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ABSTRACTTableau-based proof systems an be elegantly spei�ed anddiretly exeuted by a tabled Logi Programming (LP) sys-tem. Our experiene with the XMC model heker showsthat suh an enoding an be used to searh for the exis-tene of a proof very eÆiently. However, the users of atableau system are often interested in getting suÆient ev-idene (in terms of the tableau proof rules) on why a proofdoes or does not exist. In this paper, we address the prob-lem of onstruting suh an evidene without introduingany additional omputational overhead to the proof searh.A tabled LP system maintains a memo table of \lemmas"that were tried and possibly proved during query evaluation.We propose the onept of justi�er for extrating suÆientevidene for the truth or falsehood of literals in a logi pro-gram, by post-proessing the memo tables reated duringquery evaluation. Based on this logi program justi�er, weshow how to onstrut evidene for the presene/absene oftableau in a tableau-based proof system. We provide exper-imental results showing the e�etiveness of the justi�er inonstruting suint evidene of the evaluation performedby the XMC model heker. Finally we disuss the role ofthe justi�er as a programming abstration for enoding ef-�ient algorithms as tabled logi programs.
Categories and Subject DescriptorsD.1 [Programming Tehniques℄: Logi Programming;D.2 [Software℄: Software Engineering; D.2.5 [SoftwareEngineering℄: Testing and Debugging|debugging aids
1. INTRODUCTIONTableau-based proof systems are used for dedutive rea-soning in a variety of omputing appliations, inluding au-tomated theorem proving [14℄, and in spei�ation and veri-�ation of temporal properties of onurrent systems [4, 29,33℄. Suh systems are typially presented as a set of proofrules. Given a set of proof rules and a goal (whih is a proof
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obligation), a tableau is a proof tree whih is onstruted byrepeated appliation of the rules to the goal.A suessful tableau is a �nite proof tree whose leaves rep-resent empty goals. Thus, goals with a suessful tableauxare in the least set losed under the appliation of the proofrules. Eah proof rule is omprised of a (possibly empty)set of premises, side onditions and a onlusion, and anbe readily enoded as a logi program. The least �xed pointsemantis of logi programs ensures that existene of a su-essful tableau for a goal an be heked using query evalu-ation (using a suitable resolution strategy) over the enodedprogram. The XMC model heker [27℄ shows that suh ahek an be done very eÆiently as well.Cheking for existene of a tableau is only a part of theproblem. It is often neessary to onstrut suÆient evi-dene to show the existene or absene of a tableau. Thisevidene may be used, for instane, to debug spei�ationsthat showed unexpeted properties in a veri�ation run.However, expliit onstrution of a tableau while searh-ing for a proof an signi�antly slow down the proof sys-tem. In this paper, we desribe tehniques for reonstrut-ing suh evidene after evaluation of the query, using theresults from evaluation itself. Beginning with a fundamen-tal tehnique for onstruting evidene for logi programs,we build a framework for presenting the evidene at the levelof the high-level tableau rules themselves. Below, we give abrief introdution to tabled logi programming and its appli-ation to tableau onstrution using a non-trivial but shortexample drawn from veri�ation of onurrent systems.
1.1 Encoding and Evaluating Tableau-Based

Proof Systems: An ExampleFigure 1(a) shows the proof rules of a tableau system forthe non-bisimilarity relation between the states of two au-tomata. The non-bisimilarity relation is the omplement ofthe bisimulation relation in onurreny theory [23℄. In arule, the premises and onlusion appear above and belowthe horizontal line respetively while the side ondition ap-pears on its side.The automata under onsideration are labeled transitionsystems: transition from a state s to state s0 on symbol a isrepresented by s a! s0. Given a pair of automata, the �rstrule says that state p in one automata is non-bisimilar tostate q in the other automata (denoted by p 6� q) wheneverthere exists a transition p a! p0 and p0 is non-bisimilar toevery state q0 suh that q a! q0. The seond rule says thatnon-bisimilarity is a symmetri relation.The logi program enoding of this proof system is shown



(1) p0 6� q01; : : : ; p0 6� q0np 6� q 9a p a! p0 ^ fq01; : : : ; q0ng = fq0 j q a! q0g(2) q 6� pp 6� q :- table nbisim/2.nbisim(P, Q) :-trans(P, A, P1),forall(Q1, trans(Q,A,Q1),nbisim(P1,Q1)).nbisim(P, Q) :- nbisim(Q, P).(a) (b)Figure 1: Proof rules for not-bisimilar relation (a), and its enoding as a tabled logi program (b)in Figure 1(b). In the program, we use the 3-ary trans re-lation to enode the labeled transition system. The leastmodel of the logi program will ontain nbisim(p,q)when-ever the states p and q are not bisimilar. However, observethat if p and q are bisimilar then evaluation of the query us-ing Prolog-style SLD resolution will not terminate sine theseond lause (enoding the symmetry rule) will produe anin�nite alling sequene.Tabled resolution tehniques, e.g. OLDT [30℄ and SLG [6℄,avoid suh in�nite alling sequenes by augmenting SLDstrategy with memo tables. At a high level, a tabling sys-tem evaluates programs by reording subgoals (referred to asalls) and their provable instanes (referred to as answers)in a table. Clause resolution, whih is the basi mehanismfor program evaluation, proeeds as follows. If the subgoalis already present in the table, then it is resolved against theanswers reorded in the table; otherwise the subgoal is en-tered in the table and a new proof tree with this subgoal asthe root is initiated. Answers to the subgoal are omputedby resolving it against program lauses using SLD resolu-tion, and are reorded in the table. Thus tabled evaluationof a logi program results in a forest of proof trees alled theSLG forest [6℄. (Figure 2(b) is the SLG forest generated bythe query :- nbsim(p,q) for the automata in Figure 2(a).)
1.2 From Truth To ProofThe logi program enoding of the proof system is veryonise. However, while it establishes the truth or falsehoodof a goal, the logi programming system provides little orno information on why the onlusion was reahed. Thisproblem usually falls under the purview of debugging: usinga trae based debugger and its navigation mehanisms (set-ting breakpoints or spy points, skips, leaps, et.) to traethrough the proof searh itself. There are several salientproblems with this approah.1. A traer displays the proess of searhing for the proof,and hene shows the exploration of unsuessful as wellas suessful proof paths. In ontrast, the user is oftenmost interested in the �nal proof itself, rather than themanner in whih the searh was onduted.2. The proof searh strategy of Prolog, with its forwardand bakward evaluation, already makes traing a Pro-log exeution onsiderably harder than traing throughproedural programs. The omplex sheduling and�xed-point omputing strategies of tabled resolutionmake this hard problem even worse.3. Traing repeats, at a slower pae, what the original ex-eution did, and hene onsiderably degrades the per-formane of a proof system.4. Trae-based debuggers provide no support for translat-ing the results of the trae (whih is at logi program

