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1. INTRODUCTION

Insurance company risks can be classified in a number of ways, see
for instance the “Report of the IAA’s Working Party on Solvency”.1 One
possible way of classification is to distinguish between financial risks (asset
risks and liability risks) and operational risks, see e.g., Nakada et al.[21].

Insurance operations are liability driven. In exchange for a fixed
premium, the insurance company accepts the risk to pay the claim amounts
related to the insured events. Liability risks (also called technical risks) focus
on the nature of the risk that the insurance company is assuming by selling
insurance contracts. They can be subdivided into non-catastrophic risks
(like claims volatility) and catastrophic risks (like September 11).

The insurance company will hold assets to meet its future liabilities.
Asset risks (or investment risks) are associated with insurers’ asset
management. They are often subdivided in credit risks (like the issuer of a
bond gets ruined) and market risks (like depreciation risk).

Risks that cannot be classified as either asset or liability risks are called
operational risks and are subdivided in business risks (like lower production
than expected) and event risks (like system failure).

A risk measure is defined as a mapping from the set of random
variables representing the risks at hand to the real numbers. We will
always consider random variables as losses, or payments that have to be
made. A negative outcome for the loss variable means that a gain has
occurred. The real number denoting a general risk measure associated
with the loss random variable Y will be denoted by �[Y ]. Common risk
measures in actuarial science are premium principles; see for instance
Goovaerts et al.[13], or also Chapter 5 in Kaas et al.[18]. Other risk measures
are used for determining provisions and capital requirements of an insurer,
in order to avoid insolvency. Then they measure the upper tails of
distribution functions. Such measures of risk are considered in Artzner
et al.[2], Wirch and Hardy[37], Panjer[23], Dhaene et al.[11], Tsanakas and
Desli[26], Hürlimann[16] among others. In this paper, we will concentrate on
risk measures that can be used for reserving and solvency purposes.

Let X be the random variable representing the insurance company’s
risks related to a particular policy, a particular line-of-business or to the
entire insurance portfolio over a specified time horizon. We do not specify
what kind of risk X is. It could be one specific risk type, such as credit risk
for all assets. Or it could be a sum of dependent risks X1 + · · · + Xn , where
the Xi represent the different risk types such as market risk, event risk and
so on, or where the Xi represent the claims related to the different policies
of the portfolio.

11“Report of the IAA’s Working Party on Solvency”, 2002, available at www.actuaries.org under
“IAA Documents”, “Papers”.
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Ensuring that insurers have the financial means to meet their
obligations to pay the present and future claims related to policyholders
is the purpose of solvency.2 In order to avoid insolvency over the specified
time horizon at some given level of risk tolerance, the insurer should hold
assets of value �[X ] or more. Essentially, �[X ] should be such that Pr[X >
�[X ]] is ‘small enough’. Note that �[X ] is a risk measure expressed in
monetary terms. It could be defined for instance as the 99th percentile of
the distribution function of X .

A portion of the assets held by the company finds its counterpart on
the right-hand side of the balance sheet as liabilities (technical provisions
or actuarial reserves). The value of these liabilities will be denoted by P [X ].
The rest of the assets match the equity of the company. Alternative names
for equity are surplus or capital.

The ‘required capital’ will be denoted by K [X ]. It is defined as
the excess of the insurer’s required assets over its liabilities: K [X ] =
�[X ] − P [X ]. Alternative names for required capital are minimum capital,
minimum surplus, required surplus, capital adequacy reserve, risk-based
capital or solvency margin, see e.g. Atkinson and Dallas[3].

In order to determine the required capital K [X ], the value of
the liabilities P [X ] has to be determined. Since liabilities of insurance
companies can in general not be traded efficiently in open markets, they
cannot be ‘marked to market’, but have to be determined by a ‘mark to
model’ approach. Hence, P [X ] could be defined as a ‘fair value’ of the
liabilities. The liabilities P [X ] could be defined as the 75th percentile of
the distribution of X , or they could be defined as the expected value E [X ]
increased by some additional prudency margin, or they could be evaluated
using a ‘replicating portfolio’ approach.

The definition of ‘required capital’ is general in the sense that it can
be used to define ‘regulatory capital’, ‘rating agency capital’ as well as
‘economic capital’, depending on the risk measure that is used and the
way how the liabilities are evaluated. Regulatory and rating agency capital
requirements are often determined using aggregate industry averages.
In this case, they may not sufficiently reflect the risks of the particular
company under consideration. On the other hand, if they are based on
customized internal models, which is an emerging trend, they will reflect
the individual company’s risk more accurately.

The reference period over which insolvency has to be avoided has to be
chosen carefully, taking into account the long-term commitments inherent
in insurance products. It might be the time needed to run-off the whole
portfolio, or it may be a fixed time period such as one year, in which case
X also includes provisions to be set up at the end of the period.

2“On Solvency, Solvency Assessments and Actuarial Issues, An IAIS Issues Paper”, 2000, available
at www.iaisweb.org under “Publications”.
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The appropriate level of risk tolerance will depend on several
considerations such as the length of the reference period, as well as
policyholders’ concerns and owners’ interests. A longer reference period
will allow a lower level of risk tolerance. Regulatory authorities and rating
agencies want sufficiently high levels of capital because holding more
capital increases the capacity of the company to meet its obligations. Tax
authorities, on the other hand, will not allow insurance companies to
avoid taxes on profits by using these profits to increase the level of the
capital. Furthermore, the more capital held, the lower the return on equity.
Therefore, the shareholders of the company will only be willing to provide
a sufficiently large capital K [X ] if they are sufficiently rewarded for it. This
‘cost of capital’ is covered by the policyholders who will have to pay an extra
premium for it; see e.g., Bühlmann[5].

In order to verify if the actual available capital is in accordance with
the desired risk tolerance level, the insurer has to compare the computed
monetary value �[X ] with the value of the assets. It seems obvious to valuate
the assets by their market value.

Our definition of ‘required capital’ is related to one of the definitions
of economic capital in the “SOA Specialty Guide on Economic Capital”.3

Economic capital is ‘the excess of the market value of the assets over the fair
value of the liabilities required to ensure that obligations can be satisfied at
a given level of risk tolerance, over a specified time horizon’.

As pointed out in the “Issues paper on solvency, solvency assessments
and actuarial issues”4 an insurance company’s solvency position is not
fully determined by its solvency margin alone. In general an insurer’s
solvency relies on a prudent evaluation of the technical provisions, on the
investment of the assets corresponding to these technical provisions in
accordance with quantitative and qualitative rules and finally also on the
existence of an adequate solvency margin.

In this paper, we will concentrate on risk measures �[X ] that can be used
indeterminingthe‘totalbalancesheetcapital requirement’ which is the sum
of both liabilities and solvency capital requirement: �[X ] = P [X ] + K [X ].

As mentioned above, the risk X will often be a sum of non-independent
risks. Hence, we will consider the general problem of determining
approximations for risk measures of sums of random variables of which the
dependency structure is unknown or too cumbersome to work with.

In Section 2 we introduce several well-known risk measures and the
relations that hold between them. Characterizations for ordering concepts
in terms of risk measures are explored in Section 3. The concept of

3“Specialty Guide on Economic Capital”, SOA 2003, available at www.soa.org under “Sections,
RMTF, Subgroups, Economic Capital and Allocation”.

4“Issues Paper on Solvency, Solvency Assessment and Actuarial Issues”, IAIS 2000, available at
www.iaisweb.org under “Publications”.
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comonotonicity is introduced in Section 4. The class of distortion risk
measures is examined in Section 5. Approximations for distortion risk
measures of sums of non-independent random variables, as well as the
relationship between theories of choice under risk and distortion risk
measures are considered. Section 6 concludes the paper.

