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Cancer chemopreventive agents are typically natural prod-
ucts or their synthetic analogs that inhibit the transforma-
tion of normal cells to premalignant cells or the progression
of premalignant cells to malignant cells. These agents are
believed to function by modulating processes associated with
xenobiotic biotransformation, with the protection of cellular
elements from oxidative damage, or with the promotion of a
more differentiated phenotype in target cells. However, an
increasing number of chemopreventive agents (e.g., certain
retinoids, nonsteroidal anti-inflammatory drugs, polyphe-
nols, and vanilloids) have been shown to stimulate apoptosis
in premalignant and malignant cells in vitro or in vivo.
Apoptosis is arguably the most potent defense against cancer
because it is the mechanism used by metazoans to eliminate
deleterious cells. Many chemopreventive agents appear to
target signaling intermediates in apoptosis-inducing path-
ways. Inherently, the process of carcinogenesis selects
against apoptosis to initiate, promote, and perpetuate the
malignant phenotype. Thus, targeting apoptosis pathways in
premalignant cells—in which these pathways are still rela-
tively intact—may be an effective method of cancer preven-
tion. In this review, we construct a paradigm supporting
apoptosis as a novel target for cancer chemoprevention by
highlighting recent studies of several chemopreventive
agents that engage apoptosis pathways. [J Natl Cancer Inst
2004;96:662–72]

Cancer prevention has become an integral part of cancer
control. Common prevention approaches include avoiding ex-
posure to known cancer-causing agents, enhancing host defense
mechanisms against cancer, modifying life styles, and chemo-
prevention. The National Cancer Institute has made cancer pre-
vention research a priority in such diverse areas as early detec-
tion and screening, diet and nutrition, cessation of tobacco use,
and chemoprevention. Cancer prevention programs are increas-
ingly being added to the multidisciplinary, collaborative efforts
at mainstream research institutions, and efforts have intensified
to attract researchers to this field.

CARCINOGENESIS, CHEMOPREVENTION, and APOPTOSIS

Even with improvements in the early detection and treatment
of cancer, overall mortality rates for most cancers of epithelial
origin have not declined in the last 30 years (1). Carcinomas
account for more than 80% of human cancers, with skin, lung,
colon, breast, prostate, and uterus being the most frequent sites.
Carcinogenesis can be viewed as a process that involves accel-
erated, and abnormal, cellular changes in which the genes con-
trolling proliferation, differentiation, and apoptosis are trans-

formed under selective environmental pressures (2). Tumor
development follows three distinct phases: initiation, promotion,
and progression (3,4). The initiation phase is a rapid (within
hours or days), irreversible event that occurs when a normal cell
is exposed to a carcinogen that causes unrepairable or misre-
paired DNA damage. DNA damage itself is not mutagenic
unless the resulting somatic mutation is recapitulated via mitosis
to yield a clone of the mutated cell. This promotion phase, a
protracted process that may require several years or decades to
establish, consists of the expansion of mutated cells to form an
actively proliferating, multicellular premalignant lesion. During
the progression phase, another irreversible event occurs over a
relatively short period, perhaps less than 1 year, in which new
clones with increased proliferative capacity, invasiveness, and
metastatic potential are produced (5). Because the initiation and
progression phases are irreversible and relatively transient
events, the promotion phase of carcinogenesis may provide the
best targets for cancer prevention (6,7).

The term “chemoprevention” was coined by Michael Sporn
in 1976, when he referred to the prevention of the development
of malignancy by vitamin A and its synthetic analogs, known
collectively as retinoids. Sporn (6) contended that the process of
carcinogenesis had the potential to be controlled physiologically
or pharmacologically during its preneoplastic stages, in which he
suggested that the promotion phase could be stabilized, arrested,
or reversed (6). Cancer chemoprevention has emerged as an
important means of modulating the process of carcinogenesis
(1,8).Almost three decades of research indicate that this strategy
is promising with respect to reducing the incidence of cancer in
well-defined high-risk groups and in the general population
(8,9). Chemoprevention, by definition, is the use of agents to
slow the progression of, reverse, or inhibit carcinogenesis,
thereby lowering the risk of developing invasive or clinically
significant disease (1,6,8). Consequently, an effective chemo-
preventive agent should intervene early in the process of carci-
nogenesis to eliminate premalignant cells before they become
malignant (1,10–12).

