
AC: An Integrated Source Code Plagiarism

Detection Environment

Manuel Freire, Manuel Cebrián and Emilio del Rosal

Escuela Politécnica Superior

Universidad Autónoma de Madrid

28049 Madrid, Spain

{manuel.freire, manuel.cebrian, emilio.delrosal}@uam.es

Abstract

Plagiarism detection in educational programming assignments is

still a problematic issue in terms of resource waste, ethical controversy,

legal risks, and technical complexity. This paper presents ac, a modu-

lar open-source plagiarism detection program. The design is portable

across platforms and assignment formats and provides easy extrac-

tion into the internal assignment representation. Multiple similarity

measures have been incorporated, both existing and newly-developed.

Statistical analysis and several graphical visualizations aid in the inter-

pretation of analysis results. Finally, a case study is performed on two

programming assignment data sets, one of which was automatically-

generated.

1

ar
X

iv
:c

s/
07

03
13

6v
3

 [
cs

.I
T

]
 3

 J
ul

 2
00

7

Contents

Title 1

1 Introduction 3

2 State of the art and motivation 7

3 Design of AC 14

3.1 Distance integration . 15

3.1.1 Compression similarity distance 16

3.1.2 Token counting similarity distance 18

3.1.3 Infrequent substrings similarity distance 21

3.2 Threshold recommendation and outlier detection 22

3.2.1 Discordancy tests . 24

3.2.2 The Discordancy test choice: the Hampel identifier . . 34

3.3 Submission filtering . 38

3.4 Visualization . 43

3.4.1 Graph representation 44

3.4.2 Histogram visualization 47

4 Practical examples 49

4.1 Artificial submissions . 50

4.2 Real submissions . 55

5 Conclusions and further work 58

Bibliography 63

2

1 Introduction

The development of the World Wide Web and the increasing standardiza-

tion of electronic documents has lead to a greater incidence of plagiarism

in many aspects of life. According to a recent article in Nature [20], inci-

dence of plagiarism has also reached the scientific community. However, it

is much more widespread in the case of undergraduate students, where ed-

ucators are generally ill-equipped to face the technological challenges posed

by plagiarism. Realizing this, different national educational authorities (for

instance, those of the United Kingdom [14, 8]) have begun funding projects

dedicated to study the impact and growth of plagiarism, and to propose

adequate measures.

Exact figures are unknown, since successful plagiarism is by definition

not detected, but are believed to be high and growing [13, 27]. Alexander

Aitken, one of the leading experts in operating plagiarism detection software,

asserted in a personal communication prior to 2001 that for any (USA)

student corpus, 10% of submissions are plagiarized [14, p. 4].

Two major types of documents are being targeted by undergraduate

plagiarism: essays and computer submissions, although plagiarism cases in

art degrees have also been reported [49, p. 4]. This paper focuses on source

code plagiarism.

Plagiarism detection in programming courses is tedious and extremely

time consuming for graders. Additionally, it is emotionally and legally risky

for student and educator alike [24]. University experience also shows that

even minor plagiarism levels can cause a mistrust for the work of students

3

which can lead to baroque examinations to prove the authenticity of each

student’s work, or to the relative weight of possibly-plagiarized practical

submissions in the final grade to be far lower than the actual share of ef-

fort they truly required from the student. Ignoring the problem posed by

plagiarism results in unfair grading, and may have an avalanche effect in

plagiarism incidence levels.

There are two facets in the prevention of plagiarism in computer pro-

grams. The first is of ethical and normative nature, and involves fighting

the deeper causes of plagiarism and selecting appropriate academic and le-

gal deterrents. This facet is examined, for example, in [7] and [34]. The

second facet is directly related with software engineering, and addresses the

technical measures required to detect plagiarism within a set of submissions.

The present work is focused on this second facet, and seeks to assist ed-

ucators in the task of plagiarism detection by following the approach of [29]:

monitoring excesses of collaboration which can signal anomalous behaviors

in students.

Among the most usual causes for plagiarism, we may find the following:

• Low ethical and/or technical preparation of the students.

• Ambiguity in assignments: poorly understood exercises are more likely

to suffer plagiarism.

• Low clarity in the university’s guidelines on student collaboration.

• Bad course planning causing an excessive work load.

In this light, a plagiarism detection tool can be considered as a sanity check,

4

to be used in the diagnosis of the relative health of the teaching environment.

If this check is to be objective, we feel that plagiarism detection tools should

be updated and augmented with modern technologies as those discussed in

Sect. 2.

The main contribution of this research is the design and development of

ac, a novel plagiarism detection tool available at

http://tangow.ii.uam.es/ac

Notable features of ac include the following:

• Intuitive display of results, providing visualizations such as as graphs

and different types of histograms, allows visual exploration of analysis

results. From the visualizations, plagiarism suspects can be selected

in order to perform detailed manual analysis.

• Extraction/filtering utility designed to ease the initial task of preparing

assignment submissions for analysis. Submission preprocessing would

otherwise be a repetitive and error-prone task; this utility seeks to au-

tomate the process without being specific to any particular institution.

• Implements a novel distance integration architecture, allowing similar-

ity distance algorithms to be combined, compared and refined. Many

distance algorithms found in the scientific literature on plagiarism de-

tection are included, together with several others developed by our

research group.

• Incorporates a novel threshold recommendation system based on sta-

tistical outlier detection. Distances lower than this threshold are sug-

5

gested for manual analysis, establishing an heuristic starting point to

help grader’s unveiling of plagiarism patterns.

• Open Source code, featuring a modular design that allows easy cus-

tomization of both algorithms and visualizations. ac can therefore be

analyzed, extended and adapted for any particular requirements.

• Stand-alone platform-independent program which can be executed in

any computer with a Java runtime environment. There is no need

to send the submissions to a server in a different institution, avoid-

ing privacy concerns. Furthermore, a desktop application can deliver

interactive visualizations which would be difficult to perform online.

• Intended to be a long-term supported tool by means of facilities such

as version source-control system, bug-tracking record, forums and an

updated website. Transition to Sourceforge or other Open Source col-

laborative software management portals is currently under study.

The remainder of this paper is organized as follows: Sect. 2 motivates

the need for ac by means of a review of the state of the art in tools for

plagiarism detection; Sect. 3 details several design aspects which make ac a

novel tool: data extraction, graphical visualization, metric integration and

a threshold recommendation system. Sect. 4 presents ac at work using

two practical case studies: the first with artificially generated source code

and the second with real submissions as coded by students. Finally, sect. 5

presents conclusions and outlines future work.

6

2 State of the art and motivation

Although the concept of plagiarism is somewhat vague, there is general

agreement on the desirable detection capabilities that a copy-detection al-

gorithm should have, in the spirit of schemata from [46] and [38]. The

following list enumerates possible types of source code manipulations which

may be performed to disguise the code origin of plagiarized code:

1. Text replacement, within

(a) identifiers (variables, function names, labels, etc.)

(b) textual strings within a program.

(c) comments.

2. Code reordering

(a) Internally in an instruction (e.g. if (!A && B) transforms into

if (B && !A).)

(b) Internally within a method or function (change instructions or-

der.)

(c) Reordering method or functions within the same source file.

(d) Interchanging methods or functions between different source files.

3. Code rewriting, within

(a) an instruction (e.g i++ transforms into i=i+1.)

(b) a method/function: ‘if-then-else’ engineering, loop unrolling, etc.

4. Spurious code insertion/deletion

7

(a) Error checking (eg.: if (parameter == NULL).)

(b) Extra debugging code (printfs, try-catch, #ifdef, etc.)

5. Source code mixing

(a) Mixing fragments of plagiarized code with non-plagiarized, orig-

inal code.

(b) Mixing plagiarized code from several sources (multiple plagia-

rism.)

The above list is rather exhaustive, and should enough different tech-

niques be combined in a single plagiarized submission, the result would

probably escape detection even by experienced graders. However, the goal

of cheating is usually to save time and effort, and the effort required to per-

form extensive manipulations on a plagiarized program can be greater than

the effort required for full rewrite. Note that a full rewrite will generally not

be registered as plagiarism, since the great majority of plagiarism detection

tools only analyze similarities at a lexical level. Understanding and compar-

ing the informal, higher-level semantics of programs would be considerably

more complicated.

In general terms, available automatic plagiarism detection tools deal

without any problems with manipulations of type 1 (textual substitution),

by using a lexer for each programming language and comparing only tokens,

probably ignoring comments entirely. Manipulations of type 2 (reordering)

are more difficult to detect, but fortunately this degree of difficulty is di-

rectly proportional to the source code knowledge required to perform these

manipulations.