2. SOME WELL-KNOWN RISK MEASURES

As a first example of a risk measure, consider the p-quantile risk
measure, often called the ‘VaR’ (Value-at-Risk) at level p in the financial
and actuarial literature. For any p in (0, 1), the p-quantile risk measure for
a random variable X , which will be denoted by Qp(X ), is defined by

Qp[X ] = inf�x ∈ � | FX (x) ≥ p�, p ∈ (0, 1), (1)

where FX (x) = Pr[X ≤ x]. We also introduce the risk measure Q +
p [X ] which

is defined by

Q +
p [X ] = sup�x ∈ � | FX (x) ≤ p�, p ∈ (0, 1)� (2)

Note that only values of p corresponding to a horizontal segment of FX lead
to different values of Qp[X ] and Q +

p [X ].
Let X denote the aggregate claims of an insurance portfolio. The

liabilities (provisions) for this portfolio are given by P . Assume the insurer
establishes a solvency capital K = Qp[X ] − P with p sufficiently large, e.g.,
p = 0�99. In this case, the capital can be interpreted as the ‘smallest’ capital
such that the insurer becomes technically insolvent, i.e., claims exceed
provisons and capital, with a (small) probability of at most 1 − p:

K = inf�L |Pr[X > P + L] ≤ 1 − p�� (3)

Using the p-quantile risk measure for determining a solvency capital is
meaningful in situations where the default event should be avoided, but the
size of the shortfall is less important. For shareholders or management e.g.,
the quantile risk measure gives useful information since avoiding default is
the primary concern, whereas the size of the shortfall is only secondary.

Expression (1) can also be used to define Q0[X ] and Q1[X ]. For the
latter quantile, we take the convention inf∅ = +∞. We find that Q0(X ) =
−∞. For a bounded random variable X , we have that Q1[X ] = max(X ).
Note that Qp[X ] is often denoted by F −1

X (p). The quantile function Qp[X ] is
a non-decreasing and left-continuous function of p. In the sequel, we will
often use the following equivalence relation which holds for all x ∈ � and
p ∈ [0, 1]:

Qp[X ] ≤ x ⇔ p ≤ FX (x)� (4)
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Note that the equivalence relation (4) holds with equalities if FX is
continuous at this particular x .

A single quantile risk measure of a predetermined level p does not give
any information about the thickness of the upper tail of the distribution
function from Qp[X ] on. A regulator for instance is not only concerned
with the frequency of default, but also about the severity of default. Also
shareholders and management should be concerned with the question
“how bad is bad?” when they want to evaluate the risks at hand in a
consistent way. Therefore, one often uses another risk measure which is
called the Tail Value-at-Risk (TVaR) at level p. It is denoted by TVaRp[X ],
and defined by

TVaRp[X ] = 1
1 − p

∫ 1

p
Qq [X ]dq , p ∈ (0, 1)� (5)

It is the arithmetic average of the quantiles of X , from p on. Note that the
TVaR is always larger than the corresponding quantile. From (5) it follows
immediately that the Tail Value-at-Risk is a non-decreasing function of p.

Let X again denote the aggregate claims of an insurance portfolio over
a given reference period and P the provision for this portfolio. Setting
the capital equal to TVaRp[X ] − P , we could define ‘bad times’ as those
where X takes a value in the interval [Qp[X ], TVaRp[X ]]. Hence, ‘bad times’
are those where the aggregate claims exceed the threshold Qp[X ], but not
using up all available capital. The width of the interval is a ‘cushion’ that
is used in case of ‘bad times’. For more details, see Overbeck[22].

The Conditional Tail Expectation (CTE) at level p will be denoted by
CTEp[X ]. It is defined as

CTEp[X ] = E[X |X > Qp[X ]], p ∈ (0, 1)� (6)

Loosely speaking, the conditional tail expectation at level p is equal to the
mean of the top (1 − p)% losses. It can also be interpreted as the VaR at
level p augmented by the average exceedance of the claims X over that
quantile, given that such exceedance occurs.

The Expected Shortfall (ESF) at level p will be denoted by ESFp[X ], and
is defined as

ESFp[X ] = E[(X − Qp[X ])+], p ∈ (0, 1)� (7)

This risk measure can be interpreted as the expected value of the shortfall
in case the capital is set equal to Qp[X ] − P .

The following relations hold between the four risk measures defined
above.
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Theorem 2.1 (Relation BetweenQuantiles, TVaR, CTE, and ESF). For p ∈
(0, 1), we have that

TVaRp[X ] = Qp[X ] + 1
1 − p

ESFp[X ], (8)

CTEp[X ] = Qp[X ] + 1
1 − FX (Qp[X ])ESFp[X ], (9)

CTEp[X ] = TVaRFX (Qp [X ])[X ]� (10)

Proof. Expression (8) follows from

ESFp[X ] =
∫ 1

0
(Qq [X ] − Qp[X ])+dq

=
∫ 1

p
Qq [X ]dq − Qp[X ][1 − p]�

Expression (9) follows from

ESFp[X ] = E[X − Qp[X ] |X > Qp[X ]](1 − FX (Qp[X ]))� (11)

Expression (10) follows immediately from (8) and (9).

About the Tail Value-at-Risk, from definition (5) we have the following
elementary result, which will be applied later: if X has a finite expectation
E[X ], then

lim
p↘0

TVaRp[X ] = E [X ]� (12)

Note that if FX is continuous then

CTEp[X ] = TVaRp[X ], p ∈ (0, 1)� (13)

In the sequel, we will often use the following lemma, which expresses the
quantiles of a function of a random variable in terms of the quantiles of
the random variable.

Lemma 2.1 (Quantiles of Transformed Random Variables). Let X be a
real-valued random variable, and 0 < p < 1. For any non-decreasing and left
continuous function g , it holds that

Qp[g (X )] = g (Qp[X ])� (14)
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On the other hand, for any non-increasing and right continuous function g , one has

Qp[g (X )] = g (Q +
1−p[X ])� (15)

A proof of this result can be found e.g., in Dhaene et al.[8]. As an
application of Lemma 2.1, we immediately find that

E
[
X |X < Q +

p [X ]] = −CTE1−p[−X ] (16)

holds for any p ∈ (0, 1).

Example 2.1 (Normal Losses). Consider a random variable X ∼
N (�, �2), which is normally distributed with mean � and variance �2. From
Lemma 2.1, it follows immediately that the quantiles of X are given by

Qp[X ] = � + ��−1(p), p ∈ (0, 1), (17)

where � denotes the standard normal cumulative distribution function.
The stop-loss premiums of X are given by

E[(X − d)+] = ��

(
d − �

�

)
− (d − �)

[
1 − �

(
d − �

�

)]
, −∞< d < +∞,

(18)

where �(x) = �′(x) denotes the density function of the standard normal
distribution. For a proof, see e.g., Example 3.9.1 in Kaas et al.[18]. From (18)
we find the following expression for the Expected Shortfall:

ESFp[X ] = ��(�−1(p)) − ��−1(p)(1 − p), p ∈ (0, 1)� (19)

Using (9), we find that the Conditional Tail Expectation is given by

CTEp[X ] = � + �
�(�−1(p))

1 − p
, p ∈ (0, 1)� (20)

Example 2.2 (Lognormal Losses). Consider a random variable X that is
lognormally distributed. Hence, lnX ∼ N (�, �2). The quantiles of X follow
from Lemma 2.1.

Qp[X ] = e�+��−1(p), p ∈ (0, 1)� (21)

It is well-known that the stop-loss premiums of X are given by

E[(X − d)+] = e�+�2/2�(d1) − d�(d2), d > 0, (22)
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where d1 = � + (� − ln d)/� and d2 = d1 − �. The Black and Scholes[4]

call-option pricing formula is based on this expression for the stop-loss
premium of a lognormal random variable. The Expected Shortfall is then
given by

ESFp[X ] = e�+�2/2�(� − �−1(p)) − e�+��−1(p)(1 − p), p ∈ (0, 1)� (23)

The Conditional Tail Expectation is given by

CTEp[X ] = e�+�2/2�(� − �−1(p))
1 − p

, p ∈ (0, 1)� (24)

Finally, we also find

E[X |X < Qp[X ]] = e�+�2/2 1 − �(� − �−1(p))
p

, p ∈ (0, 1)� (25)

3. RISK MEASURES AND ORDERING OF RISKS

Comparing random variables is the essence of the actuarial profession.
Several ordering concepts, such as stochastic dominance and stop-loss
order, have been introduced for that purpose in the actuarial literature;
see e.g., Goovaerts et al.[15]. Other applications of stochastic orders can be
found in Shaked and Shanthikumar[25].

