

A Predictive Location Model for Location-Based Services

Hassan A. Karimi and Xiong Liu
Dept. of Information Science and Telecommunications

University of Pittsburgh
135 N. Bellefield Ave., Pittsburgh, PA 15260

hkarimi@sis.pitt.edu, xliu@mail.sis.pitt.edu

ABSTRACT
Location-Based Services (LBSs) utilize information about users’
locations through location-aware mobile devices to provide
services, such as nearest features of interest, they request. This is a
common strategy in LBSs and although it is needed and benefits
the users, there are additional benefits when future locations (e.g.,
locations at later times) are predicted. One major advantage of
location prediction is that it provides LBSs with extended
resources, mainly time, to improve system reliability which in
return increases the users’ confidence and the demand for LBSs.
However, much of the current location prediction research is
focused on generalized location models, where the geographic
extent is divided into regular-shape cells. These models are not
suitable for certain LBSs whose objective is to compute and
present on-road services, because a cell may contain several roads
while the computation and delivery of a service may require the
exact road on which the user is driving. We propose a new model,
called Predictive Location Model (PLM), to predict locations in
LBSs with road-level granularities. The premise of PLM is
geometrical and topological techniques allowing users to receive
timely and desired services.

Categories and Subject Descriptors
H.2 [Information Systems]: Database Management; H.2.8
[Database Management]: Database Applications − spatial data-
bases and GIS

General Terms
Management, design, reliability.

Keywords
Location-based services, location prediction, location manage-
ment, mobility, trajectory, database, probabilistic method.

1. INTRODUCTION
The recent convergence of Internet, wireless communications,
mobile location-aware clients, and geoprocessing has given rise to
a new generation of Location-Based Services (LBSs) [1]. The
premise of this new generation LBSs is a distributed mobile
computing environment where the geographic locations of the
clients in space are utilized for computing and application-related
optimization. LBS architectures feature location-aware devices,
which are equipped with geopositioning systems, interconnected
through wired and wireless networks. Following are example
LBSs reported in the literature: a guidance system with caching
function [2]; a context-aware tour guide system [3]; a LBS
framework using Cellular Digital Packet Data (CDPD) [4]; a
nearest available parking lot application [5].

Knowledge about locations of mobile devices is the basic
requirement for LBSs. There are a number of approaches for
determining location of a mobile client, each requiring a different
infrastructure and resulting in a different accuracy level. Of these,
time difference of arrival (TDOA), angle of arrival (AOA),
location pattern matching (LPM), and the Global Positioning
System (GPS) [6] are widely used. While GPS is only for outdoor
LBSs, TDOA and AOA can be used for indoor LBSs.

Current LBSs utilize information about locations of users to
determine such services as the nearest features of interest from a
location. The general assumption in these systems is that the area
centered at the current location of the user is where the services
are needed. Although this assumption is valid and used as the
basis of many computing strategies in LBSs, there are additional
benefits when future locations (e.g., locations at later times) are
also predicted. Location prediction provides a longer time
available to prepare and present services, especially services
involving complex and time consuming tasks (e.g., mobile
electronic commerce), and to ensure that only desired services are
delivered. For example, location-based predictive caching
strategies have been proposed to deal with handoff latency in
mobile IP [7]. In addition, having the priori information about
locations where the user will visit at later times during a trip will
extend the location management capability of LBSs and will
facilitate the generation of new services that were not possible
previously. For instance, a service that allows the user to plan a
purchase stop for a later time.

In this paper, we present and discuss a new predictive location
model in LBSs — the main contribution of the paper. The paper is
organized as follows. In the next section, previous work related to
location prediction in LBSs is discussed and selected existing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GIS’03, November 7-8, 2003, New Orleans, Louisiana, USA.
Copyright 2003 ACM 1-58113-730-3/03/0011…$5.00.

126

location prediction methods and their limitations are overviewed.
Then PLM is described in detail. Next, an analysis of PLM is
discussed. Finally, conclusions are given.

2. RELATED WORK
In a mobile environment, information about a user’s location
includes two parameters, L and t, indicating that the user is at
location L at time t. Location prediction dynamically estimates the
mobile user’s future locations using the user’s current location
information, the historical mobility patterns and the auxiliary
information. Two necessary steps in location prediction include
mobility realization and location determination. Mobility
realization is to determine the trajectory of a mobile user while
location determination is to estimate a location on that trajectory
or the time when the user will reach a given destination. Different
prediction strategies, each for a different purpose, have been
reported in the literature. Current strategies may be classified into
two approaches: cell-based approach and map-based approach.