8

Code rewriting (type 3) is one of the most affordable manipulations for

students, since only working knowledge of the programming language is

required. However, it is difficult to detect for algorithms that only seek sim-

ilarities in token sequences. Manipulations of type 4 (extra code insertion)

are also hard to detect, even for humans, because they can be considered

both as a valuable improvements to the program’s robustness, or as camou-

flage for a possible fragment of plagiarized code.

Finally, source code mixing (type 5) is similar to code reordering: a

student would generally need to have a good knowledge of the program’s

structure to successfully mix code from different sources, independently of

the origin of the second source. Should the second source be original, unpla-

giarized code, this raises the question of how much is too much. Plagiarism

detection tools can only point to probable cases of plagiarism, but the final

decision is always in the hands of a human grader. The value of automated

plagiarism detection is in narrowing down the search by highlighting the

clearest cases. No grader can be reasonably expected to perform the 5050

possible pairwise comparisons required to check for plagiarism within a cor-

pus of 100 submissions; a program, on the other hand, can perform such a

check in seconds.

With similar ideas in mind, several plagiarism detection tools have been

implemented since the 1960s. MOSS [3], SIM [22], YAP [33], JPlag [42]

and SID [11] are probably the most widespread within the academic com-

munity. The degree to which these tools withstand the manipulations listed

above has only been studied in small-scale experiments; results can be found

in [21, 11, 47, 6].

9

A qualitative study based on general properties and the distances they

deploy to find similarity can be found in an excellent review by Lancaster and

Culwin [32]. According to their conclusions, two systems seem to outperform

the rest: MOSS and JPlag. However, when comparing their performance

on a single corpus [14], no tool significantly outperformed the other. This

and other studies [41, 42] suggest that there is no “silver bullet” for plagia-

rism detection, and the degree of success achieved by a tool depends mainly

on its ease of use for prospective graders.

Lancaster and Culwin enumerate a set of comparative properties which

can aid a grader or institution in the selection of a plagiarism detection tool.

An abridged version follows:

i. Locality of the tool – the tool’s software may be downloaded and the

processing can be performed locally, or it may be web-based, with pro-

cessing taking place on a remote server (maybe in another country).

ii. Breadth – number of programming languages and variants that the tool

can process.

iii. Privacy – the engine may only be available to its host institution, or it

may be a public tool, available for widespread use.

iv. Documentation – existence of technical information about the tool in

the form of papers and reports, or even source code and associated

program documentation, which facilitate the comprehension, validation

and replication of the plagiarism detection algorithms used within the

tool and the tool itself.

10

v. Algorithms – quality and variety of the similarity distances incorporated

into the tool.

vi. Visualization – The existence or not of a Graphical User Interface (GUI)

incorporated into the tool.

vii. Preprocessing –The existence of a collection tool for submissions, or the

difficulty of the process of assembling the corpus in some predetermined

way prior to analysis.

viii. Support – The availability of long-term technical support of the tool.

Our aim when designing and developing a new plagiarism detection tool

is to fill some gaps pointed out in the literature. We enunciate those gaps

referencing the above points.

The locality of the tool is gaining importance due to increased awareness

of intellectual property issues. Data protection laws from several coun-

tries and universities current explicitly prohibit exportation of identifiable

data to external organizations (see for instance [2, 1]). This would prevent

graders from using external, web-based engines. Even though multiple lo-

cal plagiarism detection tools have been developed, most of them are either

out of availability (TeamHandIn [15], Saxon [45], Cogger [16]), heav-

ily platform-dependent, and/or unsupported (YAP3, SIM, Sherlock [30],

Jones [28, 29], DetectaCopias [35], Big Brother [27]). ac is completely

stand-alone, and can be run in any computer with a suitable Java runtime

environment.

11

Regarding Breadth and Privacy, many systems lack comprehensive doc-

umentation on their internal logic and on the algorithms they use. Some

authors oppose public access to this information, since this could lead to

circumvention of these algorithms by cheaters. This can be considered akin

to “security by obscurity”. Although winds of change are blowing (for in-

stance, MOSS is starting to detail its so far unclear functioning [46]), few

systems have actually opened up their source code to external scrutiny.

However, the implementation details of plagiarism detection tools are as

important as their underlying algorithms. The effectiveness of these algo-

rithms is strongly dependent on “details” such as thresholds and parsing

methods. Additionally, if students within an institution learn that certain

types of cheating are likely to be caught, while others seem to be much safer,

the types of plagiarism that the tool will encounter will vary very fast. This

calls for an equally dynamic and tunable plagiarism detection tool, which

can be adapted to stop leaks as soon as they are detected. A closed, central-

ized development model is unlikely to provide the necessary flexibility [25].

ac is therefore being developed as an open-source tool.

Similarity distance algorithms, point v. above, play a major role in pla-

giarism detection. If distances are reliable, they can be used to narrow down

the search for plagiarized submissions; otherwise, the grader will be none

the wiser. Many similarity distances have been proposed in the literature,

some of them intuitive and others less so, each with different strengths and

weaknesses. Even though all of them have been shown effective in locating

plagiarism (although in a rather unstructured experiments) little correla-

tion between them has been observed. The similarity rankings produced

12

by MOSS and JPlag are clear examples of this [14, p. 14]. ac provides

a framework that allows easy integration of different similarity distances,

in an effort to complement the weaknesses of one with the strengths of an-

other. Most current tools follow the opposite approach: one, or at most

two similarity distances are used, frequently small variations of the same

pattern-matching algorithm.

Regarding the visualization of results, the current tools tend to provide a

very simplistic overview of the actual similarities. Detailed analysis of pairs

of submissions is usually available, but support for the investigation and

validation of clusters of similarities is generally absent. One of the scarce

exceptions is the system by Ribler and Abrams [43], but the tool itself is

no longer available on their web page, and their paper provides very few

implementation details. ac seeks to change this situation by incorporating

multiple visualizations, supporting high-level overviews, clique detection,

and detailed analysis of individual submissions within the whole population,

and one-to-one submission comparison. Further comparison of our visual

facilities with the ones of the MOSSCliques post processing software [40]

will be performed as soon as the latter is incorporated into MOSS.

The existing variability in submission delivery formats, generally im-

posed by the graders, frequently becomes a major usability bottleneck. Pla-

giarism detection tools expect submissions to be structured according to

rigid specifications, while each university or subject will probably adhere

to a different standard. Many current tools are therefore highly targeted

to particular educational environment. ac provides an extraction/filtering

utility that automates the conversion from the submission format to the in-

13

ternal submission structure, designed to work with almost all packaging and

compression formats. This tool is essential to perform analysis of hundreds

of submissions with tens of files in each in real-world settings. Without it,

the manual intervention required to reach a common format would probably

discourage many graders from performing automated plagiarism detection

at all.

Regarding requirement viii., many existing systems are supported through

a web-site where documentation can be found, and provide support through

individual queries by e-mail. ac’s web page includes detailed system docu-

mentation and tutorials for new users, and doubles as a software project site,

including internal program documentation, forums, issue-tracking support,

and as an access point to the source code versioning system.

3 Design of AC

The design of ac relies on a general framework for similarity measurement.

This framework is based on requiring all similarity distance algorithms (also

referred to as similarity tests) to return, for each pair of submissions A and

B, a single value to represent the similarity distance between both, accord-

ing to that algorithm. Similarity distance are expected to be symmetrical

and normalized between 0 (identical sources), and 1 (minimal similarity, no

common information). Therefore, this distance is also referred to as normal-

ized similarity. Normalization can be trivially performed by calculating all

distances, and scaling all values so that they fall between 0 (corresponding to

the lowest observed distance) and 1 (highest observed distance). This type

14

of normalization should only be used as a last recourse, since information

on the actual range of observed distances is lost in the process.

Standarization is desireable because it simplifies comparisons between

different test results, and makes the tests themselves interchangeable from

the point of view of further processing steps: data sets can be examined

using different similarity distance algorithms, simplifying the evaluation of

the relative strengths and weaknesses of each. It is easy to add new tests,

and to compare their results against those of existing ones. Additionally,

results from multiple tests can be easily composed into higher-level tests.

3.1 Distance integration

The output of a test, or a composition of tests, is a distance matrix D

of N rows and columns. Each of the N columns and rows of this matrix

represents a submission, so that a single cell DAB ∈ [0, 1] contains the

similarity distance between the submissions A and B.

An ambitious goal of ac is to use multiple “orthogonal” similarity mea-

sures at once. Orthogonality is used informally in the sense of specialization

on different sets of similarity dimensions (for instance, common token se-

quences, comment similarities, or matching token frequencies). Individual

similarity distance tests can be composed into higher-level tests, allowing

a modular approach to test construction: what one test does not uncover,

another will highlight, and a well-designed composition can yield the best

of both. Many metrics that are each accurate in measuring particular sets

of similarity dimensions are expected to be more accurate than a single,

complex test, which would be harder to tune or develop.

