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ABSTRACT 
Location-Based Services (LBSs) utilize information about users’ 
locations through location-aware mobile devices to provide 
services, such as nearest features of interest, they request. This is a 
common strategy in LBSs and although it is needed and benefits 
the users, there are additional benefits when future locations (e.g., 
locations at later times) are predicted. One major advantage of 
location prediction is that it provides LBSs with extended 
resources, mainly time, to improve system reliability which in 
return increases the users’ confidence and the demand for LBSs. 
However, much of the current location prediction research is 
focused on generalized location models, where the geographic 
extent is divided into regular-shape cells. These models are not 
suitable for certain LBSs whose objective is to compute and 
present on-road services, because a cell may contain several roads 
while the computation and delivery of a service may require the 
exact road on which the user is driving. We propose a new model, 
called Predictive Location Model (PLM), to predict locations in 
LBSs with road-level granularities. The premise of PLM is 
geometrical and topological techniques allowing users to receive 
timely and desired services.  

Categories and Subject Descriptors 
H.2 [Information Systems]: Database Management; H.2.8 
[Database Management]: Database Applications − spatial data-
bases and GIS 

General Terms 
Management, design, reliability. 

Keywords 
Location-based services, location prediction, location manage-
ment, mobility, trajectory, database, probabilistic method. 

 

1. INTRODUCTION  
The recent convergence of Internet, wireless communications, 
mobile location-aware clients, and geoprocessing has given rise to 
a new generation of Location-Based Services (LBSs) [1]. The 
premise of this new generation LBSs is a distributed mobile 
computing environment where the geographic locations of the 
clients in space are utilized for computing and application-related 
optimization. LBS architectures feature location-aware devices, 
which are equipped with geopositioning systems, interconnected 
through wired and wireless networks. Following are example 
LBSs reported in the literature: a guidance system with caching 
function [2]; a context-aware tour guide system [3]; a LBS 
framework using Cellular Digital Packet Data (CDPD) [4]; a 
nearest available parking lot application [5]. 

Knowledge about locations of mobile devices is the basic 
requirement for LBSs. There are a number of approaches for 
determining location of a mobile client, each requiring a different 
infrastructure and resulting in a different accuracy level. Of these, 
time difference of arrival (TDOA), angle of arrival (AOA), 
location pattern matching (LPM), and the Global Positioning 
System (GPS) [6] are widely used. While GPS is only for outdoor 
LBSs, TDOA and AOA can be used for indoor LBSs.  

Current LBSs utilize information about locations of users to 
determine such services as the nearest features of interest from a 
location. The general assumption in these systems is that the area 
centered at the current location of the user is where the services 
are needed. Although this assumption is valid and used as the 
basis of many computing strategies in LBSs, there are additional 
benefits when future locations (e.g., locations at later times) are 
also predicted. Location prediction provides a longer time 
available to prepare and present services, especially services 
involving complex and time consuming tasks (e.g., mobile 
electronic commerce), and to ensure that only desired services are 
delivered. For example, location-based predictive caching 
strategies have been proposed to deal with handoff latency in 
mobile IP [7]. In addition, having the priori information about 
locations where the user will visit at later times during a trip will 
extend the location management capability of LBSs and will 
facilitate the generation of new services that were not possible 
previously. For instance, a service that allows the user to plan a 
purchase stop for a later time.  

In this paper, we present and discuss a new predictive location 
model in LBSs — the main contribution of the paper. The paper is 
organized as follows. In the next section, previous work related to 
location prediction in LBSs is discussed and selected existing 
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location prediction methods and their limitations are overviewed. 
Then PLM is described in detail. Next, an analysis of PLM is 
discussed. Finally, conclusions are given. 

2. RELATED WORK 
In a mobile environment, information about a user’s location 
includes two parameters, L and t, indicating that the user is at 
location L at time t. Location prediction dynamically estimates the 
mobile user’s future locations using the user’s current location 
information, the historical mobility patterns and the auxiliary 
information. Two necessary steps in location prediction include 
mobility realization and location determination. Mobility 
realization is to determine the trajectory of a mobile user while 
location determination is to estimate a location on that trajectory 
or the time when the user will reach a given destination. Different 
prediction strategies, each for a different purpose, have been 
reported in the literature. Current strategies may be classified into 
two approaches: cell-based approach and map-based approach. 

