
Justifying Proofs using Memo Tables

Abhik Roychoudhury
Dept. of Computer Science

SUNY Stony Brook
Stony Brook, NY 11794, USA

abhik@cs.sunysb.edu

C.R. Ramakrishnan
Dept. of Computer Science

SUNY Stony Brook
Stony Brook, NY 11794, USA

cram@cs.sunysb.edu

I.V. Ramakrishnan
Dept. of Computer Science

SUNY Stony Brook
Stony Brook, NY 11794, USA

ram@cs.sunysb.edu

ABSTRACTTableau-based proof systems
an be elegantly spe
i�ed anddire
tly exe
uted by a tabled Logi
 Programming (LP) sys-tem. Our experien
e with the XMC model
he
ker showsthat su
h an en
oding
an be used to sear
h for the exis-ten
e of a proof very eÆ
iently. However, the users of atableau system are often interested in getting suÆ
ient ev-iden
e (in terms of the tableau proof rules) on why a proofdoes or does not exist. In this paper, we address the prob-lem of
onstru
ting su
h an eviden
e without introdu
ingany additional
omputational overhead to the proof sear
h.A tabled LP system maintains a memo table of \lemmas"that were tried and possibly proved during query evaluation.We propose the
on
ept of justi�er for extra
ting suÆ
ienteviden
e for the truth or falsehood of literals in a logi
 pro-gram, by post-pro
essing the memo tables
reated duringquery evaluation. Based on this logi
 program justi�er, weshow how to
onstru
t eviden
e for the presen
e/absen
e oftableau in a tableau-based proof system. We provide exper-imental results showing the e�e
tiveness of the justi�er in
onstru
ting su

in
t eviden
e of the evaluation performedby the XMC model
he
ker. Finally we dis
uss the role ofthe justi�er as a programming abstra
tion for en
oding ef-�
ient algorithms as tabled logi
 programs.
Categories and Subject DescriptorsD.1 [Programming Te
hniques℄: Logi
 Programming;D.2 [Software℄: Software Engineering; D.2.5 [SoftwareEngineering℄: Testing and Debugging|debugging aids
1. INTRODUCTIONTableau-based proof systems are used for dedu
tive rea-soning in a variety of
omputing appli
ations, in
luding au-tomated theorem proving [14℄, and in spe
i�
ation and veri-�
ation of temporal properties of
on
urrent systems [4, 29,33℄. Su
h systems are typi
ally presented as a set of proofrules. Given a set of proof rules and a goal (whi
h is a proof
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPDP ’00,Montréal, Canada.
Copyright 2000 ACM 1-58113-265-4/00/0009 ..$5.00

obligation), a tableau is a proof tree whi
h is
onstru
ted byrepeated appli
ation of the rules to the goal.A su

essful tableau is a �nite proof tree whose leaves rep-resent empty goals. Thus, goals with a su

essful tableauxare in the least set
losed under the appli
ation of the proofrules. Ea
h proof rule is
omprised of a (possibly empty)set of premises, side
onditions and a
on
lusion, and
anbe readily en
oded as a logi
 program. The least �xed pointsemanti
s of logi
 programs ensures that existen
e of a su
-
essful tableau for a goal
an be
he
ked using query evalu-ation (using a suitable resolution strategy) over the en
odedprogram. The XMC model
he
ker [27℄ shows that su
h a
he
k
an be done very eÆ
iently as well.Che
king for existen
e of a tableau is only a part of theproblem. It is often ne
essary to
onstru
t suÆ
ient evi-den
e to show the existen
e or absen
e of a tableau. Thiseviden
e may be used, for instan
e, to debug spe
i�
ationsthat showed unexpe
ted properties in a veri�
ation run.However, expli
it
onstru
tion of a tableau while sear
h-ing for a proof
an signi�
antly slow down the proof sys-tem. In this paper, we des
ribe te
hniques for re
onstru
t-ing su
h eviden
e after evaluation of the query, using theresults from evaluation itself. Beginning with a fundamen-tal te
hnique for
onstru
ting eviden
e for logi
 programs,we build a framework for presenting the eviden
e at the levelof the high-level tableau rules themselves. Below, we give abrief introdu
tion to tabled logi
 programming and its appli-
ation to tableau
onstru
tion using a non-trivial but shortexample drawn from veri�
ation of
on
urrent systems.
1.1 Encoding and Evaluating Tableau-Based

Proof Systems: An ExampleFigure 1(a) shows the proof rules of a tableau system forthe non-bisimilarity relation between the states of two au-tomata. The non-bisimilarity relation is the
omplement ofthe bisimulation relation in
on
urren
y theory [23℄. In arule, the premises and
on
lusion appear above and belowthe horizontal line respe
tively while the side
ondition ap-pears on its side.The automata under
onsideration are labeled transitionsystems: transition from a state s to state s0 on symbol a isrepresented by s a! s0. Given a pair of automata, the �rstrule says that state p in one automata is non-bisimilar tostate q in the other automata (denoted by p 6� q) wheneverthere exists a transition p a! p0 and p0 is non-bisimilar toevery state q0 su
h that q a! q0. The se
ond rule says thatnon-bisimilarity is a symmetri
 relation.The logi
 program en
oding of this proof system is shown

(1) p0 6� q01; : : : ; p0 6� q0np 6� q 9a p a! p0 ^ fq01; : : : ; q0ng = fq0 j q a! q0g(2) q 6� pp 6� q :- table nbisim/2.nbisim(P, Q) :-trans(P, A, P1),forall(Q1, trans(Q,A,Q1),nbisim(P1,Q1)).nbisim(P, Q) :- nbisim(Q, P).(a) (b)Figure 1: Proof rules for not-bisimilar relation (a), and its en
oding as a tabled logi
 program (b)in Figure 1(b). In the program, we use the 3-ary trans re-lation to en
ode the labeled transition system. The leastmodel of the logi
 program will
ontain nbisim(p,q)when-ever the states p and q are not bisimilar. However, observethat if p and q are bisimilar then evaluation of the query us-ing Prolog-style SLD resolution will not terminate sin
e these
ond
lause (en
oding the symmetry rule) will produ
e anin�nite
alling sequen
e.Tabled resolution te
hniques, e.g. OLDT [30℄ and SLG [6℄,avoid su
h in�nite
alling sequen
es by augmenting SLDstrategy with memo tables. At a high level, a tabling sys-tem evaluates programs by re
ording subgoals (referred to as
alls) and their provable instan
es (referred to as answers)in a table. Clause resolution, whi
h is the basi
 me
hanismfor program evaluation, pro
eeds as follows. If the subgoalis already present in the table, then it is resolved against theanswers re
orded in the table; otherwise the subgoal is en-tered in the table and a new proof tree with this subgoal asthe root is initiated. Answers to the subgoal are
omputedby resolving it against program
lauses using SLD resolu-tion, and are re
orded in the table. Thus tabled evaluationof a logi
 program results in a forest of proof trees
alled theSLG forest [6℄. (Figure 2(b) is the SLG forest generated bythe query :- nbsim(p,q) for the automata in Figure 2(a).)
1.2 From Truth To ProofThe logi
 program en
oding of the proof system is very
on
ise. However, while it establishes the truth or falsehoodof a goal, the logi
 programming system provides little orno information on why the
on
lusion was rea
hed. Thisproblem usually falls under the purview of debugging: usinga tra
e based debugger and its navigation me
hanisms (set-ting breakpoints or spy points, skips, leaps, et
.) to tra
ethrough the proof sear
h itself. There are several salientproblems with this approa
h.1. A tra
er displays the pro
ess of sear
hing for the proof,and hen
e shows the exploration of unsu

essful as wellas su

essful proof paths. In
ontrast, the user is oftenmost interested in the �nal proof itself, rather than themanner in whi
h the sear
h was
ondu
ted.2. The proof sear
h strategy of Prolog, with its forwardand ba
kward evaluation, already makes tra
ing a Pro-log exe
ution
onsiderably harder than tra
ing throughpro
edural programs. The
omplex s
heduling and�xed-point
omputing strategies of tabled resolutionmake this hard problem even worse.3. Tra
ing repeats, at a slower pa
e, what the original ex-e
ution did, and hen
e
onsiderably degrades the per-forman
e of a proof system.4. Tra
e-based debuggers provide no support for translat-ing the results of the tra
e (whi
h is at logi
 program