15

A composition approach also has advantages when exposing configura-

tion controls to end-users: it is easier to configure a set of blocks, each with

a well-defined goal and few parameters, than a single monolithic block with

many goals and a larger set of possibly interdependent internal implemen-

tation parameters.

This modular design of graphical interface, metrics and test visualiza-

tions pitches ac as a powerful testbench for source-code plagiarism research.

3.1.1 Compression similarity distance

A natural (yet not discovered until the late 90s) measure of similarity is

based on the observation that two strings p and q are similar if the basic

blocks of p are in q and vice versa. String p can be described by referencing

the blocks belonging to q. If both strings are indeed similar, the description

of p using that of q will be very simple.

This is essentially how a file compressor would operate on the concate-

nated pq sequence: the compressor would attempt to eliminate redundant in-

formation from the merged sequence; if information from p is present in q, or

vice-versa, the compressed size of pq, C(pq), will be smaller than C(p)+C(q),

since part of the information contained in p can be described by referenc-

ing suitable blocks of q. This similarity measure was formalized by Rudi

Cilibrasi and Paul Vitányi in [12], giving rise to the concept of normalized

compression distance (NCD), based on the use of compressors to provide a

measures of the similarity between sequences. This distance is defined as

16

follows, and may then be used to cluster strings.

NCD (p, q) =
C (pq)−min {C (p) , C (q)}

max {C (p) , C (q)}
(1)

where pq is the concatenation of strings p and q, and C(x) denotes the

length of the text x compressed using some compression algorithm which

asymptotically reaches the true entropy of x as the length of x tends to

infinity.

This idea is very powerful, because it can be applied in the same way to

any type of sequence, be it music, text, or genetic data. There is no need to

use specific features of sequences. The distance from sequence p to sequence

q is simply a measure of the difficulty of using p describe q and vice versa.

The first proposal to use this similarity distance for plagiarism detection

can be found in [45]; however, it was not rigorously studied until the develop-

ment of the SID engine (available at http://genome.math.uwaterloo.ca/SID/),

experimentally demonstrating that the use of NCD as a text similarity dis-

tance within a plagiarism detection tool has advantages over other similarity

distances [11].

NCD has been incorporated into ac in two flavors: the Zip test operates

on tokenized source code (and is therefore dependent on the availability of a

suitable parser) while the Gross Zip distance operates on raw source code.

The latter is specially useful when analyzing code written in programming

languages for which it is difficult to obtain a parser. In both cases, compres-

sion is done by means of the standard Java compression library using the

classical Lempel-Ziv algorithm [50].

17

3.1.2 Token counting similarity distance

The token-counting test is an example of attribute-counting test [30], in the

sense that it does not analyze a program’s structure, centering instead on

the distribution of certain structure-independent attributes. The main idea

behind the test is that, if two submissions share a substantial amount of

code, then the frequency of each fundamental token in both submissions

will be similar.

A vector is built for each submission A, such that vA = (t0, ...tn), where

ti represents the number of occurrences of token i in A’s source files. The

euclidean distance between each pair of vectors, vAj and vAk
, is then used

as a similarity measure between Aj and Ak.

Since the general contract of a similarity test requires results to be nor-

malized in the range [0, 1], normalization is performed by normalizing both

vectors before checking their distance. Therefore,

dist token(A,B) =
vA

|vA|
· vB

|vB|
= cos(̂vAvB) (2)

This is the vector-space model distance used in typical information re-

trieval applications, as described in [4]. However, it is not robust when used

with programming submissions, since it is trivial to convert from certain

tokens to other, semantically equivalent constructions in a way that com-

pletely thwarts this similarity comparison. It should therefore be used only

in conjunction with stronger tests, as support.

However, it must be noted that this test is completely resistant to at-

tempts to disguise plagiarism by any structural obfuscation attempts, since

18

it is only the relative frequency of tokens that is taken into account, and not

their location within the source code. For instance, refactoring a program

into different sets of functions would have a very small impact on token

distribution, and would therefore fail to mislead the token-counting test.

The variance distance is a refinement on other tests, because it does not

compute a similarity directly from the source code of submissions. Instead,

it refines a distance matrix in an attempt to assign higher similarities to

“left-most” outliers within individual distributions (see section 3.4.2).

The intuitive goal is, when refining the distance between submissions,

to give lower distances to submissions that appear as a “left-most spike” in

each other’s individual histograms. In a more formal characterization, let A

be a submission and DA the set of distances from A to all other submissions

Xi, as found in a distance matrix D:

DA = DAX1 , ...,DAXn (3)

That is, DA is a row from the distance matrix D that is to be refined as

a result of running this test.

Let B, another submission, have an individual distribution DB. If DAB

is a left-most outlier (that is, is uncommonly low) in both DA and DB, then

there is a strong case for A and B to have much in common, regardless of

the actual value of DAB within the global distribution of distances (which

may be moderate enough as to not currently arouse suspicion).

Since we are only interested in left-most outliers (uncommonly low dis-

tances within a distribution), outliers to the right should not be considered.

19

Therefore, our calculations substitute classical standard deviations of a dis-

tribution DX for left standard deviations, or LSD(DX), defined as the stan-

dard deviation calculated exclusively using those distances DXY such that

DXY < D̂X , that is, lower than the mean of DX . Distances greater than

the mean do not contribute towards the LSD.

The following metric is used to determine the outlierlyness of A in B:

out(A,B) =
max(D̂B −DAB, 0)

LSD(B)
(4)

That is, the degree in which A is a left-most outlier of DB is 0 if A’s distance

is greater than DB’s mean, and positive and proportional to the number of

left-most standard deviations of the difference otherwise.

Using this definition, the degree of outlier importance that we are willing

to attribute to this fact is expressed by

OI(A,B) = 2−out(A,B)·out(B,A) (5)

This exhibits the desirable traits of being symmetric (OI(A,B) = OI(B,A)),

and bounded in the interval]0, 1], since OI(A,B) = 1 when out(A,B) or

out(B,A) are zero, and ' 0 when both are relatively high. The outlier im-

portance can then be factored into a corrected distance D′ with a weighing

constant koi:

D′AB = OI(A,B) · koi + DAB · (1− koi) (6)

A value of 0.4 for the outlier-importance constant koi has proven useful

20

in our experiments, and is currently the default value when the “previous

test” D is a compression test. Once the compression test’s results are re-

fined with this test, the end effect on a histogram display is that gaps are

enlarged, causing a few distances to become lower, and therefore “uncover-

ing” previously hidden similarities between submissions.

3.1.3 Infrequent substrings similarity distance

This test is based on the observation that plagiarized sources are likely to

share substrings which are infrequent within the whole corpus. Therefore,

shared, infrequent substrings can be considered a strong indicator of simi-

larity. Code which has been provided by the course instructor is likely not

to be infrequent, as are common idioms in the corresponding programming

language. These would be ignored by the test. However, if substrings shared

by a pair of submissions can not be found anywhere else in the corpus, it is

reasonable to assume a common origin.

For instance, given submissions A and B within a corpus of submis-

sions written in the C programming language, A and B will likely share

the substrings printf or for(int i=0; i<n; i++), since these are com-

mon C idioms. Likewise, if requested in assignment’s statement, the sub-

string int functionRequestedByStatement() would also be common to

most submissions found in the corpus. On the other hand, substrings such

as like // A very peculiar mis-spelt comment or fflush(a_file) are

much scarcer in C submissions, and when found only in A and B, can be

considered as indications of a common origin.

Based on this idea, the Infrequent Substrings distance builds a data

21

structure (a sort of Patricia tree [36]) that stores every substring within a

minimum and maximum length, as well as the sources where that substring

appears. Later on, this data structure can be used to assign a similarity

distance to each pair of submissions within the corpus, based on the relative

frequency of their shared substrings. The current implementation is the

following:

dist substring(A,B) = fAB

n ×
lAB

Lmax

where fAB stands for the frequency within the corpus of the most infre-

quent substring shared by A and B, n is the number of submissions within

this corpus, lAB stands for the length of the most infrequent substring shared

between A and B, and Lmax is the maximum substring length considered.

In other words, those couples of submissions that share a very rare and long

substring receive very small distance values.

The Substring distance is still under development and subject to con-

stant improvements. Nevertheless, it has already been used with promising

results in [10], demonstrating that it is a valuable alternative to other sim-

ilarity distance tests. Moreover, this test’s results can be used to highlight

areas of identical (and, more important, infrequent between two submis-

sions), making it potentially valuable during visual side-by-side similarity

inspection.

