
Good formal structures for flat meromorphic
connections, III: Towards functorial modifications

Kiran S. Kedlaya

unstable draft ; version of February 14, 2010

Abstract
Given a formal flat meromorphic connection over an excellent scheme over a field of

characteristic zero, we proved existence of good formal structures and a good Deligne-
Malgrange lattice after suitably blowing up. For the corresponding situation over a
complex analytic space, one immediately obtains the existence of suitable blowups lo-
cally, but it is not clear that these blowups can be glued together. We outline an
approach to constructing a global blowup by making the result for excellent schemes
functorial for regular morphisms. However, the approach remains conditional on res-
olution of a problem of birational geometry (canonical determination of nef Cartier
b-divisors).

Introduction

The Hukuhara-Levelt-Turrittin decomposition theorem gives a classification of differential
modules over the field C((z)) of formal Laurent series resembling the decomposition of
a finite-dimensional vector space equipped with a linear endomorphism into generalized
eigenspaces. It implies that after adjoining a suitable root of z, one can express any differen-
tial module as a successive extension of one-dimensional modules. This classification serves
as the basis for the asymptotic analysis of meromorphic connections around a (not neces-
sarily regular) singular point. In particular, it leads to a coherent description of the Stokes
phenomenon, i.e., the fact that the asymptotic growth of horizontal sections near a singu-
larity must be described using different asymptotic series depending on the direction along
which one approaches the singularity. (See [36] for a beautiful exposition of this material.)

The purpose of this paper, and its prequels [17, 18], is to give some higher-dimensional
analogues of the Hukuhara-Levelt-Turrittin decomposition for irregular flat formal mero-
morphic connections on complex analytic or algebraic varieties. (The regular case is already
well understood by work of Deligne [6].) We do not discuss asymptotic analysis or the Stokes
phenomenon; these have been treated in the two-dimensional case by Sabbah [30] (building
on work of Majima [25]), and one expects the higher-dimensional case to behave similarly.

In the remainder of this introduction, we recall what was established in [17] and [18],
then explain what is added in this paper.
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0.1 Resolution of turning points

In [17], we developed a numerical criterion for the existence of a good decomposition (in
the sense of Malgrange [26]) of a formal flat meromorphic connection at a point where
the polar divisor has normal crossings. This criterion is inspired by the treatment of the
original decomposition theorem given by Robba [29] using spectral properties of differential
operators on nonarchimedean rings; our treatment depends heavily on joint work with Xiao
[16] concerning differential modules on some nonarchimedean analytic spaces.

We then applied this criterion to prove a conjecture of Sabbah [30, Conjecture 2.5.1]
concerning formal flat meromorphic connections on a two-dimensional complex algebraic or
analytic variety. We say that such a connection has a good formal structure at some point
if it acquires a good decomposition after pullback along a finite cover ramified only over the
polar divisor. In general, even if the polar divisor has normal crossings, one only has good
formal structures away from some discrete set, the set of turning points. However, Sabbah
conjectured that one can replace the given surface with a suitable blowup in such a way that
the pullback connection admits good formal structures everywhere. Such a blowup might
be called a resolution of turning points ; we constructed it using the numerical criterion plus
some analysis on a certain space of valuations (called the valuative tree by Favre and Jonsson
[9]).

In [18], we constructed resolutions of turning points for formal flat meromorphic con-
nections on excellent schemes of characteristic zero, which include algebraic varieties of all
dimensions over any field of characteristic zero. This combined the numerical criterion of
[17] with a more intricate valuation-theoretic argument, based on the properties of one-
dimensional Berkovich nonarchimedean analytic spaces.

We also obtained a partial result for complex analytic varieties, using the fact that
the local ring of a complex analytic variety at a point is an excellent ring. Namely, we
obtained local resolution of turning points, i.e., we only construct a good modification in
a neighborhood of a fixed starting point. For excellent schemes, one can always extend
the resulting local modifications, by taking the Zariski closure of the graph of a certain
rational map, then take a global modification dominating these. However, this approach is
not available for analytic varieties.

0.2 Functorial modifications

To remedy this problem, we would like to refine our construction for excellent schemes, to
obtain resolutions of turning points which are functorial for regular morphisms on the base
space. This would include open immersions, so the local modifications will then be forced
to patch together to give a global modification achieving good formal structures everywhere,
even in the complex analytic setting. (Here the adjective regular does not carry its colloquial
meaning of simply emphasizing that the morphism really is a true morphism of schemes,
and not a rational morphism! Rather, it means that the morphism is flat with geometrically
regular fibres; for instance, any smooth morphism is regular.)

The possibility of constructing functorial resolutions of turning points is suggested by
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the corresponding situation for the problem of resolution of singularities. It is possible to
give a resolution of singularities for quasi-excellent schemes over a field of characteristic zero
which is functorial for regular morphisms; this has been done recently by Temkin [33], using
the resolution algorithm for complex algebraic varieties given by Bierstone and Milman [1],
[2]. Similarly, Temkin has also given a functorial embedded resolution of singularities for
quasi-excellent schemes over a field of characteristic zero [34].

Beware that functorial resolution of singularities is sometimes called canonical resolution
of singularities, but this terminology is misleading because there is no uniqueness property.
For instance, Temkin’s proofs can in principle be adapted to other functorial resolution
algorithms for complex analytic varieties (several of which are described in [12]); this should
lead to different (but still functorial) nonembedded and embedded resolutions of singularities
for quasi-excellent schemes over a field of characteristic zero.

0.3 Irregularity on Riemann-Zariski space

It is not straightforward to modify the construction of resolutions of turning points from [18]
to obtain functoriality for regular morphisms, since the construction is highly local in nature.
A better approach is to take the existence of nonfunctorial resolutions of turning points as
a black box, then make further use of the numerical criterion for good formal structures to
make a better construction.

Consider a meromorphic differential module E on an excellent scheme. After Malgrange,
we construct from the differential module a canonical function, the irregularity, on the set
of exceptional divisors on local modifications of the base space. One may view this function
as a Weil divisor on the Riemann-Zariski space in the language of Boucksom-Favre-Jonsson
[3], or as a b-divisor in the language of Shokurov [31].

In this language, the numerical criterion for good formal structures proved in [17] asserts
that E admits good formal structures everywhere if and only if the irregularity functions
of both E and End(E) are computed by a certain Cartier divisor on the base space. The
existence of a resolution of turning points then implies that the irregularity b-divisor is
computed by a Cartier divisor on some blowup of the original space, i.e., it is a Cartier
b-divisor.

One can say somewhat more about the irregularity b-divisor. In order to construct
functorial resolutions of turning points, we would like to know that the irregularity b-divisor
is relatively semiample, i.e., that it is a nonnegative rational multiple of the Cartier b-divisor
arising from some coherent fractional ideal sheaf on the base space. This turns out to be
somewhat difficult, due to the slippery nature of the semiample condition. What we can
show is the weaker statement that the irregularity b-divisor is relatively nef, that is, it is a
limit (for an appropriate topology) of relatively semiample Cartier b-divisors. This follows
easily from the spectral interpretation of irregularity.
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0.4 The functorial determination problem

Given our inability to establish that irregularity b-divisors are semiample, our approach to
functorial resolutions of turning points founders on a problem of birational geometry which
has nothing to do with differential modules. Namely, given a Cartier b-divisor on an excellent
scheme X over a field of characteristic zero, one must construct a modification of X on which
this b-divisor is defined by a Cartier divisor, in a manner functorial for regular morphisms
on X. We call this the functorial determination problem for Cartier b-divisors.