evaluation level) to the problem spae (e.g., tableaurule level).Visual tools [5, 10, 31℄ an be used to graphially presentthe SLG forest and help alleviate the seond problem. How-ever, the other problems are fundamental to the approahof \wathing the system prove a goal" and hene remain.These limitations raise the following interesting questions.Can we reonstrut a proof/disproof for a goal after theevaluation for the goal is omplete without reevaluating thegoal? Can the reonstrution be done without impatingthe performane of the initial evaluation? Can the reon-struted proofs be mapped to the original problem domain:e.g., to onstrut the non-bisimilarity tableau for the exam-ple in Figure 1(a)? In this paper we present tehniques thatanswer the above questions in the aÆrmative.
1.2.0.1 Proofs by Justification:.We propose the onept of Justi�er for extrating proofsfrom the \footprints" of query evaluation left behind by thetabled logi programming engine. After query evaluation us-ing a tabled logi programming system, the all (and answer)tables ontain the lemmas that were tried (and/or proved).By inspeting the program text with these tables in hand,we an e�etively reonstrut a proof (or suÆient evideneto show the lak of a proof) for a goal. Sine we use preom-puted results, we avoid searhing for proofs through pathsthat were unsuessful in the initial run. Furthermore, weollet the neessary evidene for presene or absene of aproof independent of the proof searh strategy. Moreover, theinformation used for the reonstrution is already omputedby the tabled evaluation engine and is available \for free"|i.e., without penalizing the original evaluation. Finally, thereonstrution is done by a logi program, and hene anbe easily on�gured to map proof strutures from the logiprogramming level to the level of the enoded problem.
1.3 Related WorkPfenning investigated the idea of onstruting proof ob-jets in a proof system by evaluating an enoding of theproof system in a meta-language Elf [25℄. Spei�ally, Elfis a Prolog like language whose searh automatially on-struts proofs during query evaluation.For logi programs, a number of approahes to explain theresults of query evaluation have been proposed in the liter-ature. Algorithmi debugging tehniques [28℄ explain theevaluation of a query by traing the proof searh performedby SLD resolution. Delarative debugging tehniques [20,24℄ assume a user-provided intended model of the givenprogram and then attempt to explain the unexpeted su-ess/failure of a query by �nding a program lause whihis false in the intended model. Assertion based debuggingtehniques [18℄ perform program validation and debuggingby stati and dynami heking of user-provided assertions
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p 6� q??yq 6� p??yq a!q1; fp0 j p a!p0g=fgfat() (d)Figure 2: Justifying non-bisimilarity relation : (a) Two non-bisimilar automata (b) Fragment of SLG forest() Justi�ation (d) Tableau extrated from justi�ation(whih are essentially partial spei�ation of the intendedmodel of the program).Although justi�ation is similar in spirit to the above ap-proahes in terms of their objetives it di�ers onsiderablyfrom all them. First, it is done as a post-proessing stepafter query evaluation, and not along with the query eval-uation (as in algorithmi and assertion-based debugging)or before query evaluation (as in delarative and assertion-based debugging). Therefore rather than showing the en-tire proof searh (as in algorithmi debugging), justi�ationshows only those parts of the omputation whih led to thesuess/failure of the query. Moreover justi�ation does notdemand any reative input from the user regarding the in-tended model of the program. This is partiularly usefulwhen we have enoded a proof system as a logi program andwe are onstruting nontrivial proofs in the proof system viaquery evaluation. The intended model of the program mightthen be too hard, even impossible to be guessed by the user.For example in the ontext of model heking, the intendedmodel of the program will ontain information about whihstates of the onurrent system satisfy ertain given tempo-ral properties. Hene it is unlear how suh tehniques anbe saled from explaining logi programs to explaining proofsystems enoded as logi programs.In the ontext of dedutive database programs, [2℄ ex-plores the onstrution of explanations. These explanationsonsist of proof trees based on the underlying proof strategy.Reently, [21℄ presented the idea of providing explanationsat several levels of abstration. The explanations are on-struted using the exeution trae of the program. Notethat justi�ation also extrats proofs at di�erent levels ofabstration. However, the information required for justi�-

ation \omes for free" sine they are available in the alreadyonstruted tables.
1.4 Summary of Results1. Intuitively justi�ation onstruts suÆient evidenefor the suess or failure of a query to a tabled logiprogram. We formalize this intuitive onept and de-sribe an eÆient algorithm for extrating suh a jus-ti�ation from tables reated during query evaluation(Setion 2).2. We show how to derive an evidene for the existeneor absene of a tableau in terms of tableau proof rules,based on the justi�ation of the logi program thatenodes the tableau system (Setion 3).3. We desribe the onstrution of a evidene generatorfor a real-life model heking system (XMC) based onthe justi�er desribed in Setion 2. We provide experi-mental results (in terms of sizes of proof strutures) todemonstrate the pratial utility of justi�ers in modelheking (Setion 4).4. The onept of justi�ation forms a basis for a power-ful programming abstration. We disuss this issue ingreater length in Setion 5.
2. JUSTIFICATION OF LOGIC PROGRAM

DERIVATIONSIn this setion, we desribe the fundamental aspets ofonstruting a struture, alled a justi�ation that explains