In the cell-based approach [8, 9, 10, 11, 12, 13], the geographic 
extent is divided into regular-shape cells (e.g., hexagon). The cells 
are usually determined by the architecture of the cellular network, 
while they can also be defined for computational purposes [12, 
13]. A location is usually determined by a method called paging 
in which a piece of search information is broadcast to every cell in 
the region, and the mobility is expressed as a series of cells 
making the trajectory of a mobile user. 

The cell-based approach has played an important role in mobile 
networks to improve system performance such as pre-caching [12, 
13]. However, this approach has the following inherent 
shortcomings: 

1) It cannot precisely locate a mobile user. The radius of a 
typical cell may be 150 meters and upward (a cell could 
have a radius of more than 30,000 meters) [14]; 

2) It cannot precisely model the trajectory of a user because it 
does not support fine granularity (e.g., road-level 
granularity). It can only calculate the cell change 
probability based on the side through which the user leaves 
the cell. Therefore, it cannot precisely estimate the travel 
distance to a destination and consequently the time to 
deliver services. 

On the contrary, the premise of the map-based approach [15, 16] 
is to determine a user location as a point on a road instead of a 
cell using such geopositioning systems as GPS instead of paging. 
To that end, the assumption of the map-based approach is that 
trips are made through vehicles thus constrained to roads in road 
networks. This assumption is made based on the fact that in most 
travel surveys responders identify vehicles as the main means of 
transport [17]. Another feature of the map-based approach is the 
availability of a variety of data sets (e.g., road networks, 
buildings, parks) for predicting mobility and providing services 
[18]. 

In map-based LBSs, if a user provides a destination, a 
conventional routing algorithm (e.g., the shortest-path algorithm) 
can be used to predict a trajectory and estimate the time when the 
user will reach there. However, in many LBSs the user’s 
destination is unknown where conventional routing algorithms 
cannot be used. The user usually has many route choices when 

presented with a road network. This leads to the research issue of 
uncertainty management in trajectory and location prediction. 
However, studies [9, 19, 20] have reported that users often have 
some degree of regularity in their motion. For example, [19] 
studied the trajectories users follow and conducted an experiment 
over a period of six weeks and found that the users tend to follow 
regular trajectories (e.g., from home to a second location) more 
than 70% of times. Thus historical travel information plays an 
important role in developing location prediction models. 

We propose and discuss a new map-based location prediction 
model. The model comprises a database module, an information 
retrieval module, a trajectory prediction module, a location 
determination module and an error control mechanism. 

3. PLM 
Before presenting PLM, we first give some formal definitions. 
User’s current location Lk is defined as the measured geographic 
coordinates (latitude and longitude) by a geopositioning system at 
the current time tk, where k is the ID for a particular user location. 
Prediction period T is defined as the time duration between the 
current time tk and a later time tk+1. Given the current location (Lk, 
tk) and a prediction period T, the problem of location prediction is 
to estimate location Lk+1 at time tk+T or tk+1. 

3.1 Architecture 
Of the different infrastructures possible for LBSs, the one with 
mobile clients and fixed servers is assumed. The mobiles are 
linked to the servers via wireless communications; standard 
network speeds are expected from such wireless communications 
(e.g., 144kb/sec-2mb/sec in 3G services [21]). Furthermore, there 
are only mobile-server communications and not mobile-mobile 
communications. Each mobile user has a mobile device which is 
equipped with a GPS receiver.  

3.2 PLM Database (PLM-DB) 
PLM requires a database, called PLM-DB, which contains two 
categories of data. One category, called service area, includes 
such spatial data as road network (see Section 3.2.1), landmarks, 
restaurants, etc. The second category includes user-specific data 
such as historical trajectories (see Section 3.2.2) and user profile 
information (e.g., age, profession, interests and home address). In 
addition, the second category features probabilistic information 
inferred from historical trajectories (see Section 3.2.3). 