evaluation level) to the problem spa
e (e.g., tableaurule level).Visual tools [5, 10, 31℄
an be used to graphi
ally presentthe SLG forest and help alleviate the se
ond problem. How-ever, the other problems are fundamental to the approa
hof \wat
hing the system prove a goal" and hen
e remain.These limitations raise the following interesting questions.Can we re
onstru
t a proof/disproof for a goal after theevaluation for the goal is
omplete without reevaluating thegoal? Can the re
onstru
tion be done without impa
tingthe performan
e of the initial evaluation? Can the re
on-stru
ted proofs be mapped to the original problem domain:e.g., to
onstru
t the non-bisimilarity tableau for the exam-ple in Figure 1(a)? In this paper we present te
hniques thatanswer the above questions in the aÆrmative.
1.2.0.1 Proofs by Justification:.We propose the
on
ept of Justi�er for extra
ting proofsfrom the \footprints" of query evaluation left behind by thetabled logi
 programming engine. After query evaluation us-ing a tabled logi
 programming system, the
all (and answer)tables
ontain the lemmas that were tried (and/or proved).By inspe
ting the program text with these tables in hand,we
an e�e
tively re
onstru
t a proof (or suÆ
ient eviden
eto show the la
k of a proof) for a goal. Sin
e we use pre
om-puted results, we avoid sear
hing for proofs through pathsthat were unsu

essful in the initial run. Furthermore, we
olle
t the ne
essary eviden
e for presen
e or absen
e of aproof independent of the proof sear
h strategy. Moreover, theinformation used for the re
onstru
tion is already
omputedby the tabled evaluation engine and is available \for free"|i.e., without penalizing the original evaluation. Finally, there
onstru
tion is done by a logi
 program, and hen
e
anbe easily
on�gured to map proof stru
tures from the logi
programming level to the level of the en
oded problem.
1.3 Related WorkPfenning investigated the idea of
onstru
ting proof ob-je
ts in a proof system by evaluating an en
oding of theproof system in a meta-language Elf [25℄. Spe
i�
ally, Elfis a Prolog like language whose sear
h automati
ally
on-stru
ts proofs during query evaluation.For logi
 programs, a number of approa
hes to explain theresults of query evaluation have been proposed in the liter-ature. Algorithmi
 debugging te
hniques [28℄ explain theevaluation of a query by tra
ing the proof sear
h performedby SLD resolution. De
larative debugging te
hniques [20,24℄ assume a user-provided intended model of the givenprogram and then attempt to explain the unexpe
ted su
-
ess/failure of a query by �nding a program
lause whi
his false in the intended model. Assertion based debuggingte
hniques [18℄ perform program validation and debuggingby stati
 and dynami

he
king of user-provided assertions

q1

q

q2p1

p

b a b

forall(Y, trans(p,a,Y),
 nbisim(q1,Y))

forall(Y, trans(p,A,Y),
trans(q,A,X),

 nbisim(X,Y))

A/a, X/q1

nbisim(q,p)nbisim(p,q)

trans(p,A,X),
forall(Y, trans(q,A,Y),

nbisim(X,Y))

forall(Y, trans(q,b,Y),
nbisim(p1,Y))

nbisim(q,p)

A/b, X/p1

nbisim(p1,q2)

FAIL

nbisim(X,Y))

trans(p1,A,X),
forall(Y, trans(q2,A,Y),

FAIL

FAIL

nbisim(q2,p1)

nbisim(p1,q2)(a) (b)
nbisim(p,q)

 nbisim(q1,Y))
forall(Y, trans(p,a,Y),

nbisim(q,p)

trans(q,a,q1)

trans(p,a,Y)
fact

fail

p 6� q??yq 6� p??yq a!q1; fp0 j p a!p0g=fgfa
t(
) (d)Figure 2: Justifying non-bisimilarity relation : (a) Two non-bisimilar automata (b) Fragment of SLG forest(
) Justi�
ation (d) Tableau extra
ted from justi�
ation(whi
h are essentially partial spe
i�
ation of the intendedmodel of the program).Although justi�
ation is similar in spirit to the above ap-proa
hes in terms of their obje
tives it di�ers
onsiderablyfrom all them. First, it is done as a post-pro
essing stepafter query evaluation, and not along with the query eval-uation (as in algorithmi
 and assertion-based debugging)or before query evaluation (as in de
larative and assertion-based debugging). Therefore rather than showing the en-tire proof sear
h (as in algorithmi
 debugging), justi�
ationshows only those parts of the
omputation whi
h led to thesu

ess/failure of the query. Moreover justi�
ation does notdemand any
reative input from the user regarding the in-tended model of the program. This is parti
ularly usefulwhen we have en
oded a proof system as a logi
 program andwe are
onstru
ting nontrivial proofs in the proof system viaquery evaluation. The intended model of the program mightthen be too hard, even impossible to be guessed by the user.For example in the
ontext of model
he
king, the intendedmodel of the program will
ontain information about whi
hstates of the
on
urrent system satisfy
ertain given tempo-ral properties. Hen
e it is un
lear how su
h te
hniques
anbe s
aled from explaining logi
 programs to explaining proofsystems en
oded as logi
 programs.In the
ontext of dedu
tive database programs, [2℄ ex-plores the
onstru
tion of explanations. These explanations
onsist of proof trees based on the underlying proof strategy.Re
ently, [21℄ presented the idea of providing explanationsat several levels of abstra
tion. The explanations are
on-stru
ted using the exe
ution tra
e of the program. Notethat justi�
ation also extra
ts proofs at di�erent levels ofabstra
tion. However, the information required for justi�-

ation \
omes for free" sin
e they are available in the already
onstru
ted tables.
1.4 Summary of Results1. Intuitively justi�
ation
onstru
ts suÆ
ient eviden
efor the su

ess or failure of a query to a tabled logi
program. We formalize this intuitive
on
ept and de-s
ribe an eÆ
ient algorithm for extra
ting su
h a jus-ti�
ation from tables
reated during query evaluation(Se
tion 2).2. We show how to derive an eviden
e for the existen
eor absen
e of a tableau in terms of tableau proof rules,based on the justi�
ation of the logi
 program thaten
odes the tableau system (Se
tion 3).3. We des
ribe the
onstru
tion of a eviden
e generatorfor a real-life model
he
king system (XMC) based onthe justi�er des
ribed in Se
tion 2. We provide experi-mental results (in terms of sizes of proof stru
tures) todemonstrate the pra
ti
al utility of justi�ers in model
he
king (Se
tion 4).4. The
on
ept of justi�
ation forms a basis for a power-ful programming abstra
tion. We dis
uss this issue ingreater length in Se
tion 5.
2. JUSTIFICATION OF LOGIC PROGRAM

DERIVATIONSIn this se
tion, we des
ribe the fundamental aspe
ts of
onstru
ting a stru
ture,
alled a justi�
ation that explains