the truth value of an answer omputed by tabled resolution.For simpliity of exposition, we begin by de�ning justi�a-tion of queries over de�nite logi programs. We disuss howthe de�nition an be extended to evaluation of normal logiprograms under well-founded semantis.
2.0.0.2 Notational Conventions:.We use P to denote logi programs; HB(P ),M(P ), M̂(P )to denote the Herbrand Base and least Herbrand model andperfet model of P [9℄ respetively; A and B to denote atomsor literals; � to denote a set of atoms or literals; � to denotea onjuntion of atoms (a goal is a onjuntion of atoms)or literals; � to denote substitutions; `�' to denote atomsubsumption (A � B for A subsumes B); and C to denotea lause in a program. For a binary relation R, we denoteits (reexive) transitive losure by R�. 2Before desribing justi�ation, we need to introdue somepreliminary notation for apturing the truth assignmentsomputed by tabled resolution. The tables at the end ofthe resolution are denoted by T = TC [ TA, where TC arethe set of atoms stored in all (or subgoal) tables and TAare the set of atoms stored in return (or answer) tables.Definition 1 (Truth Assignment). The truthassignment of atom A wr.t. tables T , denoted �(A;T ), is:�(A;T ) =8<: true A 2 TAfalse A 62 TA ^ 9A0 2 TC A0 � Aunomputed otherwiseWe drop the parameter T and write the truth assignmentas �(A) whenever the tables are obvious from the ontext.By soundness of tabled resolution, note that when tables Tresult from resolving a query over a program P , �(A;T ) =true =) 8�A� 2 M(P ) and �(A;T ) = false =) 8�A� 62M(P ) for all atoms A.
2.1 Structure of JustificationLet A be an answer to some query in program P , i.e.,�(A) = true. We an omplete one step in explaining thisanswer by �nding a lause C suh that (i) A uni�es withthe head of C, and (ii) eah literal B in the body of C has�(B) = true. If �(A) = false, we an explain this failureby showing that for all lauses C whose heads unify with A,there is at least one literal B in C suh that �(B) = false.We all suh one-step explanations as a loally onsistentexplanations.Definition 2. Loally onsistent explanation for an atomA w.r.t. program P and table T , denoted by �(P;T )(A) is aset of sets of atoms s.t.1. If �(A) = true:�(P;T )(A) = f�1; �2; : : : ; �mg, with eah �i being a setof atoms fB1;B2; : : : ;Bng suh that:(a) 8 1 � j � n �(Bj) = true, and(b) 9 C � A0:� � and a substitution � suh thatA0� = A and �� � (B1;B2; : : : ;Bn)�.2. If �(A) = false:�(P;T )(A) = fLg, a singleton olletion where L =fB1;B2; : : : ;Bng is the smallest set suh that

p :- p.p :- q.q. p :- q, r.q :- p.q :- r.(a) (b)Figure 3: Example programs�(p) = f fpg; fqg g�(q) = f fg g �(p) = f fqg g�(q) = f fp;rg g�(r) = f fg g(a) (b)Figure 4: Loally onsistent explanations [(a) and(b)℄ for example programs in Figure 3(a) and (b)(a) 81 � j � n �(Bj) = false, and(b) 8 substitutions � and C � A0:� (B01;B02; : : : ; B0l),A0� = A� =) 91 � k � l suh that B0k� 2 Land 8 1 � i < k �(B0i�) = true.We write �(P;T )(A) as �(A) whenever the program P and ta-ble T are lear from the ontext. In the above de�nition for�(A) suh that �(A) = true (ase 1), the seond ondition1(b) states that an explanation in the olletion forms aninstane of an r.h.s. of a lause C whose head uni�es withA. The �rst ondition ensures that all atoms in an expla-nation have a truth assignment of true. When �(A) = false(ase 2), the two onditions 2(a) and 2(b) ensure that forevery lause C whose head uni�es with A (under substitu-tion �), there is a literal Bk on the r.h.s. of C suh thatBk� has truth assignment false, and every earlier literal inC has truth assignment true. The restrition of L to be thesmallest suh set ensures that L ontains only those Bk�that are spei�ed by ondition 2(b).From De�nition 2, and the soundness of tabled resolution,it follows that if A is used in resolution then �(A) oinideswith the truth values of all atoms in the sets in �(A).Theorem 3 (Soundness of �). Let P be a programand T the tables after resolution of some query to P . Then8A �(A) 2 ftrue; falseg =) 8 L 2 �(A); B 2 L andground substitutions �; B� 2M(P ) () A� 2M(P ).Observe that, for an atom A, the di�erent sets in theolletion �(A) represent di�erent onsistent explanationsfor the truth or falsehood of A. For instane, onsider theprograms in Figure 3(a) and the orresponding �'s in Fig-ure 4(a). That �(p) ontains fqg means that the truth of qalone is suÆient to (loally) explain the truth of p. In on-trast, for the program in Figure 3(b), �(q) ontains fp; rgwhih indiates that to explain the falsehood of q, one needsto explain the falsehoods of both fpg and frg. In this sense,one an view the \set of sets" representation of loally on-sistent explanations as an enoding of the dependenies indisjuntive normal form.An answer A is explained by answers fB1;B2; : : : ;Bkgin �(A) and then (reursively) explaining eah Bi. The ex-planation an be aptured by a graph, whose edges are de-termined by loally onsistent explanations. When tabledresolution �nds that an answer A has �(A) = true, then



p#q#fat p#q. &anestor r#fail(a) (b)Figure 5: Justi�ation of p evaluated w.r.t. pro-grams in Figures 3(a) and (b), respetivelylearly there is a �nite sequene of loally onsistent expla-nations that lead to fat (i.e. an atom B suh that fg 2 �(B)and �(B) = true). We mark suh a onlusion by using aspeial node labeled `fat'.Note that not all sequenes of loally onsistent explana-tions may be �nite, even for A suh that �(A) = true. Forinstane, onsider the explanation sequenes for query p overprogram in Figure 3(a). There is an in�nite sequene sinefpg is in �(p). However, suh yles represent \unfounded"proof paths and hene do not explain why �(p) = true.Hene, we develop a stronger haraterization of what on-stitutes a justi�ation. Before formally de�ning this notion,we develop a similar intuition for justi�ation of false liter-als. For a goal A with �(A) = false, there are two distintways in whih tabled resolution reahes this onlusion:1. there are no lause heads that an unify with the givengoal A: i.e., fg 2 �(A).2. the goal A depends on itself, without a base ase.We distinguish between these two senarios by marking the�rst node as `fail' and the seond as `anestor'.In summary, we do not use yli explanations to justify atrue literal. In ontrast, yli explanations desribe in�niteproof paths and an be used to justify a false literal. Insteadof expliitly representing these yles, however, we hoose tokeep the justi�ation as an ayli graph. Formally:Definition 4 (Justifiation). A justi�ation for anatom A with respet to program P and table T , denoted byJ (A;P; T ) is a direted ayli graphG = (V;E) with vertexlabels hosen from T [ ffat;fail;anestorg suh that:1. G is rooted at A, and is onneted2. (B1;fat) 2 E () fg 2 �(B1) ^ �(B1) = true3. (B1;fail) 2 E () fg 2 �(B1) ^ �(B1) = false4. (B1;anestor) 2 E () �(B1) = false^�(B1) = fLg^ 9 B2 2 L s.t. (B2;B1) 2 E� _ B2 = B15. (B1;B2) 2 E ^ B2 2 T ^ �(B1) = false ()�(B1) = fLg ^ B2 2 L ^ (B2;B1) 62 E�6. (B1;B2) 2 E ^ B2 2 T ^ �(B1) = true =)9L 2 �(B1) s.t. B2 2 L ^ 8B0 2 L (B0;B1) 62 E�7. B1 2 V ^ �(B1) = true =) 9 unique L 2 �(B1) s.t.8B2 2 L (B1;B2) 2 E ^B2 2 T ^ (B2;B1) 62 E�The above de�nition uses two sets of onditions for addingedges from a vertex in the justi�ation graph. The �rst