It may be helpful to restate this problem without reference to b-divisors. Consider triples
(X, f,D) in which X is an excellent scheme over a field of characteristic zero, f : Y → X
is a modification, and D is a Cartier divisor on Y . (We only consider integral Cartier
divisors here, but the corresponding problems for rational or real Cartier divisors may also
be considered.) The problem is to assign to each triple a pair (g, E) with g : Z → X another
modification and E a Cartier divisor on Z, subject to the following conditions.

(a) If (X, f,D) 7→ (g, E), then the pullbacks of D and E to Y ×X Z coincide.

(b) If h : X ′ → X is a regular morphism and (X, f,D) 7→ (g, E), then (X ′, h∗(f), h∗(D)) 7→
(h∗(g), h∗(E)).

(c) If (X, f,D) 7→ (g, E) and f ′ : Y ′ → Y is a modification, then (X, f ◦ f ′, (f ′)∗(D)) 7→
(g, E) also.

It is condition (c) that prevents the trivial solution (g, E) = (f,D).
If one restricts to the triples in which D is f -semiample, then there is a natural solution

of the functorial determination problem. Namely, for m sufficiently divisible, the blowup of
X along the coherent fractional ideal sheaf f∗O(mD) is independent of m, and is the unique
minimal blowup of X on which there is a Cartier divisor defining the same b-divisor as D.
Consequently, if we knew that irregularity b-divisors were always relatively semiample, we
would be able to use Temkin’s embedded resolution theorem to obtain functorial resolution
of turning points.

Since we only know that irregularity b-divisors are relatively nef, we are stuck. It seems
likely that given a nef Cartier b-divisor, one can construct functorially a finite-dimensional
space of b-divisors containing the given one, which is spanned by its relatively semiample
members. This would allow for a functorial determination of nef Cartier b-divisors, which
would suffice for functorial resolution of turning points. We can construct several natural
candidates for such a space, but we do not know how to establish finite dimensionality for
any of them.

0.5 Further remarks

An alternate approach to resolution of turning points has been given Mochizuki [27, 28] in
certain cases (notably algebraic connections on algebraic varieties), using algebraic and ana-
lytic properties of Deligne-Malgrange lattices (i.e., Malgrange’s canonical lattices). However,
it seems to be limited to true meromorphic connections, rather than formal meromorphic
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connections. We do not know whether Mochizuki’s techniques can be made functorial for
regular morphisms.

Another possible alternate approach to constructing resolutions of turning points in the
analytic category is to give a purely analytic variant of the arguments in [18]. For this,
one would replace the Riemann-Zariski space with its analytic analogue, the voûte étoilée of
Hironaka [13]. We have made no attempt to carry out this approach.

We insert one remark concerning the analogy between irregularity of meromorphic con-
nections and wild ramification of finite morphisms of schemes. Let X be a smooth scheme of
characteristic p > 0. Suppose τ is a discrete linear representation of the étale fundamental
group of X. Following the work of Kato [15] in the case of a one-dimensional representation,
it would be desirable to define a Swan conductor of τ measuring the wild ramification of
τ along different divisorial valuations on X. Our experience with good formal structures
suggests that one might only be able to define the Swan conductor as a virtual sheaf on X.
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1 Tools from birational geometry

We start by gathering some tools from birational geometry. These include Temkin’s functo-
rial desingularization theorems, and divisors which are ample or nef relative to a morphism.

1.1 Basic notations

Notation 1.1.1. For X a noetherian integral separated scheme, let

DivZX,DivQX,DivRX,CDivZX,CDivQX,CDivRX

denote respectively the groups of integral Weil divisors, rational Weil divisors, (real) Weil
divisors, integral Cartier divisors, rational Cartier divisors, and (real) Cartier divisors on
X. We topologize DivRX and CDivRX as the locally convex direct limits of their finite-
dimensional R-subspaces, in the sense of [4, §II.6]. By Lemma 1.1.2 below, this means that
a net converges if and only if it eventually lands in a finite-dimensional space and converges
therein.

Although the spaces we are considering are not separable when their dimensions are not
countable, one still has the following fact.
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Lemma 1.1.2. Let V be an R-vector space topologized as the locally convex direct limit of
its finite-dimensional subspaces. Let {xi}i∈I be a net in V indexed by a directed set I, which
converges to an element x ∈ V . Then there exist a finite-dimensional subspace T of V and
an index i ∈ I such that xj ∈ T for all j ≥ i. In particular, any convergent net in V admits
a convergent subsequence.

Proof. We reduce at once to the case x = 0. Suppose no such T, i exist. We define a strictly
increasing sequence i1 < i2 < · · · in I as follows: given i1, . . . , in−1 for some n ≥ 1, choose
in ≥ in−1 such that xin is not in the R-span of xi1 , . . . , xin−1 . (If this were not possible, we
would have T = Rxi1 + · · ·+Rxin−1 , and i = in−1 would satisfy the conclusion of the lemma,
contrary to hypothesis.)

Let W be the convex hull of the union of the sets {txin : t ∈ (−1, 1)} for n = 1, 2, . . . .
By [4, §II.5, Exemple], W is an open neighborhood of 0 in V . However, it does not contain
any of the xin , contradicting the assumption that the net converges to 0.

Notation 1.1.3. Recall that elements of CDivZX are by definition sections of the sheaf
K×

X/O
×
X , where KX denotes the sheaf of total quotient rings on X. The definition of the

line bundle OX(D) associated to D follows the usual sign convention: if D ∈ CDivZX is
represented on an open subset U of X by an element f ∈ Γ(U,K×

X), then we take OX(D)|U =
f−1OX .

Notation 1.1.4. For X a noetherian integral separated scheme and D ∈ DivRX, define the
floor and ceiling bDc, dDe ∈ DivZX by the formula

(bDc)(E) = bD(E)c, (dDe)(E) = dD(E)e,

in which D(E) denotes the multiplicity of D along a geometric valuation E of X. Note
that the floor and ceiling operations do not typically map CDivRX to CDivZX unless X is
locally factorial (e.g., if X is regular), in which case DivZX = CDivZX.

1.2 Functorial resolution of singularities

The notion of quasi-excellent schemes was introduced into this series in [18, §1.1]. We have
already made extensive use of the fact that over Spec(Q), such schemes admit nonembedded
and embedded desingularization; this was originally proposed by Grothendieck, but only
recently verified by Temkin [32].

In this paper, we need results of this form with the additional feature that the final modi-
fication is functorial for morphisms which are regular) (flat with geometrically regular fibres),
such as smooth morphisms. Such results can be obtained by approximation arguments from
a resolution algorithm for varieties over a field in which one repeatedly blows up so as to
reduce some local invariant. One suitable algorithm is that of Bierstone and Milman [1] as
refined by Bierstone, Milman, and Temkin [2]; using this algorithm, Temkin has established
the following functorial desingularization theorems. (Temkin also obtains some control over
the sequence of blowups used; we have not attempted to exert such control in the following
statements.)
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Theorem 1.2.1 (Temkin). Let Sch be the category of schemes. Let C be the subcategory of
Sch whose objects are the reduced integral noetherian quasi-excellent schemes over Spec(Q)
and whose morphisms are the regular morphisms of schemes. Let ι : C → Sch denote the
inclusion. There then exist a covariant functor Y : C → Sch and a natural transformation
F : Y → ι satisfying the following conditions.