3.2.1 Road Network 
A road network (Figure 1) consists of edges and vertices, where 
each edge is a road segment (a portion of a road) and each vertex 
is an intersection. A road network can be modeled as a graph G = 
<V, E> where V is the list of all intersections with a size |V| and E 
is the list of all road segments with a size |E|. Each road segment e 
may have such attributes as speed limit, length and road width. In 
practice, each road segment in the network has a direction, 
meaning either a one-way road or a two-way road. If direction is 
not considered, G is a symmetric (non-directed) graph. However, 
if direction is considered, G becomes asymmetric. In this paper, 
we assume symmetric road networks throughout. Figure 2 shows 
the graph, represented in an adjacency matrix, for the road 
network in Figure 1. 
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Figure 1. A simple road network G 
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Figure 2. Adjacency matrix for G 

 

3.2.2 Historical Trajectories 
A user moving between two locations in a road network generates 
a trajectory. We define a user’s trajectory as a sequence of 
connected road segments or a sequence of connected vertices 
between two locations, namely start point and end point. For 
example, if the user moves from v1 to v10 through v2 and v6 in 
Figure 1, then the trajectory is represented as Traj(e1, e8, e9). The 
GPS can record the user’s locations at fixed (distance or time) 
intervals and the speed at each location. These recorded locations 
together with speed information can be map-matched with the 
road network to generate a trajectory. The computed trajectories 
are transmitted to the server and stored in PLM-DB. The 
trajectory data contains valuable information about a specific user 
who travels regularly in the service area. When a user is new to 
the service area, he/she does not have historical trajectories. In 
this case, the server uses a trajectory derived from the trajectories 
of all users. For PLM, we assume that the user travels regularly in 
the service area. 

3.2.3 Probability Matrix 
Probabilistic methods are a promising approach in modeling 
uncertainties associated with trajectory prediction. We observe 
that intersections are usually where the uncertainty happens which 
leads to the different trajectory choices. To capture the 

probabilistic information at an intersection v with n road 
segments, we define a probability matrix as follows: 

M(v, tk) =





















)R|P(R...)R|P(R)R|P(R
............

)R|P(R...)R|P(R)R|P(R
)R|P(R...)R|P(R)R|P(R

nnn2n1

2n2221

1n1211

   (1) 

where tk is the current time, and  R1, R2,…Rn are road segments 
that share v. P(R1 | R1) is the probability of taking R1 when the 
user in currently on R1, and P(R2 | R1) is the probability of taking 
R2 when the user in currently on R1, and so on. 
Historical trajectory information stored at the server can be used 
to infer the number of times the user has traveled on each road 
segment and the trajectory choice at each intersection. The data is 
then used to calculate the parameters of the probability matrix. 
Therefore, M(v, tk) can be expressed as: 

M(v, tk) = 


















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   (2) 

where Ni is the number of times the user has traveled on road 
segment Ri. Nj,i is the number of times the user has taken road 
segment Rj when he/she is on road segment Ri. In other words, the 
following should hold:  

i

n

1j
ij, NN =∑

=

 (3) 

With the assumption that no U-turn (at intersections) is allowed, 
Ni,i = 0. If there is no historical data about the user’s travel at v, 
the model may assume that the probabilities of turning to Rj (j ≠ i) 
from Ri are equal. For example, when the user in on e1 (e1 is an 
instance of Ri) and moves toward v2 in Figure 1, N2,1 = N8,1 = N7,1. 
After the user takes one of the roads at v2, N1 = 1. Since N2,1 + N8,1 
+ N7,1= N1, we get N2,1 = N8,1 = N7,1 = 1/3. It should be noted that 
Ni and Nj,i are all integer numbers. For consistency, the model 
initializes N1 to 3 instead of 1. Therefore, N2,1 = N8,1 = N7,1 = 1. 
With these numbers, the initial matrix M of v2 at t0 is as follows: 

          M(v2, t0) =
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Figure 3 illustrates the generalized probability matrix initialization 
algorithm called ProbInitial. The algorithm takes a road network 
G and creates a probability matrix for all vertices in the network. 