In the cell-based approach [8, 9, 10, 11, 12, 13], the geographic
extent is divided into regular-shape cells (e.g., hexagon). The cells
are usually determined by the architecture of the cellular network,
while they can also be defined for computational purposes [12,
13]. A location is usually determined by a method called paging
in which a piece of search information is broadcast to every cell in
the region, and the mobility is expressed as a series of cells
making the trajectory of a mobile user.

The cell-based approach has played an important role in mobile
networks to improve system performance such as pre-caching [12,
13]. However, this approach has the following inherent
shortcomings:

1) It cannot precisely locate a mobile user. The radius of a
typical cell may be 150 meters and upward (a cell could
have a radius of more than 30,000 meters) [14];

2) It cannot precisely model the trajectory of a user because it
does not support fine granularity (e.g., road-level
granularity). It can only calculate the cell change
probability based on the side through which the user leaves
the cell. Therefore, it cannot precisely estimate the travel
distance to a destination and consequently the time to
deliver services.

On the contrary, the premise of the map-based approach [15, 16]
is to determine a user location as a point on a road instead of a
cell using such geopositioning systems as GPS instead of paging.
To that end, the assumption of the map-based approach is that
trips are made through vehicles thus constrained to roads in road
networks. This assumption is made based on the fact that in most
travel surveys responders identify vehicles as the main means of
transport [17]. Another feature of the map-based approach is the
availability of a variety of data sets (e.g., road networks,
buildings, parks) for predicting mobility and providing services
[18].

In map-based LBSs, if a user provides a destination, a
conventional routing algorithm (e.g., the shortest-path algorithm)
can be used to predict a trajectory and estimate the time when the
user will reach there. However, in many LBSs the user’s
destination is unknown where conventional routing algorithms
cannot be used. The user usually has many route choices when

presented with a road network. This leads to the research issue of
uncertainty management in trajectory and location prediction.
However, studies [9, 19, 20] have reported that users often have
some degree of regularity in their motion. For example, [19]
studied the trajectories users follow and conducted an experiment
over a period of six weeks and found that the users tend to follow
regular trajectories (e.g., from home to a second location) more
than 70% of times. Thus historical travel information plays an
important role in developing location prediction models.

We propose and discuss a new map-based location prediction
model. The model comprises a database module, an information
retrieval module, a trajectory prediction module, a location
determination module and an error control mechanism.

3. PLM
Before presenting PLM, we first give some formal definitions.
User’s current location Lk is defined as the measured geographic
coordinates (latitude and longitude) by a geopositioning system at
the current time tk, where k is the ID for a particular user location.
Prediction period T is defined as the time duration between the
current time tk and a later time tk+1. Given the current location (Lk,
tk) and a prediction period T, the problem of location prediction is
to estimate location Lk+1 at time tk+T or tk+1.

3.1 Architecture
Of the different infrastructures possible for LBSs, the one with
mobile clients and fixed servers is assumed. The mobiles are
linked to the servers via wireless communications; standard
network speeds are expected from such wireless communications
(e.g., 144kb/sec-2mb/sec in 3G services [21]). Furthermore, there
are only mobile-server communications and not mobile-mobile
communications. Each mobile user has a mobile device which is
equipped with a GPS receiver.

3.2 PLM Database (PLM-DB)
PLM requires a database, called PLM-DB, which contains two
categories of data. One category, called service area, includes
such spatial data as road network (see Section 3.2.1), landmarks,
restaurants, etc. The second category includes user-specific data
such as historical trajectories (see Section 3.2.2) and user profile
information (e.g., age, profession, interests and home address). In
addition, the second category features probabilistic information
inferred from historical trajectories (see Section 3.2.3).

3.2.1 Road Network
A road network (Figure 1) consists of edges and vertices, where
each edge is a road segment (a portion of a road) and each vertex
is an intersection. A road network can be modeled as a graph G =
<V, E> where V is the list of all intersections with a size |V| and E
is the list of all road segments with a size |E|. Each road segment e
may have such attributes as speed limit, length and road width. In
practice, each road segment in the network has a direction,
meaning either a one-way road or a two-way road. If direction is
not considered, G is a symmetric (non-directed) graph. However,
if direction is considered, G becomes asymmetric. In this paper,
we assume symmetric road networks throughout. Figure 2 shows
the graph, represented in an adjacency matrix, for the road
network in Figure 1.