(a) For each X ∈ C, the scheme Y (X) is regular, and the morphism F (X) : Y (X) → X
of schemes is a projective modification.

(b) For each regular X ∈ C, F (X) is an isomorphism.

(c) For each morphism f : X ′ → X in C, the square

Y (X ′)
Y (f) //

F (X′)

��

Y (X)

F (X)

��
X ′ f // X

is cartesian.

Proof. See [33, Theorem 1.2.1].

Definition 1.2.2. By a schematic pair, we will mean a pair (X,Z) in which X is a scheme
and Z is a closed subscheme of X. We say such a pair is regular (and describe it for short
as a regular pair) if X is regular and Z is a divisor of simple normal crossings on X.

By a morphism f : (X ′, Z ′) → (X,Z) of schematic pairs, we will mean a morphism
f : X ′ → X of schemes for which f−1(Z) = Z ′. In other words, the inverse image ideal sheaf
under f of the ideal sheaf IZ defining Z should be the ideal sheaf IZ′ defining Z ′.

Theorem 1.2.3 (Temkin). Let Sch′ be the category of schematic pairs. Let C ′ be the sub-
category of Sch′ whose objects are the pairs for which the underlying schemes are regular
integral noetherian quasi-excellent schemes over Spec(Q), and whose morphisms are those
for which the underlying morphisms of schemes are regular. Let ι′ : C ′ → Sch′ denote the
inclusion. Then there exist a covariant functor (Y,W ) : C ′ → Sch′ and a natural transfor-
mation F : (Y,W ) → idC′ satisfying the following conditions.

(a) For each (X,Z) ∈ C′, the pair (Y,W )(X,Z) is regular, and the morphism F (X,Z) :
Y (X,Z) → X is a projective modification.

(b) For each regular (X,Z) ∈ C ′, F (X,Z) is an isomorphism.

(c) For each morphism f : (X ′, Z ′) → (X,Z) in C, the square

Y (X ′, Z ′)
Y (f) //

F (X′,Z′)

��

Y (X,Z)

F (X,Z)

��
X ′ f // X

is cartesian.

Proof. See [34, Theorem 1.1.7].
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1.3 Relatively ample, semiample, and nef divisors

We will use extensively the relative versions of the standard notions of ample, semiample,
and nef divisors.

Hypothesis 1.3.1. Throughout § 1.3, let f : X → T be a proper morphism of noetherian
schemes.

Definition 1.3.2. A line bundle L on X is very ample relative to f , or f -very ample, if the
adjunction map ρ : f ∗f∗L → L is surjective and defines an embedding X → P(f∗L); this
condition is local on T . The bundle L is ample relative to f , or f -ample, if locally on T ,
L⊗m is very ample relative to f for some positive integer m; this implies the same for each
multiple of m. Since we are assuming T is noetherian, it follows that we can make a single
good choice of m over all of T .

For D ∈ CDivZX, we say D is (very) ample relative to f if the associated line bundle
OX(D) is. For D ∈ CDivQX, we say D is ample relative to f if for some (and hence any)
positive integer m such that mD ∈ CDivZX, OX(mD) is f -ample. Note that any positive
rational linear combination of f -ample divisors is f -ample.

The condition of relative ampleness may be checked fibrewise in the following sense.

Theorem 1.3.3. Let L be a line bundle on X. Then L is f -ample if and only if for each
t ∈ T , if we identify t with Spec(κt) for κt the residue field of t, then Lt is ample relative to
ft : Xt → t.

Proof. (Compare [22, Theorem 1.7.8].) Amplitude is stable under base change, so the condi-
tion for L implies the same for each Lt. Conversely, Grothendieck’s criterion for amplitude
[10, Théoréme 4.7.1] asserts that if Lt is ft-ample, then L|f−1(U) is f -ample for some neigh-
borhood U of t. Since amplitude is local on the base, it follows that Lt is f -ample.

Definition 1.3.4. A line bundle L on X is free relative to f , or f -free, if the adjunction
map f ∗f∗L → L is surjective. The bundle L is semiample relative to f , or f -semiample, if
locally on T , L⊗m is f -free relative to f for some positive integer m; this implies the same
for each multiple of m. Again, since T is noetherian, it follows that we can make a single
good choice of m over all of T .

For D ∈ CDivZX, we say D is free (resp. semiample) relative to f if the associated line
bundle OX(D) is. For D ∈ CDivQX, we say D is semiample relative to f if for some (and
hence any) positive integer m such that mD ∈ CDivZX, OX(mD) is f -semiample. Note
that any positive rational linear combination of f -semiample divisors is f -semiample. Note
also that if D is f -ample, then it is also f -semiample, but not conversely.

Definition 1.3.5. A line bundle L on X is nef relative to f , or f -nef, if for each t ∈ T and
each complete curve C in Xt, the restriction of L to C has nonnegative degree. For D a
rational Cartier divisor on X, we say D is nef relative to f if some (and hence any) positive
integral multiple of D which is an integral Cartier divisor corresponds to a line bundle which
is nef relative to f . Note that if D is f -semiample, then it is also f -nef, but not conversely.
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Definition 1.3.6. A (real) Cartier divisor D on X is f -ample (resp. f -semiample, f -nef )
if it can be written as a positive (resp. nonnegative, nonnegative) real linear combination of
rational Cartier divisors which are f -ample (resp. f -semiample, f -nef). By this definition,
D ∈ CDivQX is f -ample (resp. f -semiample, f -nef) if and only its image in CDivRX is.

Let Ampf (X) and Neff (X) be the sets of f -ample and f -nef Cartier divisors on X,
respectively. These are also called the f -ample cone and f -nef cone, respectively. The
word “cone” is used because Neff (X) is closed under addition and nonnegative scalar mul-
tiplication, whereas Ampf (X) is closed under addition and positive scalar multiplication.
(One may also define an f -semiample cone closed under addition and nonnegative scalar
multiplication.)

Over a point, the following is a consequence of Kleiman’s criterion for ampleness [22,
Corollary 1.4.10]; the general assertion follows from this observation plus Theorem 1.3.3.

Theorem 1.3.7. Let D be an f -nef Cartier divisor on X, and let H be an f -ample Cartier
divisor on X. Then D + εH is f -ample for any ε > 0.

Corollary 1.3.8. Suppose that f is projective. Then Neff (X) is the closure of Ampf (X),
and Ampf (X) is the interior of Neff (X).

Proof. (Compare [22, Theorem 1.4.23].) If D ∈ Neff (X), then for any H ∈ Ampf (X) (which
exists because f is projective and X is noetherian), D + εH ∈ Ampf (X) for all ε > 0 by
Theorem 1.3.7. Hence Ampf (X) is dense in Neff (X); since it is easy to see that Neff (X) is
closed, it follows that Neff (X) is the closure of Ampf (X).

On the other hand, if D is in the interior of Neff (X), then for any H ∈ Ampf (X), D−εH
is still f -nef for ε > 0 sufficiently small, and so D = (D − εH) + εH is f -ample by Theo-
rem 1.3.7 again. Hence Ampf (X) contains the interior of Neff (X); since Neff (X) contains
Ampf (X), and it is again easy to see that Ampf (X) is open (as in [22, Example 1.3.14]), it
follows that Ampf (X) is the interior of Neff (X).