the truth value of an answer
omputed by tabled resolution.For simpli
ity of exposition, we begin by de�ning justi�
a-tion of queries over de�nite logi
 programs. We dis
uss howthe de�nition
an be extended to evaluation of normal logi
programs under well-founded semanti
s.
2.0.0.2 Notational Conventions:.We use P to denote logi
 programs; HB(P),M(P), M̂(P)to denote the Herbrand Base and least Herbrand model andperfe
t model of P [9℄ respe
tively; A and B to denote atomsor literals; � to denote a set of atoms or literals; � to denotea
onjun
tion of atoms (a goal is a
onjun
tion of atoms)or literals; � to denote substitutions; `�' to denote atomsubsumption (A � B for A subsumes B); and C to denotea
lause in a program. For a binary relation R, we denoteits (re
exive) transitive
losure by R�. 2Before des
ribing justi�
ation, we need to introdu
e somepreliminary notation for
apturing the truth assignments
omputed by tabled resolution. The tables at the end ofthe resolution are denoted by T = TC [TA, where TC arethe set of atoms stored in
all (or subgoal) tables and TAare the set of atoms stored in return (or answer) tables.Definition 1 (Truth Assignment). The truthassignment of atom A wr.t. tables T , denoted �(A;T), is:�(A;T) =8<: true A 2 TAfalse A 62 TA ^ 9A0 2 TC A0 � Aun
omputed otherwiseWe drop the parameter T and write the truth assignmentas �(A) whenever the tables are obvious from the
ontext.By soundness of tabled resolution, note that when tables Tresult from resolving a query over a program P , �(A;T) =true =) 8�A� 2 M(P) and �(A;T) = false =) 8�A� 62M(P) for all atoms A.
2.1 Structure of JustificationLet A be an answer to some query in program P , i.e.,�(A) = true. We
an
omplete one step in explaining thisanswer by �nding a
lause C su
h that (i) A uni�es withthe head of C, and (ii) ea
h literal B in the body of C has�(B) = true. If �(A) = false, we
an explain this failureby showing that for all
lauses C whose heads unify with A,there is at least one literal B in C su
h that �(B) = false.We
all su
h one-step explanations as a lo
ally
onsistentexplanations.Definition 2. Lo
ally
onsistent explanation for an atomA w.r.t. program P and table T , denoted by �(P;T)(A) is aset of sets of atoms s.t.1. If �(A) = true:�(P;T)(A) = f�1; �2; : : : ; �mg, with ea
h �i being a setof atoms fB1;B2; : : : ;Bng su
h that:(a) 8 1 � j � n �(Bj) = true, and(b) 9 C � A0:� � and a substitution � su
h thatA0� = A and �� � (B1;B2; : : : ;Bn)�.2. If �(A) = false:�(P;T)(A) = fLg, a singleton
olle
tion where L =fB1;B2; : : : ;Bng is the smallest set su
h that

p :- p.p :- q.q. p :- q, r.q :- p.q :- r.(a) (b)Figure 3: Example programs�(p) = f fpg; fqg g�(q) = f fg g �(p) = f fqg g�(q) = f fp;rg g�(r) = f fg g(a) (b)Figure 4: Lo
ally
onsistent explanations [(a) and(b)℄ for example programs in Figure 3(a) and (b)(a) 81 � j � n �(Bj) = false, and(b) 8 substitutions � and C � A0:� (B01;B02; : : : ; B0l),A0� = A� =) 91 � k � l su
h that B0k� 2 Land 8 1 � i < k �(B0i�) = true.We write �(P;T)(A) as �(A) whenever the program P and ta-ble T are
lear from the
ontext. In the above de�nition for�(A) su
h that �(A) = true (
ase 1), the se
ond
ondition1(b) states that an explanation in the
olle
tion forms aninstan
e of an r.h.s. of a
lause C whose head uni�es withA. The �rst
ondition ensures that all atoms in an expla-nation have a truth assignment of true. When �(A) = false(
ase 2), the two
onditions 2(a) and 2(b) ensure that forevery
lause C whose head uni�es with A (under substitu-tion �), there is a literal Bk on the r.h.s. of C su
h thatBk� has truth assignment false, and every earlier literal inC has truth assignment true. The restri
tion of L to be thesmallest su
h set ensures that L
ontains only those Bk�that are spe
i�ed by
ondition 2(b).From De�nition 2, and the soundness of tabled resolution,it follows that if A is used in resolution then �(A)
oin
ideswith the truth values of all atoms in the sets in �(A).Theorem 3 (Soundness of �). Let P be a programand T the tables after resolution of some query to P . Then8A �(A) 2 ftrue; falseg =) 8 L 2 �(A); B 2 L andground substitutions �; B� 2M(P) () A� 2M(P).Observe that, for an atom A, the di�erent sets in the
olle
tion �(A) represent di�erent
onsistent explanationsfor the truth or falsehood of A. For instan
e,
onsider theprograms in Figure 3(a) and the
orresponding �'s in Fig-ure 4(a). That �(p)
ontains fqg means that the truth of qalone is suÆ
ient to (lo
ally) explain the truth of p. In
on-trast, for the program in Figure 3(b), �(q)
ontains fp; rgwhi
h indi
ates that to explain the falsehood of q, one needsto explain the falsehoods of both fpg and frg. In this sense,one
an view the \set of sets" representation of lo
ally
on-sistent explanations as an en
oding of the dependen
ies indisjun
tive normal form.An answer A is explained by answers fB1;B2; : : : ;Bkgin �(A) and then (re
ursively) explaining ea
h Bi. The ex-planation
an be
aptured by a graph, whose edges are de-termined by lo
ally
onsistent explanations. When tabledresolution �nds that an answer A has �(A) = true, then

p#q#fa
t p#q. &an
estor r#fail(a) (b)Figure 5: Justi�
ation of p evaluated w.r.t. pro-grams in Figures 3(a) and (b), respe
tively
learly there is a �nite sequen
e of lo
ally
onsistent expla-nations that lead to fa
t (i.e. an atom B su
h that fg 2 �(B)and �(B) = true). We mark su
h a
on
lusion by using aspe
ial node labeled `fa
t'.Note that not all sequen
es of lo
ally
onsistent explana-tions may be �nite, even for A su
h that �(A) = true. Forinstan
e,
onsider the explanation sequen
es for query p overprogram in Figure 3(a). There is an in�nite sequen
e sin
efpg is in �(p). However, su
h
y
les represent \unfounded"proof paths and hen
e do not explain why �(p) = true.Hen
e, we develop a stronger
hara
terization of what
on-stitutes a justi�
ation. Before formally de�ning this notion,we develop a similar intuition for justi�
ation of false liter-als. For a goal A with �(A) = false, there are two distin
tways in whi
h tabled resolution rea
hes this
on
lusion:1. there are no
lause heads that
an unify with the givengoal A: i.e., fg 2 �(A).2. the goal A depends on itself, without a base
ase.We distinguish between these two s
enarios by marking the�rst node as `fail' and the se
ond as `an
estor'.In summary, we do not use
y
li
 explanations to justify atrue literal. In
ontrast,
y
li
 explanations des
ribe in�niteproof paths and
an be used to justify a false literal. Insteadof expli
itly representing these
y
les, however, we
hoose tokeep the justi�
ation as an a
y
li
 graph. Formally:Definition 4 (Justifi
ation). A justi�
ation for anatom A with respe
t to program P and table T , denoted byJ (A;P; T) is a dire
ted a
y
li
 graphG = (V;E) with vertexlabels
hosen from T [ffa
t;fail;an
estorg su
h that:1. G is rooted at A, and is
onne
ted2. (B1;fa
t) 2 E () fg 2 �(B1) ^ �(B1) = true3. (B1;fail) 2 E () fg 2 �(B1) ^ �(B1) = false4. (B1;an
estor) 2 E () �(B1) = false^�(B1) = fLg^ 9 B2 2 L s.t. (B2;B1) 2 E� _ B2 = B15. (B1;B2) 2 E ^ B2 2 T ^ �(B1) = false ()�(B1) = fLg ^ B2 2 L ^ (B2;B1) 62 E�6. (B1;B2) 2 E ^ B2 2 T ^ �(B1) = true =)9L 2 �(B1) s.t. B2 2 L ^ 8B0 2 L (B0;B1) 62 E�7. B1 2 V ^ �(B1) = true =) 9 unique L 2 �(B1) s.t.8B2 2 L (B1;B2) 2 E ^B2 2 T ^ (B2;B1) 62 E�The above de�nition uses two sets of
onditions for addingedges from a vertex in the justi�
ation graph. The �rst

set is based on �'s, while the se
ond set spe
i�es the global
onstraint that an edge
an be added only when no
y
les are
reated. In the above, rule 1 ensures that only informationrelevant to A, the answer being justi�ed, is present in thegraph. Rules 2 & 3 mark the end (leaf) states of derivations.Rules 4 & 5 ensures that the graph stays a
y
li
, while still
ontaining information about
y
li
 dependen
ies betweenfailed answers. Rules 6 & 7 sele
t, among the di�erent setsin �(B1), one that does not
ontain an an
estor to B1.The justi�
ation of the truth values of pw.r.t. programs inFigures 3(a) and (b) are given in Figures 5(a) and (b). Notethat the sele
tion of a single set out of �(B1) for
onstru
-tion means that the justi�
ation is an and-graph. Hen
e ajusti�
ation provides one eviden
e for the truth or falsehoodof a literal, even though the tabled evaluation may have ex-plored/provided many more eviden
es. In the following, weshow the \suÆ
ien
y" of a justi�
ation: that it
ontainsenough information to re
onstru
t a SLD derivation.
2.2 Justification and SLD resolutionWe now investigate the relationship between justi�
ationof an atom A in program P and the SLD tree(s) of A in P .For simpli
ity of exposition, we
onsider only propositionalprograms. Extension of our results to non-propositional pro-grams is straightforward. Let P be a program, A 2 HB(P)and T the table
reated by evaluating A in P . Our aim isto show that the justi�
ation J (A;P; T)
ontains suÆ
ienteviden
e for showing truth/falsehood of A in P .Suppose A 2M(P). Re
all that A 2M(P) i� there existsa su