set is based on �'s, while the seond set spei�es the globalonstraint that an edge an be added only when no yles arereated. In the above, rule 1 ensures that only informationrelevant to A, the answer being justi�ed, is present in thegraph. Rules 2 & 3 mark the end (leaf) states of derivations.Rules 4 & 5 ensures that the graph stays ayli, while stillontaining information about yli dependenies betweenfailed answers. Rules 6 & 7 selet, among the di�erent setsin �(B1), one that does not ontain an anestor to B1.The justi�ation of the truth values of pw.r.t. programs inFigures 3(a) and (b) are given in Figures 5(a) and (b). Notethat the seletion of a single set out of �(B1) for onstru-tion means that the justi�ation is an and-graph. Hene ajusti�ation provides one evidene for the truth or falsehoodof a literal, even though the tabled evaluation may have ex-plored/provided many more evidenes. In the following, weshow the \suÆieny" of a justi�ation: that it ontainsenough information to reonstrut a SLD derivation.
2.2 Justification and SLD resolutionWe now investigate the relationship between justi�ationof an atom A in program P and the SLD tree(s) of A in P .For simpliity of exposition, we onsider only propositionalprograms. Extension of our results to non-propositional pro-grams is straightforward. Let P be a program, A 2 HB(P )and T the table reated by evaluating A in P . Our aim isto show that the justi�ation J (A;P; T ) ontains suÆientevidene for showing truth/falsehood of A in P .Suppose A 2M(P ). Reall that A 2M(P ) i� there existsa suessful SLD derivation of A in program P . Then thejusti�ation J (A;P;T ) is a direted ayli graph whose:(i) nodes are labeled with ground atoms, (ii) root is labeledwith A, (iii) leaves are labeled with fat and (iv) the out-going ars of a node denote the appliation of a lause inP . Thus, a SLD derivation of A in P an be obtained bylinearizing the justi�ation graph into a sequene of groundgoals (a goal is a onjuntion of atoms). Formally:Lemma 5. Let P be a program, A 2 M(P ) and JA ajusti�ation of A in P . Then there exists a suessful SLDderivation of A in P whih an be onstruted from JA.Proof Sketh: We onstrut the SLD derivation l(JA)where l, the linearization operator is de�ned as follows. LetG be a direted ayli graph and let the root of G be A.Let the hildren of A in G be B1; : : : ;Bn and the graphsrooted at B1; : : : ;Bn be G1; : : : ;Gn. Thenl(G) = A! (l(G1) ^ (B2 ^ : : : ^Bn))! : : :! l(Gn)where for any sequene of goals �1; : : : ; �k and goal � wehave (�1; : : : ; �k) ^ � = �1 ^ �; : : : ; �k ^ � 2Now suppose A 62M(P ). Reall that A 62M(P ) i� thereexists a failed SLD tree of A in P , i.e., a SLD tree withonly �nitely failed or in�nite branhes. Reall that in ajusti�ation, a false atom is explained by one false bodyatom in eah of its lause instanes. On the other hand, ina SLD tree a false atom is explained with the lause bodiesof the appliable lauses. Given a justi�ation JA of atom Ain program P , we show the existene a failed SLD tree TA ofA whih uses the same evidene as JA. Let the hildren ofA in justi�ation JA be B1; : : : ;Bn. Then for all 1 � i � natom Bi appears in goal �i where �i is the body of oneof the lauses of A. In the SLD tree TA the hildren ofA are �1; : : : ; �n and we selet the atom Bi in goal �i forresolution (1 � i � n). Continuing in this way, we an



onstrut a SLD tree TA suh that for every �nitely failedbranh of TA the sequene of seleted atoms is a root-to-leafpath in JA and for every in�nite path of TA, the longestnon-repeating pre�x of the sequene of seleted atoms is aroot-to-leaf path in JA. Formally:Lemma 6. Let P be a program, A 62M(P ) and JA a jus-ti�ation of A in P . Then there exists a failed SLD tree TAof A in P s.t.(i) for every �nitely failed branh in TA: (A;�1 ^ A1 ^�01; : : : ; �n^An^�0n;fail) s.t. the sequene of seleted atomsis A;A1; : : : ;An, there exists a root-to-leaf path in JA:(A;A1; : : : ;An;fail).(ii) for every in�nite branh in TA: (A;�1^A1^�01; : : : ; �n^An ^ �0n; �n+1 ^ Ai ^ �0n+1; : : : ) s.t. 1 � i � n, the se-quene of seleted atoms is A;A1; : : : ;An;Ai; : : : and theatoms A;A1; : : : ; An are distint, there exists a root-to-leafpath (A;A1; : : : ;An;anestor) in JA.The onnetion between justi�ation and SLD resolution isformally summarized in the following theorem. This theo-rem establishes that justi�ation ontains suÆient evideneto explain the truth/falsehood of an atom.Theorem 7 (Suffiieny of Justifiation). Let Pbe a program, A 2 HB(P ) and JA a justi�ation of A. IfA 2M(P ) then a suessful SLD derivation of A in P anbe onstruted from JA. If A 62M(P ) then the seleted atomsequene of every path of a failed SLD tree an be onstrutedfrom JA.
2.3 An Algorithm for JustificationNote that edges to anestor are used to mark yli de-pendenies between failed answers. There is usually a hoieof whih dependenies to leave as edges in a justi�ation andwhih to mark as anestor. The optimal solution to thisproblem is NP-omplete, by redution from Feedbak VertexSet [15℄. However, optimality itself is relatively unimportantin this ontext: the proof searh done by the underlyingevaluation engine has a far greater impat on the size of thejusti�ation graph. So we present a linear-time algorithmto onstrut a justi�ation, based on depth-�rst-searh thatheuristially eliminates \bak edges" whih ontribute to y-les. We desribe the algorithm below.The justi�ation algorithm is given in Figure 6. The al-gorithm treats the given program P and tables T as globalread-only data strutures. It monotonially adds entries totwo other global strutures: the justi�ation graph itself (V :set of verties, E: set of edges), and a marking (Done) onthe set of verties in the graph. The initial all to Justify ismade with an empty justi�ation graph and Done initializedto the empty set.The reursive algorithm builds the justi�ation graph bytraversing it depth-�rst even as it is onstruted. At anypoint, note that V is the set of \visited" verties, and Doneis the set of verties whose desendents have been ompletelyexplored. The algorithm maintains an important invariantthat for any all, the parameter A is either unvisited, or isalready in Done. This invariant implies that (i) the algo-rithm terminates, and (ii) no yles are reated in the jus-ti�ation graph. This invariant an be easily established bynoting that the set V �Done ontains exatly those vertiesB that are anestors to the urrent vertex A. Moreover, ifevery set in �(A) ontains a vertex that is an anestor ofA, then A depends reursively on itself without a base ase.