3.2 Threshold recommendation and outlier detection

The result of performing similarity calculations is a large (quadratic in the

number of submission in the corpus) number of pairwise distances, a number

22

of which will be very low in case of plagiarism occurrence. The goal of a

plagiarism detection tool is to flag these distances as suspicious. A human

grader can then locate cases of plagiarism by visual inspection of only the

(few) likely candidates, without requiring analysis of the remaining set of

(many) non-plagiarized pairs.

When based only on either the bulk of distance values, the process of flag-

ging likely candidates depends on the determination of a similarity threshold

value. If a pair of submission has a similarity distances which falls below this

threshold, it will be flagged for inspection. Otherwise, the pair will not be

flagged. Of course, the use of a single threshold value incurs the risk of false

positives and false negatives. Graders should be aware of these risks, and

exercise caution when heeding its recommendations. However, a threshold

value is a useful starting point to start a search, and determining a sane

initial value can greatly increase the ease of use of a plagiarism detection

tool.

However, the task of locating a good initial threshold has received no

attention in the literature, and is therefore left completely to the personal

decision of the grader. The following example illustrates the problems raised

by this issue. A grader is asked to locate cases of plagiarism within a corpus

of size 5. There will be
(
5
2

)
= 12 pairwise distances, say, 0.1, 0.15, 0.3,

0.6, 0.6, 0.62, 0.62, 0.64, 0.64, 0.65. It seems intuitive to flag 0.1 and 0.15

as surprisingly small when compared to the rest; but how should 0.3 be

considered? The example may be driven further: assume now that the

distribution of the above distances is known to be uniform between 0 and 1:

would the grader still flag 0.1 and 0.15 as surprising? probably not, because

23

those distances are fairly probable within a uniform distribution. With no

prior assumption about the mechanism which generated the data, detection

skills rely too much in the subjectivity of the grader.

Under certain conditions, it is possible to quantify the ‘amount of sur-

prise’ presented by a given value within a sample. This problem is completely

equivalent to the one of finding outliers, a classical problem in statistical data

analysis. Quoting Barnet and Lewis [5, page 7]

We shall define an outlier in a set of data to be an observation

(or subset of observations) which appears to be inconsistent with

the remainder of that set of data.

The reader would have probably realized that the term ‘surprisingly

small distances’ referred to throughout this work is equivalent to the term

lower outliers as used in statistics. In other words, the set of distances which

should be flagged for further visual inspection during plagiarism detection

corresponds to what a reasonable statistical test will consider as lower out-

liers within the full set of distances. As far as the authors are aware, this

is the very first application of outlier detection techniques to plagiarism

detection despite its natural analogy.

3.2.1 Discordancy tests

Having motivated the equivalence of both problems, the next step is to make

use of discordancy tests, that is, statistical tests used to detect outliers in a

sample.

More to the point, we are interested in designing discordancy test for

24

two scenarios:

• Scenario A We want to detect outliers in the full ensemble of dis-

tances i.e. in the set {D(i, j) for all submissions i, j}. The size of this

set is
(
n
2

)
, where n is the number of submissions.

• Scenario B We want to detect outliers in the individual ensembles

of distances. Fixing the submission k, we want to detect outliers in

{D(k, j) for all submissions j 6= k}. If the submission corpus has n

submissions, then there are n different ensembles of distances, one for

each submission. The size of each individual ensemble is therefore

n− 1.

Generally, the conditions for finding outliers in scenario A are stronger

than the ones in scenario B: outliers in scenario A are outliers with respect to

the full ensemble of distances, while outliers in scenario B are outliers only

with respect to certain individual ensembles they belong to. The choice

between one and the other depends on the level of deterrence desired by the

professor.

Once an scenario is chosen, discordancy tests are designed as follows:

the n − k biggest distances xn ≥ xn−1 ≥ . . . , xn−k+1 are assumed to origi-

nate from non-plagiarized pairs of submission with an underlying probability

model F . Meanwhile, the k smaller xk ≥ xk−1 ≥ . . . ≥ x1 are assumed to

originate from a set of plagiarized pairs with underlying probability model

G. Of course, k is unknown to the grader.

Two options are available for selecting a discordancy test: non-parametric

or parametric discordancy tests.

25

Non-parametric discordancy tests

Working with different submissions, students, programming languages,

and similarity distances makes it likely to result in many different probability

distributions (F s and Gs in our formulation) to be found. This favors the

non-parametric approach, since non-parametric tests automatically generate

a specific discordancy test from the data. Non-parametric tests can therefore

be expected to have wider applicability.

Non-parametric discordancy test work in the following way: First, they

adjusting some flexible model (such as gaussian mixtures [44], neural net-

works [9], or k-means [37]) to the data, penalizing the complexity of the

model to avoid overfitting. Once the non-parametric model is obtained, it

is possible to calculate the probability of generating data points below a

certain value, a probability which can then be used to design discordancy

tests. An excellent review of this field can be found in [26].

26

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1
051015202530354045

D
is

ta
nc

e

Density

O
U

T
LI

E
R

S
 K

E
R

N
E

LD
A

T
A

(a
)

A
lg

o
ri

th
m

A
n
a
ly

si
s

(A
A

;
N

=
5
8

in
C

)

0.
25

0.
3

0.
35

0.
4

0.
45

0.
5

0.
55

0.
6

0.
65

051015202530354045

D
is

ta
nc

e

Density

O
U

T
LI

E
R

S
 K

E
R

N
E

L

D
A

T
A

(b
)

O
-O

P
ro

g
ra

m
m

in
g

I
(O

O
P

I;
N

=
1
0
8

in
J
av

a
)

0
0.

2
0.

4
0.

6
0.

8
1

0510152025

D
is

ta
nc

e

Density

O
U

T
LI

E
R

S
 K

E
R

N
E

L

D
A

T
A

(c
)

C
o
m

p
u
te

r
N

et
w

o
rk

s
II

(C
N

II
;
N

=
2
2
4

in
C

)

0.
35

0.
4

0.
45

0.
5

0.
55

0.
6

0.
65

0.
7

0.
75

0102030405060

D
is

ta
nc

e

Density

O
U

T
LI

E
R

S
 K

E
R

N
E

L

D
A

T
A

(d
)

O
p

er
a
ti

n
g

S
y
st

em
s

(O
S
,
N

=
2
1

in
C

)

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1
02468101214161820

D
is

ta
nc

e

Density

O
U

T
LI

E
R

S
 K

E
R

N
E

L

D
A

T
A

(e
)

In
fo

rm
a
ti

o
n

D
a
ta

S
tr

u
ct

u
re

s
II

(I
D

S
II

;
N

=
2
1
,

C
)

0
0.

2
0.

4
0.

6
0.

8
1

051015202530354045

D
is

ta
nc

e

Density

O
U

T
LI

E
R

S
 K

E
R

N
E

L

D
A

T
A

(f
)

M
et

h
o
d
o
lo

g
y

a
n
d

T
ec

h
n
o
lo

g
y

o
f

P
ro

-
g
ra

m
m

in
g

II
(M

T
P

II
,
N

=
5
7

in
C

)

F
ig

ur
e

1:
F

ig
ue

ir
ed

o-
Ja

in
ke

rn
el

s
fo

r
th

e
fu

ll
en

se
m

bl
e

(s
ce

na
ri

o
A

)
of

N
C

D
pa

ir
w

is
e

di
st

an
ce

s
of

se
ve

ra
le

ns
em

bl
es

.
N

am
e

of
da

ta
se

t,
nu

m
be

r
of

su
bm

is
si

on
s

an
d

pr
og

ra
m

m
in

g
la

ng
ua

ge
is

lis
te

d
fo

r
ea

ch
.

27

Scenario A Experiments performed indicate that, due to a non-negligible

percentage of submissions corresponding to plagiarism, the complexity pun-

ishment used when building the non-parametric model may be not powerful

enough to leave outliers out of the model. When this observation holds,

discordancy tests constructed on top of the contaminated model are con-

demned to fail to diagnose outliers. This problem is related to the masking

and swamping phenomena in the statistical outliers literature.

To illustrate this, we use the Figueiredo-Jain Gaussian Mixture Model

[18]1, considered to be one of the best unsupervised learning algorithms, to

build non-parametric models for several submissions corpora.

As it is displayed in figure 1, this method wrongly places one of the

gaussian kernels on the lower outliers region of several source code sub-

mission2, while the desired outcome would be to place the kernels only on

non-plagiarized data. This is due to the very high incidence of plagiarism

found in the corresponding corpora (typically around 5-10%, although inci-

dence rates as high as 40% have been observed in the university where the

authors are affiliated).

This unsupervised method considers it worthwile to dedicate a kernel

to model distances corresponding to plagiarized submission, eventually in-

corporating them into the model. These outliers then mask the others,

making them undetectable. Preliminary experiments therefore show that

non-parametric discordancy tests may not be robust when confronted with
1A Matlab implementation is available at http://www.it.lut.fi/project/gmmbayes/

downloads/src/gmmbayestb/
2The corpora used throughout experiments were obtained from several graduate courses

of the Computer Science and Telecommunications degrees at the Universidad Autónoma
de Madrid.