essful SLD derivation of A in program P . Then thejusti�
ation J (A;P;T) is a dire
ted a
y
li
 graph whose:(i) nodes are labeled with ground atoms, (ii) root is labeledwith A, (iii) leaves are labeled with fa
t and (iv) the out-going ar
s of a node denote the appli
ation of a
lause inP . Thus, a SLD derivation of A in P
an be obtained bylinearizing the justi�
ation graph into a sequen
e of groundgoals (a goal is a
onjun
tion of atoms). Formally:Lemma 5. Let P be a program, A 2 M(P) and JA ajusti�
ation of A in P . Then there exists a su

essful SLDderivation of A in P whi
h
an be
onstru
ted from JA.Proof Sket
h: We
onstru
t the SLD derivation l(JA)where l, the linearization operator is de�ned as follows. LetG be a dire
ted a
y
li
 graph and let the root of G be A.Let the
hildren of A in G be B1; : : : ;Bn and the graphsrooted at B1; : : : ;Bn be G1; : : : ;Gn. Thenl(G) = A! (l(G1) ^ (B2 ^ : : : ^Bn))! : : :! l(Gn)where for any sequen
e of goals �1; : : : ; �k and goal � wehave (�1; : : : ; �k) ^ � = �1 ^ �; : : : ; �k ^ � 2Now suppose A 62M(P). Re
all that A 62M(P) i� thereexists a failed SLD tree of A in P , i.e., a SLD tree withonly �nitely failed or in�nite bran
hes. Re
all that in ajusti�
ation, a false atom is explained by one false bodyatom in ea
h of its
lause instan
es. On the other hand, ina SLD tree a false atom is explained with the
lause bodiesof the appli
able
lauses. Given a justi�
ation JA of atom Ain program P , we show the existen
e a failed SLD tree TA ofA whi
h uses the same eviden
e as JA. Let the
hildren ofA in justi�
ation JA be B1; : : : ;Bn. Then for all 1 � i � natom Bi appears in goal �i where �i is the body of oneof the
lauses of A. In the SLD tree TA the
hildren ofA are �1; : : : ; �n and we sele
t the atom Bi in goal �i forresolution (1 � i � n). Continuing in this way, we
an

onstru
t a SLD tree TA su
h that for every �nitely failedbran
h of TA the sequen
e of sele
ted atoms is a root-to-leafpath in JA and for every in�nite path of TA, the longestnon-repeating pre�x of the sequen
e of sele
ted atoms is aroot-to-leaf path in JA. Formally:Lemma 6. Let P be a program, A 62M(P) and JA a jus-ti�
ation of A in P . Then there exists a failed SLD tree TAof A in P s.t.(i) for every �nitely failed bran
h in TA: (A;�1 ^ A1 ^�01; : : : ; �n^An^�0n;fail) s.t. the sequen
e of sele
ted atomsis A;A1; : : : ;An, there exists a root-to-leaf path in JA:(A;A1; : : : ;An;fail).(ii) for every in�nite bran
h in TA: (A;�1^A1^�01; : : : ; �n^An ^ �0n; �n+1 ^ Ai ^ �0n+1; : : :) s.t. 1 � i � n, the se-quen
e of sele
ted atoms is A;A1; : : : ;An;Ai; : : : and theatoms A;A1; : : : ; An are distin
t, there exists a root-to-leafpath (A;A1; : : : ;An;an
estor) in JA.The
onne
tion between justi�
ation and SLD resolution isformally summarized in the following theorem. This theo-rem establishes that justi�
ation
ontains suÆ
ient eviden
eto explain the truth/falsehood of an atom.Theorem 7 (Suffi
ien
y of Justifi
ation). Let Pbe a program, A 2 HB(P) and JA a justi�
ation of A. IfA 2M(P) then a su

essful SLD derivation of A in P
anbe
onstru
ted from JA. If A 62M(P) then the sele
ted atomsequen
e of every path of a failed SLD tree
an be
onstru
tedfrom JA.
2.3 An Algorithm for JustificationNote that edges to an
estor are used to mark
y
li
 de-penden
ies between failed answers. There is usually a
hoi
eof whi
h dependen
ies to leave as edges in a justi�
ation andwhi
h to mark as an
estor. The optimal solution to thisproblem is NP-
omplete, by redu
tion from Feedba
k VertexSet [15℄. However, optimality itself is relatively unimportantin this
ontext: the proof sear
h done by the underlyingevaluation engine has a far greater impa
t on the size of thejusti�
ation graph. So we present a linear-time algorithmto
onstru
t a justi�
ation, based on depth-�rst-sear
h thatheuristi
ally eliminates \ba
k edges" whi
h
ontribute to
y-
les. We des
ribe the algorithm below.The justi�
ation algorithm is given in Figure 6. The al-gorithm treats the given program P and tables T as globalread-only data stru
tures. It monotoni
ally adds entries totwo other global stru
tures: the justi�
ation graph itself (V :set of verti
es, E: set of edges), and a marking (Done) onthe set of verti
es in the graph. The initial
all to Justify ismade with an empty justi�
ation graph and Done initializedto the empty set.The re
ursive algorithm builds the justi�
ation graph bytraversing it depth-�rst even as it is
onstru
ted. At anypoint, note that V is the set of \visited" verti
es, and Doneis the set of verti
es whose des
endents have been
ompletelyexplored. The algorithm maintains an important invariantthat for any
all, the parameter A is either unvisited, or isalready in Done. This invariant implies that (i) the algo-rithm terminates, and (ii) no
y
les are
reated in the jus-ti�
ation graph. This invariant
an be easily established bynoting that the set V �Done
ontains exa
tly those verti
esB that are an
estors to the
urrent vertex A. Moreover, ifevery set in �(A)
ontains a vertex that is an an
estor ofA, then A depends re
ursively on itself without a base
ase.

Hen
e, �(A) = false. This property is used by the algorithmfor pla
ing edges to an
estor.We de�ne k�(A)k=PL2�(A) jLj. Sin
e k�(A)k is boundedby the size of tables for any A, and there may be at mostk�(A)k outgoing edges from vertex A, the worst-
ase
om-plexity of the algorithm is O(jT j2). In fa
t, any justi�
ationalgorithm must be O(jT j2) in the worst
ase as demonstratedby the example program:Pworst = fpi :� pj j 1 � i; j � ngIn this program, the justi�
ation of any pi is quadrati
 in thesize of the tables generated by evaluating pi. It should, how-ever, be noted that �A2T k�(A)k, whi
h is a bound on thenumber of edges in a justi�
ation graph, is in turn boundedby the number of resolution steps needed. Hen
e, justi�
a-tion time is always bounded by time taken for resolution.
2.3.0.3 Example:.For the justi�
ation graph shown in Figure 2(
), the rootnode is nbisim(p;q). �(nbisim(p;q)) = ffnbisim(q;p)ggSin
e there is no an
estor nbisim(q,p)we pi
k this explana-tion and now re
ursively invoke Justify(nbisim(q,p)). Byusing the �rst
lause of nbisim we have �(nbisim(q;p)) =fftrans(q;a;q1);forall(Y;trans(p;a;Y);nbisim(q1;Y))gg.We re
ursively invoke Justify for both of these two trueatoms. These atoms are justi�ed by using predi
ate trans,the transition relation for the automata of Figure 2(a).
2.4 Justification for Normal Logic ProgramsThe notion of justi�
ation, as well as the algorithm wehave presented
an be easily extended to normal logi
 pro-grams evaluated under well-founded semanti
s [16℄.First of all, even for strati�ed programs, we need to
on-sider negative as well as positive literals when de�ning �'sand justi�
ation. We denote negative literals by not(A)where A is the
orresponding positive literal. Truth val-ues for negative literals is de�ned as �(not(A)) = :�(A).We de�ne �'s for positive literals as given in De�nition 2;for negative literals, we de�ne �(not(A)) to be ffAgg: i.e.,the truth/falsehood of not(A) will be explained in terms ofthe falsehood/truth of A. The
urrent statement of The-orem 3 will remain valid for positive literals provided we
onsider the perfe
t model M̂ (P) instead of the least Her-brand model M(P); the theorem
an be readily extendedto a