Hene, �(A) = false. This property is used by the algorithmfor plaing edges to anestor.We de�ne k�(A)k=PL2�(A) jLj. Sine k�(A)k is boundedby the size of tables for any A, and there may be at mostk�(A)k outgoing edges from vertex A, the worst-ase om-plexity of the algorithm is O(jT j2). In fat, any justi�ationalgorithm must be O(jT j2) in the worst ase as demonstratedby the example program:Pworst = fpi :� pj j 1 � i; j � ngIn this program, the justi�ation of any pi is quadrati in thesize of the tables generated by evaluating pi. It should, how-ever, be noted that �A2T k�(A)k, whih is a bound on thenumber of edges in a justi�ation graph, is in turn boundedby the number of resolution steps needed. Hene, justi�a-tion time is always bounded by time taken for resolution.
2.3.0.3 Example:.For the justi�ation graph shown in Figure 2(), the rootnode is nbisim(p;q). �(nbisim(p;q)) = ffnbisim(q;p)ggSine there is no anestor nbisim(q,p)we pik this explana-tion and now reursively invoke Justify(nbisim(q,p)). Byusing the �rst lause of nbisim we have �(nbisim(q;p)) =fftrans(q;a;q1);forall(Y;trans(p;a;Y);nbisim(q1;Y))gg.We reursively invoke Justify for both of these two trueatoms. These atoms are justi�ed by using prediate trans,the transition relation for the automata of Figure 2(a).
2.4 Justification for Normal Logic ProgramsThe notion of justi�ation, as well as the algorithm wehave presented an be easily extended to normal logi pro-grams evaluated under well-founded semantis [16℄.First of all, even for strati�ed programs, we need to on-sider negative as well as positive literals when de�ning �'sand justi�ation. We denote negative literals by not(A)where A is the orresponding positive literal. Truth val-ues for negative literals is de�ned as �(not(A)) = :�(A).We de�ne �'s for positive literals as given in De�nition 2;for negative literals, we de�ne �(not(A)) to be ffAgg: i.e.,the truth/falsehood of not(A) will be explained in terms ofthe falsehood/truth of A. The urrent statement of The-orem 3 will remain valid for positive literals provided weonsider the perfet model M̂ (P ) instead of the least Her-brand model M(P ); the theorem an be readily extendedto aommodate negative literals. The de�nition of justi�-ation an be extended by onsidering not(A) as potentiallabel for verties if A 2 T .Reall that well-founded semantis (WFS) is de�ned overa three-valued model, where eah literal is assigned a truthvalue of true, false or unde�ned. SLG resolution [6℄ andits implementations represent literals with unde�ned valuesas onditional answers and true values as unonditional an-swers. Hene, we an split the answer table TA into a setof true (TAt) and unde�ned (TAu) answers. We an nowextend De�nition 1 by setting �(A) = true if A 2 TAtand �(A) = unde�ned if A 2 TAu . The de�nitions of�(A) 2 ffalse;unomputedg remain unhanged.The most substantial extension to aommodate normalprograms will be the addition of loally onsistent explana-tions for unde�ned literals. To explain why a literal, say A,is unde�ned under WFS, one needs to show that the for eahlause C in the program whose head uni�es with A, either(i) the body of C ontains a false literal, or (ii) all literals in



algorithm Justify(A : atom)(* Global: P : program, (V;E): Justi�ation, Done � V *)if (A 62 V ) then (* A has not yet been justi�ed *)set V := V [ fAglet �A 2 �(A) suh that (�A \ V ) � Doneif (�A exists) thenif (�A = fg) thenif (�(A) = true) thenset E := E [ (A; fat)elseset E := E [ (A; fail)else (* �A 6= fg *)for eah B 2 �A doset E := E [ (A; Justify(B))else (* No suh �A =) every set in �(A) ontains an anestor of A *)set E := E [ (A; anestor)let f�0Ag = �(A) (* note that �(A) will be false *)for eah B 2 (L0A � (V �Done)) doset E := E [ (A; Justify(B))set Done := Done [ fAgreturn Aelse (* A has been justi�ed *)return A Figure 6: Justi�ation algorithmthe body of C are true or unde�ned. Moreover, there mustbe at least one lause of type (ii). Hene the evidene for A'sunde�nedness will be �(A) = fLg provided L = �f [ �tu,where �f is the set of all false literals from lauses of type(i), and �tu is the set of all literals from lauses of type (ii).Observe that the �'s of false and unde�ned literals are sin-gleton sets: there is only one way to justify them. This ob-servation immediately yields the following simple modi�a-tion to the de�nition of justi�ation to aommodate normalprograms: in rules 4 and 5 of De�nition 4 (page ) hangethe test �(B1) = false to �(B1) 2 ffalse;unde�nedg. Ine�et, by separating loal onerns of explanation to globalonerns of justi�ation, we have been able to aommodatenormal programs by suitably extending the (loal) notion of� alone. Moreover, note that Algorithm Justify (Figure 6)does not expliitly test for the truth assignment of a lit-eral for adding edges spei�ed by rules 4{7 of De�nition 4and hene needs no modi�ation for handling normal logiprograms.
2.5 Justifying in the Presence of BuiltinsWe have thus far assumed that all prediate symbols in aprogram are tabled. Many appliation programs ontain amixture of tabled and non-tabled prediates. Justi�ationof non-tabled prediates presents two immediate problems.First, justi�ation introdues unaeptable overheads sinethe only way to determine the truth value of a goal (e.g.,to ompute �) is to reevaluate the goal. Seond, non-tabledprediates often involve non-logial onstruts for whih jus-ti�ation may be diÆult or even impossible. We use thefollowing strategy for justifying programs that ontain non-tabled prediates. We �rst ensure that non-tabled prediatesare invoked from existing tabled prediates via new wrapperprediates, whih are also tabled. We then provide justi�a-tion rules to reason about the truth value of these wrapperprediates. In the simplest ase, the non-tabled prediatesdo not in turn invoke tabled prediates, and the justi�ationrules will treat the orresponding wrapper prediates as adatabase of fats. In more omplex ases, the justi�ation

