data to the localization system. This is possible
when some sensor nodes are compromised. This attack is
partly mitigated by the fact that the median value has been

used for RSS smoothing. It is known that in the absence of
noise, taking the median can tolerate up to 50 percent outliers
among all measurements [22].

V. SIMULATION

A. Simulation on the Effects of PUE Attacks

We carried out simulation experiments to showcase the
disruptive effects of PUE attacks. In the simulated network,
300 secondary users (which include both legitimate users
and attackers) are randomly located inside a 2000m×2000m
square area, each with a transmission range of 250m and an
interference range of 550m. These range values are consistent
with the protocol interference model used in [14]. Two TV
broadcast towers act as primary signal transmitters. Each TV
tower has ten 6MHz channels, and the duty cycle of all the
channels is fixed at 0.2. One tower is located 8000m east of
the square area and has a transmission radius of 9000m; the
other tower is located 5000m south of the square area with
a transmission radius of 7000m7. The layout of the simulated
network is shown in Fig. 5(a). Each secondary user node is
randomly placed in the network area and moves according to a
random waypoint model by repeatedly executing the following
four steps: 1) It randomly chooses a destination in the square
area with a uniform distribution; 2) It chooses a velocity v that
is uniformly distributed over [vmin, vmax]; 3) It moves along
a straight line from its current position to the destination with
velocity v; and 4) It pauses in the destination for a random
period that is uniformly distributed over [0, tp−max]. We chose
the values vmin = 5m/s, vmax = 10m/s, and tp−max = 60s.
Each simulation instance spans a period of 24 hours. Another
one hour before the 24 hours was simulated to ensure that
the random waypoint model entered steady state. The number
of malicious PUE attackers was varied from 1 to 30 and that
of selfish PUE attackers was varied from 1 to 30 pairs. Figs.
5(b) and 5(c) show the simulation results for the selfish PUE
attack and the malicious PUE attack, respectively. The y-axis
in the figures represents the amount of link bandwidth each
secondary user is able to detect. The results show that a selfish
PUE attack can effectively steal bandwidth from legitimate
secondary users while a malicious PUE attack can drastically
decrease the link bandwidth available to legitimate secondary
users.

B. Simulation of the Localization System

1) Simulation Setting and Objectives: We conducted a set
of simulation experiments to evaluate the proposed transmitter
localization scheme. Note that verification of signal character-
istics and measurement of signal energy level are not included
in this simulation study.

In the simulation, a 2000m×2000m CR network with an
underlying WSN of the same size was assumed and the

7We set the values of 9000m and 7000m for the primary users’ transmission
radiuses based on realistic assumptions. Suppose the following parameters:
EIRP (Equivalent Isotropically Radiated Power) of the TV towers (transmit-
ters) is 2500KW, transmitters’ effective antenna height is 100m, receivers’
effective antenna height is 1m, and receivers’ energy detection sensitivity is
−94dbm. Under these conditions, one can derive a transmission radius of
8000m using the rural environment version of the HATA model [20].
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(a) (b) (c)

Fig. 5. Simulation showcasing the effect of PUE attacks. (a) Simulation layout. (b) Effect of selfish PUE attacks. (c) Effect of malicious PUE attacks.

TABLE I
SIMULATION SETTINGS FOR THE LOCALIZATION SYSTEM.

Sensor density (m-2) Number of sensors r (m) d (m)
2.5× 10−5 100 305 1,294
5× 10−5 200 300 1,273
1.25× 10−4 500 200 849
2.5× 10−4 1,000 200 849
5× 10−3 2,000 100 424
1.25× 10−4 5,000 100 424
2.5× 10−3 10,000 50 212

statistical log-loss propagation model with (β0, β1, σ) =
(−30.00,−10.00, 10.0) was used. The exact values of these
parameters are unknown to the localization system, but we
assume that they are estimated using the offsite calibration
scheme proposed in [23], where a realistic estimation was
given as (β0, β1, σ) = (−32.03,−9.73, 10.0). Then based on
(8), assuming m = 3dB and P = 0.9, we generated seven
simulation settings representing various density of sensors in
the WSN and their corresponding parameters r and d, which
are shown in Table I. We used ∆ = r/15 for the simulation
so that the condition in (9) is satisfied as well. We consider
four cases when there is a single transmitter, when an attacker
uses a directional antenna, when multiple PUE attackers exist,
and when it is the special case of out-of-range primary users.