ommodate negative literals. The de�nition of justi�-
ation
an be extended by
onsidering not(A) as potentiallabel for verti
es if A 2 T .Re
all that well-founded semanti
s (WFS) is de�ned overa three-valued model, where ea
h literal is assigned a truthvalue of true, false or unde�ned. SLG resolution [6℄ andits implementations represent literals with unde�ned valuesas
onditional answers and true values as un
onditional an-swers. Hen
e, we
an split the answer table TA into a setof true (TAt) and unde�ned (TAu) answers. We
an nowextend De�nition 1 by setting �(A) = true if A 2 TAtand �(A) = unde�ned if A 2 TAu . The de�nitions of�(A) 2 ffalse;un
omputedg remain un
hanged.The most substantial extension to a

ommodate normalprograms will be the addition of lo
ally
onsistent explana-tions for unde�ned literals. To explain why a literal, say A,is unde�ned under WFS, one needs to show that the for ea
h
lause C in the program whose head uni�es with A, either(i) the body of C
ontains a false literal, or (ii) all literals in

algorithm Justify(A : atom)(* Global: P : program, (V;E): Justi�
ation, Done � V *)if (A 62 V) then (* A has not yet been justi�ed *)set V := V [fAglet �A 2 �(A) su
h that (�A \ V) � Doneif (�A exists) thenif (�A = fg) thenif (�(A) = true) thenset E := E [(A; fa
t)elseset E := E [(A; fail)else (* �A 6= fg *)for ea
h B 2 �A doset E := E [(A; Justify(B))else (* No su
h �A =) every set in �(A)
ontains an an
estor of A *)set E := E [(A; an
estor)let f�0Ag = �(A) (* note that �(A) will be false *)for ea
h B 2 (L0A � (V �Done)) doset E := E [(A; Justify(B))set Done := Done [fAgreturn Aelse (* A has been justi�ed *)return A Figure 6: Justi�
ation algorithmthe body of C are true or unde�ned. Moreover, there mustbe at least one
lause of type (ii). Hen
e the eviden
e for A'sunde�nedness will be �(A) = fLg provided L = �f [�tu,where �f is the set of all false literals from
lauses of type(i), and �tu is the set of all literals from
lauses of type (ii).Observe that the �'s of false and unde�ned literals are sin-gleton sets: there is only one way to justify them. This ob-servation immediately yields the following simple modi�
a-tion to the de�nition of justi�
ation to a

ommodate normalprograms: in rules 4 and 5 of De�nition 4 (page)
hangethe test �(B1) = false to �(B1) 2 ffalse;unde�nedg. Ine�e
t, by separating lo
al
on
erns of explanation to global
on
erns of justi�
ation, we have been able to a

ommodatenormal programs by suitably extending the (lo
al) notion of� alone. Moreover, note that Algorithm Justify (Figure 6)does not expli
itly test for the truth assignment of a lit-eral for adding edges spe
i�ed by rules 4{7 of De�nition 4and hen
e needs no modi�
ation for handling normal logi
programs.
2.5 Justifying in the Presence of BuiltinsWe have thus far assumed that all predi
ate symbols in aprogram are tabled. Many appli
ation programs
ontain amixture of tabled and non-tabled predi
ates. Justi�
ationof non-tabled predi
ates presents two immediate problems.First, justi�
ation introdu
es una

eptable overheads sin
ethe only way to determine the truth value of a goal (e.g.,to
ompute �) is to reevaluate the goal. Se
ond, non-tabledpredi
ates often involve non-logi
al
onstru
ts for whi
h jus-ti�
ation may be diÆ
ult or even impossible. We use thefollowing strategy for justifying programs that
ontain non-tabled predi
ates. We �rst ensure that non-tabled predi
atesare invoked from existing tabled predi
ates via new wrapperpredi
ates, whi
h are also tabled. We then provide justi�
a-tion rules to reason about the truth value of these wrapperpredi
ates. In the simplest
ase, the non-tabled predi
atesdo not in turn invoke tabled predi
ates, and the justi�
ationrules will treat the
orresponding wrapper predi
ates as adatabase of fa
ts. In more
omplex
ases, the justi�
ation

rules will hide the pro
edural
omponents of the non-tabledpredi
ates and give a logi
al view of its fun
tionality.For example,
onsider the forall predi
ate in the non-bisimulation
he
king program in Figure 1. This is a user-introdu
ed wrapper predi
ate whi
h is tabled. Logi
allyforall(X,G,H) represents the �rst order formula 8X G)H. Note that forall(X,G,H) is equivalent to not(g(X),not(h(X))), where g(X) and h(X) are de�ned in terms ofG and H respe
tively. Sin
e the equivalent form
an intro-du
e loops through negation, the underlying implementa-tion of forall will typi
ally use non-logi
al Prolog builtinssu
h as findall. The use of non-tabled predi
ates is typi-
ally motivated by su
h pragmati

onsiderations. However,note that sin
e justi�
ation is done after query evaluation,we
an
onsider the logi
al meaning of these builtins in-stead of their implementation, at least from the point ofview of justi�
ation. For instan
e, we
an
hoose to justifyforall(X,G,H) in terms of not(g(X), not(h(X))). The jus-ti�
ation rules| the mapping of \nonlogi
al" predi
ates totheir justi�able
ounterparts| are themselves en
oded as aset of Horn
lauses.The wrapper-based s
heme for justifying non-tabled pred-i
ates works well as long as these predi
ates do not requireany debugging. This assumption
learly holds for builtins.For programs
ontaining user de�ned tabled and non-tabledpredi
ates, we need to
ombine justi�
ation of tabled pred-i
ates with tra
e-based debugging of non-tabled predi
ates.Su
h an integration is a topi
 of future resear
h.
3. EXTRACTING HIGH-LEVEL PROOFSSo far, we have shown how we
an en
ode a proof sys-tem (Figure 1(a)) as a tabled logi
 program (Figure 1(b)),dispense proof obligations in the proof system by query eval-uation of the logi
 program (Figure 2(b)) and
onstru
t thejusti�
ation graph (Figure 2(
)) from the tables
onstru
tedduring query evaluation. The extra
tion of tableau proofs(Figure 2(d)) from justi�
ation graph is now shown.For our formalization we de�ne a proof system to be a set

(Logic Program, Query)

Tables

Proof Obligation)(Proof System, π

ϕ

evaluation justification

η

Evidence tree

Justification graph
γFigure 7: An ar
hite
ture for justi�
ationof proof rules; ea
h
onsists of a set of premises, a side
ondi-tion and a
on
lusion. We denote a rule by 1; : : : ; k S�! where 1; : : : ; k denote the premises, S the side
onditionand the
on
lusion of the rule. Axioms in our proof sys-tem are denoted as fa
t �! . We assume that the side
ondition of a proof rule is lo
ally testable. We now de�nethe notion of an eviden
e tree for a proof obligation in aproof system as follows:Definition 8 (Eviden
e Tree). Eviden
e tree for anobligationO in a proof system R, denoted �(O;R), is a �nitetree T s.t. root of T is O, and for any node in T :� R ` : Let 1; : : : ; k be the
hildren of . Then8i; 1 � i � k R ` i, and 1; : : : ; k S�! is aninstan
e of a rule in R whose side
ondition S is true.� R 6` : Let 1; : : : ; k be the
hildren of . Then8i; 1 � i � k R 6` i, and every instan
e of a rulein R whose side
ondition is true and
on
lusion is will have a premise 0 s.t. either 0 2 f 1; : : : ; kgor 0 appears as an an
estor of in T . If no su
hf 1; : : : ; kg exists then node has a
hild \fail".The
onditions in the above de�nition of an eviden
e treeare analogous to those imposed in the de�nition of lo
ally
onsistent explanation (De�nition 2). Furthermore, as inthe
ase of justi�
ation (De�nition 4), our notion of eviden
ealso imposes a �niteness restri
tion. However, note that wedo not retain any expli
it indi
ation of
y
les in the eviden
etree whereas in the justi�
ation graph
y
les are kept tra
kof by maintaining leaves labeled an
estor.An ar
hite
ture for justi�
ation shown in Figure 7, is anoverview of the intera
tion between a proof system and itslogi
 program en
oding. We en
ode the proof rules R anda proof obligation O as a logi
 program P and a query Qrespe
tively using an en
oding fun
tion '. We point outthat logi
 programs en
oding tableau systems (su
h as theones used in model
he
king [4, 33℄) are strati�ed in gen-eral. Hen
e, we assume that the en
oding fun
tion ' mapsa proof system to a (dynami
ally) strati�ed logi
 program[26℄. The semanti
s of a strati�ed logi
 program P is givenby its perfe
t model M̂(P) whi
h is a natural extension ofthe least Herbrand model semanti
s for de�nite programs.Moreover, the perfe
t model of any strati�ed program
oin-
ides with its unique stable model [17℄ as well as its 2-valuedwell-founded model [16℄.Definition 9 (En
oding Fun
tion). An en
odingfun
tion ' is a mapping from (Proof Obligation � Proof