Definition 3.1 (Stochastic Dominance, Stop-Loss and Convex Order).
Consider two loss random variables X and Y . X is said to precede Y
in the stochastic dominance sense, notation X ≤st Y , if and only if the
distribution function of X always exceeds that of Y :

FX (x) ≥ FY (x), −∞< x < +∞; (26)

X is said to precede Y in the stop-loss order sense, notation X ≤sl Y , if and
only if X has lower stop-loss premiums than Y :

E[(X − d)+] ≤ E[(Y − d)+], −∞< d < +∞; (27)

X is said to precede Y in the convex order sense, notation X ≤cx Y , if and
only if X ≤sl Y and in addition E[X ] = E[Y ].

In the definitions of stop-loss order and convex order above, we tacitly
assume that the expectations exist. In the following theorem it is stated that
stochastic dominance can be characterized in terms of ordered quantiles.
The proof is straightforward.
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Theorem 3.1 (Stochastic Dominance vs. Ordered Quantiles). For any
random pair (X ,Y ) we have that X is smaller than Y in stochastic dominance
sense if and only if their respective quantiles are ordered:

X ≤st Y ⇔ Qp[X ] ≤ Qp[Y ] for all p ∈ (0, 1)� (28)

In the following theorem, we prove that stop-loss order can be
characterized in terms of ordered TVaR’s.

Theorem 3.2 (Stop-Loss Order vs. Ordered TVaR’s). For any random pair
(X ,Y ) we have that X ≤sl Y if and only if their respective TVaR’s are ordered:

X ≤sl Y ⇔ TVaRp[X ] ≤ TVaRp[Y ] for all p ∈ (0, 1)� (29)

Proof. First we assume X ≤sl Y and let p ∈ (0, 1). Consider the function
f (d) defined by

f (d) = (1 − p)d + E[(X − d)+] = (1 − p)d +
∫ ∞

d
F X (x)dx ,

where F X (x) = 1 − FX (x) is the decumulative distribution function of X .
Observe that F X (Qp[X ]) ≤ 1 − p ≤ F X (Qp[X ] − 0). So by the monotonicity
of the function F X (x), one easily sees that the function f (d), and hence
also the function f (d)/(1 − p), is minimized for d equal to Qp[X ]. Hence,
by choosing d = Qp[Y ], we find

TVaRp[X ] = Qp[X ] + 1
1 − p

E[(X − Qp[X ])+]

= f (Qp[X ])
1 − p

≤ f (Qp[Y ])
1 − p

= Qp[Y ] + 1
1 − p

E[(X − Qp[Y ])+]
≤ TVaRp[Y ]�

To prove the other implication, we assume that the TVaR’s are ordered for
all p ∈ (0, 1). Note that for any random variable X , we have that

E[(X − d)+] = E[(F −1
X (U ) − d)+]

=
∫ 1

FX (d)
Qq [X ]dq − d(1 − FX (d))�
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Hence, for d such that 0 < FX (d) < 1, we find

E[(X − d)+] = (TVaRFX (d)[X ] − d)(1 − FX (d))

≤ (TVaRFX (d)[Y ] − d)(1 − FX (d))

=
∫ 1

FX (d)
Qq [Y ]dq − d(1 − FX (d))

=
∫ 1

FY (d)
Qq [Y ]dq − d(1 − FY (d))

+
∫ FY (d)

FX (d)
Qq [Y ]dq − d(FY (d) − FX (d))

= E[(Y − d)+] +
∫ FY (d)

FX (d)
(Qq [Y ] − d)dq �

Using the equivalence q ≤ FY (d) ⇔ d ≥ Qq [Y ], it is straightforward to
prove that

∫ FY (d)

FX (d)
(Qq [Y ] − d)dq ≤ 0�

This proves that the stop-loss premiums of X are smaller than that of Y
for any retention d such that 0 < FX (d) < 1. If FX (d) = 1, we find E[(X −
d)+] = 0 ≤ E[(Y − d)+]� Recalling (12), the assumption that TVaRp[X ] ≤
TVaRp[Y ] for all p ∈ (0, 1) immediately implies that E[X ] ≤ E[Y ]. Thus
E[(X − d)+] ≤ E[(X − d)+] also holds for d such that FX (d) = 0. Hence, we
have proven that X ≤sl Y .

Remark 3.1 (CTE does not Preserve Convex Order). Recall the third
item of Theorem 2.1. The identity TVaRFX (d)[X ] = CTEFX (d)[X ] holds for
any d such that 0 < FX (d) < 1. Hence along the same line as the proof of
(b) above, we can obtain the implication that

X ≤sl Y ⇐ CTEp[X ] ≤ CTEp[Y ] for all p ∈ (0, 1)�

However, the other implication is not true, in general. Actually, we make a
somewhat stronger statement below:

X ≤cx Y � CTEp[X ] ≤ CTEp[Y ] for all p ∈ (0, 1)� (30)
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A simple illustration for (30) is as follows: Let X and Y be two random
variables where FY is uniform over [0, 1], and FX is given by

FX (x) =




x if 0 ≤ x < 0�85,
0�85 if 0�85 ≤ x < 0�9,
0�95 if 0�9 ≤ x < 0�95,
x if 0�95 ≤ x ≤ 1�

(31)

Clearly, FX (x) ≤ FY (x) for x < 0�9, and FX (x) ≥ FY (x) for x ≥ 0�9. We
have that E[X ] = E[Y ] = 0�5 and X ≤sl Y , hence that X ≤cx Y . However,
we easily check that CTE0�9[X ] > CTE0�9[Y ] since CTE0�9[X ] = 0�975 and
CTE0�9[Y ] = 0�95.

4. COMONOTONICITY

4.1. Comonotonic Bounds for Sums of Dependent
Random Variables

A set S in Rn is said to be comonotonic, if, for all (y1, y2, � � � , yn) and
(z1, z2, � � � , zn) in this set, yi < zi for some i implies yj ≤ zj for all j . Notice
that a comonotonic set is a ‘thin’ set, in the sense that it is contained in
a one-dimensional subset of Rn . When the support of a random vector is
a comonotonic set, the random vector itself and its joint distribution are
called comonotonic.

It can be proven that an n-dimensional random vector Y =
(Y1,Y2, � � � ,Yn) is comonotonic if and only if

Y d= (
F −1
Y1

(U ), F −1
Y2

(U ), � � � , F −1
Yn (U )

)
, (32)

where d= stands for ‘equality in distribution’, and U is a random variable
that is uniformly distributed over the unit interval (0, 1). In the remainder
of this paper, the notation U will only be used to denote such a uniformly
distributed random variable.

For any random vector X = (X1,X2, � � � ,Xn), not necessarily comono-
tonic, we will call its comonotonic counterpart any random vector with
the same marginal distributions and with the comonotonic dependency
structure. The comonotonic counterpart of X = (X1,X2, � � � ,Xn) will be
denoted by X c = (

X c
1 ,X

c
2 , � � � ,X

c
n

)
� Note that

(
X c

1 ,X
c
2 , � � � ,X

c
n

) d= (
F −1
X1

(U ), F −1
X2

(U ), � � � , F −1
Xn (U )

)
�

It can be proven that a random vector is comonotonic if and only if all
its marginal distribution functions are non-decreasing functions (or all
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are non-increasing functions) of the same random variable. For other
characterizations and more details about the concept of comonotonicity
and its applications in actuarial science and finance, we refer to the
overview papers by Dhaene et al.[8,9].

A proof for the following theorem concerning convex order bounds for
sums of dependent random variables is presented in Kaas et al.[17].