rules will hide the proedural omponents of the non-tabledprediates and give a logial view of its funtionality.For example, onsider the forall prediate in the non-bisimulation heking program in Figure 1. This is a user-introdued wrapper prediate whih is tabled. Logiallyforall(X,G,H) represents the �rst order formula 8X G )H. Note that forall(X,G,H) is equivalent to not(g(X),not(h(X))), where g(X) and h(X) are de�ned in terms ofG and H respetively. Sine the equivalent form an intro-due loops through negation, the underlying implementa-tion of forall will typially use non-logial Prolog builtinssuh as findall. The use of non-tabled prediates is typi-ally motivated by suh pragmati onsiderations. However,note that sine justi�ation is done after query evaluation,we an onsider the logial meaning of these builtins in-stead of their implementation, at least from the point ofview of justi�ation. For instane, we an hoose to justifyforall(X,G,H) in terms of not(g(X), not(h(X))). The jus-ti�ation rules| the mapping of \nonlogial" prediates totheir justi�able ounterparts| are themselves enoded as aset of Horn lauses.The wrapper-based sheme for justifying non-tabled pred-iates works well as long as these prediates do not requireany debugging. This assumption learly holds for builtins.For programs ontaining user de�ned tabled and non-tabledprediates, we need to ombine justi�ation of tabled pred-iates with trae-based debugging of non-tabled prediates.Suh an integration is a topi of future researh.
3. EXTRACTING HIGH-LEVEL PROOFSSo far, we have shown how we an enode a proof sys-tem (Figure 1(a)) as a tabled logi program (Figure 1(b)),dispense proof obligations in the proof system by query eval-uation of the logi program (Figure 2(b)) and onstrut thejusti�ation graph (Figure 2()) from the tables onstrutedduring query evaluation. The extration of tableau proofs(Figure 2(d)) from justi�ation graph is now shown.For our formalization we de�ne a proof system to be a set
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γFigure 7: An arhiteture for justi�ationof proof rules; eah onsists of a set of premises, a side ondi-tion and a onlusion. We denote a rule by  1; : : : ;  k S�!  where  1; : : : ;  k denote the premises, S the side onditionand  the onlusion of the rule. Axioms in our proof sys-tem are denoted as fat �!  . We assume that the sideondition of a proof rule is loally testable. We now de�nethe notion of an evidene tree for a proof obligation in aproof system as follows:Definition 8 (Evidene Tree). Evidene tree for anobligationO in a proof system R, denoted �(O;R), is a �nitetree T s.t. root of T is O, and for any node  in T :� R `  : Let  1; : : : ;  k be the hildren of  . Then8i; 1 � i � k R `  i, and  1; : : : ;  k S�!  is aninstane of a rule in R whose side ondition S is true.� R 6`  : Let  1; : : : ;  k be the hildren of  . Then8i; 1 � i � k R 6`  i, and every instane of a rulein R whose side ondition is true and onlusion is  will have a premise  0 s.t. either  0 2 f 1; : : : ;  kgor  0 appears as an anestor of  in T . If no suhf 1; : : : ;  kg exists then node  has a hild \fail".The onditions in the above de�nition of an evidene treeare analogous to those imposed in the de�nition of loallyonsistent explanation (De�nition 2). Furthermore, as inthe ase of justi�ation (De�nition 4), our notion of evidenealso imposes a �niteness restrition. However, note that wedo not retain any expliit indiation of yles in the evidenetree whereas in the justi�ation graph yles are kept trakof by maintaining leaves labeled anestor.An arhiteture for justi�ation shown in Figure 7, is anoverview of the interation between a proof system and itslogi program enoding. We enode the proof rules R anda proof obligation O as a logi program P and a query Qrespetively using an enoding funtion '. We point outthat logi programs enoding tableau systems (suh as theones used in model heking [4, 33℄) are strati�ed in gen-eral. Hene, we assume that the enoding funtion ' mapsa proof system to a (dynamially) strati�ed logi program[26℄. The semantis of a strati�ed logi program P is givenby its perfet model M̂(P ) whih is a natural extension ofthe least Herbrand model semantis for de�nite programs.Moreover, the perfet model of any strati�ed program oin-ides with its unique stable model [17℄ as well as its 2-valuedwell-founded model [16℄.Definition 9 (Enoding Funtion). An enodingfuntion ' is a mapping from (Proof Obligation � Proof

System) to (Query � Strati�ed Logi Program) suh thatfor any proof obligation O and proof system R'(O;R) = (Q; P )) ( R ` O , Q 2 M̂(P ) )In our non-bisimilarity example, Figure 1 shows the map-ping ' of the proof system to its logi program enoding.The non-bisimilarity relation 6� is enoded as the prediatenbisim. We use other prediates suh as trans and forallto enode the side onditions of the proof rules.One the proof obligation and proof system are enodedas a query and a logi program, we onstrut the justi�-ation graph of the query. This is shown as funtion  inFigure 7 and is omputed by tabled evaluation followed byjusti�ation. Finally, we need to map the justi�ation graphto an evidene tree. This is done via the extration funtion� (see Figure 7). Our de�nition of � is dependent on theenoding funtion ' sine � in some sense undoes the e�etof '. Spei�ally, the e�et of ' is to map one appliationof a proof rule in an evidene tree to several logi programderivation steps. On the other hand, � maps several steps inthe justi�ation graph to a single node in the evidene tree.We assume '(O;R) = ('l(O); 'r(R)) = (Q; P ). Thus, 'lis a mapping from proof obligations to ground atoms and 'ris a mapping from a proof system to a logi program. Wefurther assume that 'r maps eah proof rule to a uniqueset of program lauses. Then there exists a partial funtion'�1r from program lauses to proof rules s.t. if 'r(�) =fC1; : : : ; Ckg for some rule � and lauses fC1; : : : ; Ckg then'�1r (Ci) = � for all 1 � i � k. Given a justi�ation graph J ,in order to onstrut an evidene tree we need to loate theuse of those program lauses for whih '�1r is de�ned. Wethen replae the use of suh a program lause C with theuse of the orresponding proof rule '�1r (C). By repeatedlyapplying '�1r to justi�ation graph J starting from the rootof J , we obtain �(J). Formally, we de�ne � as follows:Definition 10 (Extration Funtion). Let R be agiven proof system and 'r(R) = P . For any proof obligationO, let JO denote the justi�ation of query 'l(O) in programP . Then �(JO) is a tree onstruted as follows:1. the root of �(JO) is O.2. (a) If 'l(O) 2 M̂(P ), let the hildren of 'l(O) in JObe obtained by applying program lause C 2 P . LetO1; : : : ;Ok be the premises in the orresponding proofrule '�1r (C). Then �(JO1 ); : : : ; �(JOk ) are the sub-trees of O in JO .(b)if 'l(O) 62 M̂(P ), let the hildren of 'l(O) in JO bebody literals from lause instanes fC1�1; : : : ; Ck�kg.For all 1 � i � k, let Oi be a premise of '�1r (Ci)�is.t. 'l(Oi) 62 M̂(P ). Then the subtrees of O in JO are�(JO1 ); : : : ; �(JOk ).As shown in Figure 7, we onstrut the evidene of a proofobligation in a proof system by applying the following stepsin sequene: (a) apply the enoding funtion ' to map theproof obligation and the proof system to a query and a logiprogram (b) apply funtion  to ompute the justi�ationof the query in the logi program () apply the extrationfuntion � to the justi�ation to obtain the evidene.Theorem 11. For any proof system R and proof obliga-tion O, �(('(O;R))) is an evidene tree.