127

 v9

v10 v12

v1

v5

v2

v6

v3

v11

v4

v7 v8

e9

e4
e8

e5

e1 e2 e3

e6

e7

e11

e12

e10

Road Segment e Road Vertex v

Figure 1. A simple road network G

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

v1
v2
v3
v4
v5
v6
v7
v8
v9

v10

v11

v12 











































00000e000000
000000000e00
000000e00000
0000000000e0
00000e000000

e000e0e00e00
00e00e0e00e0
000000e00000
000000000e00
0e000e00e0e0
000e00e00e0e
0000000000e0

12

10

9

7

6

126511

9548

4

3

101132

7821

1

Figure 2. Adjacency matrix for G

3.2.2 Historical Trajectories
A user moving between two locations in a road network generates
a trajectory. We define a user’s trajectory as a sequence of
connected road segments or a sequence of connected vertices
between two locations, namely start point and end point. For
example, if the user moves from v1 to v10 through v2 and v6 in
Figure 1, then the trajectory is represented as Traj(e1, e8, e9). The
GPS can record the user’s locations at fixed (distance or time)
intervals and the speed at each location. These recorded locations
together with speed information can be map-matched with the
road network to generate a trajectory. The computed trajectories
are transmitted to the server and stored in PLM-DB. The
trajectory data contains valuable information about a specific user
who travels regularly in the service area. When a user is new to
the service area, he/she does not have historical trajectories. In
this case, the server uses a trajectory derived from the trajectories
of all users. For PLM, we assume that the user travels regularly in
the service area.

3.2.3 Probability Matrix
Probabilistic methods are a promising approach in modeling
uncertainties associated with trajectory prediction. We observe
that intersections are usually where the uncertainty happens which
leads to the different trajectory choices. To capture the

probabilistic information at an intersection v with n road
segments, we define a probability matrix as follows:

M(v, tk) =





















)R|P(R...)R|P(R)R|P(R
............

)R|P(R...)R|P(R)R|P(R
)R|P(R...)R|P(R)R|P(R

nnn2n1

2n2221

1n1211

 (1)

where tk is the current time, and R1, R2,…Rn are road segments
that share v. P(R1 | R1) is the probability of taking R1 when the
user in currently on R1, and P(R2 | R1) is the probability of taking
R2 when the user in currently on R1, and so on.
Historical trajectory information stored at the server can be used
to infer the number of times the user has traveled on each road
segment and the trajectory choice at each intersection. The data is
then used to calculate the parameters of the probability matrix.
Therefore, M(v, tk) can be expressed as:

M(v, tk) =





















nnn,nn2,nn1,

2n,222,221,2

1n,112,111,1

/NN.../NN/NN
............
/NN.../NN/NN
/NN.../NN/NN

 (2)

where Ni is the number of times the user has traveled on road
segment Ri. Nj,i is the number of times the user has taken road
segment Rj when he/she is on road segment Ri. In other words, the
following should hold:

i

n

1j
ij, NN =∑

=

 (3)

With the assumption that no U-turn (at intersections) is allowed,
Ni,i = 0. If there is no historical data about the user’s travel at v,
the model may assume that the probabilities of turning to Rj (j ≠ i)
from Ri are equal. For example, when the user in on e1 (e1 is an
instance of Ri) and moves toward v2 in Figure 1, N2,1 = N8,1 = N7,1.
After the user takes one of the roads at v2, N1 = 1. Since N2,1 + N8,1
+ N7,1= N1, we get N2,1 = N8,1 = N7,1 = 1/3. It should be noted that
Ni and Nj,i are all integer numbers. For consistency, the model
initializes N1 to 3 instead of 1. Therefore, N2,1 = N8,1 = N7,1 = 1.
With these numbers, the initial matrix M of v2 at t0 is as follows:

 M(v2, t0) =





















)e|P(e)e|P(e)e|P(e)e|P(e
)e|P(e)e|P(e)e|P(e)e|P(e
)e|P(e)e|P(e)e|P(e)e|P(e
)e|P(e)e|P(e)e|P(e)e|P(e

77787271

87888281

27282221

17181211

 =





















03/13/13/1
3/103/13/1
3/13/103/1
3/13/13/10

 (4)

Figure 3 illustrates the generalized probability matrix initialization
algorithm called ProbInitial. The algorithm takes a road network
G and creates a probability matrix for all vertices in the network.