The travel information stored in the trajectory data is retrieved to 
update the probability matrix. If the past trajectory information 
indicates that the user has crossed Intersection v from Ri, both Ni 
and Nj,i in Equation (2) will change. The Ni will increment by one, 
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and one of the Nj,i will also increment by one. For example, if the 
user takes e8 from e1 at v2, the matrix M at time tk becomes: 

M(v2,tk) =










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
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





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   (5) 

Therefore, matrix M for each intersection is dynamic and is 
updated periodically. We assume that each time the user logs into 
the server, the mobile device will transmit the newly colleted 
trajectories, and the server will update the probability matrix 
using the new trajectories. 

  
ProbInitial(G)   //G = <V, E> 
1. create list ProbML //ProbML stores all probability matrices
2. for each v in V do 
3.     Edg = edges linked to v 
4.     N = size of Edg 
5.     create a N by N matrix M for v 
6.     set all elements of M to 1/(N-1) 
7.     set all diagonal elements to zero 
8. return ProbML 

 
Figure 3. ProbInitial algorithm 

 

ProbUpdate(G, TrajSet) //G = <V, E> 
    //TrajSet is the set of trajectories 
1. for each trajectory t in TrajSet do 
2.     for each road segment ei of t do 
3.         find the vertex v between ei and ei+1 
4.         find the probability matrix M of v and read the row of ei 
5.         Numer = read the numerator of the element (ei, e i+1) 
6.         Denom = read the denominator of the element (ei, ei+1) 
7.         set the element (ei, ei+1) to (Numer+1)/(Denom+1) 
8.         set all other elements in the row of ei to (Numer)/(Denom+1)
9. return  

Figure 4. ProbUpdate algorithm 
 
Figure 4 illustrates the generalized probability matrix update 
algorithm called ProbUpdate. There are two loops in the 
algorithm. The first one loops through all trajectories, and the 
second one loops through the sequence of road segments within 
each trajectory. The output is the updated probability matrix. 

3.3 Information Retrieval for Prediction 
Considering the geographic range of a service area (e.g., the 
Pittsburgh metropolitan), it is impractical to retrieve the entire 
PLM-DB because the user’s activity range may only contain a 
small portion of the service area. We propose a concept called 
dynamic computational window (DCW) to deal with this problem. 
A DCW is defined as a circular clipping window that centers at 
the user’s current location to retrieve information from PLM-DB 
for location prediction. The radius of DCW is determined by both 
the user’s travel speed and the prediction period T. While T is 
predetermined by the system, the user’s travel speed is an 
uncertain factor. When the user drives on a highway, the speed 
can be estimated as the speed limit of the highway, however when 
the user drives in local roads, the user’s speed is affected by the 

traffic lights and the traffic. For simplicity, we assume that the 
user’s speed is the same as the speed limit of the road on which 
the user is driving, SpeedLimit(tk). Therefore, the size of a DCW, 
R, can be determined by: 

R = SpeedLimit(tk) · T    (6) 
For example, if the user is driving on a 25-mile/hr road and the 
prediction period time is 30 minutes, then the size of a DCW is 
12.5 miles. 
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Figure 5. DCW and sub-network G’ 

 
  

v1 
v2 
v3 
v5 
v6 
v7 
v9 
v10

v1   v2      v3       v 5       v 6          v 7       v 9    v10

 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

00 0 e 0 0 0 0 
00 0 0 0 0 e 0 
00 0 e 0 00 0 
e0 e 0 e 0 e 0 
00 0 e 0 0 0 0 
00 0 0 0 0 e 0 
0e 0 e 0 e 0 e 
00 0 0 0 0 e 0 

9 
7

5 
95 4 8

4 
2

7 8 21

1

 
Figure 6. Retrieved adjacency matrix for G’ 