2 b-divisors and functorial determinations

In this section, we introduce the notions of Weil and Cartier divisors on a Riemann-Zariski
space, more commonly known as b-divisors and Cartier b-divisors. We then introduce the
notion of a functorial determination for a given class of Cartier b-divisors on a given class
of schemes.

Hypothesis 2.0.1. Throughout § 2, let X be a noetherian integral separated excellent
Q-scheme.

2.1 Riemann-Zariski spaces

Definition 2.1.1. Recall that a centered valuation on X is a (Krull) valuation v on the
function field K(X) of X such that for some x ∈ X, the local ring OX,x is contained in
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the valuation ring ov. The set of equivalence classes of centered valuations on X is denoted
RZ(X) and called the Riemann-Zariski space; we may also interpret RZ(X) as the inverse
limit over modifications of X. Since X is an excellent Q-scheme, this inverse limit may also
be taken over projective modifications Y → X with Y regular, e.g., by Theorem 1.2.1.

Definition 2.1.2. A geometric valuation on X is a real valuation measuring order of vanish-
ing along some prime divisor on some modification of X; in particular, it must be normalized
in order to surject onto Z. Let RZgeom(X) be the subset of RZ(X) consisting of equivalence
classes of geometric valuations; each such class contains a single geometric valuation, so we
typically identify it with that valuation.

Remark 2.1.3. For X of dimension n, a valuation is equivalent to a geometric valuation if
and only if it is divisorial, i.e., discretely valued with residue field of transcendence degree
n− 1 over the residue field of the generic center of the valuation. See [35, Proposition 10.1].

2.2 b-divisors and Cartier b-divisors

Definition 2.2.1. The group of integral b-divisors on X, denoted DivZX, is the inverse limit
of DivZ Y over all modifications f : Y → X, in which transition maps are pushforwards.
Define similarly the groups DivQX,DivRX of rational b-divisors and b-divisors on X.
Note that for any modification f : Y → X, the restriction maps Div∗X → Div∗ Y are
isomorphisms. For D ∈ DivRX, the component D(Y ) of D on a modification Y of X is
called the trace of D on Y .

We may identify b-divisors on X with certain real-valued functions on RZgeom(X). The
functions that occur are those having the following finiteness property: for any modification
Y → X, the support of the function must only include finitely many geometric valuations
corresponding to prime divisors on Y . Similarly, integral and rational b-divisors on X
correspond to functions on RZgeom(X) with values in Z and Q, respectively, satisfying the
same finiteness condition.

Note that each transition map DivR Y → DivRX has finite-dimensional kernel and cok-
ernel. Since both source and target are topologized as the locally convex direct limit of their
finite-dimensional subspaces, the map is not only continuous, but strict ; that is, the quotient
and subspace topologies on its image coincide. It follows that if we equip DivRX with the
inverse limit topology (as we will do hereafter), then a sequence (or net) converges in the
inverse limit topology if its projection onto each DivR Y converges.

Remark 2.2.2. The term b-divisor was introduced by Shokurov [31] in his construction
of 3-fold and 4-fold flips, but has since become standard in birational geometry. See [5] for
further discussion. A very similar notion appears in the work of Boucksom-Favre-Jonsson [3],
under the guise of Weil divisors on Riemann-Zariski spaces, albeit using only point blowups
rather than arbitrary modifications.

Definition 2.2.3. The group of integral Cartier b-divisors on X, denoted CDivZX, is the
direct limit of CDivZ Y over all modifications f : Y → X, in which transition maps are
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pullbacks. Define similarly the groups CDivQX,CDivRX of rational Cartier b-divisors
and Cartier b-divisors on X. Note that for any modification f : Y → X, the transition
maps CDiv∗X → CDiv∗ Y are isomorphisms.

For any X, we have a map CDiv∗X → Div∗X which is injective if X is normal, and bijec-
tive if X is locally factorial. Thanks to the compatibility between pullback and pushforward
for Cartier divisors, we also get a map CDiv∗X → Div∗X; this map is injective because
every modification of X is dominated by a normal modification (since X is excellent). We
may thus view Cartier b-divisors as a subclass of all b-divisors.

For D ∈ CDivRX, a determination of D is a modification f : Y → X such that D
belongs to the image of CDivR Y in CDivRX.

Remark 2.2.4. Note that the floor and ceiling functions induce well-defined maps b·c, d·e :
DivRX → DivZX, but again do not take Cartier divisors to Cartier divisors.

Definition 2.2.5. Let I be a nonzero ideal sheaf on X. Let f : Y → X be the blowup of X
along I; then the inverse image ideal sheaf f−1I · OY equals OY (Z(I)) for a certain Cartier
divisor Z(I) ∈ CDivZ Y , which we identify with its image in CDivZX. We may similarly
define Z(I) for I a nonzero coherent fractional ideal sheaf on X, by taking the blowup of X
along IJ for any nonzero locally principal ideal sheaf J on X for which IJ ⊆ OX .

This definition incorporates a sign convention which has mixed virtues. On the positive
side, for I,J two nonzero coherent fractional ideal sheaves on X, we have I ⊆ J if and only
if Z(I) ≤ Z(J ). On the negative side, for g ∈ K(X)×, if we write Z(g) for the b-divisor
corresponding to the principal fractional ideal sheaf generated by g, then Z(g)(v) = −v(g)
for all v ∈ RZgeom(X).

One can partly invert the passage from a nonzero coherent fractional ideal sheaf to its
associated b-divisor by taking sections.

Definition 2.2.6. Given D ∈ DivRX, define L∞(D) to be the (possibly zero) coherent
fractional ideal sheaf on X such that for U ⊆ X a nonempty open affine subset,

L∞(D)(U) = {g ∈ K(U) : Z(g) ≤ D|U}.

We record some easy but useful properties.

• For D ∈ DivRX with L∞(D) 6= 0, Z(L∞(D)) is the supremum of Z(I) over all
nonzero coherent fractional ideal sheaves I on X with Z(I) ≤ D.

• For D1, D2 ∈ DivRX with L∞(D1),L∞(D2) 6= 0, we have L∞(D1)L∞(D2) ⊆ L∞(D1+
D2). Moreover, if D2 ∈ CDivZX, we have L∞(D1)L∞(D2) = L∞(D1)OX(D2).

In particular, if I is a nonzero coherent fractional ideal sheaf on X, then I ⊆ L∞(Z(I)).
Equality may fail to hold; for instance, if I is an ideal sheaf, then L∞(Z(I)) is the integral
closure of I [14, Theorem 6.8.3], which may differ from I even in simple examples [14,
Example 1.1.2].
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2.3 Functorial determination

Recall that in a direct system of abelian groups, each element of each group gives rise to an
element of the direct limit, but an element of the direct does not remember exactly which
group it came from. In particular, a Cartier b-divisor on X does not remember any particular
determination of it. The functorial determination problem is to provide a distinguished such
choice.

Definition 2.3.1. Define a schematic (integral, rational) Cartier b-pair to be a pair (X,D)
in which X is a noetherian integral separated excellent Q-scheme and D is an (integral,
rational) Cartier b-divisor on X. We view these as forming a category whose morphisms
f : (X ′, D′) → (X,D) are those dominant regular morphisms f : X ′ → X of schemes for
which the induced pullback map f ∗ CDivRX → CDivRX

′ carries D to D′. (The map f ∗

may be described as follows: for any modification g : Y → X, if h : Y ′ → Y denotes the
proper transform of f under g, then f ∗ carries CDivR Y to CDivR Y

′ via the map h∗.)

