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Abstract—Ever since introduction of automated fingerprint 
recognition in law enforcement in the 1970s it has been utilized in 
applications ranging from personal authentication to civilian 
border control. The increasing use of automated fingerprint 
recognition puts on it a challenge of processing a diverse range of 
fingerprints. The quality control module is important to this 
process because it supports consistent fingerprint detail 
extraction which helps in identification / verification. Inherent 
feature issues, such as poor ridge flow, and interaction issues, 
such as inconsistent finger placement, have an impact on 
captured fingerprint quality, which eventually affects overall 
system performance. Aging results in loss of collagen; compared 
to younger skin, aging skin is loose and dry. Decreased skin 
firmness directly affects the quality of fingerprints acquired by 
sensors. Medical conditions such as arthritis may affect the user’s 
ability to interact with the sensor, further reducing fingerprint 
quality. Because quality of fingerprints varies according to the 
user population’s ages and fingerprint quality has an impact on 
overall system performance, it is important to understand the 
significance of fingerprint samples from different age groups. 
This research examines the effects of fingerprints from different 
age groups on quality levels, minutiae count, and performance of 
a minutiae-based matcher. The results show a difference in 
fingerprint image quality across age groups, most pronounced in 
the 62-and-older age group, confirming the work of [7]. 
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I.  INTRODUCTION 
Assessment of biometric sample quality has captured 

considerable interest and triggered many research efforts. 
Research on fingerprint recognition, as the oldest scientifically 
recognized biometric modality, has typically focused on 
assessment of image quality. Differing methodologies exist; 
[2] use orientation certainty and strength of dominant 
frequency to calculate fingerprint image quality. The 
fingerprint image is divided into sub-blocks and image quality 
is computed for each sub-block; these individual computations 
are then used to calculate an overall image quality score ([2]). 
[3] describe a quality assessment scheme that first counts the 
foreground blocks in an image, and then identifies the 
dominant direction of those blocks. Blocks close to the 

foreground centroid are given more weight. A ratio of the 
weighted sum of dominant-direction blocks and the weighted 
sum of foreground blocks is used to compute image quality 
([3]). [4] perform image quality assessment using the 
fingerprint’s global structure: a 2D Discrete Fourier Transform 
is calculated, and the measure of energy concentration in 
regions of interest is used as a determinant of quality; higher 
energy concentrations yield better image quality. Tabassi and 
Wilson describe an approach to classifying image quality 
assessment whereby the quality of fingerprint features used for 
matching operations is computed and defines the degree of 
separation between match and non-match distributions ([6]). 
In their work, a neural network is trained to map this degree of 
separation according to levels of quality, thus making 
fingerprint image quality an indicator of matcher performance. 
The impact of image quality degradation on performance of 
fingerprint matching systems shows that ridge-based matchers 
outperform minutiae-based matchers on lesser-quality images 
([1]). This also holds true when examining different 
populations; in one such case, fingerprint image quality for 
two groups (18-25, >62) are significantly different ([7]). 
Further, there was a negative impact on fingerprint algorithm 
performance on these two age groups ([5]). The goal of this 
paper is to expand the works of [5] and [7], to evaluate the 
impact of age on image quality and performance by examining 
four age groups (18-25, 26-39, 40-62, and >62).  

II. BACKGROUND WORK 
     Individuals aged 18 and older participated in the study in 
one of four distinct age groups: 18-25 years, 26-39 years, 40-
62 years, and 62 years and above. Data collection occurred in 
two phases, the first of which collected fingerprints from the 
18-25 and 62+ populations ([7]), and another data collection 
period in 2006, which augmented the database. In the latter 
data collection effort, fingerprints were collected regardless of 
age. These age groups were selected so that fingerprints could 
be obtained from at least 30 different fingers for each age 
group and divided among the range between 26 and 62+ years 
as closely as possible to the midpoint. In both phases, 
fingerprints were collected using an DigitalPersona® 
U.are.U® 4000 optical sensor; the resulting database 
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contained three fingerprint images from both the right and the 
left index fingers of each participant (total of six fingerprints 
per subject)  Table I and Figure 1 summarize the contents of 
this study’s database. 

TABLE I.  DATASET SUMMARY 

Age 
Grp. 