 
Figure 5 depicts a DCW (dashed circle) for a user driving on road 
e1 in the road network shown in Figure 1. Because a DCW is a 
clipping window, it cuts the road network into a smaller portion. 
Therefore, only the road network contained in the DCW is 
retrieved for prediction purposes. We consider all the vertices 
inside the DCW and their immediate (neighbor) vertices as the 
vertices of the sub-network. The sub-network is a new graph G’ = 
<V’, E’> where V’ is the list of all retrieved vertices with a size 
|V’| and E’ is the list of all retrieved edges with a size |E’|. Figure 
5 shows the retrieved sub-network from the network in Figure 1, 
and the adjacency matrix for G’ is shown in Figure 6. 
DCW represents the largest geographic extent within which the 
user’s activities are expected during the prediction period T. We 
define the intersections between the DCW and the sub-network as 
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exit points because they represent all the possible exit locations 
where the user may leave the DCW (see Figure 5). Exit points 
may be considered as destinations of predicted trajectories. 
The number of exit points can be inferred from the topological 
information in G’. Suppose the number of vertices inside a DCW 
is N (N ≤ |G’| because G’ may include vertices outside the DCW), 
we define a new graph G” = <V”, E”> where V” is the list of the 
N vertices inside the DCW and E” is the list of edges between 
those N vertices. For each vertex u inside the DCW, we know the 
number of edges linked to it or the number of neighbor vertices 
(num_neighbors(u)) by looking up the row of u in the adjacency 
matrix of G’. If we sum up the number of edges linked to each 
vertex in G” as ∑

)u(G"

ors(u)num_neighb , we get a duplicated count 

of those edges in G”, which is exactly twice the number of edges 
(2|E”|). Therefore, if we subtract the duplicated count of edges in 
G” from ∑

)u(G"

ors(u)num_neighb , we get the number of edges that 

intersect with the DCW, which is also the number of exit points 
(num_Exp): 

num_Exp = −∑
)u(G"

ors(u)num_neighb 2|E”|    (7) 

For the example shown in Figure 5, v2 has four edges (e1, e2, e8, 
e7) linked to it and four neighbor vertices (v1, v3, v6, v9), similarly 
v6 also has four edges (e8, e4, e5, e9) and four neighbor vertices 
(v2, v5, v7, v10). G” is a graph including only v2 and v6, and there 
is only one edge e8 in G”. Therefore, the number of exit points is 
(4 + 4) – 2 = 6, as shown.  

3.4 Trajectory Prediction 
PLM utilizes the information in G’ and the exit points to predict 
trajectories. The start point is the user’s current location while the 
end point could be any of the exit points. A shortest-path 
algorithm can be used to compute a trajectory between the current 
location and each of the exist points. However, each computed 
trajectory has the same probability. This is a problem that needs to 
be resolved, especially when the number of computed trajectories 
is large. In addition, the shortest-path algorithm can only compute 
one trajectory for each given pair of start and end points. This will 
again decreases the system’s ability to handle uncertainty because 
a user may have alternative trajectories to reach a destination from 
a start point. We propose a method to detect all candidate 
trajectories and rank them based on the probabilistic information 
stored. By doing so, the system is provided with a mechanism that 
identifies all options and select appropriate ones for location 
prediction. 

3.4.1 Candidate Trajectories 
We propose a graph search tree to detect candidate trajectories in 
a sub-network G’, retrieved by a DCW, where the root is the 
user’s current location L, the intermediate nodes are the vertices 
in G’, the leaf nodes are the exit points, and the linkages between 
nodes are the road segments. To decrease the search space, we 
assume the following rules: 

1) The user does not turn around at an intersection; 

2) The user does not visit a vertex that has already been 
visited during a trip. 

Figure 7 depicts one search tree constructed for the DCW in 
Figure 5. Clearly, certain braches are pruned by the rules of the 
search tree. 
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Figure 7. Trajectory search tree 

 
 TrajSearch(G’, L, ExpSet)  //G’ = <V’, E’> 

     //L is current location 
     //ExpSet is the set of exit points 
1. for each u in V’ do 
2.     status[u] = “unprocessed”  
3. create list Vetx   //Vetx stores vertices of a trajectory
4. create list Traj   //Traj stores all trajectories 
5. i = 0    //i stores the number of trajectories
6. u0 = the nearest vertex of L 
7. DFS(u0)    //begin depth-first search from L 
8. return Traj  
 