Definition 2.3.2. Let C be a subcategory of the category of schematic Cartier b-pairs. Let
π : C → Sch be the functor carrying the pair (X,D) to X. A functorial determination of
C consists of a covariant functor Y : C → Sch and a natural transformation F : Y → π
satisfying the following conditions.

(a) For all (X,D) ∈ C, the map F (X) : Y (X) → X of schemes is a modification, and is a
determination of D.

(b) For each morphism f : (X ′, D′) → (X,D) in C, the square

Y (X ′, D′)
Y (f) //

F (X′,D′)

��

Y (X,D)

F (X,D)

��
X ′ f // X

is cartesian.

Example 2.3.3. Let C be the category of schematic rational Cartier b-pairs (X,D) for
which D is relatively semiample. Then for each (X,D) ∈ C, there exists a unique minimal
determination f : Y → X of D, namely the blowup of X along L∞(mD) for any positive
integer m such that Z(L∞(mD)) = mD. (This is immediate from the universal property of
blowing up; e.g., see [11, Proposition 7.14].) These evidently form a functorial determination
of C.

One can generalize the previous example as follows.

Definition 2.3.4. Let V be a finite-dimensional subspace of CDivQX. We say V is rela-
tively semiample if V is spanned by those D ∈ V which are relatively semiample.

Lemma 2.3.5. Let V be a finite-dimensional subspace of CDivQX which is relatively semi-
ample. Then the set of modifications f : Y → X which are determinations for each semi-
ample D ∈ V has a unique minimal element.

12



Proof. The minimality forces uniqueness, so we need only check existence. Let D1, . . . , Dk ∈
V be semiample elements which span X. We construct a sequence of modifications fi : Xi →
Xi−1 for i = 1, . . . , k, with X0 = X, as follows. Given f1, . . . , fi−1, let Ei be the pullback of
Di along f1 ◦ · · · ◦ fi−1. Then let fi : Xi → Xi−1 be the unique minimal determination of Ei

(as in Example 2.3.3). The composite f = f1 ◦ · · · ◦ fk is then a minimal modification which
serves as a determination of each of D1, . . . , Dk.

This suggests the following definition. For some potential constructions realizing this
definition, see Conjecture 2.4.7 and Conjecture 2.5.10.

Definition 2.3.6. Let C be a subcategory of the category of schematic rational Cartier b-
pairs and dominant regular morphisms. Let VectQ be the category of vector spaces over Q.
Let ψ : C → VectQ be the contravariant functor carrying (X,D) to CDivQX. A functorial
spread of C consists of a contravariant functor V : C → VectQ and a natural transformation
F : V → ψ, satisfying the following conditions.

(a) For each (X,D) ∈ C, the image of F (X,D) (as a subspace of CDivQX) is relatively
semiample and contains D.

(b) For each morphism f : (X ′, D′) → (X,D) in C, we have f ∗(V (X,D)) = V (X ′, D′).

Using Lemma 2.3.5, given a functorial spread, we obtain a functorial determination of (X,D)
by taking the minimal modification which serves as a determination for each relatively semi-
ample element of V (X,D). Conversely, given a functorial determination, we obtain a func-
torial spread by taking the space of rational Cartier divisors on Y (X,D) whose support is
contained in the support of D(Y ).

2.4 Relatively semiample and nef b-divisors

There is no good notion of ampleness for a Cartier b-divisor: if f : Y → X is a modification
and D is an f -ample divisor on Y , then the pullback of D along a modification g : Z → Y is
almost never (f ◦ g)-ample. Thus there is no “ample cone” of Cartier b-divisors. However,
the relative semiample and nef conditions do make sense for Cartier b-divisors, and we have
a Kleiman-style result to the effect that the relative nef cone is the closure of the relative
semiample cone. This will allows us to show that irregularity b-divisors are always nef, so
that we need only solve the functorial determination problem in the nef case.

Definition 2.4.1. For D ∈ CDivRX, we say D is relatively semiample if for some determi-
nation f : Y → X of D, Y (D) is f -semiample. The same then holds for any determination.

Definition 2.4.2. Note that the convex cone generated by the Z(I) for all nonzero coherent
fractional ideal sheaves I on X is also the convex cone generated by the relatively semiample
Cartier b-divisors. We say D ∈ DivRX is relatively nef if it belongs to the closure of this
cone.
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Note that for I,J two nonzero coherent fractional ideal sheaves on X,

Z(IJ ) = Z(I) + Z(J )

Z(I + J ) = max{Z(I), Z(J )}.

The first observation implies that the b-divisors of the formm−1Z(I), form a positive integer
and I a nonzero coherent fractional ideal sheaf, are dense among the relatively nef b-divisors.
The second observation implies that the set of relatively nef b-divisors is closed under taking
the pointwise supremum of an arbitrary collection of elements {Di}i∈I , provided that for
each modification f : Y → X, the traces {Di(Y )}i∈I belong to a finite-dimensional subspace
of DivR Y and are bounded above therein. (This in particular implies the existence of the
supremum in DivRX itself.)

If D ∈ DivRX is relatively nef and f : Y → X is a modification, it does not follow
that D(Y ) is f -nef even if D is Cartier. However, this does hold if D is Cartier and f is
a determination; this amounts to a Kleiman-style criterion for relative nefness of Cartier
b-divisors.

Proposition 2.4.3. For any modification f : Y → X and any D ∈ CDivR Y , D is relatively
nef as an element of DivRX if and only if D is f -nef.

Proof. (Compare [3, Proposition 2.2].) Suppose first that D is f -nef. By replacing f by a
further modification, we may assume f is projective. Choose a finite-dimensional subspace V
of CDivQ Y containing an f -ample divisor, such that V ⊗Q R contains D. By Corollary 1.3.8,
the f -ample divisors in V ⊗Q R comprise the interior of the (closed convex) cone of f -nef
divisors in V ⊗Q R, and by construction this interior is nonempty. Hence D can be written
as the limit in V ⊗Q R of a sequence E1, E2, . . . of f -ample rational Cartier divisors. For
i = 1, 2, . . . , choose a positive integer mi for which miEi is f -very ample; then miEi = Z(Ii)
for Ii the image of f∗OY (mEi) in KX . It follows that D is the limit of the m−1

i Z(Ii), and
thus is relatively nef.

Conversely, suppose D is relatively nef but not f -nef. Then there exists a complete curve
C within some fibre of f such that the degree of D(Y )|C is negative. In particular, the Néron-
Severi (i.e., numerical, or equivalently algebraic) class of D(Y )|C is not pseudoeffective, that
is, it is not a limit of classes of effective rational Weil divisors on C. By Theorem 1.2.1, we
can construct a modification g : W → Y dominating the blowup of C in Y , with W regular.
Let E be an exceptional prime divisor of g dominating C. Then D(W )|E coincides with the
pullback of D(Y )|C , so its Néron-Severi class also fails to be pseudoeffective.