Several thousand agents have been reported to have chemo-
preventive activity, and more than 40 promising agents and
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agent combinations are currently being evaluated clinically for
cancer chemoprevention (12). For example, natural and syn-
thetic retinoids have been effective in arresting or reversing
premalignant lesions, such as bronchial metaplasia, oral leuko-
plakia, uterine cervical dysplasia, and actinic keratoses (1). In
randomized trials of patients with familial adenomatous polyp-
osis, the cyclooxygenase-2 inhibitors sulindac and celecoxib
inhibited the growth of adenomatous polyps and promoted polyp
regression (13). Furthermore, chemoprevention trials have
shown that the antiestrogen tamoxifen can reduce the incidence
of breast cancer (14) and that the antioxidant vitamin E can
reduce the incidence of prostate cancer (8).

Many chemopreventive agents (e.g., retinoids and antiestro-
gens) are believed to block or delay the progression of trans-
formed cells by modulating cell proliferation or differentiation
(1,10,12). Because these agents are thought to promote cyto-
static effects, it has been suggested that they should be admin-
istered long-term to healthy individuals who have an increased
cancer risk. Of course, in this modality, even minor adverse side
effects would be unacceptable (10). Long-term toxicity and the
possibility of developing resistance to chemopreventive agents
are formidable obstacles that could limit the feasibility and
success of conventional chemoprevention for many cancers. An
alternate chemopreventive approach entails the use of agents
that quickly eliminate premalignant cells by inducing them to
undergo apoptosis rather than merely slowing their proliferation
and/or promoting some degree of differentiation. For example,
premalignant lesions could be eradicated and secondary primary
tumors prevented with chemopreventive agents that have the
capacity to trigger apoptosis in transformed cells. By shifting the
outcome of chemoprevention from cytostasis or differentiation
to apoptosis, chronic exposure to a particular chemopreventive
agent would not be necessary, thereby limiting the risk of
long-term toxicity and/or the development of chemoresistance.
Novel approaches to drug delivery could also facilitate chemo-
preventive agent-induced apoptosis in target cells and reduce
possible short-term adverse side effects.

Apoptosis is the mechanism used by metazoans to regulate
tissue homeostasis through the elimination of redundant or po-
tentially deleterious cells. Apoptosis induction is arguably the
most potent defense against cancer. For example, immune sys-
tem cells destroy cancerous cells (15,16), and most chemother-
apeutic agents inhibit tumor cell proliferation (17,18), by induc-

ing apoptosis. The cellular machinery associated with apoptosis
is highly conserved, with many similarities existing between
phylogenetically divergent species. This similarity may explain
why mutations in genes that regulate apoptosis pathways (e.g.,
p53, Bcl-2 family members, and PTEN) are common in most
human cancers, and it underscores the importance of apoptosis
resistance in the process of carcinogenesis (19–21). Further-
more, growing evidence suggests that certain chemopreventive
agents can trigger apoptosis in transformed cells in vivo and in
vitro, which appears to be associated with their effectiveness in
modulating the process of carcinogenesis.

IN VIVO OBSERVATIONS SUPPORTING APOPTOSIS AS A

TARGET FOR CHEMOPREVENTIVE AGENTS

Animal studies have demonstrated that certain chemopreven-
tive agents (Table 1) can induce apoptosis in tumor cells in vivo.
In the TRAMP mouse model for prostate cancer (22), treatment
with oral infusions of a polyphenolic extract isolated from green
tea, at doses equivalent to the human consumption of six cups of
green tea per day, promoted a statistically significant inhibition
of prostate cancer development and increased overall survival.
The chemopreventive intervention in prostate carcinogenesis
with the green tea extract also caused a statistically significant
induction of apoptosis in prostate cancer cells. This activity
reportedly reduced the dissemination of these cells, thereby
inhibiting their progression and possible metastasis to distant
organ sites (22). Oral pretreatment of SKH-1 mice with lyoph-
ilized green tea solids for 2 weeks enhanced the ultraviolet
(UV)-induced increases in the number of p53-positive cells,
p21-positive cells, and apoptotic sunburn cells in the epidermis.
Thus, green tea treatment stimulated early adaptive responses to
UV irradiation in mouse epidermis by the induction of tumor
suppressor genes (i.e., p53 and p21) and the enhancement of
apoptosis in vivo (i.e., inducing apoptotic sunburn cells) (23).
Furthermore, oral administration of a polyphenolic black tea
extract to mice with chemically induced skin tumors inhibited
proliferation and enhanced apoptosis in transformed skin cells
(24).