System) to (Query � Strati�ed Logi
 Program) su
h thatfor any proof obligation O and proof system R'(O;R) = (Q; P)) (R ` O , Q 2 M̂(P))In our non-bisimilarity example, Figure 1 shows the map-ping ' of the proof system to its logi
 program en
oding.The non-bisimilarity relation 6� is en
oded as the predi
atenbisim. We use other predi
ates su
h as trans and forallto en
ode the side
onditions of the proof rules.On
e the proof obligation and proof system are en
odedas a query and a logi
 program, we
onstru
t the justi�-
ation graph of the query. This is shown as fun
tion
 inFigure 7 and is
omputed by tabled evaluation followed byjusti�
ation. Finally, we need to map the justi�
ation graphto an eviden
e tree. This is done via the extra
tion fun
tion� (see Figure 7). Our de�nition of � is dependent on theen
oding fun
tion ' sin
e � in some sense undoes the e�e
tof '. Spe
i�
ally, the e�e
t of ' is to map one appli
ationof a proof rule in an eviden
e tree to several logi
 programderivation steps. On the other hand, � maps several steps inthe justi�
ation graph to a single node in the eviden
e tree.We assume '(O;R) = ('l(O); 'r(R)) = (Q; P). Thus, 'lis a mapping from proof obligations to ground atoms and 'ris a mapping from a proof system to a logi
 program. Wefurther assume that 'r maps ea
h proof rule to a uniqueset of program
lauses. Then there exists a partial fun
tion'�1r from program
lauses to proof rules s.t. if 'r(�) =fC1; : : : ; Ckg for some rule � and
lauses fC1; : : : ; Ckg then'�1r (Ci) = � for all 1 � i � k. Given a justi�
ation graph J ,in order to
onstru
t an eviden
e tree we need to lo
ate theuse of those program
lauses for whi
h '�1r is de�ned. Wethen repla
e the use of su
h a program
lause C with theuse of the
orresponding proof rule '�1r (C). By repeatedlyapplying '�1r to justi�
ation graph J starting from the rootof J , we obtain �(J). Formally, we de�ne � as follows:Definition 10 (Extra
tion Fun
tion). Let R be agiven proof system and 'r(R) = P . For any proof obligationO, let JO denote the justi�
ation of query 'l(O) in programP . Then �(JO) is a tree
onstru
ted as follows:1. the root of �(JO) is O.2. (a) If 'l(O) 2 M̂(P), let the
hildren of 'l(O) in JObe obtained by applying program
lause C 2 P . LetO1; : : : ;Ok be the premises in the
orresponding proofrule '�1r (C). Then �(JO1); : : : ; �(JOk) are the sub-trees of O in JO .(b)if 'l(O) 62 M̂(P), let the
hildren of 'l(O) in JO bebody literals from
lause instan
es fC1�1; : : : ; Ck�kg.For all 1 � i � k, let Oi be a premise of '�1r (Ci)�is.t. 'l(Oi) 62 M̂(P). Then the subtrees of O in JO are�(JO1); : : : ; �(JOk).As shown in Figure 7, we
onstru
t the eviden
e of a proofobligation in a proof system by applying the following stepsin sequen
e: (a) apply the en
oding fun
tion ' to map theproof obligation and the proof system to a query and a logi
program (b) apply fun
tion
 to
ompute the justi�
ationof the query in the logi
 program (
) apply the extra
tionfun
tion � to the justi�
ation to obtain the eviden
e.Theorem 11. For any proof system R and proof obliga-tion O, �(
('(O;R))) is an eviden
e tree.

The proof is by indu
tion on size of the
omputed eviden
e.(Details are skipped.)Let us revisit the non-bisimilarity example. '�1r mapsthe �rst
lause of nbisim to proof rule (1) and the se
ond
lause of nbisim to proof rule (2) of Figure 1(a). Now,let us
onsider the justi�
ation
onstru
ted for the querynbisim(p, q) given in Figure 2(
). The �rst step in thejusti�
ation of nbisim(p,q)
orresponds to an appli
ationof the se
ond
lause for nbisim. Using '�1r , we map it to anappli
ation of proof rule (2). Applying proof rule (2) to theproof obligation p 6� q we obtain the proof obligation q 6� p.Now, the justi�
ation of nbisim(q,p) is done by applyingthe �rst
lause of nbisim. Again using '�1r we map it to anappli
ation of proof rule (1). Applying proof rule (1) on q 6�p we obtain no new obligations therefore our eviden
e tree
onstru
tion is
ompleted. The
onstru
ted eviden
e tree isshown in Figure 2(d).
4. APPLICATION TO MODEL CHECKINGModel
he
king [8℄ is an automati
 te
hnique for verify-ing if a �nite-state
on
urrent system spe
i�
ation satis-�es a property expressed as a temporal logi
 formula. In[27℄ we had demonstrated the feasibility of using logi
 pro-gramming for building
exible and eÆ
ient model
he
k-ers. In parti
ular, using the XSB tabled logi
 program-ming system we developed XMC, a lo
al model
he
ker fora CCS-like value-passing system spe
i�
ation language andthe modal mu-
al
ulus temporal logi
. XMC is written un-der 200 lines of tabled Prolog
ode that dire
tly en
odesthe semanti
s of CCS and modal mu-
al
ulus spe
i�ed astableau rules. Despite the high-level nature of XMC's imple-mentation, its performan
e is
omparable to that of highlyoptimized model
he
kers su
h as Spin [19℄ and Mur' [11℄ onexamples sele
ted from the ben
hmark suite in the standardSpin distribution.Model
he
king in XMC
orresponds to evaluating a top-level query that denotes the temporal property of interest.The query su

eeds whenever the system satis�es the prop-erty. To explain the su

ess or failure of the query we use theXMC justi�er, developed based on the te
hniques des
ribedin this paper.1 In this se
tion we sket
h the appli
ationof justi�
ation to logi
 programming based model
he
king.We also provide experimental eviden
e of the e�e
tivenessof justi�
ation in the setting of model
he
king.For simpli
ity of exposition we will use CTL, a bran
h-ing time temporal logi
 [13℄ to illustrate the appli
ation ofjusti�
ation to model
he
king. As is usual in CTL model
he
king we will assume that the system is spe
i�ed as aKripke stru
ture [22℄, whi
h is a 3-tuple (S; R;L) with Sdenoting the set of states, R the transition relation and Lthe valuation fun
tion that assigns true=false values to theatomi
 propositions asso
iated with the states. For ease ofunderstanding the material in this se
tion we brie
y reviewthe essential aspe
ts of CTL model
he
king. (See [7℄ foran ex
ellent introdu
tion to this topi
.)Con
eptually CTL formulas
an be viewed as des
ribingproperties over
omputation trees that are formed by des-ignating a state in the Kripke stru
ture as the initial stateand then unfolding the stru
ture into an in�nite tree. CTLformulas are used to spe
ify safety and liveness properties1The XMC system with the justi�er is freely available fromhttp://www.
s.sunysb.edu/�lm
.