Theorem 4.1.1 (Convex Bounds for Sums of Random Variables). For any
random vector (X1,X2, � � � ,Xn) and any random variable 	, we have that

n∑
i=1

E[Xi |	] ≤cx

n∑
i=1

Xi ≤cx

n∑
i=1

F −1
Xi

(U )� (33)

The theorem above states that the least attractive random vector
(X1, � � � ,Xn) with given marginal distribution functions FXi , in the sense
that the sum of its components is largest in the convex order, has the
comonotonic joint distribution, which means that it has the joint distribution
of

(
F −1
X1 (U ), F −1

X2 (U ), � � � , F −1
Xn (U )

)
. The components of this random vector

are maximally dependent, all components being non-decreasing functions
of the same random variable. Several proofs have been given for this result;
see e.g., Denneberg[6], Dhaene and Goovaerts[10], Müller[20], or Dhaene
et al.[12].

The random vector (E[X1 |	], E[X2 |	], � � � , E[Xn |	]) will in general
not have the same marginal distributions as (X1,X2, � � � ,Xn). If one can
find a conditioning random variable 	 with the property that all random
variables E[Xi |	] are non-increasing functions of 	 (or all are non-
decreasing functions of 	), the lower bound S l = ∑n

i=1 E[Xi |	] is a sum of
n comonotonic random variables.

4.2. Risk Measures and Comonotonicity

In the following theorem, we prove that the quantile risk measure,
the Tail Value-at-Risk and the expected shortfall are additive for a sum of
comonotonic random variables.

Theorem 4.2.1 (Additivity of Risk Measures for Sums of Comonotonic
Risks). Consider a comonotonic random vector

(
X c

1 ,X
c
2 , � � � ,X

c
n

)
, and let

S c = X c
1 + X c

2 + · · · + X c
n . Then we have for all p ∈ (0, 1) that

Qp[S c ] =
n∑

i=1

Qp[Xi], (34)

TVaRp[S c ] =
n∑

i=1

TVaRp[Xi], (35)
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ESFp[S c ] =
n∑

i=1

ESFp[Xi]� (36)

Proof.
(a) We have that

S c d= F −1
X1

(U ) + F −1
X2

(U ) + · · · + F −1
Xn (U ) = g (U ),

with g a non-decreasing and left-continuous function. Hence, (34)
follows from Lemma 2.1.

(b) Relation (35) follows immediately from (5) and (34).
(c) Relation (36) follows from (8), (34) and (35).

From the theorem above, we can conclude that the quantile risk
measure, TVaR and ESF risk measure for a comonotonic sum can easily
be obtained by summing the corresponding risk measures of the marginal
distributions involved. Specifically, if all the random variables Xi above
have the same distribution as that of X , then we find Qp[nX ] = nQp[X ],
TVaRp[nX ] = nTVaRp[X ] and E[(nX − Qp[nX ])+] = nE[(X − Qp[X ])+]. As
we will see, the CTE risk measure is in general not additive for sums of
comonotonic risks. Nevertheless, we immediately find that CTEp[nX ] =
nCTEp[X ]� Another case where the additivity property does hold for CTE
is given in the following remark.

Remark 4.2.1 (Additivity of CTE for Sums of Comonotonic Continuous
Risks). Consider a comonotonic random vector

(
X c

1 ,X
c
2 , � � � ,X

c
n

)
with

continuous marginal distributions. For any random variable X , we have
that FX (x) is continuous in x ∈ (−∞,∞) if and only if Qp[X ] is strictly
increasing in p ∈ (0, 1). This implies that the sum S c is continuously
distributed. Furthermore, the continuity of the distribution function of S c

implies that CTEp[S c ] = TVaRp[S c ] for each p ∈ (0, 1). Therefore, it follows
from (35) that

CTEp[S c ] = TVaRp[S c ] =
n∑

i=1

TVaRp[Xi] =
n∑

i=1

CTEp[Xi]�

For the case where the marginal distributions are not continuous
and not the same, however, the CTE is, in general, not additive for
comonotonic risks. Here we propose an illustration for this case.

Remark 4.2.2 (CTE is not Additive for Sums of Comonotonic Risks).
Consider the comonotonic random vector (X c ,Y c), where X has a
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distribution FX given by

FX (x) =




x 0 ≤ x < 0�85
0�85 0�85 ≤ x < 0�9
0�95 0�9 ≤ x < 0�95
x 0�95 ≤ x ≤ 1

,

and Y is uniformly distributed in (0, 1). We write

S c = X c + Y c d= F −1
X (U ) + U = g (U )�

Since F −1
X (y) and F −1

Y (y) are non-decreasing in y ∈ (0, 1) and the
monotonicity of F −1

Y (y) is strict, the function g (y) is strictly increasing.
Hence the sum S c = X c + Y c has a continuous distribution. Because of the
additivity of the risk measures Q0�9(·) and ESF0�9(·), we find

CTE0�9[S c ] = Q0�9[S c ] + 1
1 − 0�9

ESF0�9[S c ]

= Q0�9[X c ] + Q0�9[Y c ] + 1
1 − 0�9

(ESF0�9[X c ] + ESF0�9[Y c ])

=
(
Q0�9[X c ] + 1

1 − 0�95
ESF0�9[X c ]

)

+
(
Q0�9[Y c ] + 1

1 − 0�9
ESF0�9[Y c ]

)

−
(

1
1 − 0�95

− 1
1 − 0�9

)
ESF0�9[X c ]

= CTE0�9[X c ] + CTE0�9[Y c ] −
(

1
1 − 0�95

− 1
1 − 0�9

)
ESF0�9[X c ]

< CTE0�9[X c ] + CTE0�9[Y c ]�

A risk measure � is said to be sub-additive if for any random variables X
and Y , one has �(X + Y ) ≤ �(X ) + �(Y ). Sub-additivity of a risk measure
� immediately implies

�

( n∑
i=1

Xi

)
≤

n∑
i=1

�(Xi)�

A risk measure is said to preserve stop-loss order if for any X and Y , one
has that X ≤sl Y implies �[X ] ≤ �[Y ].
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Theorem 4.2.2 (Sub-Additivity of Risk Measures). Any risk measure that
preserves stop-loss order and that is additive for comonotonic risks is sub-additive.

Proof. From Theorem 4.1.1, we have that a sum of random variables with
given marginal distributions is largest in the convex order sense if these
random variables are comonotonic:

X + Y ≤sl X c + Y c �

If the risk measure � preserves stop-loss order and is additive for
comonotonic risks, then

�[X + Y ] ≤ �[X c + Y c ] = �[X ] + �[Y ],
which proves the stated result.

Recall Theorems 3.2 and 4.2.1. As a special case of Theorem 4.2.2, we
find that TVaR is sub-additive:

TVaRp[X + Y ] ≤ TVaRp[X ] + TVaRp[Y ], p ∈ (0, 1)� (37)

In the following remark we show that CTE is not sub-additive.

Remark 4.2.3 (CTE is Not Sub-Additive). Let X be a random variable
uniformly distributed in (0, 1), and let Y be another random variable
defined by

Y = (0�95 − X )I(0<X≤0�95) + (1�95 − X )I(0�95<X<1),

where IA denotes the indicator function which equals 1 if condition A holds
and 0 otherwise. It is easy to see that Y is also uniformly distributed on
(0, 1) and

X + Y = 0�95I(0<X≤0�95) + 1�95I(0�95<X<1)� (38)

Equation (38) indicates that X + Y follows a discrete law with only two
jumps:

Pr(X + Y = 0�95) = 1 − Pr(X + Y = 1�95) = 0�95�

For p = 0�90, by formula (9) one easily checks that

CTEp[X + Y ] = 1�95, CTEp[X ] = CTEp[Y ] = 0�95�

Hence

CTEp[X + Y ] > CTEp[X ] + CTEp[Y ]�
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Notice that also the risk measure E[X + Y |X + Y ≥ Qp[X + Y ]], p ∈ (0, 1),
is not sub-additive. Indeed, consider two random variables X and Y which
are i.i.d. Bernoulli (0.01) distributed. We immediately find that

E[X + Y |X + Y ≥ Q0�985[X + Y ]]
> E[X |X ≥ Q0�985[X ]] + E[Y |Y ≥ Q0�985[Y ]] (39)

In the following remarks we show that both the quantile risk measure
and ESF are not sub-additive.