In a mouse model for chemically induced liver carcinogene-
sis, dietary supplementation with epigallocatechin gallate (a
polyphenol isolated from tea leaves) or caloric restriction dimin-
ished the frequency and expansion of hepatic lesions by stimu-

Table 1. Chemopreventive agents that induce apoptosis in carcinogenesis models or in human chemoprevention trials

Agent Carcinogenesis model/human trial (reference)

Tea polyphenols TRAMP mouse model for prostate cancer (22), and UV- and chemically induced skin tumors in mice (23,24)
Epigallocatechin gallate Chemically induced hepatic tumors in mice (25) and UV-induced skin tumors in mice (26)
S-adenosyl-L-methionine 1,2-Dimethylhydrazine/orotic acid-induced rat liver carcinogenesis (27)
Aspirin Min/� mouse model for colon carcinogenesis (28)
Perillyl alcohol Azoxymethane (AOM)-induced rat colon carcinogenesis (29)
Sulindac AOM-induced rat colon carcinogenesis (30)
Phenylethyl-3-methylcaffeate AOM-induced rat colon carcinogenesis (30)
Curcumin AOM-induced rat colon carcinogenesis (30)
�-Difluoromethylornithine N-Nitrosomethylbenzylamine-induced esophageal cancer in Zn2�-deficient rats (32)
Quercetin AOM-induced mouse colon carcinogenesis (31)
Rutin AOM-induced mouse colon carcinogenesis (31)
Capsaicin 4-Nitroquinoline 1-oxide (NQO)-induced tongue carcinogenesis in rats (33)
Rotenone NQO-induced tongue carcinogenesis in rats (33), and diethylnitosamine-induced hepatic lesions in mice (34)
Exisulind Phase I trial in patients with familial adenomatous polyposis (37)
Mesalazine Prospective pilot study in colorectal cancer patients (35), and as a chemopreventive agent in patients with sporadic polyps

of the large bowel (36)
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lating the induction of apoptosis in transformed hepatocytes
(25). Topical applications of caffeine or epigallocatechin gallate
inhibited carcinogenesis and selectively increased apoptosis in
UVB-induced skin tumors in mice (26). In a rat model for liver
carcinogenesis (27), S-adenosyl-L-methionine reduced the inci-
dence of 1,2-dimethylhydrazine/orotic acid–induced hepatic tu-
mors. The decrease in tumor incidence was accompanied by an
increase in apoptotic cells in the residual hepatic lesions.

In the Min/� mouse, an animal with a germline mutation
in the adenomatous polyposis coli gene that is essential for
normal intestinal cell growth and differentiation, aspirin de-
creased the spontaneous rate of colon tumor formation by
44% (28). Aspirin also normalized enterocyte growth by
increasing apoptosis and reducing the proliferation of preneo-
plastic intestinal mucosa cells (28). During chemically in-
duced colon carcinogenesis, male F344 rats fed a diet sup-
plemented with perillyl alcohol (a monoterpene isolated from
lavender) exhibited a statistically significant reduction in the
incidence and multiplicity of invasive adenocarcinomas of the
colon compared with animals fed the control (no intervention)
diet. Histopathologic evaluation of the treated colons indi-
cated that the chemopreventive activity of perillyl alcohol
was mediated through the induction of apoptosis in tumor
cells (29). In a related study, the chemopreventive properties
of sulindac, curcumin, and phenylethyl-3-methylcaffeate were
associated with apoptosis induction in tumor cells from chemi-
cally induced colon tumors in male F344 rats. Dietary adminis-
tration of sulindac, curcumin, or phenylethyl-3-methylcaffeate
was associated with a statistically significant increase in the
number of apoptotic tumor cells relative to that in animals fed
the control diet (30). The flavonoids quercetin and rutin were
also examined (31) in the male F344 rat model for chemically
induced colon tumors. Either agent given as a dietary sup-
plement increased the frequency of apoptotic cells and caused
a redistribution of these cells along the colon crypt axis in the
focal area of dysplasia relative to that in animals fed the
control diet.

�-Difluoromethylornithine (an ornithine decarboxylase in-
hibitor) was examined as a chemopreventive agent in
N-nitrosomethylbenzylamine-induced esophageal cancer in Zn2�-
deficient rats (32). Chronic exposure to �-difluoromethylornithine
in the drinking water substantially reduced the incidence of
esophageal tumors from 89% to 10%. Esophageal cells from
�-difluoromethylornithine-treated animals, compared with esopha-
geal cells from animals given drinking water alone, had in-
creased induction of apoptosis, enhanced expression of the pro-
apoptotic Bcl-2 family member Bax, and reduced expression
of proliferating-cell nuclear antigen (32). Dietary administra-
tion of the mitochondrial poisons rotenone or capsaicin dur-
ing 4-nitroquinoline 1-oxide-induced tongue carcinogenesis
in rats reduced tumor formation by triggering apoptosis in the
transformed cells (33), and dietary administration of rotenone
inhibited diethylnitosamine-induced hepatic lesions in mice,
again apparently by triggering apoptosis in the transformed
hepatocytes (34).