:- table models/2.models(S, and(F1,F2)) :- models(S, F1),models(S, F2).models(S, ef(F)) :- models(S, F).models(S, ef(F)) :- trans(S, T), models(T, ef(F)).models(S, af(F)) :- models(S, F).models(S, af(F)) :- forall(T, trans(S,T),models(T, af(F))).models(S, ag(F)) :- negate(F, NF),tnot(models(S, ef(NF)))....Figure 8: CTL model
he
ker as a logi
 programof
on
urrent systems. They are built from atomi
 proposi-tions, ^;_;: and the temporal
onne
tives su
h as EF,AG,AF, et
. The path quanti�ersA and E des
ribe the bran
h-ing stru
ture in the
omputation tree. Spe
i�
ally, A is usedin a parti
ular state to spe
ify that all of the paths startingat that state have some property while E spe
i�es that theproperty holds for some path. The temporal operators de-s
ribe properties of a path through the tree. For example, F(\eventually in the future") operator asserts that a propertywill hold at some state on the path whereas the G (\alwaysglobally") operator spe
i�es that a property holds at everystate on the path.Figure 8 is a fragment of a CTL model
he
ker en
odedas a tabled logi
 program. It is a straightforward en
od-ing of the semanti
s of CTL. Note that models(S, F) istrue whenever S j= F, i.e. S satis�es the temporal prop-erty F. The trans/2 predi
ate en
odes the transition rela-tion of the Kripke stru
ture. The tnot/1 is the negationoperation for tabled predi
ates. The forall/3 is a user-de�ned predi
ate for evaluating universally quanti�ed �rst-order formulae. Thus forall(T, trans(S, T), models(T,af(F))) denotes the �rst-order formula 8T trans(S;T))models(T;af(F)). To test if a state s satis�es a formula f,one simply asks the query :- models(s,f). The answer ta-bles
reated during query evaluation are post-pro
essed bythe justi�er to explain the yes/no answer to the query.Figure 9 illustrates the justi�
ation of the CTL formulaAGp that asserts that in every future state along all paths palways holds. This formula is false for the Kripke stru
turein Figure 9(a) whereas it is true for the one in Figure 9(
).The
orresponding justi�
ation for both these
ases, derivedusing the te
hniques in Se
tion 2, is shown in Figure 9(b)and Figure 9(d) respe
tively. Using the te
hniques in Se
-tion 3 one
an transform the above justi�
ation done at thelevel of the logi
 program into one in terms of the tableaurules for the CTL model
he
ker. Details are omitted.
4.1 Justification in Model CheckingThe en
oding of the CTL model
he
ker in Figure 8
en-ters around two predi
ates: trans, en
oding the transitionalsemanti
s of Kripke stru
tures, and models, de�ning whena state in the Kripke stru
ture models a given CTL for-mula. By appropriately rede�ning the trans and modelspredi
ates logi
 programming based model
he
kers for othersystem des
ription languages and other temporal logi
s
anbe readily obtained. In fa
t the en
oding of the CTL model
he
ker was obtained in this fashion from our XMC model
he
ker that is designed for value passing CCS and the modalmu-
al
ulus temporal logi
. More re
ently, we retargetedXMC to linear temporal logi
 (LTL) by rede�ning modelsin a

ordan
e with the proof system given in [3℄. The larger

p

p

p

s0

s1
s3

s2

models(s0, ag(p))

tnot(models(s0, ef(not(p))))

models(s0, ef(not(p))

trans(s0,s1) models(s1, ef(not(p)))

models(s3, not(p))

fact

trans(s1,s3) models(s3, ef(not(p)))(a) (b)
p

p

p

s0

s1

s2

models(s0, ag(p))

tnot(models(s0, ef(not(p)))

models(s0, ef(not(p))

ancestor

models(s2, ef(not(p))) models(s1, ef(not(p)))

negate(p, not(p))

fact

ancestor(
) (d)Figure 9: Example to illustrate justi�
ation of model
he
king queriesimpli
ation of the retargeting exer
ise is that sin
e justi�-
ation is a generi
 te
hnique for explaining the results ofquery evaluation one
an similarly generate justi�ers for allof these retargeted model
he
kers.Note that model
he
kers for both linear time tempo-ral logi
 (e.g. SPIN [19℄) as well as bran
hing time (e.g.SMV [22℄) present a
ounterexample to the user whenevers 6j= f. But no additional feedba
k is given to the user forthe other
ase when s j= f. Justi�
ation di�ers from themin two respe
ts. First, it is not restri
ted to any single tem-poral logi
. It en
ompasses both linear and bran
hing timelogi
. Se
ondly, it provides eviden
e not only when a formulais false but also when it is true. Justi�
ation goes beyondmerely giving a yes/no answer to the model
he
king ques-tion. It generalizes the traditional notion of
ounterexamplegeneration in model
he
king to eviden
e generation.
4.2 Experimental ResultsWe have built a justi�er for our XMC model
he
ker. Ithas been in operation for several months now. We havefound it to be useful for qui
kly spotting bugs in spe
i�
a-tions.In Table 1 we present experimental results
ontrastingthe sizes of the run-time tra
e produ
ed by a tra
e-baseddebugger and the eviden
e produ
ed by the justi�er.2 Forthe run-time tra
e we measure the size of the SLG forest
reated during query evaluation in the XSB tabled logi
 pro-2The sizes shown were
olle
ted by suppressing the explana-tion of
ertain predi
ates not relevant for explanation of themodels query from both the justi�er as well as the tra
er.

System Formula SLG Forest Justi�
ationSize Sizemeta-lo
k(2,1) mutex 6400 890meta-lo
k(2,2) mutex 103K 14Ki-proto
ol(1) livelo
k 83K 2Ki-proto
ol(2) livelo
k 602K 13KTable 1: Experimental Datagramming system [34℄; for justi�
ation we measure the sizeof the justi�
ation DAG. For illustration we use two real-life proto
ols: the GNU UUCP i-proto
ol [12℄ and the Javameta-lo
king proto
ol [1℄. The i-proto
ol is an optimizedsliding window proto
ol for �le transfers over serial linesand is part of the GNU UUCP proto
ol sta
k. The Javameta-lo
king proto
ol is an eÆ
ient proto
ol, developed bySun Mi
rosystems, for syn
hronizing a

ess to obje
ts bythreads. The k in i-proto
ol(k) denotes window size k andthe i; j pair in Metalo
k(i,j) denotes i threads and j obje
ts.In i-proto
ol we show the results of �nding a livelo
k whi
hrequires traversing only a fragment of the state spa
e of the
on
urrent system. In meta-lo
king proto
ol, we show theproof size for the mutual ex
lusion property whi
h requirestraversing the entire state spa
e.Note that whenever the formula is true the justi�er
on-stru
ts the eviden
e based on just the path that su

eedswhereas the SLG forest in
ludes all the failing paths. Thusthe di�eren
e in sizes between the SLG forest and justi�
a-tion is more dramati
 in i-proto
ol (with livelo
k present)

where the formula is true than in Metalo
k where the for-mula is false. In
ases where the formula is false the justi�erdoes not use the true literals for eviden
e thereby
ontribut-ing to the di�eren
e between the two sizes. It is noteworthyto observe that the di�eren
e between the two sizes be
omeseven more pronoun
ed as the system size in
reases. This isbe
ause as the system size grows so does the number of bothfailing paths as well as literals that su

eed.Justi�er provides su

in
t eviden
e that makes it rela-tively easy to
omprehend the results of the model
he
ker.Sin
e it is
onstru
ted as a post-pro
essing step the justi-�
ation DAG is built in its entirety. Hen
e, by providingme
hanisms to navigate the DAG on-demand the justi�erprovides additional opportunities for the user to inspe
t onlyinteresting parts of the justi�
ation DAG. Su
h me
hanisms
an in
lude existing te
hniques from traditional debuggingsu
h as setting break points, leap, et
. The utility of thesete
hniques has been amply borne out with our own experi-en
e in using the XMC justi�er whose implementation hasin
orporated some of them.
5. DISCUSSIONSWe proposed the
on
ept of justi�
ation to explain thesu