The travel information stored in the trajectory data is retrieved to
update the probability matrix. If the past trajectory information
indicates that the user has crossed Intersection v from Ri, both Ni
and Nj,i in Equation (2) will change. The Ni will increment by one,

128

and one of the Nj,i will also increment by one. For example, if the
user takes e8 from e1 at v2, the matrix M at time tk becomes:

M(v2,tk) =





















03/13/13/1
3/103/13/1
3/13/103/1
4/14/24/10

 (5)

Therefore, matrix M for each intersection is dynamic and is
updated periodically. We assume that each time the user logs into
the server, the mobile device will transmit the newly colleted
trajectories, and the server will update the probability matrix
using the new trajectories.

ProbInitial(G) //G = <V, E>
1. create list ProbML //ProbML stores all probability matrices
2. for each v in V do
3. Edg = edges linked to v
4. N = size of Edg
5. create a N by N matrix M for v
6. set all elements of M to 1/(N-1)
7. set all diagonal elements to zero
8. return ProbML

Figure 3. ProbInitial algorithm

ProbUpdate(G, TrajSet) //G = <V, E>
 //TrajSet is the set of trajectories
1. for each trajectory t in TrajSet do
2. for each road segment ei of t do
3. find the vertex v between ei and ei+1
4. find the probability matrix M of v and read the row of ei
5. Numer = read the numerator of the element (ei, e i+1)
6. Denom = read the denominator of the element (ei, ei+1)
7. set the element (ei, ei+1) to (Numer+1)/(Denom+1)
8. set all other elements in the row of ei to (Numer)/(Denom+1)
9. return

Figure 4. ProbUpdate algorithm

Figure 4 illustrates the generalized probability matrix update
algorithm called ProbUpdate. There are two loops in the
algorithm. The first one loops through all trajectories, and the
second one loops through the sequence of road segments within
each trajectory. The output is the updated probability matrix.

3.3 Information Retrieval for Prediction
Considering the geographic range of a service area (e.g., the
Pittsburgh metropolitan), it is impractical to retrieve the entire
PLM-DB because the user’s activity range may only contain a
small portion of the service area. We propose a concept called
dynamic computational window (DCW) to deal with this problem.
A DCW is defined as a circular clipping window that centers at
the user’s current location to retrieve information from PLM-DB
for location prediction. The radius of DCW is determined by both
the user’s travel speed and the prediction period T. While T is
predetermined by the system, the user’s travel speed is an
uncertain factor. When the user drives on a highway, the speed
can be estimated as the speed limit of the highway, however when
the user drives in local roads, the user’s speed is affected by the

traffic lights and the traffic. For simplicity, we assume that the
user’s speed is the same as the speed limit of the road on which
the user is driving, SpeedLimit(tk). Therefore, the size of a DCW,
R, can be determined by:

R = SpeedLimit(tk) · T (6)
For example, if the user is driving on a 25-mile/hr road and the
prediction period time is 30 minutes, then the size of a DCW is
12.5 miles.

v10

v9

v1

v5

v2

v6

v3

v7

e9

e4

e8

e5

e1 e2

e7

ex1

ex6

ex2

ex3

ex4

ex5

Road Segment e Road Vertex v

User Location L Exit Point ex

L

Figure 5. DCW and sub-network G’

v1
v2
v3
v5
v6
v7
v9
v10

v1 v2 v3 v 5 v 6 v 7 v 9 v10

































00 0 e 0 0 0 0
00 0 0 0 0 e 0
00 0 e 0 00 0
e0 e 0 e 0 e 0
00 0 e 0 0 0 0
00 0 0 0 0 e 0
0e 0 e 0 e 0 e
00 0 0 0 0 e 0

9
7

5
95 4 8

4
2

7 8 21

1

Figure 6. Retrieved adjacency matrix for G’