Human chemoprevention trials have also demonstrated an
association between a clinical response and the induction of
apoptosis in tumor cells (35–37). In a phase I trial of the
nonsteroidal anti-inflammatory drug exisulind as a chemopre-
ventive agent in patients with familial adenomatous polyposis
(37), increased apoptosis in colon polyps was noted at the

maximum tolerated dose. However, this dose appeared to have
no statistically significant effect on cell proliferation in the colon
polyps or in the frequency at which these lesions were detected.
In a prospective pilot study examining the chemopreventive
effects of the nonsteroidal anti-inflammatory drug mesalazine in
patients with colorectal cancer (35), induction of apoptosis was
increased statistically significantly in tumor samples but was
unchanged in normal intestinal mucosa. Cell proliferation in the
malignant and normal tissue samples was hardly affected by
mesalazine, indicating that this agent selectively induced apo-
ptosis in tumor cells without affecting normal cell proliferation.
The apparent selectivity in apoptosis induction (35,37) without
the inhibition of cell proliferation in transformed intestinal mu-
cosa cells may be dependent on the cell type and/or on the
particular chemopreventive agent that was examined in these
clinical studies.

Another study (36) examining the effects of mesalazine on
apoptosis and proliferation in the uninvolved intestinal mucosa
of patients with sporadic polyps of the large bowel reported a
statistically significant increase in the frequency of apoptotic
cells shortly (i.e., 1–3 days) after the initiation of treatment. The
increase in apoptosis remained largely unchanged after longer
exposures to mesalazine (up to 14 days). Cell proliferation in the
intestinal mucosa was decreased more in the mesalazine treat-
ment group than in the untreated groups.

Thus, these studies illustrate that certain chemopreventive
agents can induce apoptosis in tumor cells in various animal
models for carcinogenesis and in human chemoprevention trials.
Moreover, the induction of apoptosis in tumor cells was appar-
ently associated with the antitumor activity of the respective
chemopreventive agents.

The design of clinical chemoprevention trials is evolving, but
a few generalities can be defined for each phase (38). A phase I
study determines the dose-related safety of a prospective che-
mopreventive agent and assesses the pharmacokinetics and the
toxicity of the agent. Initial doses and schedules in phase I trials
are based on toxicity and efficacy data obtained from preclinical
studies. Phase II trials use a randomized, blinded, placebo-
controlled design to evaluate the dose–response relationship and
common toxic side effects that are likely to be associated with
long-term (i.e., 3 months or longer) administration of the che-
mopreventive agent. Several dose levels are evaluated and com-
pared with the modulation of previously validated surrogate end
point biomarkers (SEBs). SEBs are defined as measurable bio-
logic processes or molecules that are closely linked to the
progression pathway to invasive cancer and that undergo mod-
ulation in concert with neoplastic regression (39). Phase II trials
can be conducted with individuals who have premalignant le-
sions or with former cancer patients at risk of developing a
second primary tumor. If safety and efficacy are judged satis-
factory in these trials, the agent proceeds to evaluation in a
randomized, prospective phase III clinical trial. The phase III
trial is the ultimate test of a chemopreventive agent efficacy and
is designed to measure the incidence of primary tumors and
changes in SEBs in relation to dose and toxicity. The longer
phase III trials require strict adherence to the chemoprevention
protocol by patients and reproducibility in the chemopreventive
agent’s formulation.

Although large-scale randomized trials are the gold standard
for testing the efficacy of cancer chemopreventive agents and,
indeed, of anticancer agents that act at other stages in the cancer
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process, these trials typically require large study populations,
extensive resources, and many years for completion (40). The
use of valid SEBs for the intermediate effects of cancer chemo-
prevention (e.g., apoptosis induction or the loss of clonogenic-
ity) would make it possible to design smaller, short-term pre-
vention trials. SEBs can be assessed by molecular biology
techniques, such as immunohistochemistry, applied to tissue
specimens obtained by excision, punch, or core-needle biopsy
examination. It is likely that a panel of SEBs, rather than a single
SEB, will be more advantageous to monitor chemopreventive
agent–induced apoptosis in patient samples. The most com-
monly used SEB for apoptosis induction in the chemoprevention
clinical trials discussed thus far is DNA fragmentation. In situ
staining for DNA fragmentation can be coupled with an indica-
tor of cellular proliferation (e.g., proliferating-cell nuclear anti-
gen, DNA ploidy, or Ki-67 antigen expression) to determine
whether tissue homeostasis has been restored as a result of the
chemopreventive intervention (12,32). Other SEBs that can be
used to detect chemopreventive agent–induced apoptosis in pa-
tient tissue samples include activation of caspases [i.e., cysteine
proteases involved in apoptosis, such as the cleavage and acti-
vation of caspase-3 (41)], the cleavage of cytokeratin 18 by
caspases (42), and enhanced expression of Fas and/or Fas ligand
(43). Of course some of the major challenges associated with the
use of SEBs in chemoprevention trials will be the standardiza-
tion of the methods for measuring these intermediate biologic
changes as well as the terminology used to describe them (39).