28

high rates of plagiarism.

However, in cases where plagiarism incidence is very low (not shown

here), this method is able to detect outliers correctly.

Scenario B Non-parametric model construction requires a moderately

large sample size to correctly build a model which represents the probabil-

ity model of the underlying generation mechanism. While in scenario A we

have
(
n
2

)
such distances, we are restricted to n− 1 in scenario B, a consider-

ably smaller number which could make it dangerous to use non-parametric

approaches, with a big probability of data overfitting.

We are aware of submission corpus whose size ranges from 13 to 224. It is

clear that with sizes such as 224, the non-parametric model would serve, but

not with sizes as small as 13. We are interested in implementing a robust

outlier detection method which works for as many situations as possible,

and therefore we discard non-parametric models also for scenario B.

Parametric discordancy tests

Due to the detected weakness of non-parametric outlier approaches, the

more classical parametric approach has been considered. In this manner, dif-

ferent discordancy tests are specifically designed for each parametric family.

Outliers would be therefore considered as outlying respect to such family.

The main issue is to analyze which probability distribution model the

distance in absence of plagiarism for scenarios A and B. Once this probability

family has been identified, then it is possible to design discordancy tests to

29

diagnose whether some distance (or set of distances) have been generated

by that distribution. In other words, given a sample assumed to be drawn

from a particular probability distribution, determine which distances of the

sample deviate from the rest in a way which is not explained by the assumed

probability model.

scenario A Experiments performed on several submissions corpora

evidence that the normal distribution is a very good probability model for

the distances in absence of plagiarism, i.e. is a good F for scenario A in

our formalism. This is shown in figures 2, 3, 4, and 5, where it succeeds in

modeling different corpora written in different languages, and using several

similarity distances are used (we test the ones available in AC).

−4 −3 −2 −1 0 1 2 3 4
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

(a) AA

−4 −3 −2 −1 0 1 2 3 4
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

(b) OOPI

−3 −2 −1 0 1 2 3
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

(c) OS

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

(d) IDSII

−4 −3 −2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

(e) MTP2

Figure 2: Q-Q plots for the full ensemble of NCD pairwise similarity dis-
tances (scenario A). Regions which deviate from normality are surrounded
with an ellipse.

The plot used in the figures is known as a Q-Q plot (where ‘Q’ stands for

30

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

(a) AA

−4 −3 −2 −1 0 1 2 3 4
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

(b) OOPI

−3 −2 −1 0 1 2 3
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

(c) OS

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

(d) IDSII

−4 −3 −2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

(e) MTP2

Figure 3: Q-Q plots for full ensemble of NCD-Variance pairwise similarity
distances (scenario A).

quantile), a graphical tool for diagnosing differences in distributions from

normality in a population from which a random sample has been taken.

Quantiles of the comparison distribution are displayed on the horizontal

axis, and order statistics of the sample are displayed on the the vertical

axis. A Q-Q plot of a sample from the normal distribution is expected

to approximates a straight line, especially near the center. In the case

of substantial deviations from linearity, the statistician would reject the

hypothesis of normality.

The overwhelming majority of the points approximate the expected

straight line, providing clear support for normality. Only some small re-

gions deviate from this behavior: they are surrounded with an ellipse on the

plots.

These circles appear either in the left tail (lowest distances of the en-

31

−4 −3 −2 −1 0 1 2 3 4
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

(a) AA

−4 −3 −2 −1 0 1 2 3 4
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

(b) OOPI

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

(c) OS

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

(d) IDSII

−4 −3 −2 −1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

(e) MTP2

Figure 4: Q-Q plots for the full ensemble of Token counting pairwise simi-
larity distances (scenario A).

semble) or in the right tail (largest ones). A detailed (human) examination

of the corresponding submissions reveals the following:

• Left tail deviation is explained by pairwise distances both from sub-

missions which were plagiarized (in this formalism, belong to distribu-

tion G) and from duplicate submissions by the same authors (which,

although not strictly plagiarism, also belong to G).

• Right tail deviations are caused by large distances between ‘regu-

lar’ submission and ‘anomalous’ submission, or between anomalous

submission themselves. This last category includes assignment sub-

missions which contain strange (and often incorrect) answers to the

original statement, submission which are incomplete or syntactically

incorrect (do not compile) or submission which contain extraneous

32

−3 −2 −1 0 1 2 3
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

(a) AA

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

(b) OOPI

−3 −2 −1 0 1 2 3
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

(c) OS

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

(d) IDSII

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

(e) MTP2

Figure 5: Q-Q plots for the full ensemble of Infrequent Substring pairwise
similarity distances (scenario A).

files which were not included in any other. Distances between regular

submissions and anomalous ones, and between anomalous submissions

themselves tends to be near to 1, forming a right tail cluster.

Therefore we find that, in scenario A, distances are generated by three

probability distribution models. The main model, which generates the dis-

tance in absence of plagiarism (the majority), is the normal distribution.

Other (unknown) probability model generates low distances which lay on

the left tail of the normal distribution, and are plagiarized distances. The

remaining distribution generates large distances laying on the right tail of

the normal distribution, and serves to model pairwise distances in which an

anomalous submission is involved.

33

scenario B We analyze scenario B by computing all individual en-

semble of distances within a corpus to determine the underlying probability

distribution. Experimental results show that distances in this scenario ex-

hibit a behavior analogous to scenario A.

This can be observed in figures 6, 7, 8 and 9, where we plot the distances

between a selected submission of some corpus and the rest of the corpus.

This behavior is exhibited by the overwhelming majority of submissions,

altough we display the Q-Q s plot of a only a selected submission of each

corpus as a proof of concept.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.81

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

(a) AA

−3 −2 −1 0 1 2 3
0.4

0.5

0.6

0.7

0.8

0.9

1

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

(b) OOPI

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

(c) OS

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0.93

0.94

0.95

0.96

0.97

0.98

0.99

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

(d) IDSII

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

(e) MTP2

Figure 6: Q-Q plots for NCD similarity distances between a selected member
of some corpus and the rest of the corpus (scenario B).

3.2.2 The Discordancy test choice: the Hampel identifier

There is strong statistical evidence that the probability distribution for mod-

elling in absence of plagiarism is the normal distribution, and that plagia-

34

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.81

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

(a) AA

−3 −2 −1 0 1 2 3

0.4

0.5

0.6

0.7

0.8

0.9

1

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

(b) OOPI

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

(c) OS

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0.93

0.94

0.95

0.96

0.97

0.98

0.99

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

(d) IDSII

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

(e) MTP2

Figure 7: Q-Q plots for NCD-Variance similarity distances between a se-
lected member of some corpus and the rest of the corpus (scenario B).

rized distances tend to be on the left of this distribution, but significantly

separated. Plagiarism can then be considered as a generational mechanism

which contaminates the normal distribution samples with (a few) low dis-

tances.

It is possible to use a discordancy test able to extract the main (nor-

mal) tendency of the sample and to generate a model to detect outliers.

Distances that are deviations from normality are not a problem if an ade-

quate discordancy test is chosen which is neither influenced by lower outliers

(plagiarism) nor from upper outliers (anomalous distances). The normality

discordancy test should not be affected by outliers of either sign.

There are several discordancy tests in the literature that fulfill these

conditions [5, chapt. 6]. The Hampel identifier, is maybe the most exten-

sively studied (see [23]). Additionally, there is empirical data proving that

35

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0.8

1

1.2

1.4

1.6

1.8

2

2.2

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

(a) AA

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

(b) OOPI

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

(c) OS

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

(d) IDSII

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

(e) MTP2

Figure 8: Q-Q plots for Token Counting similarity distances between a se-
lected member of some corpus and the rest of the corpus (scenario B).

it outperforms other tests in many applications [48, 39].

The Hampel identifier works as follows. Let X(1), X(2), ..., X(N) be the

ordered distances X1, X2, . . . , XN . Let M be the median of the sample, and

S be the median absolute deviation form the median of the sample.

The Hampel identifier, adapted to lower outliers, is a rule which identifies

as plagiarisms all distances of the sample X satisfying (M−X)/S > g(N,α)

, where the function g(N,α) serves for standardizing the identifier in the

following way (see [17], p. 783, standardization (4)):

Probability(no outliers in the sample) = Probability
(|X(N) −M)|

S
< g(N,α)

)
= 1−α.

(7)

The function g(N,α) does not have an analytic form and is estimated in ac

36

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

(a) AA

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

(b) OOPI

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

(c) OS

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

(d) IDSII

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

(e) MTP2

Figure 9: Q-Q plots for Most Infrequent Substring similarity distances be-
tween a selected member of some corpus and the rest of the corpus (scenario
B).

by means of a Montecarlo simulation3 .