Figure 5 depicts a DCW (dashed circle) for a user driving on road
e1 in the road network shown in Figure 1. Because a DCW is a
clipping window, it cuts the road network into a smaller portion.
Therefore, only the road network contained in the DCW is
retrieved for prediction purposes. We consider all the vertices
inside the DCW and their immediate (neighbor) vertices as the
vertices of the sub-network. The sub-network is a new graph G’ =
<V’, E’> where V’ is the list of all retrieved vertices with a size
|V’| and E’ is the list of all retrieved edges with a size |E’|. Figure
5 shows the retrieved sub-network from the network in Figure 1,
and the adjacency matrix for G’ is shown in Figure 6.
DCW represents the largest geographic extent within which the
user’s activities are expected during the prediction period T. We
define the intersections between the DCW and the sub-network as

129

exit points because they represent all the possible exit locations
where the user may leave the DCW (see Figure 5). Exit points
may be considered as destinations of predicted trajectories.
The number of exit points can be inferred from the topological
information in G’. Suppose the number of vertices inside a DCW
is N (N ≤ |G’| because G’ may include vertices outside the DCW),
we define a new graph G” = <V”, E”> where V” is the list of the
N vertices inside the DCW and E” is the list of edges between
those N vertices. For each vertex u inside the DCW, we know the
number of edges linked to it or the number of neighbor vertices
(num_neighbors(u)) by looking up the row of u in the adjacency
matrix of G’. If we sum up the number of edges linked to each
vertex in G” as ∑

)u(G"

ors(u)num_neighb , we get a duplicated count

of those edges in G”, which is exactly twice the number of edges
(2|E”|). Therefore, if we subtract the duplicated count of edges in
G” from ∑

)u(G"

ors(u)num_neighb , we get the number of edges that

intersect with the DCW, which is also the number of exit points
(num_Exp):

num_Exp = −∑
)u(G"

ors(u)num_neighb 2|E”| (7)

For the example shown in Figure 5, v2 has four edges (e1, e2, e8,
e7) linked to it and four neighbor vertices (v1, v3, v6, v9), similarly
v6 also has four edges (e8, e4, e5, e9) and four neighbor vertices
(v2, v5, v7, v10). G” is a graph including only v2 and v6, and there
is only one edge e8 in G”. Therefore, the number of exit points is
(4 + 4) – 2 = 6, as shown.

3.4 Trajectory Prediction
PLM utilizes the information in G’ and the exit points to predict
trajectories. The start point is the user’s current location while the
end point could be any of the exit points. A shortest-path
algorithm can be used to compute a trajectory between the current
location and each of the exist points. However, each computed
trajectory has the same probability. This is a problem that needs to
be resolved, especially when the number of computed trajectories
is large. In addition, the shortest-path algorithm can only compute
one trajectory for each given pair of start and end points. This will
again decreases the system’s ability to handle uncertainty because
a user may have alternative trajectories to reach a destination from
a start point. We propose a method to detect all candidate
trajectories and rank them based on the probabilistic information
stored. By doing so, the system is provided with a mechanism that
identifies all options and select appropriate ones for location
prediction.

3.4.1 Candidate Trajectories
We propose a graph search tree to detect candidate trajectories in
a sub-network G’, retrieved by a DCW, where the root is the
user’s current location L, the intermediate nodes are the vertices
in G’, the leaf nodes are the exit points, and the linkages between
nodes are the road segments. To decrease the search space, we
assume the following rules:

1) The user does not turn around at an intersection;

2) The user does not visit a vertex that has already been
visited during a trip.

Figure 7 depicts one search tree constructed for the DCW in
Figure 5. Clearly, certain braches are pruned by the rules of the
search tree.

e1

e2
e8

e7

e4
e5

e9 e8

Pruned

Pruned

P(Traj1) = 1/3 P(Traj5) = 1/3

P(Traj2) = 1/9

P(Traj3) = 1/9

P(Traj4) = 1/9

v2

v6

L

ex3
ex2

ex6

ex4
ex5

v1

v2

Figure 7. Trajectory search tree

 TrajSearch(G’, L, ExpSet) //G’ = <V’, E’>

 //L is current location
 //ExpSet is the set of exit points
1. for each u in V’ do
2. status[u] = “unprocessed”
3. create list Vetx //Vetx stores vertices of a trajectory
4. create list Traj //Traj stores all trajectories
5. i = 0 //i stores the number of trajectories
6. u0 = the nearest vertex of L
7. DFS(u0) //begin depth-first search from L
8. return Traj