Remark 4.2.4 (VaR is not Sub-Additive). Let X and Y be i.i.d. random
variables which are Bernoulli (0.02) distributed. We immediately find
that Q0�975[X ] = Q0�975[Y ] = 0. On the other hand, Pr(X + Y = 0) = 0�9604,
which implies that Q0�975[X + Y ] > 0. As another illustration of the fact
that the quantile risk measure is not sub-additive, consider a bivariate
normal random vector (X ,Y ). One can easily prove that the distribution
functions of X + Y and X c + Y c only cross once, in (�X + �Y , 0�5). This
implies that Qp[X + Y ] > Qp[X ] + Qp[Y ] if p < 0�5, whereas Qp[X + Y ] <
Qp[X ] + Qp[Y ] if p > 0�5.

Remark 4.2.5 (ESF is not Sub-Additive). Let X and Y be i.i.d. random
variables which are Bernoulli (0.02) distributed. It is straightforward to
prove that ESF0�99[X ] = 0, while ESF0�99[X + Y ] > 0.

Remark 4.2.6 (Translation-Scale Invariant Distributions). The distribu-
tion functions of the risks X1,X2, � � � ,Xn are said to belong to the same
translation-scale invariant family of distributions if there exist a random
variable Y , positive real constants ai and real constants bi such that Xi

has the same distribution as aiY + bi for each i = 1, 2, � � � ,n. Examples of
translation-scale invariant families of distributions are normal distributions,
or more generally, elliptical distributions with the same characteristic
generator; see e.g., Valdez and Dhaene[27]. Now assume that the risk
measure � preserves stop-loss order and that �[aX + b] = a�[X ] + b for
any positive real number a and any real number b. It is easy to prove that
if the set of risks is restricted to a translation-scale invariant family, then
the risk measure � is sub-additive in this family.

5. DISTORTION RISK MEASURES

5.1. Definition, Examples, and Properties

In this section we will consider the class of distortion risk measures,
introduced by Wang[32]. The quantile risk measure and TVaR belong to this
class. A number of the properties of these risk measures can be generalized
to the class of distortion risk measures.
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The expectation of X , if it exists, can be written as

E[X ] = −
∫ 0

−∞
[1 − F X (x)]dx +

∫ ∞

0
F X (x)dx � (40)

Wang[32] defines a family of risk measures by using the concept of distortion
function as introduced in Yaari’s dual theory of choice under risk, see also
Wang and Young[36]. A distortion function is defined as a non-decreasing
function g : [0, 1] → [0, 1] such that g (0) = 0 and g (1) = 1. The distortion
risk measure associated with distortion function g is denoted by �g [·] and
is defined by

�g [X ] = −
∫ 0

−∞
[1 − g (F X (x))]dx +

∫ ∞

0
g (F X (x))dx , (41)

for any random variable X . Note that the distortion function g is assumed
to be independent of the distribution function of the random variable
X . The distortion function g (q) = q corresponds to E[X ]. Note that if
g (q) ≥ q for all q ∈ [0, 1], then �g [X ] ≥ E[X ]� In particular this result holds
in case g is a concave distortion function. Also note that g1(q) ≤ g2(q) for
all q ∈ [0, 1] implies that �g1[X ] ≤ �g2[X ].

One immediately finds that g (F X (x)) is a non-increasing function
of x with values in the interval [0, 1]. However �g [X ] cannot always be
considered as the expectation of X under a new probability measure,
because g (F X (x)) will not necessarily be right-continuous. For a general
distortion function g , the risk measure �g [X ] can be interpreted as
a “distorted expectation” of X , evaluated with a “distorted probability
measure” in the sense of a Choquet-integral; see Denneberg[6]. Substituting
g (F X (x)) by

∫ F X (x)
0 dg (q) in (41) and reverting the order of the

integrations, one finds that any distortion risk measure �g [X ] can be
written as

�g [X ] =
∫ 1

0
Q1−q [X ]dg (q)� (42)

Notice that when the distortion function g is differentiable, (42) can be
rewritten as

�g [X ] = E[Q1−U [X ]g ′(U )]� (43)

From (42), one can easily verify that the quantile Qp[X ], p ∈ (0, 1),
corresponds to the distortion function

g (x) = I(x>1−p), 0 ≤ x ≤ 1� (44)
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On the other hand, TVaRp[X ], p ∈ (0, 1), corresponds to the distortion
function

g (x) = min
(

x
1 − p

, 1
)
, 0 ≤ x ≤ 1� (45)

Remark 5.1.1 (ESF is not a Distortion Risk Measure). Let us assume that
the risk measure ESFp[X ] can be expressed as (41) for some distortion
function g . We first substitute to (41) a risk variable X with a uniform
distribution on (0, 1). Hence, for the given p ∈ (0, 1), we have

1
2
(1 − p)2 =

∫ 1

0
g (s)ds� (46)

We then substitute to (41) a Bernoulli variable Y with

Pr(Y = 0) = 1 − Pr(Y = 1) = 1 − r ,

for some arbitrarily but fixed 0 < r ≤ 1 − p. We easily obtain that g (r ) = r
for 0 < r ≤ 1 − p. From (46) we find that

1
2
(1 − p)2 =

∫ 1−p

0
s ds +

∫ 1

1−p
g (s)ds ≥ 1

2
(1 − p)2 + p(1 − p),

which is obviously a contradiction since 0 < p < 1. This illustrates that ESF
is not a distortion risk measure.

From (10) and the fact that TVaRp[X ], p ∈ (0, 1), corresponds to the
distortion function given in (45), we find that CTEp[X ], p ∈ (0, 1), can be
written in the form �g [X ] with g given by

g (x) = min
(

x
1 − FX (Qp[X ]) , 1

)
, 0 ≤ x ≤ 1� (47)

This function g , however, depends on the distribution function of X ; hence
we cannot infer that CTEp[·] is a distortion risk measure. Actually, we can
obtain the following result.

Remark 5.1.2 (CTE is not a Distortion Risk Measure). Along the same
approach as in Remark 5.1.1, we assume by contradiction that the risk
measure CTEp[X ] can be expressed as (41) for some distortion function g .
We first substitute to (41) a risk variable X with a uniform distribution on
(0, 1). Hence, for the given p ∈ (0, 1), recalling (9), we find

p + 1
2
(1 − p) =

∫ 1

0
g (1 − x)dx �
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Simplification on the above equation leads to∫ 1

0
g (x)dx = 1

2
(1 + p)� (48)

We then substitute to (41) some other risk variable. To this end we choose
a Bernoulli variable Y with

Pr(Y = 0) = 1 − Pr(Y = 1) = 1 − r ,

for some arbitrarily but fixed 0 < r ≤ 1 − p. Again applying (9) we obtain
CTEp[Y ] = 1. Hence by (41) it should hold that g (r ) = 1. By virtue of the
monotonicity of the distortion function g and the arbitrariness of 0 < r ≤
1 − p we conclude that g (·) ≡ 1 on (0, 1], which contradicts the Equation
(48). This illustrates that CTEp[X ] is not a distortion risk measure.

Example 5.1.1 (The Wang Transform Risk Measure). From (5), we see
that the TVaRp risk measure uses only the upper tail of the distribution.
Hence, this risk measure does not create incentive for taking actions that
increase the distribution function for outcomes smaller than Qp . Also, from
(8) we see that TVaRp only accounts for the expected shortfall and hence,
does not properly adjust for extreme low-frequency and high severity
losses. The Wang Transform risk measure was introduced by Wang[33] as an
example of a risk measure that could give a solution to these problems. For
any 0 < p < 1, define the distortion function

gp(x) = �
[
�−1(x) + �−1(p)

]
, 0 ≤ x ≤ 1, 0 < p < 1, (49)

which is called the “Wang Transform at level p”. The corresponding
distortion risk measure is called the Wang Transform risk measure and is
denoted by WTp[X ].

For a normally distributed random variable X , we find

1 − gp(F X (x)) = �

[
x − Qp[X ]

�

]

which implies that the Wang Transform risk measure is identical to the
quantile risk measure at the same probability level in case of a normal
random variable:

WTp[X ] = Qp[X ]� (50)

For a lognormal distributed random variable Y with parameters � and �2,
we find

WTp(Y ) = Q�[�−1(p)+�/2](Y ), (51)

which is larger than Qp[Y ].
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Examples illustrating the fact that the WT risk measure uses the whole
distribution and that it accounts for extreme low-frequency and high
severity losses can be found in Wang[34].