The proof is by indution on size of the omputed evidene.(Details are skipped.)Let us revisit the non-bisimilarity example. '�1r mapsthe �rst lause of nbisim to proof rule (1) and the seondlause of nbisim to proof rule (2) of Figure 1(a). Now,let us onsider the justi�ation onstruted for the querynbisim(p, q) given in Figure 2(). The �rst step in thejusti�ation of nbisim(p,q) orresponds to an appliationof the seond lause for nbisim. Using '�1r , we map it to anappliation of proof rule (2). Applying proof rule (2) to theproof obligation p 6� q we obtain the proof obligation q 6� p.Now, the justi�ation of nbisim(q,p) is done by applyingthe �rst lause of nbisim. Again using '�1r we map it to anappliation of proof rule (1). Applying proof rule (1) on q 6�p we obtain no new obligations therefore our evidene treeonstrution is ompleted. The onstruted evidene tree isshown in Figure 2(d).
4. APPLICATION TO MODEL CHECKINGModel heking [8℄ is an automati tehnique for verify-ing if a �nite-state onurrent system spei�ation satis-�es a property expressed as a temporal logi formula. In[27℄ we had demonstrated the feasibility of using logi pro-gramming for building exible and eÆient model hek-ers. In partiular, using the XSB tabled logi program-ming system we developed XMC, a loal model heker fora CCS-like value-passing system spei�ation language andthe modal mu-alulus temporal logi. XMC is written un-der 200 lines of tabled Prolog ode that diretly enodesthe semantis of CCS and modal mu-alulus spei�ed astableau rules. Despite the high-level nature of XMC's imple-mentation, its performane is omparable to that of highlyoptimized model hekers suh as Spin [19℄ and Mur' [11℄ onexamples seleted from the benhmark suite in the standardSpin distribution.Model heking in XMC orresponds to evaluating a top-level query that denotes the temporal property of interest.The query sueeds whenever the system satis�es the prop-erty. To explain the suess or failure of the query we use theXMC justi�er, developed based on the tehniques desribedin this paper.1 In this setion we sketh the appliationof justi�ation to logi programming based model heking.We also provide experimental evidene of the e�etivenessof justi�ation in the setting of model heking.For simpliity of exposition we will use CTL, a branh-ing time temporal logi [13℄ to illustrate the appliation ofjusti�ation to model heking. As is usual in CTL modelheking we will assume that the system is spei�ed as aKripke struture [22℄, whih is a 3-tuple (S; R;L) with Sdenoting the set of states, R the transition relation and Lthe valuation funtion that assigns true=false values to theatomi propositions assoiated with the states. For ease ofunderstanding the material in this setion we briey reviewthe essential aspets of CTL model heking. (See [7℄ foran exellent introdution to this topi.)Coneptually CTL formulas an be viewed as desribingproperties over omputation trees that are formed by des-ignating a state in the Kripke struture as the initial stateand then unfolding the struture into an in�nite tree. CTLformulas are used to speify safety and liveness properties1The XMC system with the justi�er is freely available fromhttp://www.s.sunysb.edu/�lm.