This method can handle a large number of outliers, and is resistant to

the problems appreciated in the non-parametric approach. We have incor-

porated it into both the and Graph+Population visualization (scenario A,

see figure 10) and the Individual visualization Histograms (scenario B, see

figure 11). We use the thresholds α = 0.01 and α = 0.05, which are the

most used in the literature.

More experimental work is needed to determine optimal thresholding val-

ues (α values), and how this is affected by aspects such as the programming

language, the size of source code or the type of submission in the corpus.
3A Matlab implementation to locate critical values of the Hampel identifier (g(N,α))

has been made available at http://www.mathworks.com/matlabcentral/fileexchange/
loadFile.do?objectId=14769

37

Future lines in this research are detailed in section 5.

Figure 10: Use of Hampel identifier to recommend two thresholds (α =
0.05 and 0.01) for plagiarism (outlier) detection in the Graph+Histogram
visualization (scenario A).

3.3 Submission filtering

Since the goal of plagiarism detection in an academic context is to assist

a human grader, it is important to make this assistance as extensive as

possible. The first step when performing any type of automated plagiarism

detection is to prepare a set of submissions for analysis. All plagiarism

detection systems rely on a stringent organization of sources in order to

perform the analysis. This is understandable, since accurate results require

comparing apples to apples, and the introduction of “noise” can only result

in distorted results. The task of converting assignment submissions into

38

Figure 11: Use of Hampel identifier to recommend two thresholds (α = 0.05
and 0.01) for each Individual Histogram visualization (scenario B).

the internal, standarized input format expected by the plagiarism detection

tool will be referred to as submission filtering. This step can be partially

automated with suitable shell scripts, but such scripts are difficult to code

without extensive experience, debugging them may be a time-consuming

process, and they cannot be reused outside of the platform and institution

for which they were originally developed. ac offers an easy to use front-end

that automates the selection, extraction and sanitizing of submissions from

their original turn-in formats into ac’s internal submission input format.

The internal format used by ac to perform plagiarism detection is a

one-level hierarchy, where folder names represent submission ids and each

folder contains all the files of that submission that should be included in

39

the comparison. For instance, if submissions identified as SubA, SubB, and

SubC are to be compared, ac would expect a folder structure similar to the

following:

SubA/: functions.c, main.c

SubB/: program.c, vector.c, matrix.c

SubC/: my submission.c

This section describes the submissions extraction utility included in ac

to ease the submission filtering task, which can be divided into two main

phases: assignment submission selection, and submission content selection.

Assignment submission selection

During submission selection, the grader is expected to select submissions

to be compared from their locations on the harddisk, networked drive, or

any other type of storage. Currently, ac can access any filesystem visible to

the underlying operating system. The user is expected to add one or more

filesystem folders to the leftmost pane of fig. 12. Folders added in this way

can now be browsed (using a familiar folder-tree metaphor). Additionally,

files within folders can be browsed, and compressed files (termed archives)

are automatically expanded (in-memory) to the folders that would result if

they were to be extracted. ac currently handles .zip, .rar (optional, requires

an external freeware program), .tar and .tar.gz archive formats. Note that

after initial extraction, no further distinction is made between archives that

have been expanded in-memory and normal folders: both behave exactly

40

alike. For instance, in fig. 12, the selection of P1A14.zip (an archive) and

P1A08 (a folder) in the left-hand tree result in undistinguishable file trees in

the rigth-hand tree.

The goal of submission selection is to locate the “base folders” (or

archives) of the submissions that should be compared. These base folders

should then be passed on to the rightmost pane of Fig. 12, where they can

be pruned of any extraneous content or subfolders, or otherwise sanitized

before comparison. Two methods are available to perform this task: direct

selection and boolean condition-based filtering. Direct selection of submis-

sions involves highlighting the target submissions with the mouse (similar

to other selecting operations in most GUI file dialogues), and clicking on

the ‘>>’ button. However, if the folders are mixed with large quantities of

non-relevant folders, this may be a lengthy manual operation.

Filters to automate selection

In condition-based filtering, a boolean expression is used to determine what

folders should be passed to the “submission contents” pane. Atomic con-

ditions can match either a file or folder’s name, its complete path, or its

contents (relevant only to files), and rely on Java’s built-in regular expres-

sion matching capabilities. Since Java’s regular expressions differ slightly

from Perl’s or other programming languages, and teachers should not be

required to learn a new regular expression language, helpful hints and ex-

amples are provided as tooltips where applicable. Composite expressions

allow an expression hierarchy to be built, by aggregating several atomic

or composite sub-expressions under a common heading. This can be ei-

41

ther ‘all conditions are met’ (logical and), ‘at least one condition

is met’ (logical or), or ‘no conditions is met’ (logical nor). Any sub-

expression’s effects may be tested at any time by clicking on the ‘test’

button (immediately highlighting the results), and sub-expressions may be

edited, added and removed at any time. Once the user is confident in the

expression, clicking on ‘Confirm’ will apply the top-level expression to the

entire pane, and select all results for insertion in the Assignment Contents

pane.

From the point of view of plagiarism detection, ac’s automated extrac-

tion tool is a key feature, and the authors consider its lack a serious drawback

of other systems. From the point of view of user interface design, we believe

that this is an intuitive and powerful graphical approach to nested boolean

queries.

Submission content selection

The purpose of the Submission Contents pane (leftmost pane of Fig. 12)

is twofold: to flatten all subdirectories present in submissions (ac expects

to work on a single-level hierarchy), and to remove all files that, although

present in the submission, are of no interest for plagiarism detection. Sub-

directory flattening is performed automatically (again, in-memory, without

writing anything to disk). Uninteresting file removal can be automated via

filtering, with the same semantics as described above: this is the purpose of

the lower filtering block in the center of Fig. 12. File removal can also be

performed manually, by selecting files and clicking on the ‘-’ icon.

Since file names may be misleading, ac’s extraction tool allows teachers

42

to double-click on any file to see its contents, and expressions in the sub-

mission content selection filter can select files based on their actual contents

(instead of relying on their names or paths). Furthermore, the built-in to-

kenizer may choke on certain malformed expressions. When viewing a file,

it is also possible to perform in-memory edits, a useful feature when minor

syntactical errors are present.

Figure 12: Screenshot of the filtering interface

3.4 Visualization

Once a test has been performed, users are expected to inspect the resulting

distance matrix and take appropiate action if evidence of plagiarism is found.

A simple approach would be to locate the lowest distances (ie.: greatest sim-

ilarities) and manually inspect the relevant submissions. This approach can

find the most flagrant cases, but identification of possible plagiarism pat-

terns between submissions from a large matrix of numbers requires patient

43

and tedious analysis. Quoting R. W. Hamming, “the purpose of computing

is insight – not numbers”. In this case, the desired insight is the location of

cases of plagiarism.

Several graphical, interactive representations of test results (referred to

as visualizations) have been developed to ease this task, and their effective-

ness is one of the strongest points of ac. Visualization is also critical in al-

lowing users to assess the meaningfulness of the outputs obtained from each

test: plagiarism detection shares many characteristics with outlier detection,

where outliers are only such within the context of a broader distribution.

Three distinct visualizations have been developed. The simplest, dis-

tance list (fig. 14) presents a list of all distances, with columns for “submis-

sion A”, “submission B” and “Distance”. The list supports sorting by any

of its columns with a single click, and is intended for the common operations

of finding the smallest distances and locating the distance values of a given

submission. Double-clicking on any row presents a side-by-side comparison

of the source code of the row’s submissions.

The input for any particular visualization is a simple distance matrix,

and therefore individual visualizations can be be used to analyze the results

of any test, regardless of its actual implementation. These visualizations

could actually be used to analyze any distance matrix, even if it were unre-

lated to programming submission plagiarism detection.

3.4.1 Graph representation

Graphs are useful to visually scan for “islands” (connected components):

groups of submissions that are similar to each other, yet less similar to

44

others outside this group. It can be a valuable aid to locate and characterize

groups of students that have collaborated with each other. In the case of

a submission A that appears to have plagiarized from sources B and C, a

graph display can quickly answer the question of whether B is also similar

to C or not.

A screen capture of the graph visualization is presented in fig. 15. This

is a graph where vertices represent submissions, and an edge is included

for each similarity lower than a given threshold. Vertices without edges are

omitted from the display, and for clarity, edges that are deemed redundant

are also elided. Edge colors and widths are determined by the degree of

similarity between their endpoints: red, thick edges denote high similarity,

while green, thin edges are used to convey low similarity.

Clicking on any graph vertex results in the associated submission’s source

code being displayed. Clicking on any edge launches a side-by-side compar-

ison of both of the submissions it is connected to.