ess/failure of a query to a logi
 program. The justi�er
onstru
ts su

in
t eviden
e by post-pro
essing the tables
reated during query evaluation. We showed how to ele-vate justi�
ation of logi
 programs to tableau systems andprovided eviden
e of its utility in model
he
king.The
on
ept of justi�
ation is also useful in other ap-pli
ations. Below we dis
uss its role in programming. Inthe evaluation and justi�
ation of tableau systems we
an
learly dis
ern two distin
t albeit separate phases { a queryevaluation phase where we sear
h for the existen
e of a su
-
essful tableau and a justi�
ation phase where we
onstru
teviden
e based on the out
ome of the sear
h. Doing anexisten
e sear
h followed by a
onstru
tion pro
ess o�ers asimple yet powerful
omputing paradigm.As an example,
onsider the problem of
onstru
ting aparse tree from
ontext free grammars (CFG). It well knownhow to build De�nite Clause Grammar (DCG) parsers forre
ognizing CFGs in
ubi
 time (assuming the grammar isin Chomsky Normal Form). But it is rather diÆ
ult to
on-stru
t a parse tree eÆ
iently without employing
omplexen
oding tri
ks [32℄. We
an readily
ast the parse tree
onstru
tion of a given string as one of sear
hing for theexisten
e of a parse tree followed by
onstru
ting one if itexists. In the �rst step, the CFG is en
oded as a DCG ina simple and straightforward manner. Testing if a string isparseable then
orresponds to query evaluation of this DCGen
oding in a tabled logi
 programming system. If the stringis parseable, then in the se
ond step we
onstru
t the evi-den
e of the parse by invoking the justi�er. This results inthe parse tree, whi
h is
onstru
ted in linear time. Indeedwe have used our justi�er tool for eÆ
ient
onstru
tion ofparse trees for strings in
ontext free grammars en
oded asDCG in the XSB tabled logi
 programming system [34℄.Thus the sear
h and
onstru
t paradigm provides an el-egant programming abstra
tion that
an bring
on
eptualsimpli
ity to the formulation and evaluation of
ertain pro-gramming tasks. The justi�er makes su
h a programmingabstra
tion feasible, by providing an eÆ
ient implementa-tion s
heme for the abstra
tion.

6. ACKNOWLEDGMENTS:This work was partially supported by NSF grants CCR-9711386, CCR-9876242 and EIA-9705998. We thank DavidS. Warren for a preliminary implementation of a justi�er forpropositional programs, and for valuable dis
ussions duringthe design of the XMC justi�er.
7. REFERENCES[1℄ O. Agesen, D. Detlefs, A. Garthwaite, R. Knippel,Y. S. Ramakrishna, and D. White. An eÆ
ientmeta-lo
k for implementing ubiquitoussyn
hronization. In Pro
eedings of OOPSLA, 1999.[2℄ T. Arora, R. Ramakrishnan, W.G. Roth, P. Seshadri,and D. Srivastava. Explaining program exe
utions indedu
tive systems. In Pro
eedings of DOOD, LNCS760, 1993.[3℄ G. S. Bhat, R. Cleaveland, and O. Grumberg. EÆ
ienton-the-
y model
he
king for CTL�. In LICS'95,pages 388{397, San Diego, July 1995. IEEE ComputerSo
iety Press.[4℄ J. C. Brad�eld. Verifying Temporal Properties ofSystems. Birkhauser, 1992.[5℄ M. Carro, L. Gomez, and M. Hermenegildo. Someparadigms for visualizing parallel exe
ution of logi
programs. In Intl. Conf. on Logi
 Programming, 1993.[6℄ W. Chen and D.S. Warren. Tabled evaluation withdelaying for general logi
 programs. Journal of ACM,43(1):20{74, 1996.[7℄ E. M. Clarke, O. Grumberg, and D. Peled. ModelChe
king. MIT Press, 1999.[8℄ E.M. Clarke, E.A. Emerson, and A.P. Sistla.Automati
 veri�
ation of �nite-state
on
urrentsystems using temporal logi
 spe
i�
ations. ACMTransa
tions on Programming Languages andSystems, 8(2), 1986.[9℄ Subrata K. Das. Dedu
tive Databases and Logi
Programming. Addison-Wesley, 1992.[10℄ T. Diaz and E. Lusk. A graphi
al tool for observingthe behavior of parallel logi
 programs. In Symposiumon Logi
 Programming, 1987.[11℄ D. L. Dill. The Mur' veri�
ation system. In R. Alurand T. A. Henzinger, editors, Computer AidedVeri�
ation (CAV '96), volume 1102 of Le
ture Notesin Computer S
ien
e, pages 390{393, New Brunswi
k,New Jersey, July 1996. Springer-Verlag.[12℄ Y. Dong, X. Du, Y. S. Ramakrishna, C. R.Ramakrishnan, I.V. Ramakrishnan, S. A. Smolka,O. Sokolsky, E. W. Stark, and D. S. Warren. Fightinglivelo
k in the i-Proto
ol: A
omparative study ofveri�
ation tools. In TACAS, volume LNCS 1579,1999.[13℄ E. A. Emerson. Temporal and Modal Logi
 - inHandbook of Theoreti
al Computer S
ien
e: VolumeB, Formal Models and Semanti
s. North-Holland Pub.Co./MIT Press, 1990.[14℄ M. Fitting. Proof methods for modal and intuitionisti
logi
s. Reidel, 1983.[15℄ M. Garey and D.S. Johnson. Computers andIntra
tability. Freeman, 1979.[16℄ A. Van Gelder, K.A. Ross, and J.S. S
hlipf.Unfounded sets and well-founded semanti
s for

general logi
 programs. Journal of the ACM,38(3):620{650, 1991.[17℄ M. Gelfond and V. Lifshitz. The stable modelsemanti
s for logi
 programming. In InternationalConferen
e and Symposium on Logi
 Programming,pages 1070{1080, 1988.[18℄ M. Hermenegildo, G. Puebla, and F. Bueno. UsingGlobal Analysis, Partial Spe
i�
ations, and anExtensible Assertion Language for Program Validationand Debugging, pages 161{192. 1999.[19℄ G. J. Holzmann. The model
he
ker SPIN. IEEETransa
tions on Software Engineering, 23(5):279{295,May 1997.[20℄ J.W. Lloyd. De
larative error diagnosis. NewGeneration Computing, 5(2):133{154, 1987.[21℄ S. Mallet and M. Du
asse. Generating dedu
tivedatabase explanations. In Pro
eedings of ICLP, pages154{168, 1999.[22℄ K. L. M
Millan. Symboli
 Model Che
king. KluwerA
ademi
, 1993.[23℄ R. Milner. Communi
ation and Con
urren
y.International Series in Computer S
ien
e. Prenti
eHall, 1989.[24℄ L. Naish, P.W. Dart, and J. Zobel. The NU-prologdebugging environment. In ICLP, pages 521{536,1989.[25℄ Frank Pfenning. Logi
 Programming in the LF logi
alframework, pages 149{181. Cambridge UniversityPress, 1991.

[26℄ T.C. Przymusinski. Every logi
 program has a naturalstrati�
ation and an iterated least �xed point model.In Prin
iples of DataBase Systems, pages 11{21, 1989.[27℄ Y.S. Ramakrishna, C.R. Ramakrishnan, I.V.Ramakrishnan, S.A. Smolka, T. Swift, and D.S.Warren. EÆ
ient model
he
king using tabledresolution. In CAV, LNCS 1254, 1997.[28℄ Ehud Y. Shapiro. Algorithmi
 program diagnosis. InPOPL, 1982.[29℄ C.P. Stirling and D.J. Walker. Lo
al model
he
kingin the modal mu-
al
ulus. In Pro
eedings ofTAPSOFT, LNCS 351, pages 369{382, 1989.[30℄ H. Tamaki and T. Sato. OLDT resolution withtabulation. In International Conferen
e on Logi
Programming, pages 84{98, 1986.[31℄ R. Vaupel, E. Pontelli, and G. Gupta. Visualization ofand/or-parallel exe
ution of logi
 programs. In Intl.Conf. on Logi
 Programming, 1997.[32℄ D.S. Warren. Programming in Tabled Prolog. DraftBook : Available athttp://www.
s.sunysb.edu/~warren/xsbbook, 1999.[33℄ G. Winskel. Model
he
king the modal �
al
ulus. InPro
eedings of ICALP, 1989.[34℄ XSB. The XSB logi
 programming system v2.2, 2000.Available from http://xsb.sour
eforge.net/.