:- table models/2.models(S, and(F1,F2)) :- models(S, F1),models(S, F2).models(S, ef(F)) :- models(S, F).models(S, ef(F)) :- trans(S, T), models(T, ef(F)).models(S, af(F)) :- models(S, F).models(S, af(F)) :- forall(T, trans(S,T),models(T, af(F))).models(S, ag(F)) :- negate(F, NF),tnot(models(S, ef(NF)))....Figure 8: CTL model heker as a logi programof onurrent systems. They are built from atomi proposi-tions, ^;_;: and the temporal onnetives suh as EF,AG,AF, et. The path quanti�ersA and E desribe the branh-ing struture in the omputation tree. Spei�ally, A is usedin a partiular state to speify that all of the paths startingat that state have some property while E spei�es that theproperty holds for some path. The temporal operators de-sribe properties of a path through the tree. For example, F(\eventually in the future") operator asserts that a propertywill hold at some state on the path whereas the G (\alwaysglobally") operator spei�es that a property holds at everystate on the path.Figure 8 is a fragment of a CTL model heker enodedas a tabled logi program. It is a straightforward enod-ing of the semantis of CTL. Note that models(S, F) istrue whenever S j= F, i.e. S satis�es the temporal prop-erty F. The trans/2 prediate enodes the transition rela-tion of the Kripke struture. The tnot/1 is the negationoperation for tabled prediates. The forall/3 is a user-de�ned prediate for evaluating universally quanti�ed �rst-order formulae. Thus forall(T, trans(S, T), models(T,af(F))) denotes the �rst-order formula 8T trans(S;T) )models(T;af(F)). To test if a state s satis�es a formula f,one simply asks the query :- models(s,f). The answer ta-bles reated during query evaluation are post-proessed bythe justi�er to explain the yes/no answer to the query.Figure 9 illustrates the justi�ation of the CTL formulaAGp that asserts that in every future state along all paths palways holds. This formula is false for the Kripke struturein Figure 9(a) whereas it is true for the one in Figure 9().The orresponding justi�ation for both these ases, derivedusing the tehniques in Setion 2, is shown in Figure 9(b)and Figure 9(d) respetively. Using the tehniques in Se-tion 3 one an transform the above justi�ation done at thelevel of the logi program into one in terms of the tableaurules for the CTL model heker. Details are omitted.
4.1 Justification in Model CheckingThe enoding of the CTL model heker in Figure 8 en-ters around two prediates: trans, enoding the transitionalsemantis of Kripke strutures, and models, de�ning whena state in the Kripke struture models a given CTL for-mula. By appropriately rede�ning the trans and modelsprediates logi programming based model hekers for othersystem desription languages and other temporal logis anbe readily obtained. In fat the enoding of the CTL modelheker was obtained in this fashion from our XMC modelheker that is designed for value passing CCS and the modalmu-alulus temporal logi. More reently, we retargetedXMC to linear temporal logi (LTL) by rede�ning modelsin aordane with the proof system given in [3℄. The larger
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ancestor() (d)Figure 9: Example to illustrate justi�ation of model heking queriesimpliation of the retargeting exerise is that sine justi�-ation is a generi tehnique for explaining the results ofquery evaluation one an similarly generate justi�ers for allof these retargeted model hekers.Note that model hekers for both linear time tempo-ral logi (e.g. SPIN [19℄) as well as branhing time (e.g.SMV [22℄) present a ounterexample to the user whenevers 6j= f. But no additional feedbak is given to the user forthe other ase when s j= f. Justi�ation di�ers from themin two respets. First, it is not restrited to any single tem-poral logi. It enompasses both linear and branhing timelogi. Seondly, it provides evidene not only when a formulais false but also when it is true. Justi�ation goes beyondmerely giving a yes/no answer to the model heking ques-tion. It generalizes the traditional notion of ounterexamplegeneration in model heking to evidene generation.
4.2 Experimental ResultsWe have built a justi�er for our XMC model heker. Ithas been in operation for several months now. We havefound it to be useful for quikly spotting bugs in spei�a-tions.In Table 1 we present experimental results ontrastingthe sizes of the run-time trae produed by a trae-baseddebugger and the evidene produed by the justi�er.2 Forthe run-time trae we measure the size of the SLG forestreated during query evaluation in the XSB tabled logi pro-2The sizes shown were olleted by suppressing the explana-tion of ertain prediates not relevant for explanation of themodels query from both the justi�er as well as the traer.

System Formula SLG Forest Justi�ationSize Sizemeta-lok(2,1) mutex 6400 890meta-lok(2,2) mutex 103K 14Ki-protool(1) livelok 83K 2Ki-protool(2) livelok 602K 13KTable 1: Experimental Datagramming system [34℄; for justi�ation we measure the sizeof the justi�ation DAG. For illustration we use two real-life protools: the GNU UUCP i-protool [12℄ and the Javameta-loking protool [1℄. The i-protool is an optimizedsliding window protool for �le transfers over serial linesand is part of the GNU UUCP protool stak. The Javameta-loking protool is an eÆient protool, developed bySun Mirosystems, for synhronizing aess to objets bythreads. The k in i-protool(k) denotes window size k andthe i; j pair in Metalok(i,j) denotes i threads and j objets.In i-protool we show the results of �nding a livelok whihrequires traversing only a fragment of the state spae of theonurrent system. In meta-loking protool, we show theproof size for the mutual exlusion property whih requirestraversing the entire state spae.Note that whenever the formula is true the justi�er on-struts the evidene based on just the path that sueedswhereas the SLG forest inludes all the failing paths. Thusthe di�erene in sizes between the SLG forest and justi�a-tion is more dramati in i-protool (with livelok present)



where the formula is true than in Metalok where the for-mula is false. In ases where the formula is false the justi�erdoes not use the true literals for evidene thereby ontribut-ing to the di�erene between the two sizes. It is noteworthyto observe that the di�erene between the two sizes beomeseven more pronouned as the system size inreases. This isbeause as the system size grows so does the number of bothfailing paths as well as literals that sueed.Justi�er provides suint evidene that makes it rela-tively easy to omprehend the results of the model heker.Sine it is onstruted as a post-proessing step the justi-�ation DAG is built in its entirety. Hene, by providingmehanisms to navigate the DAG on-demand the justi�erprovides additional opportunities for the user to inspet onlyinteresting parts of the justi�ation DAG. Suh mehanismsan inlude existing tehniques from traditional debuggingsuh as setting break points, leap, et. The utility of thesetehniques has been amply borne out with our own experi-ene in using the XMC justi�er whose implementation hasinorporated some of them.
5. DISCUSSIONSWe proposed the onept of justi�ation to explain thesuess/failure of a query to a logi program. The justi�eronstruts suint evidene by post-proessing the tablesreated during query evaluation. We showed how to ele-vate justi�ation of logi programs to tableau systems andprovided evidene of its utility in model heking.The onept of justi�ation is also useful in other ap-pliations. Below we disuss its role in programming. Inthe evaluation and justi�ation of tableau systems we anlearly disern two distint albeit separate phases { a queryevaluation phase where we searh for the existene of a su-essful tableau and a justi�ation phase where we onstrutevidene based on the outome of the searh. Doing anexistene searh followed by a onstrution proess o�ers asimple yet powerful omputing paradigm.As an example, onsider the problem of onstruting aparse tree from ontext free grammars (CFG). It well knownhow to build De�nite Clause Grammar (DCG) parsers forreognizing CFGs in ubi time (assuming the grammar isin Chomsky Normal Form). But it is rather diÆult to on-strut a parse tree eÆiently without employing omplexenoding triks [32℄. We an readily ast the parse treeonstrution of a given string as one of searhing for theexistene of a parse tree followed by onstruting one if itexists. In the �rst step, the CFG is enoded as a DCG ina simple and straightforward manner. Testing if a string isparseable then orresponds to query evaluation of this DCGenoding in a tabled logi programming system. If the stringis parseable, then in the seond step we onstrut the evi-dene of the parse by invoking the justi�er. This results inthe parse tree, whih is onstruted in linear time. Indeedwe have used our justi�er tool for eÆient onstrution ofparse trees for strings in ontext free grammars enoded asDCG in the XSB tabled logi programming system [34℄.Thus the searh and onstrut paradigm provides an el-egant programming abstration that an bring oneptualsimpliity to the formulation and evaluation of ertain pro-gramming tasks. The justi�er makes suh a programmingabstration feasible, by providing an eÆient implementa-tion sheme for the abstration.
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