DFS(u)
1. status[u]= “processed”
2. add u to Vetx
3. for each neighbor vertex v of u do
4. e = the edge between u and v
5. if status [v] != “processed” and

 e does not intersect with any exit point in ExpSet then
6. DFS(v)
7. add Vetx to Traj[i] and increment i by one
8. status[u] = “stopped”
9. remove u from Vetx
10. return

Figure 8. TrajSearch algorithm

Figure 8 illustrates the general algorithm called TrajSearch for
detecting candidate trajectories. The algorithm takes the sub-
network G’, the exit point set ExpSet and the current location L. It
first initialize the vertices in G’ to an unprocessed status. Then it
calls a Depth First Search (DFS) algorithm to detect the candidate
trajectories. DFS first takes the nearest vertex u0 of L based on the

130

moving direction of the user. It then changes the status of u0 to
“processed” and finds all the children (neighbor vertices) of it.
Then the children become the parents by calling DFS (see Line 6
in DFS), the recursive process continues until one exit point is
detected (see Line 5 in DFS). DFS then changes the status of the
input vertex to “stopped”, meaning one trajectory has been
detected.

There is one loop in the algorithm which goes through all
neighbor vertices of a particular vertex u. All other operations
performed within the loop, such as changing status, have O(1)
time complexity. The loop through all neighbors of all vertices in

G’ takes













∑

)u(G'

ors(u)num_neighbO = O(2|E’|). Therefore, the

overall time complexity is O(|E’|), where |E’| is the number of
edges in G’.

3.4.2 Trajectory Probability
Given a trajectory Traj(e1, e2, e3, …, en), we denote its probability
by P(Traj) as a joint probability of its edges P(e1, e2, e3, …, en).
The probabilities of the candidate trajectories detected by the
search tree can be calculated using the probability matrices (see
Section 3.2.3) at the vertices and the Bayesian theorem:

P(b, a) = P(b|a) · P(a) (8)

where P(b,a) is the probability that b and a occur, P(b|a) is the
probability that b occurs given that a has already occurred, and
P(a) is the probability that a occurs.

For the search tree in Figure 7, assume vertex v2 has an initial
probability matrix as defined in Equation (4) and vertex v6 also
has an initial probability matrix:

 M(v6, t0) =





















)e|P(e)e|P(e)e|P(e)e|P(e
)e|P(e)e|P(e)e|P(e)e|P(e
)e|P(e)e|P(e)e|P(e)e|P(e
)e|P(e)e|P(e)e|P(e)e|P(e

99959498

59555458

49454448

89858488

 =





















03/13/13/1
3/103/13/1
3/13/103/1
3/13/13/10

 (9)

Because the user is currently on edge e1, the probability P(e1)=1.
By reading the probability parameter P(e2|e1) for v2, we get P(e2,
e1) = P(e2|e1) · P(e1) = 1/3. Similarly, P(e1,e8) = P(e1,e7) = 1/3. By
reading the probability parameter P(e4|e8) for v6, we get P(e1,e8,e4)
= P(e1) · P(e8|e1) · P(e4|e1,e8) = 1·(1/3)·(1/3) = 1/9 (note that
P(e4|e1,e8) = P(e4|e8)). Similarly, P(e1,e8,e5) = P(e1,e8,e9) = 1/9. The
probabilities for the trajectories are labeled at the leaf nodes (exit
points) in the search tree (see Figure 7) and the probability
calculation can be carried out as the tree searches candidate
trajectories.

3.5 Location Determination
The trajectories detected can be ranked based on their
probabilities. We define those trajectories with probabilities over
a predetermined threshold value as regular trajectories. From a

probability point of view, regular trajectories are the most
possible trajectories that the user will take. The server may use
regular trajectories for location determination. Once candidate
trajectories are ranked, locations can be estimated by using
extrapolation with a distance determined by Equation 6.

3.6 The Generalized Model
Figure 9 illustrates the major steps of our proposed PLM, where
the client transmits GPS data to the server and provides the server
with current location information for trajectory and location
prediction. The DCW module is responsible for retrieving
information for prediction. The trajectory prediction module uses
the topological information of road network and the probabilistic
information from historical trajectories to predict a trajectory and
the location determination module uses the geometrical
information (extrapolated distance) to estimate a location. After
the locations of services are predicted, the system will prepare
services and deliver them. In case of incorrect prediction, an error
control mechanism is used. The mechanism specifies an
agreement between the server and the client such that the client
will update the server if and only if the deviation or error (e.g., the
nearest distance) between the predicated trajectory and the actual
trajectory is greater than a predetermined value.