The threshold below which graphs edges are not included is set with a

slider, which ranges from 0 (only edges which correspond to “exact copies”

are shown) to 1 (all edges are included). To aid the teacher in selecting a

good threshold, the slider is placed above a histogram of the frequencies of

each distance in the test’s distance matrix. The shaded part of the histogram

of fig. 15 represents the portion of edges that are currently being used in

the graph.

Not all edges below the threshold are included, because this would re-

sult in an unnecessarily cluttered graph. Edges that do not belong to each

connected component’s minimum spanning tree (MST) can frequently be

45

removed without significant loss of information. This approach, suggested

by Whale [47], results in a drastic simplification of each connected compo-

nent, and speeds layout considerably. However, removing all edges not in

the MST risks the loss of edges that have very high relevance (but result

unnecessary in the construction of the MST), while other edges with lower

relevance (but a role within the MST) are included. This can lead to a false

impression of the component’s structure. To characterize these edges that

are important but do not belong to the MST, the following approach has

been adopted: if a component has n vertices, the lowest-distance n edges are

also retained, regardless of whether they belong to the MST or not. This

additional heuristic ensures that structures such as triangles are not lost,

with a minimal increase in graph complexity.

Graph generation and layout is delegated to Clover [19], a graph visual-

ization framework developed by one of the authors. The framework provides

fast automatic layout, even for large graphs (tested to several hundred ver-

tices and tens of thousands of edges). Clover can also visualize clustered

graphs (graphs with a superimposed hierarchical clustering, where clusters

can be abridged and represented as single vertices). Beyond plagiarism de-

tection, a clustered graph representation could prove very useful to analyze

broad trends in similarity: do the main connected components reflect differ-

ent approaches to the problem statement? What do these approaches differ

in?. However, this research line has not yet been pursued.

46

3.4.2 Histogram visualization

A third type of visualization is represented in fig. 16. This view presents

rows of “individual histograms”, generated for each of the submissions.

While the general histogram used for distance threshold selection within

the graph visualization displays the frequency of all distances found in the

distance matrix, an individual histogram only displays distances for a par-

ticular row of the matrix. That is, the individual histogram for submission

A would be generated from DA, the set of distances from A to all other

submissions. In the display of fig. 16, each histogram contains a header

which identifies the submission for which it was generated.

By default, individual histograms within the histogram visualization are

displayed in a condensed format where color coding, instead of bar height,

is used to convey distance frequency. We have termed this abbreviated

histogram a hue histogram; it is reminiscent of the colored bars found in

chemistry analysis for similar purposes [31]. Within hue histograms, blue is

used to represent low frequency, and red for high frequency; intermediate

hues (in traditional rainbow order) are used for the remaining values. The

use of hue histograms allows large space savings to be achieved, and enables

easy comparison of neighboring histograms.

Reading Histogram Visualizations

The histogram display is perhaps the most cryptic at first, but it is also

the most powerful, as it allows an overview of the distribution of similarities

within each individual which can be very enlightening for a trained eye.

47

A key observation is that similarity “spikes” to the left of the similarity

distribution in a given row are likely to correspond to cases of plagiarism.

For example, if a submission A is very similar to another submission B, and a

large gap exists between DAB and the rest of the distances {DAXi : Xi 6= B},

this will show up as a left-most spike in A’s individual histogram. This

distribution would be exactly what would be expected if A and B have

common code which is not shared with any other submission. Imagine that

A decides to obscure this fact, and obfuscates code in an effort to avoid

detection. This will result in an increase of DAB – but, if the distance test

used to compute the distances is robust, all other distances within DA will

also experiment increases, and the general shape of the histogram will be

retained4. Therefore, “damning spikes” (outliers to the left of a distribution)

can be used as an indicator of plagiarism.

Conversely, a smooth individual histogram without gaps in the leftmost

part of the distance distribution is an indicator that no plagiarism has taken

place, since this is the expected distribution when similarity is only due to

a large number of independent programming decisions.

Interaction with Histograms

Interaction with the histogram is simple. Selecting or unselecting any set of

rows toggles between bar histogram (selected) or hue histogram (unselected)

display for the affected rows. Hovering the mouse over a histogram brings

up a tooltip which displays the names of the submissions that are nearest to
4This observation has been used when developing the “Variance similarity” (see section

??) distance test, which attempts to correct for possible skew whenever left-most spikes
are detected in a distribution.

48

the current similarity for the current row (since quantization is performed

to generate histograms, several submissions may share the “same” similar-

ity). Double-clicking on a row brings up a display of the source files of the

submission that corresponds to that row.

The rows of the histogram visualization can be sorted by smallest dis-

tances, by gap or by submission ID. Smallest-distances is the default order-

ing, and represents the histograms which have the smallest distances on top.

This ordering is also useful to locate large gaps and for visual inspection,

since two rows for submissions A and B which share an identical “smallest

distance” ds probably do so as a result of DAB = ds. If they are indeed very

similar, then their histograms can be expected to match too; this is trivial

to inspect by matching colors in hue histograms (and may be easier than

matching hills and valleys in a bar histogram representation). Sorting by

gap uses a heuristic to estimate leftmost-gap sizes, and the results are used

to sort the histograms. Finally, sorting by submission ID is self-explanatory.

4 Practical examples

This section illustrates how a grader would analyze a programming submis-

sion corpus with ac. An on-line tutorial on ac can be found at

http://tangow.eps.uam.es/ac/

49

4.1 Artificial submissions

The first example corresponds to a synthetic dataset. In this dataset we have

full knowledge of which submissions in the corpus have been plagiarized. In

a real-life setting, such a corpus can only be obtained if students have been

previously asked to follow a specific behavior (otherwise, carefully disguised

plagiarized submissions may slip through). Creating such a set of data is

an expensive and time-consuming task, and raises certain ethical concerns,

since teaching students how to plagiarize is generally frowned upon. How-

ever, the technique presented in [10] is a reasonable substitute: artificial

sets of submissions are automatically generated by means of evolutionary

computing, and include cases of plagiarism planned in advance.

This benchmark is available online at

http://www.ii.uam.es/˜mcebrian/plagiarism-benchmark/

It is composed of 44 programs in APL that seek to implement the func-

tion cos(log x). Thirty of the 44 programs are original programs, and were

generated by totally independent evolutionary runs with different random

seeds. Six of them are ‘mutational plagiarized programs’, obtained by ap-

plying the mutation operator to one of the original programs. Finally, eight

of them are ‘recombination plagiarized programs’, which have been gener-

ated by merging two original programs by means of crossover evolutionary

operators. To facilitate the task of identifying the source codes, the differ-

ent generated programs have been labeled as follows: P1, P2, ... , P30.

50

Mutational-plagiarized programs use labels in the form MPx (where Px is

the original source), and recombination-plagiarized PxRGPy or PxRFPy,

where Px and Py represent the original programs identifiers. A graph rep-

resenting the relations and structure of this corpus is presented in figure

13.

Given this set of submissions, we run an un-tokenized Zip similarity

distance, which produces results which can be analyzed using any of the

visualizations discussed in Section 3. The first visualization corresponds to

the row data (see fig. 14). This output is not very helpful to find suspects

of plagiarism, since single values have no meaning for our purposes, unless

they are examined under the perspective of the whole population.

The second visualization is depicted in figure 15. The graph on the top

of the figure represents relations between submissions; the histogram below

the graph displays a shaded portion, which is controlled by a slider. The

graph only displays distances that fall within this shaded portion, allowing

a grader to concentrate only on the shortest distances between submissions.

The interaction between slider and graph is detailed in section 3.4. The

initial value for the threshold is obtained from the Hampel identifier, but the

slider can be freely adjusted by the user. In this example, the recommenda-

tion of the Hampel identifier (0.33) will be followed (with 95% significance),

as displayed in figure 15. All mutational-plagiarized programs (MP5, MP10,

MP15, MP20, MP25 and MP30), and recombination-plagiarized (P10RGP5,

P14RFP7, P15RGP20, P15RFP20, P1RFP30, P20RGP15, P22RFP5 and

P5RGP10) are displayed. The only original submission that appear, al-

though they have clearly not been copied or plagiarized, are P13, P14 and

51

Figure 13: Plagiarism dependence of the artificial benchmark. Round ver-
tices stand for original submissions, boxes for plagiarism using a single
source, romboids and octagons for the two different types of plagiarism that
use two sources. A black solid line between two submissions denotes that
one is a plagiarism of the other, a red dashed lines denotes that one is one of
the sources for plagiarism of the other and a green dotted line denotes that
they are indirect copies, i.e. they share a common source of plagiarism.

52

Figure 14: Test results visualized as a distance table.

P18. It must be noted that two submissions can be very similar by arbitrary

reasons, specially if the assignment is small and simple as in this case with

the function cos(log x).