We evaluate the system’s localization error and computation
time. Based on the discussion in Section III, the metric of
localization error has the following meaning. When a primary
signal transmitter is found to be away from any known
location of primary users more than the localization error, the
transmitter is deemed as a PUE attacker. Once a PUE attacker
is detected, the localization error defines a range of area for
pinpointing the attacker. The computation time is the time to
run the localization algorithm but does not include the WSN’s
network delay for collecting data. The computation time shows
the relative computation overhead in different scenarios. It
is measured in our specific simulation environment and its
absolute value could change as the environment varies8.

2) The Case of a Single Transmitter: We consider three
scenarios, in which a 500mW primary signal transmitter is in
the center, on the border, and on the corner of the WSN, i.e.,

8In particular, the simulation was run in MATLAB on a P4 2.8GHz, 512M
RAM PC.

T1 at (1000m, 1000m), T2 at (1000m, 50m), and T3 at (50m,
50m), respectively. The localization errors of the proposed
localization system under various settings are shown in Fig. 6.
In the figure, every datum is the average of ten independent
simulations. The results prove the localization system to be
effective. For example, under the 10,000-sensor scenario, the
expected space of two adjacent sensors is 20m, which is close
to the localization error of T1, i.e., 21.9m. T2 and T3 have
relatively greater localization error because on the border or
on the corner of the WSN, there are less number of sensors
around, resulting in less number of measurements and thus
poorer accuracy. Meanwhile, the computation time is shown to
be affordable. T2 and T3 require relatively greater computation
time because less number of measurements means more ambi-
guity and causes the localization algorithm to sample greater
number of regions (i.e, the set R has more elements).

3) The Case of Directional Antenna: An attacker may
mount a directional antenna to evade localization. To investi-
gate its impact, we repeated the previous simulation assuming
that the primary signal transmitter used a ten-element Yagi-
Uda antenna. A ten-element Yagi-Uda antenna is a typical
directional antenna and its radiation pattern can be found
in [21]. In the simulation, the major lobe in the antenna’s
radiation pattern pointed toward the increasing direction of
the x-axis (i.e., the direction from T1 to T2). As the results
in Fig. 7 show, the directional antenna has increased the
localization error and computation time. We reason that the
use of directional antennas caused less number of sensors to
detect the transmitted signals and this had the same effect as
decreasing the density of the sensors.

Another observation is that for locations T1 and T2, the
localization errors for 500-sensor and 1,000-sensor scenarios
are smaller than those for 2,000-sensor and 5,000-sensor
scenarios, which is counter-intuitive. Further research revealed
that because the directional antenna brought about the equiv-
alent effect of decreasing the sensor density ρ, the derived
values of r and d using (8) became too small, causing the
localization algorithm to be trapped at a local maximum. To
confirm this reasoning, we doubled the values of r and d
and repeated the previous simulation. Fig. 8 shows that with
this change, for high-sensor-density scenarios, the performance
was greatly improved. However, for other scenarios with low
sensor densities, this caused overly large region sizes and the
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(a) (b) (c)

Fig. 6. The localization error of the proposed localization system. (a) T1(1000m, 1000m). (b) T2(1000m, 50m). (c) T3(50m, 50m).

(a) (b) (c)

Fig. 7. The system’s localization error when a primary signal transmitter uses a ten-element Yagi antenna. (a) T1(1000m, 1000m). (b) T2(1000m, 50m). (c)
T3(50m, 50m).

(a) (b) (c)

Fig. 8. The system’s localization error when r is doubled in case that a primary signal transmitter users a ten-element Yagi antenna. (a) T1(1000m, 1000m).
(b) T2(1000m, 50m). (c) T3(50m, 50m).

localization error was significantly increased.
4) The Case of Multiple PUE Attackers: A two-transmitter

scenario is considered under 2,000-sensor and 5,000-sensor
deployments. Both are assumed to be transmitting signals
at the same UHF 617MHz band and their phase shift was
randomly chosen. We varied the distance between the two
transmitters and observed the estimated number of transmitters
and their locations by the localization system. Based on 100
independent simulation runs, Fig. 9 shows the ratio of the
runs that output correct number of transmitters, i.e., two.
Fig. 10 shows the corresponding localization errors when the
number of transmitters was correctly recognized. When the
two transmitters are within 500 meters of each other, the
localization system only recognizes one signal source most
of the time. However, when the distance increases, the two

transmitters can be both correctly localized, with a localization
error similar to that in single-transmitter scenarios.