Since the set of pseudoeffective classes of E is a closed convex cone, we will derive a
contradiction by checking that for any nonzero coherent fractional ideal sheaf I on X, for
W = Z(I)(Y ), the Néron-Severi class of W |E is pseudoeffective. To wit, W is the divisorial
part of f−1I, so the base locus of the global sections of OY (W ) has codimension at least 2
on Y . It hence cannot contain E, so there must be a global section of OY (W ) which does
not vanish identically on E. In particular, the Néron-Severi class of W |E is pseudoeffective,
yielding the desired contradiction.
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One key property of relatively nef b-divisors is that they can be successively approximated
from above by their traces.

Lemma 2.4.4. Let D ∈ DivRX be relatively nef. Let f : Y → X be a modification with
Y locally factorial, so that D(Y ) ∈ DivR Y may be identified with an element of CDivRX.
Then D ≤ D(Y ).

Proof. (Compare [3, Proposition 2.4].) Since D is also relatively nef as an element of DivR Y ,
it suffices to check that D ≤ D(X) when X is locally factorial. It further suffices to check
the case D = Z(I) for I a nonzero coherent fractional ideal sheaf on X. Moreover, we may
subtract off the divisorial part of I, so that D(X) = 0 and Supp(I) has codimension at least
2.

Since X is locally factorial and hence normal, a rational function on X has poles in
codimension 1. Hence Γ(X,OX) = Γ(X \ Supp(I),OX), so we must have I ⊆ OX and
D ≤ 0 = D(X), as desired.

Definition 2.4.5. Suppose D ∈ DivRX is such that L∞(D) 6= 0. Then the set S of
relatively nef b-divisors E on X satisfying E ≤ D is nonempty. Moreover, if we pick any
E0 ∈ S, then for each E ∈ S we have E0 ≤ max{E0, E} ≤ D. Hence on each modification
f : Y → X, the traces of the max{E0, E} belong to a finite-dimensional R-subspace of
DivR Y . We conclude that

D̂ = sup{max{E0, E} : E ∈ S}

exists in DivRX and is relatively nef. It is easy to see that the definition of D̂ does not
depend on the choice of E0.

We call D̂ the nef envelope of D. As suggested in [21], the construction of the nef
envelope constitutes a higher-dimensional analogue of the classical Zariski decomposition of
an effective divisor on a surface. (Compare [3, Definition 3.17].)

In certain cases, one can give an explicit convergent sequence of lower approximations
to a relatively nef Cartier b-divisor as follows. (This can be generalized somewhat; see [3,
Lemma 3.22].)

Proposition 2.4.6. For D ∈ CDivRX, we have

D̂ = sup
k∈Z,k>0

{k−1Z(L∞(kD))} = sup
k∈Z,k>0

{k−1Z(L∞(kD̂))}.

Proof. For k a positive integer, put Dk = k−1Z(L∞(kD)). For any nonzero coherent frac-
tional ideal sheaf I on X, k−1Z(I) is relatively nef, and so k−1Z(I) ≤ D if and only

if k−1Z(I) ≤ D̂. It follows that Dk = k−1Z(L∞(kD̂)). Since Dk is relatively nef and

Dk ≤ k−1(kD) = D, we have Dk ≤ D̂ for all k. It thus remains to prove that supk{Dk} ≥ D̂.
Let f : Y → X be a determination of D with Y regular. By Lemma 1.1.2, we may

choose a sequence σ in DivRX converging to D̂, each of whose elements has the form
m−1Z(I) for some positive integer m and some nonzero coherent fractional ideal sheaf I on
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X, and all of whose elements have traces on Y lying in a finite-dimensional R-subspace V
of DivR Y = CDivR Y . Let S be the finite set of prime divisors on Y occurring among the
supports of elements of V ; we may choose J ∈ CDivZX with J ≤ 0 such that the multiplicity
of J along each element of S is negative.

Let ε > 0 be any positive rational. Beyond some point, each element E of σ satisfies
E(Y ) + εJ(Y ) ≤ D̂(Y ) ≤ D(Y ), and hence E + εJ ≤ D by Lemma 2.4.4 and the fact that
D is Cartier. Let E = m−1Z(I) be one such element of σ. For k > 0 such that k, km−1, kε
are all positive integers, we have Z(Ik/mOX(Jkε)) = k(E+ εJ) ≤ kD, so Z(Ik/mOX(Jkε)) ≤
L∞(kD). This yields Dk ≥ E + εJ and hence supk{Dk} ≥ E + εJ .

Since σ converges to D̂, we deduce that supk{D} ≥ D̂ + εJ . Since ε can be taken

arbitrarily close to 0, we deduce supk{Dk} ≥ D̂ as desired.

This suggests one approach to constructing a fundamental determination of nef b-divisors.

Conjecture 2.4.7. Let D ∈ CDivQX be relatively nef. Then the divisors Z(L∞(nD)) for
n = 1, 2, . . . span a finite-dimensional subspace of CDivQX.

Remark 2.4.8. If Conjecture 2.4.7 holds, then the space V (X,D) spanned by the Z(L∞(nD))
contains D by Proposition 2.4.6. It thus constitutes a functorial spread on the category of
schematic rational Cartier b-pairs (X,D) in which D is relatively nef. This would follow if
the OX-algebra ⊕∞

n=0L∞(nD) were always finitely generated; however, we expect the latter
to fail to hold, just as as the section ring of a divisor on a smooth projective variety may fail
to be finitely generated.

2.5 Multiplier ideals

We propose one further potential construction of fundamental determinations, now restrict-
ing to the case of regular schemes. This approach uses the construction of multiplier ideals;
see [23, §9] for an introduction.

Hypothesis 2.5.1. Throughout § 2.5, in addition to Hypothesis 2.0.1, assume that X is
regular. The correct definition in the singular case is subtler; see [23, §9.3.G].

Definition 2.5.2. Let KX be the canonical b-divisor, whose trace on a modification f :
Y → X equals the relative canonical divisor KY/X (see [23, §9.1.B]). For D ∈ DivRX, we
define the multiplier ideal sheaf of D to be the coherent fractional ideal sheaf

L2(D) = L∞(KX + dDe).

For I a nonzero coherent fractional ideal sheaf on X, we write L2(I) as shorthand for
L2(Z(I)).

Remark 2.5.3. We collect some easy consequences of Definition 2.5.2.

(a) For I a nonzero coherent fractional ideal sheaf on X, we always have I ⊆ L2(I)
because KX ≥ 0 (as in [23, Proposition 9.2.32]).
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(b) The formation of L2 commutes with taking the supremum of a sequence (or net),
because d·e does so.

(c) For D ∈ DivRX and E ∈ CDivZX, L2(D + E) = L2(D)O(E). (Compare [23,
Proposition 9.2.31].)

In order to use existing results about multiplier ideals, we will need to reconcile this
construction with the usual definition for Cartier b-divisors.

Definition 2.5.4. For D ∈ CDivRX, a log-resolution of X is a determination f : Y → X
of D such that (Y,W ) is a regular pair for W = Supp(D(Y )) ∪ Supp(except(f)). Such a
determination always exists by Theorem 1.2.3. (The definition in [23, Definition 9.1.10] puts
W = Supp(D(Y ) + except(f)); this is merely a typo.)

Lemma 2.5.5. For D ∈ CDivRX, for any log-resolution f : Y → X of D,

L2(D) = f∗OY (KY/X + dD(Y )e).