POTENTIAL MECHANISMS ASSOCIATED WITH

CHEMOPREVENTIVE AGENT–INDUCED APOPTOSIS

Apoptosis is triggered by an initiation phase that is highly
dependent on cell type and apoptotic stimuli (e.g., oxidative
stress, DNA damage, ion fluctuations, and cytokines). In the
subsequent effector phase, the cell undergoes distinct biochem-
ical changes that result in the systematic activation of catabolic
hydrolases (i.e., proteases and nucleases). These enzymes par-
ticipate in the degradation phase of apoptosis through the cleav-
age of proteins and DNA (15,44). Most of the recent advances in
the elucidation of apoptosis pathways have come about through
the characterization of the effector mechanisms. Effector mech-
anisms of apoptosis have several components, and two effector
mechanisms associated with caspase activation have been char-
acterized extensively—the extrinsic, or death receptor–medi-
ated, effector mechanism and the intrinsic, or mitochondrial-
mediated, effector mechanism (45). In addition to mitochondria,
other organelles, including the endoplasmic reticulum, Golgi
apparatus, and lysosomes, may also have a role in damage
sensing, proapoptotic signaling, and caspase activation (46).

The extrinsic pathway of apoptosis is activated at the cell
surface when a specific ligand binds to its corresponding cell
surface death receptor (Fig 1, A). Death receptors (e.g., tumor
necrosis factor receptor [TNFR], TNF-related apoptosis-
inducing ligand [TRAIL] receptor, and Fas) belong to the TNFR
superfamily (47). After ligand binding (e.g., TNF, TRAIL, and
Fas ligand, respectively), death receptors cluster in the plasma
membrane and promote the recruitment of adapter proteins (47).
Caspase 8 is an apical caspase in the death receptor pathway.
The zymogen of caspase 8 can interact with the adapter proteins
(e.g., FADD and RIP1) to generate the active form of caspase 8
(47). After activation, caspase 8 can trigger the activation of

Fig. 1. Regulation of the extrinsic and intrinsic pathways of apoptosis. A) The
extrinsic pathway is initiated when a death receptor ligand (L; i.e., the Fas ligand)
binds to its death receptor (R; i.e., the Fas receptor). This interaction promotes the
recruitment of adapter molecules (not shown) and results in the cleavage of pro-
caspase 8 to yield active caspase 8. In certain cell systems, the activation of caspase
8 is sufficient to initiate the proteolytic cascade required for apoptosis. Caspase 8 can
also cleave the proapoptotic Bcl-2 family member Bid, and then truncated Bid (tBid)
can facilitate pore formation in the outer mitochondrial membrane to promote the
release of proapoptotic mitochondrial proteins (AMPs). AMPs can trigger caspase
activation and apoptosis. Cleavage of Bid by caspase 8 can serve as a link between
the extrinsic and intrinsic pathways of apoptosis. B) The intrinsic pathway is
regulated by the permeabilization of mitochondrial membranes. Antiapoptotic ac-
tivity of certain Bcl-2 family members (e.g., Bcl-2 and Bcl-XL) can be subverted by
the induction of proapoptotic Bcl-2 family members (e.g., Bax, Bad, and Bak). In
this scenario, the ratio of proapoptotic family members to antiapoptotic family
member becomes greater, which causes pores to form in the outer mitochondrial
membrane, liberating AMPs to activate caspases and induce apoptosis. The
mitochondrial permeability transition is regulated at various levels by several
mitochondrial proteins believed to constitute the permeability transition pore
complex. Normally, the permeability transition pore complex is in a closed or
low conductance conformation (not shown). Numerous pathologic stimuli, as
well as various chemical agents, can cause the permeability transition pore
complex to adopt an open conformation, resulting in large-amplitude swelling of
the mitochondrial matrix and permeabilization of the outer mitochondrial mem-
brane because of physical disruption. After the outer membrane fragments,
AMPs are released to activate caspases and induce apoptosis.
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downstream effector caspases such as caspase 3. In certain cell
types, the activation of caspase 8 is sufficient to initiate the
proteolytic cascade that results in apoptotic cellular degradation
(15,47).