 Num 
of 
subjec
ts 

Fingers 
per 

Subject 

Total  
Distinct 
Fingers 

Sam-
ples per 
Finger  

Total 
Samples 
Per Age 
Group 

18-25 79 

2 (right 
index, 

left 
index) 

158 3 948 

26-39 24 2 48 3 288 

40-62 26 2 52 3 312 

62+  60 2 120 3 720 
 

 
Figure 1.  Fingerprint count per age group 

A commercially available fingerprint image quality 
assessment tool extracted the quality scores and minutiae 
count for fingerprints from the four different age groups. This 
study’s hypotheses were to establish whether the population 
means of quality scores for the four different age groups were 
equal. Subsequently, the impact of low-quality image scores 
was calculated using the following protocol: 

 
1. Combine all the fingerprints into one data set and obtain a 

Detection Error Tradeoff (DET) curve for the data set.  
2. Remove the lowest 10 percent quality images from the 

18-25 age group in the master data set and obtain a DET 
curve for the modified data set.  

3. Remove the lowest 10 percent quality images from the 
26-39 age group in the master data set and obtain a DET 
curve for the modified data set.  

4. Remove the lowest 10 percent quality images from the 
40-62 age group in the master data set and obtain a DET 
curve for the modified data set. 

5. Remove the lowest 10 percent quality images from the 
62+ age group in the master data set and obtain a DET 
curve for the modified data set. 

III. RESULTS AND ANALYSIS 
Figure 2 illustrates the distribution of quality scores, as 

calculated by the image quality algorithm. The spread of 
quality scores for the 18-25 age group was more compact than 
that compared to the scores of the 62+ age group. Largely, the 
scores of the middle groups (26-39 and 40-62 age groups) 
overlap.  

 

 
Figure 2.  Distribution of quality scores  

     Figure 3 shows representative samples of high and low 
fingerprint image quality for each of the four groups, as 
determined by the image quality tool. 
 

18-25 years old 26-39 years old 40-62 years old 62+ years old 

  
 

 
 

 

 
 

  
 

 
 

Figure 3.  Representative high quality (top row) and low quality (bottom row) 
fingeprints 

Preliminary visual analysis (Figure 4) illustrates a clear 
variation in quality scores for fingerprints among the four 
different age groups. The data set was determined to be non-
parametric; therefore, a Kruskal Wallis test was performed to 
examine whether population means of quality scores for the 
four different age groups are equal. The following hypotheses 
were determined: 

Null Hypothesis (Ho) : 
µ18-25 = µ26-39 = µ40-62 = µ62above (1) 

Alternate Hypothesis (Ha) : 
Not all µ are equal. (2) 
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Figure 4.  Box-plot of quality scores 

The Kruskal Wallis test is a non-parametric test when 
assumptions of data normality do not apply ([8]). The p-value 
indicates the probability of observing a test statistic as extreme 
as the one observed from the test if the null hypothesis is true. 
A simple interpretation of the p-value is that, if it is greater 
than the significance level, then the null hypothesis is 
accepted, else the alternate hypothesis is concluded. The 
results, shown in Table II, led the researchers to conclude that 
the quality score means for all age groups are not the same, 
using a significance level (α) of .05. Table II shows the results 
of the test.  

TABLE II.  KRUSKAL-WALLIS TEST RESULTS FOR QUALITY SCORES 

Age Groups 18-25 26-39 40-62 62+ 
Median 37 47 46 40 
p-value < 0.0001 

      
     The Kruskal Wallis test examines whether all the groups 
being compared are similar, but will not test the difference 
between two particular groups. To do this, a multiple paired 
test for equality between each pair of age groups was 
performed. Since there were four age groups, there were six 
possible paired comparisons. Using the Bonferroni adjustment 
procedure, the new significance level was set to be at .0083 for 
these six paired comparisons to ensure that the original 
significance level of .05 is maintained ([8]). Table III shows 
that the p-value from the Mann Whitney test for comparisons 
of quality scores between age groups 26-39 and 40-62 was not 
significantly different. The remainder of the comparisons 
shows statistically significant differences in quality scores. 

TABLE III.  PAIRWISE COMPARISIONS FOR QUALITY SCORES 

Age 
Groups 

26-39 40-62 62+  

18-25 p < 0.001 p < 0.001 p < 0.001 
26-39  p = 0.08 p < 0.001 
40-62   p < 0.001 

 
While a difference in image quality across the groups was 

observed, further analysis was undertaken to establish whether 
there was also a difference in minutiae count for fingerprints 
collected from the four different age groups. The Kruskal 

Wallis test was used on the four different age groups, with the 
following hypotheses: 

 

Null Hypothesis (Ho) : 
µ18-25 = µ26-39 = µ40-62 = µ62above (3) 

Alternate Hypothesis (Ha) : 
Not all µ are equal. (4) 
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Figure 5.  Box-plot of minutiae count 

The Kruskal Wallis test with a significance level of .05 
examined the difference in minutiae across the groups. Figure 
5 shows the resulting box plot of the minutiae across the four 
age groups, while the detailed results of this Kruskal Wallis 
test are identified in Table IV. 