It is easy to prove that any distortion risk measure �g obeys the
following properties, see also Wang[32]:

• Additivity for comonotonic risks:
For any distortion function g and all random variables Xi ,

�g

[
X c

1 + X c
2 + · · · + X c

n

] =
n∑

i=1

�g [Xi]� (52)

• Positive homogeneity:
For any distortion function g , any random variable X and any non-
negative constant a, we have

�g [aX ] = a�g [X ]� (53)

• Translation invariance:
For any distortion function g , any random variable X and any constant
b, we have

�g [X + b] = �g [X ] + b� (54)

• Monotonicity:
For any distortion function g and any two random variables X and Y
where X ≤ Y , we have

�g [X ] ≤ �g [Y ] (55)

The first property follows immediately from (42) and the additivity
property of quantiles for comonotonic risks. The second and the third
properties follow from (42) and Lemma 2.1. The fourth property follows
from (42) and the fact that X ≤ Y with probability 1 implies that each
quantile of Y exceeds the corresponding quantile of X . Note that in the
literature the property of positive homogeneity is often wrongly explained
as ‘currency independence’. Take as an example the risk measure

�[X ] = E [(X − d)+], (56)

where clearly X and d have to be expressed in the same monetary
unit. This risk measure is not positive homogeneous but it is currency
independent; see also Remark 3.5 in Goovaerts et al.[14].
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In the following theorem, stochastic dominance is characterized in
terms of ordered distortion risk measures.

Theorem 5.1.1 (Stochastic Dominance vs. Ordered Distortion Risk
Measures). For any random pair (X ,Y ) we have that X is smaller than Y in
stochastic dominance sense if and only if their respective distortion risk measures are
ordered:

X ≤st Y ⇔ �g [X ] ≤ �g [Y ] for all distortion functions g � (57)

Proof. This follows immediately from (42) and Theorem 3.1.

5.2. Concave Distortion Risk Measures

A subclass of distortion functions that is often considered in the
literature is the class of concave distortion functions. A distortion function
g is said to be concave if for each q in (0, 1], there exist real numbers ay and
by and a line l(x) = ayx + by, such that l(q) = g (q) and l(q) ≥ g (q) for all
q in (0, 1]. A concave distortion function is necessarily continuous in (0, 1].
For convenience, we will always tacitly assume that a concave distortion
function is also continuous at 0. A risk measure with a concave distortion
function is then called a “concave distortion risk measure”.

For any concave distortion function g , we have that g (F X (x)) is right-
continuous, so that in this case the risk measure �g [X ] can be interpreted
as the expectation of X under a “distorted probability measure”. Note that
the quantile risk measure is not a concave distortion risk measure whereas
TVaR is a concave distortion risk measure.

In the following theorem, we show that stop-loss order can be
characterized in terms of ordered concave distortion risk measures.

Theorem 5.2.1 (SL-Order vs. Ordered Concave Distortion Risk Measures).
For any random pair (X ,Y ) we have that X ≤sl Y if and only if their respective
concave distortion risk measures are ordered:

X ≤sl Y ⇔ �g [X ] ≤ �g [Y ] for all concave distortion functions g � (58)

Proof. The “⇐” implication follows immediately from Theorem 3.2. To
complete the proof of Theorem 5.2.1, we first prove the “⇒” implication
for concave piecewise linear distortion functions g . Any such distortion
function can be written in the form

g (x) =
n∑

i=1

ai(
i − 
i+1)min(x/ai , 1)
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where 0 = a0 < a1 < · · · < an−1 < an = 1. Further, 
i is the derivative of g in
the interval (ai−1, ai) and 
n+1 = 0. Because of the concavity of g , we have
that 
i is a decreasing function of i . From (42) and (45), it follows that the
related risk measure �g [X ] can be written as

�g [X ] =
n∑

i=1

ai(
i − 
i+1)TVaR1−ai [X ]�

In view of Theorem 3.2, we find that X ≤sl Y implies �g [X ] ≤ �g [Y ] for all
concave piecewise linear distortion functions g .

Now we are able to prove the “⇒” for general concave distortion
functions g . If �g [Y ] = ∞, the result is obvious. Let us now assume
that �g [Y ] < ∞. The concave distortion function g can be approximated
from below by concave piecewise linear distortion functions gn such
that for any x ∈ [0, 1], we have that g1(x) ≤ g2(x) ≤ · · · ≤ gn(x) ≤ · · · ≤
g (x) and limn→∞ gn(x) = g (x). As we have just proven, the inequality
X ≤sl Y implies �gn [X ] ≤ �gn [Y ] for all n. Further, gn(x) ≤ g (x) implies
�gn [Y ] ≤ �g [Y ] < ∞. From the monotone convergence theorem we find
that limn→∞ �gn [X ] = �g [X ], so that we can conclude that �g [X ] ≤ �g [Y ].

Proofs for the theorem above can also be found in Yaari[38], Wang and
Young[36] or Dhaene et al.[12].

Example 5.2.1 (The Beta Distortion Risk Measure). We will write X <sl

Y if X ≤sl Y and E[(X − d)+] < E[(Y − d)+] for at least one retention d .
Wirch and Hardy[37] give the following example that illustrates that TVaR0�95

does not strongly preserve stop-loss order.
Let Pr[X = (0, 1, 2)] = (0�95, 0�025, 0�025) and Pr[Y = (1, 2)] = (0�975,

0�025). It is easy to verify that X <sl Y and TVaR0�95[X ] = TVaR0�95[Y ] =
1�5. This means that there exist random variables X and Y such that
X <sl Y but TVaR0�95[X ] = TVaR0�95[Y ]. More generally, they prove that
any distortion risk measure derived from a distortion function g which is
concave but not strictly concave (i.e., g has a linear part) does not strongly
preserve stop-loss order. They also prove that for any distortion function g
which is strictly concave one has that X <sl Y implies �g [X ] < �g [Y ]. Wirch
and Hardy[37] start from the Beta distribution function

F
(x) = 1

(a, b)

∫ x

0
t a−1(1 − t)b−1dt , 0 ≤ x ≤ 1, (59)

where 
(a, b) is the Beta function with parameters a > 0, b > 0, i.e.,


(a, b) = �(a)�(b)
�(a + b)

, (60)
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to define the Beta distortion function

g (x) = F
(x), 0 ≤ x ≤ 1� (61)

The Beta distortion function is strictly concave for any parameters 0 <
a ≤ 1 and b ≥ 1, provided a and b are not both equal to 1. This implies
that the risk measure derived from the distortion function F
(q) strictly
preserves stop-loss order. For random variables X and Y as defined above,
and parameters a = 0�1 and b = 1, we find

�F
[X ] = 1�4326 < �F
[Y ] = 1�6915�

Note that the Beta distortion risk measure with the parameters a = 0�1 and
b = 1 reduces to the PH-transform risk measure, which is considered in
Wang[31].

Concave distortion risk measures are sub-additive, which means that the
risk measure for a sum of random variables is smaller than or equivalent to
the sum of the risk measures.

• Sub-additivity:
For any concave distortion function g , and any two random variables X
and Y , we have

�g [X + Y ] ≤ �g [X ] + �g [Y ]� (62)

The proof follows immediately from Theorem 4.2.2, see also Wang and
Dhaene[35].

In Artzner[1] and Artzner et al.[2] a risk measure satisfying the
four axioms of sub-additivity, monotonicity, positive homogeneity, and
translation invariance is called “coherent”. As we have proven, any concave
distortion risk measure is coherent. As the quantile risk measure is not sub-
additive, it is not a “coherent” risk measure.

Note that the class of concave distortion risk measures is only a subset
of the class of “coherent” risk measures, as is shown by the following
example.