In addition to activating effector caspases, caspase 8 also
targets Bid, a proapoptotic member of the Bcl-2 family. In
response to the binding of Fas ligand or TNF to its receptor,
caspase 8 induces the cleavage of Bid to yield a truncated
C-terminal fragment that translocates from the cytosol to the
outer mitochondrial membrane. Oligomers of the C-terminal Bid
fragment can trigger pore formation in the outer mitochondrial
membrane, allowing apoptogenic mitochondrial proteins, such
as cytochrome c (48,49) and endonuclease G (50,51), to be
released from the mitochondria (Fig. 1, A). Truncated Bid may
also trigger conformational changes in Bax (another proapop-
totic member of the Bcl-2 family) that allow it to localize in the
outer mitochondrial membrane (52), where Bax can associate
with the voltage-dependent anion channel that is also located in
the outer mitochondrial membrane. Complexes of Bax and the
voltage-dependent anion channel promote pore formation in the
outer mitochondrial membrane, allowing the release of apopto-
genic mitochondrial proteins (52). Regardless of the mechanism
of caspase-8-induced permeabilization of the outer mitochon-
drial membrane, the presence of apoptogenic mitochondrial pro-
teins in the cytosol can serve to amplify intracellular signals
activated by death receptors to trigger apoptosis.

The intrinsic pathway of apoptosis relies solely on the per-
meabilization of mitochondrial membranes to release the apop-
togenic mitochondrial proteins [e.g., cytochrome c (53), endo-
nuclease G (50,51), Smac/DIABLO (54), Omi/HtrA2 (55),
apoptosis-inducing factor (AIF) (56), and its homolog AIF-
homologous mitochondrion-associated inducer of death (AMID)
(57)] required for caspase activation and apoptosis. As they do in
the extrinsic pathway, Bcl-2 family members appear to play an
important role in the regulation of the intrinsic pathway (Fig. 1,
B). During conditions of cell stress, antiapoptotic Bcl-2 family
members (e.g., Bcl-2 and Bcl-XL) residing in the outer mito-
chondrial membrane can be destabilized by the induction of
proapoptotic Bcl-2 family members (e.g., Bax, Bad, and Bak). In
this scenario, the ratio of proapoptotic Bcl-2 family members to
antiapoptotic Bcl-2 family members increases and, by mecha-
nisms that are not completely understood, pores form in the
outer mitochondrial membrane, liberating apoptogenic mito-
chondrial proteins to activate caspases and induce apoptosis
(58,59).

Another mechanism implicated in the permeabilization of
mitochondrial membranes is the mitochondrial permeability
transition. The mitochondrial permeability transition is a rate-
limiting and self-amplifying process that is regulated at various
levels by several mitochondrial proteins. Many of these proteins
are believed to constitute the permeability transition pore com-
plex (17,60) (Fig. 1, B). Normally, proteins in the outer and
inner mitochondrial membranes that constitute the permeability
transition pore complex are predictably in close proximity to
each other and are in a closed or low-conductance conformation
(60). Numerous pathologic stimuli (e.g., reactive oxygen species
and calcium) and various chemical agents can cause the perme-
ability transition pore complex to adopt an open conformation
(17,60), which allows water and solutes can infiltrate the mito-
chondrial matrix (61). This results in colloidal osmotic swelling
of the mitochondrial matrix and permeabilization of the outer

mitochondrial membrane, presumably resulting from physical
rupture of the outer membrane (62). After the outer membrane
fragments, apoptogenic mitochondrial proteins are released to
the cytoplasm, where they participate in the degradation phase of
apoptosis.

A search of PubMed for studies published since 1994 re-
vealed that several chemopreventive agents have the ability to
induce apoptosis in a variety of premalignant and malignant cell
types in vitro (Table 2). For some agents, modulation of the
cellular target or pathway that was originally envisioned for the
agent is independent of its apoptogenic effects, which may
account for the prevalent cytotoxicity of some of these agents.
For example, although apoptosis triggered by the natural retinoid
all-trans-retinoic acid appears to be mediated by the activation
of retinoid receptors in breast cancer cells (63), induction
of apoptosis by the synthetic retinoid N-(4-hydroxyphenyl)-
retinamide appears to be independent of retinoid receptors (64–
68). Some nonsteroidal anti-inflammatory drugs are selective
inhibitors of cyclooxygenase 2. However, two such agents,
sulindac (69–72) and celecoxib (73), can induce apoptosis
through cyclooxygenase-2-independent mechanisms. In addi-
tion, tamoxifen has been reported to induce apoptosis in a
manner that is independent of its antiestrogenic activity (74–76).