Proof. (Compare [23, Theorem 9.2.18].) Let E1, . . . , Er be the irreducible components of
W = Supp(D(Y )) ∪ Supp(except(f)) containing the center of v on Y . Let g : Z → Y be
the blowup of Y along E1 ∩ · · · ∩ Er, and let E be the irreducible component of except(g)
containing the center of v on Z. Then the multiplicity of KZ/Y = KZ/X − f ∗KY/X along E
is r − 1. By contrast, if the multiplicity of D(Y ) along Ei equals ei for i = 1, . . . , r, then
the multiplicity of dD(Y )e along E equals de1e+ · · ·+ dere, while the multiplicity of dD(Z)e
along E equals

de1 + · · ·+ ere ≥ de1e+ · · ·+ dere − r + 1.

We deduce that KY/X + dD(Y )e ≤ KZ/X + dD(Z)e as elements of DivRX. By repeating
this argument, we deduce that

KY/X + dD(Y )e ≤ KX + dDe,

that is, KX + dDe is bounded below by its trace on Y . This yields the claim.

The following subadditivity property of multiplier ideals is originally due to Demailly,
Ein, and Lazarsfeld [7] in the case of ideal sheaves, but it extends readily to relatively nef
Cartier b-divisors. As noted in [3], the approximation argument we use here is essentially
due to Ein, Lazarsfeld, and Smith [8]; it can also be found in [23, Chapter 11] in the language
of graded systems of ideals.

Theorem 2.5.6. For D1, D2 ∈ CDivRX relatively nef,

L2(D1 +D2) ⊆ L2(D1)L2(D2).
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Proof. (Compare [3, Theorem 3.10].) We first consider the special case in which Di = ciZ(Ii)
for some ci ≥ 0 and some nonzero coherent fractional ideal sheaf Ii on X. By twisting by
suitable integral Cartier divisors on X and using Remark 2.5.3(c), we may reduce to the
case where Ii ⊆ OX . In this case, this is [23, Theorem 9.5.20]. (Note that we are using the
regularity of X here.)

We next consider the special case in which Di is the nef envelope of a Cartier b-divisor
Ei. Let D3 be the nef envelope of E1 +E2; since D1 +D2 is nef and D1 +D2 ≤ E1 +E2, we
have D1 +D2 ≤ D3 and L2(D1 +D2) ⊆ L2(E3). For i ∈ {1, 2, 3} and k a positive integer,
put Ei,k = k−1Z(L∞(kEi)). We apply the previous paragraph to obtain

sup
k
{Z(L2(E3,k))} ≤ sup

k
{Z(L2(E1,k))}+ sup

k
{Z(L2(E2,k))}.

By Remark 2.5.3(b) and Proposition 2.4.6,

sup
k
{Z(L2(Ei,k))} = Z(L2(sup

k
{Ei,k})) = Z(L2(Di)),

so the desired result follows.
To deduce the general case, put D3 = D1 + D2, then apply Lemma 2.4.4 to write Di

as the infimum of Di(Y ) as f : Y → X runs over modifications of X. Let Ei,Y ∈ DivRX
denote the nef envelope of Di(Y ); then Di ≤ Ei,Y ≤ Di(Y ) since Di is relatively nef, so Di

is also the infimum of the Ei,Y . We claim that

L2(Di) =
⋂
Y

{L2(Ei,Y )},

from which we may deduce the desired result using the previous paragraph. Namely, it is
clear that the left side is contained in the right side. To check the reverse containment, let
Z(I) be a nonzero coherent fractional ideal sheaf such that I ⊆ L2(Ei,Y ) = L∞(KX +dEi,Y e)
for each modification f : Y → X. Then Z(I)(Y ) ≤ (KX + dEi,Y e)(Y ) ≤ KY/X + dDi(Y )e
for each f , and so Z(I) ≤ KX + dDie and I ⊆ L2(Di). (Beware that this argument does
not imply that the formation of L2 commutes with arbitrary infima.)

An important consequence of subadditivity is the following result, which states that the
multiplier ideal of a relatively nef b-divisor is a reasonably close approximation to the original
divisor.

Definition 2.5.7. The thin b-divisor AX ∈ DivZX has trace on a modification f : Y → X
equal to the relative canonical divisor KY/X plus the exceptional divisor except(f).

Theorem 2.5.8. For D ∈ DivRX relatively nef,

D ≤ Z(L2(D)) ≤ D + AX .
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Proof. As in the proof of Theorem 2.5.6, it suffices to consider the case where D is the nef
envelope of a Cartier b-divisor. The inequality Z(L2(D)) ≤ D + AX is evident from the
definition of L2(D), because KY/X + dD(Y )e ≤ (D+AX)(Y ). To prove the other inequality,
for k a positive integer, put Dk = k−1Z(L∞(kD)). Then

L∞(kD) ⊆ L2(L∞(kD)) = L2(kDk) (by Remark 2.5.3(a))

⊆ L2(Dk)
⊗k (by Theorem 2.5.6)

⊆ L2(D)⊗k (since Dk ≤ D),

or in other words kDk ≤ kZ(L2(D)). By Proposition 2.4.6, this implies D ≤ Z(L2(D)) as
desired.

One can continue in this fashion, generalizing many other properties of multiplier ideals
from ideal sheaves to relatively nef b-divisors. We leave this as an exercise for the interested
reader.

Remark 2.5.9. The procedure used to prove Theorems 2.5.6 and 2.5.8 is rather closely
modeled on the proofs of [3, Theorems 3.9, 3.10]. The main difference is that [3] uses a
definition of the multiplier ideal of a b-divisor in the style of Lipman [24], which only works
properly when considering blowups over a single point.

We conclude the discussion of multiplier ideals with the following variant of Conjec-
ture 2.4.7.

Conjecture 2.5.10. For D ∈ CDivQX relatively nef, the sequence {Z(L2(nD))}∞n=1 spans
a finite-dimensional subspace of CDivRX.

Remark 2.5.11. If Conjecture 2.5.10 holds, then the space V (X,D) spanned by the Z(L2(nD))
contains D by Theorem 2.5.8. It thus constitutes a functorial spread on the category of
schematic rational Cartier b-pairs (X,D) in which X is regular and D is relatively nef.

Remark 2.5.12. Conjecture 2.5.10 would follow from the existence of positive integers m,N
such that for any n ≥ N ,

Z(L2((m+ n)D)) = Z(L2(nD)) +mD. (2.5.12.1)

For D = Z(I) for I a nonzero coherent fractional ideal sheaf, Skoda’s theorem [23, Theo-
rem 9.6.21] gives this equality for m = 1, N = dim(X)− 1.

In general, by Theorem 2.5.8, for any log-resolution f : Y → X of D, the difference
between the two sides of (2.5.12.1) is bounded above by AX(Y ) and bounded below by
−AX(Y ). Unfortunately, this does not restrict the difference to even a countable set, let
alone a finite set (which would imply Conjecture 2.5.10).

19



3 Irregularity and functorial good formal structures

In this section, we construct the irregularity b-divisor associated to a formal meromorphic
connection on a nondegenerate differential scheme. We then (conditionally on the existence
of a fundamental determination for rational relatively nef Cartier b-divisors) construct func-
torial resolutions of turning points in both the algebraic and analytic categories.

3.1 Irregularity b-divisors

Hypothesis 3.1.1. Throughout § 3.1, let X be a nondegenerate differential integral scheme.
Let Z be a nowhere dense closed subscheme of X. Let E be a ∇-module over OdX|Z(∗Z).