DFS(u) 
1. status[u]= “processed”   
2. add u to Vetx    
3. for each  neighbor  vertex  v  of  u  do 
4.     e = the edge between u and v 
5.     if status [v] != “processed” and 

    e  does not intersect with any exit point in ExpSet then 
6.         DFS(v) 
7. add Vetx to Traj[i] and increment i by one 
8. status[u] = “stopped”  
9. remove u from Vetx 
10. return  

 
Figure 8. TrajSearch algorithm 

 

Figure 8 illustrates the general algorithm called TrajSearch for 
detecting candidate trajectories. The algorithm takes the sub-
network G’, the exit point set ExpSet and the current location L. It 
first initialize the vertices in G’ to an unprocessed status. Then it 
calls a Depth First Search (DFS) algorithm to detect the candidate 
trajectories. DFS first takes the nearest vertex u0 of L based on the 
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moving direction of the user. It then changes the status of u0 to 
“processed” and finds all the children (neighbor vertices) of it. 
Then the children become the parents by calling DFS (see Line 6 
in DFS), the recursive process continues until one exit point is 
detected (see Line 5 in DFS). DFS then changes the status of the 
input vertex to “stopped”, meaning one trajectory has been 
detected. 

There is one loop in the algorithm which goes through all 
neighbor vertices of a particular vertex u. All other operations 
performed within the loop, such as changing status, have O(1) 
time complexity. The loop through all neighbors of all vertices in 

G’ takes 













∑

)u(G'

ors(u)num_neighbO = O(2|E’|). Therefore, the 

overall time complexity is O(|E’|), where |E’| is the number of 
edges in G’. 

3.4.2 Trajectory Probability 
Given a trajectory Traj(e1, e2, e3, …, en), we denote its probability 
by P(Traj) as a joint probability of its edges P(e1, e2, e3, …, en). 
The probabilities of the candidate trajectories detected by the 
search tree can be calculated using the probability matrices (see 
Section 3.2.3) at the vertices and the Bayesian theorem: 

P(b, a) = P(b|a) · P(a)    (8) 

where P(b,a) is the probability that b and a occur, P(b|a) is the 
probability that b occurs given that a has already occurred, and 
P(a) is the probability that a occurs. 

For the search tree in Figure 7, assume vertex v2 has an initial 
probability matrix as defined in Equation (4) and vertex v6 also 
has an initial probability matrix: 

          M(v6, t0) =





















)e|P(e)e|P(e)e|P(e)e|P(e
)e|P(e)e|P(e)e|P(e)e|P(e
)e|P(e)e|P(e)e|P(e)e|P(e
)e|P(e)e|P(e)e|P(e)e|P(e

99959498

59555458

49454448

89858488

 

                         =





















03/13/13/1
3/103/13/1
3/13/103/1
3/13/13/10

   (9) 

Because the user is currently on edge e1, the probability P(e1)=1. 
By reading the probability parameter P(e2|e1) for v2, we get P(e2, 
e1) = P(e2|e1) · P(e1) = 1/3. Similarly, P(e1,e8) = P(e1,e7) = 1/3. By 
reading the probability parameter P(e4|e8) for v6, we get P(e1,e8,e4) 
= P(e1) · P(e8|e1) · P(e4|e1,e8) = 1·(1/3)·(1/3) = 1/9 (note that 
P(e4|e1,e8) = P(e4|e8)). Similarly, P(e1,e8,e5) = P(e1,e8,e9) = 1/9. The 
probabilities for the trajectories are labeled at the leaf nodes (exit 
points) in the search tree (see Figure 7) and the probability 
calculation can be carried out as the tree searches candidate 
trajectories. 

3.5 Location Determination 
The trajectories detected can be ranked based on their 
probabilities. We define those trajectories with probabilities over 
a predetermined threshold value as regular trajectories. From a 

probability point of view, regular trajectories are the most 
possible trajectories that the user will take. The server may use 
regular trajectories for location determination. Once candidate 
trajectories are ranked, locations can be estimated by using 
extrapolation with a distance determined by Equation 6. 