We identified representatives from various classes of chemo-
preventive agents from recent in vitro studies with sufficient
evidence to provide a detailed account of their apoptotic mech-
anisms (Table 3). Most of these compounds can activate
caspases through intrinsic effector mechanisms that are regu-
lated by Bcl-2 family members (e.g., inhibition of Bcl-2 expres-
sion or induction of Bax expression) or the mitochondrial per-
meability transition (e.g., dissipation of mitochondrial inner
transmembrane potential). Other agents [e.g., all-trans-retinoic
acid (77), sulindac (69), and epigallocatechin gallate (78)] may
use extrinsic effectors instead.

Several of the classes of chemopreventive compounds con-
tain agents that can promote reactive oxygen species generation
or trigger oxidative stress [e.g., N-(4-hydroxyphenyl)retinamide
(64–68,79), celecoxib (80), indomethacin (81), epigallocatechin
gallate (82), curcumin (83), tamoxifen (75,84), capsaicin (85–
88), resiniferatoxin (86,89), rotenone (90,91), and deguelin
(92)], which appears to be associated with apoptosis induction in
various cell types (86–91). Reactive oxygen species can pro-
mote divergent cellular effects depending on the extent of their
production and the enzymatic or nonenzymatic mechanisms
available for their dismutation in a given cell type. Thus, reactive
oxygen species can serve as mitogenic stimuli, senescence pro-
moters, or cell death mediators (93). Mitochondria are the pri-
mary cellular site of reactive oxygen species production (93–96),
and, under certain conditions, elevated mitochondrial reactive
oxygen species generation can serve as an apoptotic signal
(93,94,97). Many chemopreventive agents with prooxidant ac-
tivity also appear to have a direct [e.g., inhibition of mitochon-
drial respiration (86,92,98)] and/or indirect [e.g., promotion of
the dissipation of mitochondrial inner transmembrane potential
(74,83,85,86,89,92,98,99)] ability to disrupt mitochondrial func-
tion to trigger the intrinsic pathway of cell death. Furthermore,
enhanced ceramide production promoted by N-(4-hydroxyphenyl)-
retinamide (67) and celecoxib (80) could also promote the pro-
duction of reactive oxygen species, impair mitochondrial func-
tion, and trigger intrinsic effector mechanisms for cell
degradation, considering that ceramide has been implicated in
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these processes (94). Therefore, such chemopreventive agents
may induce apoptosis, at least in part, by their mitochondrial
toxicity. This hypothesis does not seem to be a broad conceptual
leap because several novel chemotherapeutic agents are also
considered mitochondriotoxic (17).

We have observed that the apoptogenic effects of N-(4-
hydroxyphenyl)retinamide (98), capsaicin (86), resinifera-
toxin (86), and deguelin (92) are conspicuously diminished in
skin cancer cells that have been depleted of mitochondrial
DNA (i.e., �0 cells) and that are therefore functionally defi-
cient in mitochondrial respiration. Other studies have dem-
onstrated that �0 cells are more resistant than their parental
counterparts to the apoptogenic effects of cancer chemother-
apeutic agents (100,101), ceramide (102), and extrinsic me-
diators of apoptosis, such as TNF (103) and TRAIL (104),
implying that the disruption of mitochondrial respiration by
these agents is associated with cell death. The inability of the
�0 mitochondria to conduct bioenergetic processes appears to
correspond to the mitochondrial alterations observed in var-
ious malignant tumor cells (105–109), implying that certain
aspects of mitochondrial function [e.g., electron transport,
which is inhibited by N-(4-hydroxyphenyl)retinamide, capsa-
icin, resiniferatoxin, and deguelin] are realistic targets for
chemoprevention. However, the window of opportunity for
exploiting these targets to trigger apoptosis probably closes as
tumor cells progress to a more malignant phenotype.