TABLE IV.  KRUSKAL-WALLIS TEST RESULTS FOR MINUTIAE COUNT 

Age Groups 18-25 26-39 40-62 62+ 
Median 37 47 46 40 
p-value < 0.0001 

TABLE V.  PAIRWISE COMPARISONS FOR MINUTAIE COUNT 

Age 
Groups 

26-39 40-62 62+  

18-25 p < 0.001 p < 0.001 p < 0.001 
26-39  p = 0.382 p < 0.001 
40-62   p < 0.001 

 
The multiple paired comparison procedure was used to 

compare the magnitude of differences between every possible 
pair of age groups. Using the Bonferroni adjustment 
procedure, the new significance level is set at .0083 for these 
six paired comparisons to ensure that the original significance 
level of .05 is maintained. Table V shows that the p value from 
the Mann Whitney test for comparisons of minutiae count 
between age groups 26-39 and 40-62 was not significantly 
different and the rest of the comparisons show a statistically 
significant difference in minutiae count. As the comparison of 
quality scores for these age groups does not show a 
statistically significant difference, it follows that minutiae 
count should not differ either. 

A scatter plot of minutiae count against quality scores for 
all the age groups combined shows a curvilinear relationship 



between the two, as seen in Figure 6. This should not be 
mistaken for a causal relationship; this only indicates the 
direction of relationship between the two. The graph indicates 
that fingerprints with a minutiae count at the extreme ends of 
the range are assigned a lower quality score, while fingerprints 
with minutiae count in the mid-range were consistently given 
a higher quality score. Fingerprint samples with a minutiae 
count between 40 and 60 are assigned low quality scores, 
indicating that there are other factors taken into account when 
determining quality scores.  

 

 
 

 
 

 

 
 

 
Figure 6.  Scatter-plot of quality vs. minutaie count 

Following the determination that there was a statistical 
difference in both image quality and minutiae count for 
fingerprints from the different age groups, the next step was to 
study the contribution of low quality images to the 
performance of the minutiae-based fingerprint matcher. 
According to the methodology outlined in the previous 
section, five DET curves were calculated, as shown in Figure 
7. The most significant shift in the DET curve was observed 
when the lowest 10 percent quality images from the 62+ age 
group were pruned from the data set. Removing 10 percent of 
the lowest quality images from the other age groups did not 
show a significant shift in the DET curves. DET curves for all 
the other age groups are clustered along the same path 
showing a very similar change in performance on removing 
the lowest 10 percent quality images. The greatest impact on 
performance can be attributed to the 62+ age group. 

 



 
Figure 7.  Full dataset DET curves and effect of pruning lowest 10% quality 

images from each dataset 

IV. CONCLUSIONS AND FUTURE WORK 
The results confirm a difference in fingerprint image 

quality across age groups, although it is most pronounced with 
the 62+ age group. This confirms the work done previously by 
[7] with regard to image quality. Furthermore, the 
performance of the groups is also different, as shown by the 
DET curves. What we have learned from the statistical results 
is that fingerprint image quality is not similar between age 
groups because the quality score were not within a reasonable 
tolerance to be similar. This work also points to the 
importance of automated quality control of fingerprints: the 
results clearly show an increase in error rates for fingerprints 
of older individuals. Error rates are amplified when a 
fingerprint recognition system is deployed for large-scale use 
by subjects from different age groups. There is a clear need to 
understand issues with fingerprints representing different age 
groups, because the pervasiveness of this technology in the 
near future will require it to handle fingerprint images from 
different age groups and differing levels of quality. Based on 
Figure 2 and Figure 4, the overall quality score decreases with 
increasing variances as the age increases, which can be easily 
presumed. The average minutiae counts, however, are within a 
similar range for all the age groups, with only the variance 
increasing with age groups. A visual analysis of outliers in the 
youngest age group showed temporary skin changes caused 
their minutiae count to be significantly different than the rest 
of the age group. Meanwhile, for the most senior age group, 

the minutiae count contains a significant portion of false 
minutiae and the ratio of fingerprints with low quality is not 
negligible. The effects of these can be seen in error rates 
shown in Figure 7. Figure 7 also indicates that, for the most 
senior group having a significant portion of false minutiae and 
low-quality fingerprints, the lower performance is related to 
the quality score. For the rest of the age groups, however, 
quality is not the only contributing factor leading to a change 
in performance rates. This indicates a need to consider other 
factors that could cause a difference in performance rates. 
Further research is needed in order to investigate factors other 
than quality that might affect the performance of fingerprint 
recognition systems. Emphasis on ridge structure for matching 
operations is another research topic warranting further study 
on the effects of aging and fingerprint recognition. The results 
obtained from this research indicate a need for a framework 
for data modeling of different age groups in order to improve 
performance rates of fingerprint matching systems. 
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