5) The Case of Out-of-range Primary Users: In Subsection
IV.D, the value of Dh was used to compare the likelihoods
that a primary signal transmitter is on the border of the WSN
and in out-of-range locations. We fixed a PUE attacker at
location (1950m, 1000m) and set a primary user at location
((1950 + δx)m, 1000m), where δx is a variable in the sim-
ulation. The PUE attacker is transmitting while the primary
user is not transmitting. The result in Fig. 11 shows that when
the distance between the PUE attacker and the out-of-range
primary user is large, the Dh value induced by the attacker is
much smaller than that induced by the primary user, showing
that the attacker’s location will be correctly output by (12).
However, when the distance between the PUE attacker and the
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Fig. 9. The ratio of simulation runs that correctly recognize the number of
transmitters in a two-transmitter scenario.

Fig. 10. The localization error in a two-transmitter scenario.

primary user is relatively small, due to the modeling error and
the localization error, Dh cannot be used for distinguishing the
attacker from the primary user. In this case, as the flowchart in
Fig. 1 shows, the signal energy level will be further examined
to judge the legitimacy of the transmitter.

VI. RELATED RESEARCH

CR-related research has received great attention recently.
A major thrust in this research area is the development of

Fig. 11. Dh vs. δx.

spectrum sensing techniques capable of accurately detecting
the existence of primary users or spectrum opportunities. In [5]
and [19], schemes were proposed in which a single secondary
user device performs spectrum sensing and independently
decides which spectrum band to use. However, with these
schemes, the accuracy of spectrum sensing is unreliable due
to various factors such as the limited sensitivity of a single
CR. To address this problem, cooperative spectrum sensing
techniques were investigated in [11], [16], [24], [27].

The work presented in this paper is also related to the
existing body of research on localization systems [7], [13],
[15], [18], [26]. As discussed in Section IV, the existing re-
search is inadequate for solving the PST localization problem.
Recently, secure localization schemes have been proposed [2],
[3]. These schemes, however, are inappropriate for solving
the PST localization problem in CR networks. The technique
proposed in [2] is for receiver localization, and cannot be used
for transmitter localization. Moreover, localization schemes
proposed in [2], [3] require interaction between the localized
object and the localizing devices. In [6], two location veri-
fication schemes were proposed for verifying the location of
primary users in CR networks. However, the schemes do not
have localization capabilities and they are ineffective against
simultaneous transmission by multiple attackers and attacks
that involve directional antennas.

VII. CONCLUSION AND FUTURE WORK

We identified the PUE attack in CR networks and demon-
strated its disruptive effect on spectrum sensing. To counter
the attack, we proposed LocDef as a transmitter verification
scheme, which can be integrated into the spectrum sensing
process. LocDef employs a non-interactive localization scheme
to detect and pinpoint PUE attacks. Security analysis and
simulation results show that the proposed localization scheme
is effective and can be employed in hostile environments.

A localization-based approach is not the only way to de-
fend against PUE attacks. We are investigating an alternative
approach that uses the intrinsic characteristics of RF signals
to distinguish and identify emitters—i.e., RF fingerprinting.
In network environments where the primary transmitters are
mobile and have low power, localization-based approaches
for thwarting PUE attacks do not work. For instance, a
localization-based approach does not work when the network
environment includes Part 74 devices (e.g., wireless micro-
phones) as primary transmitters. These Part 74 devices are also
licensed to operate in the TV bands. In such an environment,
RF fingerprinting may provide an alternative countermeasure
against PUE attacks.

As discussed in Section II, in addition to the security
problems in spectrum sensing, there are other security issues
in DSA—those related to spectrum access and software pro-
tection. These issues also require further research.
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