Example 5.2.2 (The Dutch Risk Measure). For any random variable X ,
consider the risk measure

�[X ] = E[X ] + �E[(X − 
E[X ])+], 
 ≥ 1, 0 ≤ � ≤ 1� (63)

We will call this risk measure the “Dutch risk measure”, because for non-
negative random variables it is called the “Dutch premium principle”;
see Kaas et al.[19].
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In the sequel of this example we assume that the parameters 
 and
� are both equal to 1. In this case the Dutch risk measure is coherent.
Indeed, the verifications of the properties of positive homogeneity,
translation invariance and sub-additivity are immediate. Finally, if X ≤ Y
with probability 1, then E[X ] ≤ E[Y ], so that the property of monotonicity
follows from

�[X ] = E[max(E[X ],X )] ≤ E[max(E[Y ],Y )] = �[Y ]�

Next, we will prove that the Dutch risk measure �(·) is in general not
additive for comonotonic risks. Let

(
X c

1 ,X
c
2

)
be a comonotonic random

couple with Bernoulli marginal distributions: Pr[Xi = 1] = qi with 0 < q1 <
q2 < 1 and q1 + q2 > 1. After some straightforward computations, we find

�[Xi] = qi(2 − qi), i = 1, 2,

and

�
[
X c

1 + X c
2

] = 2q1 + (1 − q1)(q1 + q2),

from which we can conclude that the Dutch premium principle is in
general not additive for comonotonic risks. Hence, the Dutch risk measure
(with parameters equal to 1) is an example of a risk measure that is
coherent, although it is not a distortion risk measure. The example also
illustrates the fact that coherent risk measures are not necessarily additive
for comonotonic risks.

As we have seen, the quantile risk measure Qp is not a concave
distortion risk measure. The following theorem states that in the class of
concave distortion risk measures, the one that leads to the minimal extra-
capital compared to the quantile risk measure at probability level p is the
TVaR risk measure at the same level p.

Theorem 5.2.2 (Characterization of TVaR). For any 0 < p < 1 and for any
random variable X one has

TVaRp[X ] = min��g [X ] | g is concave and �g ≥ Qp�� (64)

Proof. The distortion risk measure TVaRp has a concave distortion
function min

(
x

1−p , 1
)
. Further, TVaRp ≥ Qp . This implies that

TVaRp(X ) ≥ inf��g (X ) | g is concave and �g ≥ Qp��
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In order to prove the opposite inequality, consider a concave distortion
function g such that �g (Y ) ≥ Qp(Y ) holds for all random variables Y . For
any q with 1 − p < q < 1, we define the Bernoulli random variable Yq with

Pr(Yq = 1) = q �

It is easy to verify that Qp(Yq) = 1, and also �g (Yq) = g (q) . As g (x) ≤ 1,
we find that the condition �g (Yq) ≥ Qp(Yq) can be rewritten as g (q) = 1.
This means that g is equal to 1 on the interval (1 − p, 1]. As g is concave,
it follows immediately that

g (x) ≥ min
(

x
1 − p

, 1
)
, 0 < x < 1�

Hence,

�g (X ) ≥ TVaRp(X )

holds for all concave distortion risk measures g for which �g ≥ Qp . This
implies

TVaRp(X ) = inf��g (X ) | g is concave and �g ≥ Qp��

A result with a taste similar to our Theorem 5.2.2 is Proposition 5.2 in
Artzner et al.[1], which says that

VaRp[X ] = inf��[X ] | � coherent and � ≥ Qp�

holds for each risk variable X ; see also Proposition 3.3 in Artzner[1].

5.3. Risk Measures for Sums of Dependent Random Variables

In this subsection, we will consider the problem of finding
approximations for distorted expectations (such as quantiles and TVaR’s)
of a sum S = ∑n

i=1 Xi of which the marginal distributions of the random
variables Xi are given, but the dependency structure between the Xi is
unknown or too cumbersome to work with. In view of Theorem 4.1.1, we
propose to approximate (the d.f. of) S by (the d.f. of) S c = ∑n

i=1 F
−1
Xi (U )

or (the d.f. of) S l = ∑n
i=1 E[Xi |	], and approximate �g [S ] by �g [S c ] or

by �g [S l ]. Note that S c is a comonotonic sum, hence from the additivity
property for comonotonic risks we find

�g [S c ] =
n∑

i=1

�g [Xi]� (65)
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On the other hand, if the conditioning random variable 	 is such that
all E[Xi |	] are non-decreasing functions of 	 (or all are non-increasing
functions of 	), then S l is a comonotonic sum too. Hence, in this case

�g [S l ] =
n∑

i=1

�g [E[Xi |	]]� (66)

In case of a concave distortion function g , we find from Theorem 4.1.1 that
�g [S l ] is a lower bound, whereas �g [S c ] is an upper bound for �g [S ]:

�g [S l ] ≤ �g [S ] ≤ �g [S c ]� (67)

In particular, we have that

TVaRp[S l ] ≤ TVaRp[S ] ≤ TVaRp[S c ]� (68)

Note that the quantiles of S l , S , and S c are not necessarily ordered in the
same way.

Example 5.3.1 (Sums of Lognormals). Consider the sum

S =
n∑

i=0


i e Zi (69)

where the 
i are non-negative constants and the Zi are linear combinations
of the components of the random vector (Y1,Y2, � � � ,Yn) which is assumed
to have a multivariate normal distribution:

Zi =
n∑

j=1

�ijYj � (70)

Let U be uniformly distributed on the unit interval. Then from Lemma 2.1,
we find that the comonotonic upper bound S c = ∑n

i=0 F
−1

i eZi

(U ) of S is
given by

S c =
n∑

i=0


i eE[Zi ]+�Zi�
−1(U )� (71)

From Theorem 4.2.1 and Example 2.2, we find the following expressions
for the risk measures associated with S c :

Qp[S c ] =
n∑

i=0


i eE[Zi ]+�Zi�
−1(p), (72)

CTEp[S c ] =
n∑

i=0


i e
E[Zi ]+ 1

2 �
2
Zi
�(�Zi − �−1(p))

1 − p
, p ∈ (0, 1), (73)
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where in deriving (73) we have used the fact that the CTE is additive
for comonotonic risks with continuous marginal distributions; recall
Remark 4.2.1 for details. From (16), Theorem 4.2.1 and Example 2.2 we
also find

E(S c | S c < Q +
p [S c ]) =

n∑
i=0


i e
E[Zi ]+ 1

2 �
2
Zi
1 − �(�Zi − �−1(p))

p
, p ∈ (0, 1)�

(74)

From (46) and (47) in Dhaene et al.[8], one can prove that S c has a strictly
increasing distribution function. This implies that in the expression above
Q +

p (S
c) can be replaced by Qp(S c).

In order to define a stochastic lower bound for S , we choose a
conditioning random variable 	 which is a linear combination of the Yj :

	 =
n∑

j=1


j Yj � (75)

After some computations, we find that the lower bound S l =∑n
i=0 
iE[eZi |	] is given by

S l =
n∑

i=0


i e
E[Zi ]+ 1

2 (1−r 2i )�
2
Zi

+ri�Zi�
−1(U ), (76)

where the uniformly distributed random variable U follows from �−1(U ) ≡
	−E(	)

�	
, and ri is the correlation between Zi and 	.

If all ri are positive, then S l is a comonotonic sum, which means that
quantiles and conditional tail expectations related to S l can be computed
by summing the associated risk measures for the marginal distributions
involved. Assuming that all ri are positive, we find the following expressions
for the risk measures associated with S l :

Qp[S l ] =
n∑

i=0


i e
E[Zi ]+ 1

2 (1−r 2i )�
2
Zi

+ri�Zi�
−1(p), (77)

CTEp[S l ] =
n∑

i=0


i e
E[Zi ]+ 1

2 �
2
Zi
�(ri�Zi − �−1(p))

1 − p
, p ∈ (0, 1), (78)

and also

E
(
S l | S l < Q +

p [S l ]) =
n∑

i=0


i e
E[Zi ]+ 1

2 �
2
Zi
1 − �(ri�Zi − �−1(p))

p
, p ∈ (0, 1)�

(79)
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Again, one can prove that S l has a strictly increasing distribution function,
which implies that Q +

p (S
l) = Qp(S l). We have that

CTEp[S l ] ≤ CTEp[S ] ≤ CTEp[S c ], p ∈ (0, 1)� (80)

Note however that this ordering does not hold in general for Qp[S ] and its
approximations Qp[S l ] and Qp[S c ].