Many chemopreventive agents can also modulate genes or
proteins that respond to conditions of oxidative stress to trigger
apoptosis (Table 3). For example, the induction of Fas and Fas
ligand is responsive to conditions of oxidative stress (110–112),

and all-trans-retinoic acid reportedly induces apoptosis by en-
hancing Fas ligand expression (77). Oxidative stress appears to
be associated with the modulation of Bcl-2 family members in
several cell systems (113–118). The studies summarized in
Table 3 indicate that the induction of Bax or Bak or the inhibi-
tion of Bcl-2 or Bcl-XL are commonly associated with apoptosis
induction after exposure to certain chemopreventive agents [e.g.,
sulindac (72), indomethacin (119), tamoxifen (120), capsaicin
(121), deguelin (122), and genistein (123)]. Likewise, many of
these agents can modulate nuclear factor NF-�B [e.g., tamoxifen
(75), epigallocatechin gallete (124), curcumin (125), resvertrol
(126), and genistein (127)], which has also been implicated in
regulatory mechanisms associated with oxidative stress
(114,116,128,129). Thus, some chemopreventive agents may
trigger an oxidative stress response by direct or indirect effects
on the mitochondria because these organelles are important
regulators of cellular redox homeostasis (130).

CONCLUSIONS AND PERSPECTIVES

Apoptosis is subverted during tumorigenesis, presumably
through the systematic loss of regulatory control mechanisms,
ultimately resulting in the generation of a malignant phenotype
and resistance to chemotherapy and radiation therapy. Investi-
gations to further elucidate the mechanisms associated with
chemopreventive agent–induced apoptosis should provide in-
creased opportunities to develop novel, selectively targeted
agents or drugs for chemoprevention.

It is anticipated that the life span of human beings will
continue to increase, which will inevitably be associated with an

Table 2. Chemopreventive agents that induce apoptosis in premalignant or malignant cells in vitro

Class/agent Cell type (reference)

Retinoids
All-trans-retinoic acid Breast cancer cells (131,132) and myeloma cells (133)
9-cis-retinoic acid Leukemia cells (134)
N-(4-hydroxyphenyl)retinamide Leukemia cells (135), squamous skin cancer cells (65), cervical cancer cells (79), neuroblastoma cells (67), and prostate

cancer cells (68)
Nonsteroidal anti-inflammatory

drugs
Aspirin Gastric cancer cells (119,136), leukemia cells (137), and transformed T cells (137)
Sulindac Hepatocarcinoma cells (71), prostate cancer cells (69,70), and colorectal cancer cells (72)
Celecoxib Prostate cancer cells (73)
Exisulind Hepatocarcinoma cells (71)

Polyphenols
Resveratrol Leukemia cells (138,139) and colon cancer cells (140)
Epigallocatechin gallate Epidermoid cancer cells (124), prostate cancer cells (141), leukemia cells (78), and transformed bronchial epithelial cells

(82)
Antiestrogen/anti-androgen

Tamoxifen Breast cancer cells (76,84,120,142), transformed breast epithelial cells (74), hepatoblastoma cells (143), glioma cells (120),
and leukemia cells (144)

Clomiphene Leukemia cells (144)
Nafoxidine Leukemia cells (144)

Vanilloids
Capsaicin Squamous skin cancer cells (86), hepatocarcinoma cells (121), transformed breast epithelial cells (145), glioblastoma cells

(146), neuroblastoma cells (147), transformed T cells (85), transformed B cells (148), glioma cells (149), and melanoma
cells (150)

Curcumin Transformed T cells (125), colon cancer cells (151), Ehrlich’s ascites carcinoma cells (152), and leukemia cells (153)
Resiniferatoxin Squamous skin cancer cells (86), transformed T cells (87), transformed B cells (148)

Rotenoids
Rotenone Leukemia cells (154), transformed B cells (90,155), and neuroblastoma cells (156)
Deguelin Colon cancer cells (157), transformed and malignant bronchial epithelial cells (122), and squamous skin cancer cells (92)

Others
�-Difluoromethylornithine Gastric cancer cells (158)
Selenium Prostate cancer cells (159,160) and glioma cells (161)
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escalation of age-related diseases such as cancer. Numerous
epidemiologic studies have provided a basis for primary cancer
prevention through the elimination of carcinogens from our diet
and the environment. However, given that the carcinogens re-
sponsible for many forms of cancer are unknown, it seems
highly unlikely that all individuals will be able to eliminate the
risk of developing cancer during their lifetimes. Our knowledge
of the etiology of certain familial forms of breast, colon, and skin
cancer, for example, also indicates that certain individuals are
predisposed to cancer irrespective of environmental factors.
Advances in the last two decades have provided very sensitive
methods, such as endoscopy, blood screening tests, and muta-
tional analysis, for the early detection of cancer that allow an
opportunity for intervention to prevent the development of in-
vasive or clinically significant disease. Likewise, the potential
benefit of cancer chemoprevention appears promising given the
results obtained from clinical trials, animal carcinogenesis mod-
els, and in vitro studies. Collectively, these considerations sup-
port a chemopreventive approach to manage the magnitude and
severity of cancer at present and in the future.
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