Definition 3.1.2. The irregularity b-divisor of E , denoted Irr(E), is the integral b-divisor
on X whose component on v ∈ RZgeom(X) computes the irregularity along each geometric
valuation on X. Note that it is supported on geometric valuations supported within Z.

The numerical criterion for good formal structures [17, Theorem 4.4.2] may be reformu-
lated as follows [18, Proposition 6.2.2].

Theorem 3.1.3. Let f : Y → X be a modification such that (Y, f−1(Z)) is a regular pair.
Then f ∗E admits good formal structures everywhere if and only if Irr(E) and Irr(End(E))
are Cartier b-divisors for which Y is a determination.

Using this criterion, the main result of [18], and a spectral interpretation of irregularity,
we deduce the following key result.

Theorem 3.1.4. The b-divisor Irr(E) is Cartier. If (X,Z) is a regular pair, then Irr(E) is
also relatively nef.

We do not know whether Irr(E) is always relatively nef even without the hypothesis that
(X,Z) is a regular pair.

Proof. The Cartier condition follows from Theorem 3.1.3 plus the existence of a modification
f : Y → X such that f ∗E admits good formal structures everywhere [18, Theorem 8.2.2].
To check the relatively nef condition in case (X,Z) is a regular pair, it is enough to work
locally in a neighborhood of a point z ∈ X. By shrinking X, we may assume that E admits
a free lattice E0.

For s a positive integer, let Es be the span of the images of E0 under all differential
operators on X which act on OX(−Z). The construction of Es obviously commutes with
replacing X with an open subscheme; it also commutes with blowing up in an intersection
of components of Z. We also claim that it commutes with replacing Z by a larger closed
subscheme Z ′ such that (X,Z ′) again forms a regular pair. It suffices to check this in case Z ′

is obtained from Z by adding an additional component; in this case, we need only compare
the constructions at the generic point η of Z. If Ẽs represents the analogue of Es made with
Z replaced by Z ′, we have Ẽs,η ⊆ Es,η because Ẽs is the image of E0 under a smaller set of
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derivations. On the other hand, we have E0,η ⊆ Ẽs,η evidently, and Es,η = E0,η because E has
no singularities at η. We end up with a circle of containments forcing Ẽs,η = Es,η.

It follows that the formation of Es commutes with arbitrary blowups with regular centers.
We now check that

Irr(E) = lim
s→∞

1

s
Z((∧rank(E)Es)⊗ (∧rank(E)E0)

∨). (3.1.4.1)

To compare the components of (3.1.4.1) at any v ∈ RZgeom(X), use resolution of singularities
to make a sequence of blowups with regular centers, ending in a variety in which v appears
as the order of vanishing along a component of the inverse image of Z. The preceding anal-
ysis shows that the construction of Es commutes with the blowups; in the final position, the
comparison with the formula in [17, Proposition 2.5.6] becomes evident in local coordinates.
This shows that (3.1.4.1) holds for the topology of pointwise convergence on DivRX. How-
ever, on any modification f : Y → X, the divisors Z((∧rank(E)Es)⊗ (∧rank(E)E0)

∨)(Y ) are all
supported within f−1(Z), and hence all belong to a finite-dimensional subspace of CDivR Y .
We conclude that (3.1.4.1) also holds for the inverse limit topology on DivRX.

Since Irr(E) is a limit of relatively nef Cartier b-divisors by (3.1.4.1), it is relatively nef.
This completes the proof.

Remark 3.1.5. The proof technique of Theorem 3.1.4 can also be used to give another
proof of [17, Proposition 5.4.1]. Namely, we may use (3.1.4.1) to verify condition (b′′) of [17,
Lemma 5.3.5], as the latter is stable under pointwise limits.

Remark 3.1.6. It would be interesting to know whether the purely combinatorial argument
used to prove [17, Proposition 5.4.1] has a higher-dimensional analogue. In other words, do
the conditions that Irr(E) ∈ DivZX, Irr(E) ≥ 0, and Irr(E) is relatively nef force Irr(E) ∈
CDivZX?

On one hand, the possibility of an affirmative answer is suggested by corresponding results
for convex functions. For instance, a continuous convex function f : [0, 1]n → R with the
property that

f(x1, . . . , xn) ∈ Z + Zx1 + · · ·+ Zxn (x1, . . . , xn ∈ [0, 1] ∩Q)

is necessarily polyhedral. See [20] for discussion of numerous results in this spirit.
On the other hand, we suspect that even a purely combinatorial proof that Irr(E) is

Cartier will require the sort of valuation-theoretic local analysis that was used in [18], as the
latter seems to be the correct generalization of the analysis made in [17].

3.2 Functorial modifications

We can now turn the numerical criterion around, to give a conditional construction of func-
torial resolutions of turning points in both the algebraic and analytic categories.

Theorem 3.2.1. Suppose that there exists a fundamental determination of the category of
schematic rational Cartier b-pairs (X,D) in which X is regular and D is relatively nef. Let
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X be either a nondegenerate differential scheme (the algebraic case), or a complex analytic
variety (the analytic case). Let Z be a closed subspace of X containing no irreducible compo-
nent of X. Let E be a ∇-module over OdX|Z(∗Z). Then there exists a projective modification

f : Y → X such that (Y, f−1(Z)) is a regular pair and f ∗E admits good formal structures
everywhere. Moreover, the construction of f is functorial for regular morphisms on X; in
particular, on the locus where (X,Z) is a regular pair, f is an isomorphism away from the
turning locus of E.

Proof. We first deal with the algebraic case, for which we reduce immediately to the case
of X integral. Using Theorem 1.2.3, we may also force (X,Z) to be a regular pair. By
Theorem 3.1.4, the integral b-divisors Irr(E) and Irr(End(E)) on X are both Cartier and
relatively nef. By assumption, there exists a functorial determination f : Y → X of both
Irr(E) and Irr(End(E)). By applying Theorem 1.2.1 and then Theorem 1.2.3, we may force
(Y, f−1(Z)) to be a smooth pair. By Theorem 3.1.3, f ∗E admits good formal structures
everywhere.

To treat the analytic case, choose pairs (Xi, Ki) with Xi Stein and Ki compact, such that
the Ki cover X. By [18, Corollary 3.1.7], the localization of Γ(Xi,OXi

) at Ki is a nonde-
generate differential ring. We may thus apply the algebraic case to construct a functorially
determined modification fi in a neighborhood of Ki. By functoriality, the fi glue to give the
desired global modification f .

Remark 3.2.2. We mention in passing that arguments of Mochizuki [28] can be used to
construct global modifications achieving good formal structures for flat meromorphic connec-
tions on analytic spaces. The theorem in this case is stated in [28] under the condition that
the connection is actually algebraic, but most of the arguments take place in the analytic
category. The only use of the algebraicity hypothesis is to invoke the corresponding result for
surfaces, which Mochizuki had proved in [27] using algebraic rather than analytic methods.
However, our prior result for surfaces [17, Theorem 6.4.1] applies to the analytic category,
so one may start from this result and then follow Mochizuki to obtain global modifications
achieving good formal structures in the analytic category. Beware, though, that we do not
know whether the resulting construction is functorial for smooth morphisms, in contrast
with Theorem 3.2.1. Moreover, this construction does not apply to formal flat meromorphic
connections.
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