Current location and time

DCW

 Trajectory prediction

Location determination

Compute services

Present predicted route

GPS location monitoring

Error > limit

Client side Server side

Yes

GPS recorded trajectory PLM-DB

Figure 9. Steps of PLM

4. MODEL ANALYSIS
The probability matrix at each vetex (intersection) is updated
periodically based on either user-specific or group trajectories.
The quality of the probability matrix direclty determines the
PLM’s ability to detect regular trajectories. When a user follows a
regular trajectory, certain conditional probability parameters in
the probability matrix of certain intersections and the probabilities
of trajectories will change.

Let us revisit the DCW and the network given in Figure 5.
Assume the user follows a regular travel trajectory e1 → e8 → e9
for twenty times after the matrix initialization, then both
intersections v2 and v6 will have an updated probability matrix.

131

For v2, the updated matrix becomes:

M(v2, tk) =





















03/13/13/1
3/103/13/1
3/13/103/1
23/123/2123/10

 (10)

For v6, the updated matrix becomes:

M(v6, tk) =





















03/13/13/1
3/103/13/1
3/13/103/1
23/2123/123/10

 (11)

By reading the probability parameter P(e2|e1) for v2, we get P(e1,
e2) = P(e2|e1) · P(e1) = 1/23 = 0.0435. Similarly, P(e1,e8) = 21/23 =
0.9130, P(e1,e7) = 1/23 = 0.0435. By reading the probability
parameter P(e4|e8) for v6, we get P(e1,e8,e4) = P(e1) · P(e8|e1) ·
P(e4|e1,e8) = 1· (21/23) · (1/23) = 0.0397 (note that P(e4|e1,e8) =
P(e4|e8)). Similarly, P(e1,e8,e5) = 1· (21/23) · (1/23) = 0.0397 and
P(e1,e8,e9) = 1 · (21/23) · (21/23) = 0.8336. With these probabiliti-
es, the regular trajectory e1 → e8 → e9 (shown by the arrows in
Figure 10) is detected which has a much higher probability than
any other trajectory.

e1

e2
e8

e7

e4
e5

 e9 e8

Pruned

Pruned

P(Traj1) = 0.0435 P(Traj5) = 0.0435

P(Traj2) = 0.0397

P(Traj3) = 0.0397
P(Traj4) = 0.8336

v2

v6

L

ex3
ex2

ex6

ex4
ex5

v1

v2

Figure 10. Regular trajectory detection

0.1111

0.8336

0.96150.95240.93750.9091

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100
Travel Times

P
ro

ba
bi

lit
y

Figure 11. Probability growth of a regular trajectory

Using the same example, Figure 11 shows that the more the
regular trajectory is repeated, the more stable is its probability.
When the regular trajectory is traveled twenty times, its
probability will be over 80%, and when the regular trajectory is
traveled forty times, its probability will be above 90%.

5. CONCLUSIONS
Location prediction plays an important role in LBSs, in particular
it can be used to improve performance and provide desired
services. In this paper, we discussed two basic approaches
towards location prediction and introduced a new prediction
model for LBSs. We argue that map-based location prediction
approach, such as the model presented in this work, has several
benefits for those LBSs whose objective is to compute and present
on-road services:

1) Reliability. The map-based approach supports road-level
granularity and therefore improves the precision of location
prediction in LBSs;

2) Computing resources. If future locations are predicted well
in advance, there will be ample time for planning
computing resources, especially for tasks demanding high-
processing speed and/or large storage capacities;

3) Desired services. Location prediction facilitates the
possibility of providing desired services by preparing and
confirming them well in advance.

The proposed model has been analyzed only with synthetic data.
We have yet to analyze PLM with real road networks and
trajectories to evaluate its performance.

6. REFERENCES
[1] D.H. Stojanovic and S.J. Djordjevic-Kajan. Developing

location-based services from a GIS perspective. In 5th
International Conference on Telecommunications in Modern
Satellite, Cable and Broadcasting Service (TELSIKS 2001),
vol. 2, pp. 459 – 462, 2001.