The correlation coefficients ri follow from the correlations between the
random variables Yi . In the special case that all Yi are i.i.d., we find

ri =
∑n

j=1 �ij
j√∑n
j=1 �

2
ij

√∑n
j=1 


2
j

, i = 1, 2, � � � ,n� (81)

The optimal choice for the coefficients 
j and the performance of (the
quantiles of) S l and S c as approximations for (the quantiles of) S are
investigated in Dhaene et al.[9] and Vanduffel et al.[28]. It turns out that S l

performs very well as an approximation for S , even at very high quantiles;
see also Vanduffel et al.[29].

5.4. Theories of Choice Under Risk

In expected utility theory a decision maker asserts a utility u(x) to each
possible wealth-level x ; see von Neumann and Morgenstern[30]. This real-
valued function u(·) is called his utility function. As a rational decision
maker is assumed to prefer more to less, it is assumed that a utility function
is non-decreasing. If the decision maker, with initial wealth w, has to choose
between random losses X and Y , then he compares E[u(w − X )] with
E[u(w − Y )] and chooses the loss which gives rise to the highest expected
utility. Hence, the decision-maker acts in order to maximize his expected
utility.

Yaari[38] presents a dual theory of choice under risk. In this dual theory,
the decision maker has a distortion function f . This “distortion function”
can be considered as the parallel to the concept of “utility function” in
utility theory. While in utility theory, choosing among risks is performed
by comparing expected values of transformed wealth levels (utilities),
in Yaari’s theory the quantities that are compared are the distorted
expectations of wealth levels. Consider a decision maker with initial wealth
w, which has to choose between two random losses X and Y . The decision-
maker acts in order to maximize his distorted expectation. Hence, he will
prefer loss X over loss Y if and only if �f [w − X ] ≥ �f [w − Y ], where �f
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is the distortion risk measure associated with the distortion function f .
Comparing the expression

E[w − X ] =
∫ 1

0
Q1−q [w − X ]dq (82)

with

E[u(w − X )] =
∫ 1

0
u(Q1−q [w − X ])dq (83)

and

�f [w − X ] =
∫ 1

0
Q1−q [w − X ]df (q), (84)

we see that both the expressions (83) and (84) transform the expected
wealth level E[w − X ]. Under the expected utility hypothesis, the possible
levels-of-wealth are adjusted by a utility function, whereas under the
distorted expectation hypothesis, the probabilities are adjusted. It is well-
known that stochastic dominance and stop-loss order have a natural
interpretation in terms of expected utility theory. The pairs of losses X and
Y with X ≤st Y are exactly those pairs of losses about which all decision
makers (with a non-decreasing) utility function agree:

X ≤st Y ⇔ E[u(w − X )] ≥ E[u(w − Y )] for all utility functions u� (85)

In expected utility theory, a decision maker is said to be risk-averse if
his utility function is concave. Stop-loss order represents the common
preferences of all risk averse decision makers:

X ≤sl Y ⇔ E[u(w − X )] ≥ E[u(w − Y )] for all concave utility functions u�
(86)

For more details about actuarial applications of expected utility theory and
its relation to ordering of random variables, see e.g., Kaas et al.[18].

On the other hand, one has that

X ≤st Y ⇔ �f [w − X ] ≥ �f [w − Y ] for all distortion functions f � (87)

Hence, stochastic dominance of loss Y over loss X holds if and only if all
decision makers in Yaari’s dual theory of choice under risk prefer loss X
over loss Y . This characterization for stochastic dominance follows from
Theorem 5.1.1 by introducing the ‘dual distortion function’ f̄ for each
distortion function f :

f̄ (x) = 1 − f (1 − x), x ∈ [0, 1]� (88)
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The dual distortion function is again a distortion function. It is clear that
¯̄f ≡ f . Furthermore, we have that

�f [−X ] = −�f̄ [X ], (89)

and therefore that

�f [w − X ] ≥ �f [w − Y ] ⇔ �f̄ [X ] ≤ �f̄ [Y ]� (90)

The former relation (89) can easily be proven from the definition (41).
Actually, we have

�f [−X ] = −
∫ 0

−∞
[1 − f (Pr(−X > x))]dx +

∫ ∞

0
f (Pr(−X > x))dx

= −
∫ 0

−∞
f̄ (Pr(−X ≤ x))dx +

∫ ∞

0
[1 − f̄ (Pr(−X ≤ x))]dx �

Substituting s = −x gives that

�f [−X ] = −
∫ ∞

0
f̄ (Pr(−X ≤ −s))ds +

∫ 0

−∞
[1 − f̄ (Pr(−X ≤ −s))]ds

=
∫ 0

−∞
[1 − f̄ (Pr(X ≥ s))]ds −

∫ ∞

0
f̄ (Pr(X ≥ s))ds

=
∫ 0

−∞
[1 − f̄ (Pr(X > s))]ds −

∫ ∞

0
f̄ (Pr(X > s))ds,

where in the last we used the fact that the Lebesgue measure of the set
of all discontinuities of a monotone function is 0. This proves the stated
result (89).

In Yaari’s dual theory of choice under risk, a decision maker is said
to be risk-averse if his distortion function is convex. Here we will tacitly
assume that a convex distortion function is continuous on [0, 1]. This
means that a risk averse decision maker systematically underestimates his
tail probabilities g (�Fw−X (x)) related to levels-of-wealth, which is a prudent
attitude. One finds that stop-loss order of loss Y over loss X can be
characterized as follows:

X ≤sl Y ⇔ �f [w − X ] ≥ �f [w − Y ] for all convex distortion functions f �
(91)

Hence, also in Yaari’s dual theory of choice under risk, stop-loss order
represents the common preferences of all risk averse decision makers. This
characterization for stop-loss order follows from Theorem 5.2.1 by noting
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that a distortion function is convex if and only if its dual distortion function
f̄ is concave. A proof for these characterizations in case of non-negative
random variables can be found in e.g., Wang and Young[36]; see also
Dhaene et al.[12]. Note that the relation between theories of choice under
risk and distortion risk measures is also investigated in Denuit et al.[7] and
Tsanakas and Desli[26].

The zero utility risk measure �(X ) associated with a utility function u is
the solution to the following indifference equation:

u(0) = E[u(�[X ] − X )], (92)

which has an ituitive interpretation in terms of utility theory; see, e.g., Kaas
et al.[18]. An interesting risk measure arises when the utility function is of
the exponential type,

u(x) = 1


(1 − e−
x)� (93)

In this case we find

�(X ) = 1


ln E[e 
X ]� (94)

The class of distortion risk measures can be considered as Yaari’s
equivalent of the class of zero-utility risks measures in expected utility
theory. Indeed, the solution of the indifference equation

�f (0) = �f [�[X ] − X ] (95)

is given by

�[X ] = �f̄ [X ]� (96)

Hence, any (concave) distortion risk measure �g [X ] can be considered as
the solution of the indifference equation (95) of a (risk-averse) decision
maker with distortion function f (x) = ḡ (x).

Tsanakas and Desli[26] introduce a class of risk measures which can be
considered as the solutions of the indifference equations in Generalised
Expected Utility Theory. This theory combines both above-mentioned
theories of choice under risk; see Quiggin[24].

6. FINAL REMARKS

In this paper we examined and summarized properties of several
well-known risk measures that can be used in the framework of setting
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capital requirements for a risky business. Special attention was given
to the class of (concave) distortion risk measures. We investigated the
relationship between these risk measures and theories of choice under risk.
We considered the problem of how to evaluate risk measures for sums of
non-independent random variables. Approximations for such sums, based
on the concept of comonotonicity, were proposed. Several examples were
provided to illustrate properties or to prove that certain properties do not
hold.

Several of the results presented in this paper for (log)normal random
variables can be generalized to the class of (log)elliptical distributions, see
Valdez and Dhaene[27]. A problem that we did not consider in this paper
is how to determine the optimal threshold for determining the required
capital. This problem is considered in Examples 9 and 10 of Dhaene
et al.[11].
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