3.6 The Generalized Model 
Figure 9 illustrates the major steps of our proposed PLM, where 
the client transmits GPS data to the server and provides the server 
with current location information for trajectory and location 
prediction. The DCW module is responsible for retrieving 
information for prediction. The trajectory prediction module uses 
the topological information of road network and the probabilistic 
information from historical trajectories to predict a trajectory and 
the location determination module uses the geometrical 
information (extrapolated distance) to estimate a location. After 
the locations of services are predicted, the system will prepare 
services and deliver them. In case of incorrect prediction, an error 
control mechanism is used. The mechanism specifies an 
agreement between the server and the client such that the client 
will update the server if and only if the deviation or error (e.g., the 
nearest distance) between the predicated trajectory and the actual 
trajectory is greater than a predetermined value. 

 

Current location and time 

 

DCW 

 Trajectory prediction 

 
Location determination 

 

Compute services  

Present predicted route 

GPS location monitoring  

Error > limit 

Client side Server side 

Yes 

GPS recorded trajectory PLM-DB 

 
Figure 9. Steps of PLM 

 

4. MODEL ANALYSIS 
The probability matrix at each vetex (intersection) is updated 
periodically based on either user-specific or group trajectories. 
The quality of the probability matrix direclty determines the 
PLM’s ability to detect regular trajectories. When a user follows a 
regular trajectory, certain conditional probability parameters in 
the probability matrix of certain intersections and the probabilities 
of trajectories will change.  

Let us revisit the DCW and the network given in Figure 5. 
Assume the user follows a regular travel trajectory e1 → e8 → e9 
for twenty times after the matrix initialization, then both 
intersections v2 and v6 will have an updated probability matrix.  
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For v2, the updated matrix becomes: 

M(v2, tk) =





















03/13/13/1
3/103/13/1
3/13/103/1
23/123/2123/10

   (10) 

For v6, the updated matrix becomes: 

M(v6, tk) =





















03/13/13/1
3/103/13/1
3/13/103/1
23/2123/123/10

   (11) 

By reading the probability parameter P(e2|e1) for v2, we get P(e1, 
e2) = P(e2|e1) · P(e1) = 1/23 = 0.0435. Similarly, P(e1,e8) = 21/23 = 
0.9130, P(e1,e7) = 1/23 = 0.0435. By reading the probability 
parameter P(e4|e8) for v6, we get P(e1,e8,e4) = P(e1) · P(e8|e1) · 
P(e4|e1,e8) = 1· (21/23) · (1/23) = 0.0397 (note that P(e4|e1,e8) = 
P(e4|e8)). Similarly, P(e1,e8,e5) = 1· (21/23) · (1/23) = 0.0397 and 
P(e1,e8,e9) = 1 · (21/23) · (21/23) = 0.8336. With these probabiliti-
es, the regular trajectory e1 → e8 → e9 (shown by the arrows in 
Figure 10) is detected which has a much higher probability than 
any other trajectory. 
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Figure 10. Regular trajectory detection 
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Figure 11. Probability growth of a regular trajectory 

Using the same example, Figure 11 shows that the more the 
regular trajectory is repeated, the more stable is its probability. 
When the regular trajectory is traveled twenty times, its 
probability will be over 80%, and when the regular trajectory is 
traveled forty times, its probability will be above 90%. 

5. CONCLUSIONS 
Location prediction plays an important role in LBSs, in particular 
it can be used to improve performance and provide desired 
services. In this paper, we discussed two basic approaches 
towards location prediction and introduced a new prediction 
model for LBSs. We argue that map-based location prediction 
approach, such as the model presented in this work, has several 
benefits for those LBSs whose objective is to compute and present 
on-road services: 

1) Reliability. The map-based approach supports road-level 
granularity and therefore improves the precision of location 
prediction in LBSs; 

2) Computing resources. If future locations are predicted well 
in advance, there will be ample time for planning 
computing resources, especially for tasks demanding high-
processing speed and/or large storage capacities; 

3) Desired services. Location prediction facilitates the 
possibility of providing desired services by preparing and 
confirming them well in advance. 

The proposed model has been analyzed only with synthetic data. 
We have yet to analyze PLM with real road networks and 
trajectories to evaluate its performance.  
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