[2] N. Davis, K.Cheverst, K,Mitchell, and A.Friday. Caches in
the air: Disseminating information in the guide system. In
Proceedings of the 2nd IEEE Workshop on Mobile
Computing Systems and Applications (WMCSA '99), New
Orleans, USA, February 1999.

[3] K. Cheverst, N. Davies, K. Mitchell, and A. Friday.
Experiences of developing and deploying a context-aware
tourist guide. In Proceedings of the sixth annual
international conference on Mobile computing and
networking, August 2000.

[4] R. Jana, T. Johnson, S. Muthukrishnan, and A. Vitaletti.
Location based services in a wireless WAN using cellular
digital packet data (CDPD). In Second ACM international
workshop on Data engineering for wireless and mobile
access, May 2001.

[5] H.D. Chon, D. Agrawal, and A.E. Abbadi. NAPA: Nearest
Available Parking Lot Application. In Proceedings of the
18th International Conference on Data Engineering
(ICDE’02), 2002.

[6] P. Bahl, A. Balachandran, A. Miu, G. Voelker, W. Russell,
and Y. Wang. PAWNs: Satisfying the Need for Ubiquitous

132

Connectivity and Location Services. IEEE Personal
Communications Magazine (PCS), Vol. 6, October 2001.

[7] A. T. Campbell, J. Gomez, S. Kim, C.Wan. Comparison of
IP Micro-Mobility Protocols. IEEE Wireless
Communications Magazine, Vol. 9, No. 1, February 2002.

[8] S. K. Das and S. K. Sen. Adaptive Location Prediction
Strategies Based on a Hierarchical Network Model in a
Cellular Mobile Environment. The Computer Journal, Vol.
42, No.6, 1999.

[9] B.P. Vijay Kumar and P. Venkataram. Prediction-based
location management using multilayer neural networks.
Journal of Indian institute of science, pp.7-21, 2002.

[10] J. Biesterfeld, E. Ennigrou, and K. Jobmann. Location
Prediction in Mobile Networks with Neural Networks. In
Proc. of the International Workshop on Applications of
Neural Networks to Telecommunications '97, S. 207-214,
Melbourne, June 1997.

[11] S. H. Shah, and K. Nahrstedt. Predictive Location-Based
QoS Routing in Mobile Ad Hoc Networks. In Proceedings of
IEEE International Conference on Communications (ICC
2002), New York, NY, April 2002.

[12] U. Kubach and K. Rothermel. An Adaptive, Location-Aware
Hoarding Mechanism. In Proceedings of the Fifth IEEE
Symposium on Computers and Communications (ISCC
2000), pp. 615-620, Antibes, France, July 2000.

[13] U. Kubach. A Map-Based, Context-Aware Hoarding
Mechanism. Berichtskolloquium des Graduiertenkollegs
Parallele und Verteilte Systeme, University of Stuttgart,
Germany, July 2000.

[14] Y. Zhao. Mobile Phone Location Determination and Its
Impact on Intelligent Transportation Systems. IEEE
Transaction on Intelligent Transportation Systems, Vol. 1,
No.1, March 2000.

[15] H. Gowrisankar, and S. Nittel. Reducing Uncertainty in
Location Prediction of Moving Objects in Road Networks. In
2nd Int. Conference on Geographic Information Science
(GIScience 2002), Boulder, Colorado, September 2002.

[16] O. Wolfson. The Opportunities and Challenges of Location
Information Management. In Intersections of Geospatial
Information and Information Technology Workshop, 2001.

[17] Tranplan Associates. Waterloo Region Travel Survey 1987:
An Overview of the Survey Findings. Regional Municipality
of Waterloo, Department of Planning and Development,
October 1989.

[18] T. Tugcu, and C. Ersoy. Application of a Realistic Mobility
Model to Call Admissions in DS-CDMA Cellular Systems.
In Vehicular Technology Conference (VTC'2001), spring,
Rhodes, Greece, May 2001.

[19] S. Schönfelder. Some notes on space, location and travel
behaviour. In Swiss Transport Research Conference, Monte
Verita, Ascona, 2001.

[20] J. Scourias and T. Kunz. An Activity-based Mobility Model
and Location Management Simulation Framework. In
Workshop on Modeling and Simulation of Wireless and
Mobile Systems (MSWiM'99), Seattle, USA, August 1999.

[21] White Paper: What is 3G?
http://www.genericsgroup.com/what/consultancy/whatis3G.p
df

133