Although the graph visualization is already very useful to detect suspi-

cious submissions, ac provides a third output, depicted in figure 16, which

can improve our analysis. This output corresponds to the hue histograms

described in section 3.4. The histogram for each row corresponds to dis-

tances between the row’s submission and all others. This individual view

provides a different perspective, from which new suspects can be found and

others dismissed.

53

Figure 15: Test results visualized as a graph, with a histogram reflecting
the frequency of each distance (ranging from 0, most similar, to 1) and
a horizontal slider, used to select the maximum distance that is used for
inclusion in the graph: only pairs of submissions with a distance lower than
this threshold are included.

Certain conspicuous cases can be easily located. For instance, the lowest

similarity distance value within the P25 histogram corresponds to its pla-

giarized sibling MP25; and is also clearly outside the distribution of other

distances. The same applies to P15, whose plagiarized siblings MP15 and

P15RGP20 also exhibit low values. Large gaps are found within the indi-

vidual histogram for P25 between MP25 and all other distances. The same

large gap can be found in P15’s individual histogram between distances for

54

plagiarized siblings (MP15, P15RGP20) and those corresponding to all other

programs. The meaning and relevance of these gaps is discussed in section

3.4.2.

Figure 16: Test results visualized as individual histograms. Each row rep-
resents a color-coded histogram (blue is low, red is high) of the frequency
with which other submissions have presented a given similarity to this one.
Unexpected gaps in the leftmost side of the histogram suggest existence of
plagiarism

4.2 Real submissions

This example follows the same steps as the previous one. However, the

data to analyze corresponds to a real programming submission corpus: the

Object Oriented Programming I corpus used in section, with 108 submissions

written in Java. This corpus, as in many other real-world ones, has duplicate

submissions from the same authors, due to last-minute bug-fixes. These can

55

be identified by the name of the submissions that share the same ID prefix,

usually followed by a “v2” to denote a second version.

In the Graph and Population histogram tab (see fig. 17), the Hampel

identifier (with 95% significance) used as a starting threshold can be seen

to be highly accurate. All duplicate versions of the corpus are identified, to-

gether with two clearly plagiarized submissions. In the individual histograms

view (fig. 18), further suspects of plagiarism can be identified.

Figure 17: The population histogram and graph view for the Object Ori-
ented Programming I corpus (108 submissions in Java).

The interpretation of individual histograms is again based on locating

surprisingly low distance values when compared to an individual submis-

56

Figure 18: The individual histograms view for the Object Oriented Pro-
gramming I.

sion’s distribution. For instance, distances from submission P1D18 to all

other submissions are mostly in the range 0.4 to 0.6 (according to the Zip

similarity distance algorithm). However, an isolated value falls clearly be-

low this bracket, corresponding to P1B13. This indicates that, with high

probability, similarities between P1D18 and P1B13 can be attributed to

plagiarism. Visual inspection reveals that this is indeed the case.

Note that individual histograms are more valuable for outlier detection

than the full histogram displayed in the graph visualization. Isolated “left”

values found in individual histograms may be unusually low for the indi-

57

vidual histogram, but may be high enough not to arouse suspicion within

the population histogram. Distances that are clearly outliers within indi-

vidual distributions may therefore be average within the general distance

population; and, as noted in section ??, can be seen as a natural result of

obfuscation efforts during plagiarism in an effort to avoid detection. Al-

though the individual histogram visualization is more powerful than the

graph visualization, it is also more time-consuming. Each visualization has

its own strengths and weaknesses.

In the example, there are 4 couples that present clear gaps in the left

tails of their individual distributions, even though these distances were not

identified as outliers within the full population histogram. These couples are

B14P1-P1A20, P1C08-P1C10, P1C21-P1GFP11 and P1C09-P1C04. After

a visual inspection of the similarities between their sources (an example of

visual source comparison can be found in fig. 19), P1C21-P1GFP11 was

found to be a clear case of plagiarism, P1C08-P1C10 was considered a false

positive, and B14P1-P1A20 and P1C09-P1C04 were considered as probable

partial plagiarism.

5 Conclusions and further work

The problem of plagiarism detection is a difficult one. The frontier between,

on one side, random similarity or simple inspiration from anothers’ work and,

on the other side, blind cut+paste plagiarism is not clear-cut, and certain

cases will always require a human grader to distinguish between what is

acceptable and what is not. However, different algorithms and heuristics

58

Figure 19: Visual comparison of two submissions

can be used to identify suspects of blatant plagiarism and flag the more

complex cases, greatly simplifying the grader’s task.

This work has presented ac, a plagiarism detection tool which also dou-

bles as a framework for research into source code plagiarism detection. ac

offers many improvements over other tools described in current literature:

the use of rich visualization greatly simplifies the task of analyzing the re-

sult of similarity tests; its stand-alone, cross-platform implementation does

not raise privacy concerns found in web-based systems; and preparation of

assignment submissions for automated plagiarism detection, overlooked by

many systems, can be automated with a graphical user interface.

ac is released as open source software, and full implementation details

are available to any interested parties. Lack of comparable information for

59

other plagiarism detection tools makes their results difficult to replicate or

improve. Furthermore, the availability of ac under an open source license

guarantees that other researchers can follow the project and participate in

its development. Due to the modular design of the program, it is easy to

integrate new similarity distance algorithms, allowing graders or researchers

to compare or complement their performance. Many of these algorithms

have been already incorporated into ac, including two novel approaches.

Finally, ac includes the first application of outlier statistical methods to

plagiarism detection, proving fast initial identification of suspicious submis-

sions. The analysis of related experiments has revealed interesting aspects

of the patterns found in typical submission corpora.

Further work

The use of statistical methods has opened different lines for further re-

search. Greater insight into the Hampel identifier threshold choice could

be obtained from a student controlled experiment or by further work on an

ongoing project where submission corpora are artificially developed [10]. A

second line of research is concerned with the surprisingly high accuracy of

the normal distribution in outlier identification, even when confronted with

different corpora and different similarity distance algorithms.

Once two submissions have been deemed to be “very similar” to each

other, a human grader is currently expected to visually compare both for

evidence of plagiarism. In other systems, similar fragments from both sub-

missions are highlighted for side-by-side inspection, but ac currently lacks

this feature. The Substring similarity distance test is a good candidate to

60

identify such areas. Further refinement of the test itself and an extension to

facilitate identification of hot areas during visual inspection is pending.

Although source code plagiarism detection is a relatively veteran field of

research, few systems have undergone experimental validation. A typical ap-

proximation is to use a corpus of already-graded set of submissions (where

cases of plagiarism were manually identified) and compare these cases to

those found using the tool to be tested. However, both the original grader

and the tool may fail to correctly identify all cases of plagiarism; and false

positives are also possible. A better approach would require asking a group

of students to write plagiarized versions of randomly selected submissions

within a carefully selected corpus where no plagiarism had occurred. This

would allow experiments to be performed with a fully annotated corpus.

An alternative and less labor-intensive approach is to use automatic pro-

gramming to generate artificial sets of submissions; initial steps using this

method have been described in [10]. Whatever the approach, validation will

continue to be one of the main lines of inquiry.

61

Acknowledgments

This work was supported by grant TSI 2005-08255-C07-06 of the Spanish

Ministry of Education and Science. We would like to firstly thank K. Ko-

routchev for his seminal linux script implementationof AC. We would also

like to thank A. Suárez, G. Mart́ınez, J.R. Dorronsoro, M. Alfonseca, and

specially P. Paalanen and S. Roberts for his technical help in the statis-

tic analysis design of ac. Additional thanks to P. Haya, L. Shafti and

R. Moriyon for providing us with real submission data sets. Finally, we

would like to thank the Computer Science Department of the Universidad

Autónoma de Madrid for their feedback in using the tool.

62

References

[1] JISC Legal Information Service. http://www.jisclegal.ac.uk/. 11

[2] Spanish Agency for Data Protection. https://www.agpd.es. 11

[3] A. Aiken et al. Moss: A system for detecting software plagiarism. Uni-

versity of California–Berkeley. See www. cs. berkeley. edu/aiken/moss.

html, 2005. 9

[4] Ricardo A. Baeza-Yates and Berthier A. Ribeiro-Neto. Modern Infor-

mation Retrieval. ACM Press / Addison-Wesley, 1999. 18

[5] V. Barnett and T. Lewis. Outliers in statistical data. Wiley New York,

1994. 24, 35

[6] KW Bowyer and LO Hall. Experience using MOSS to detect cheating

onprogramming assignments. Frontiers in Education Conference, 1999.

FIE’99. 29th Annual, 3, 1999. 9

[7] B.F. Braumoeller and B.J. Gaines. Actions Do Speak Louder than

Words: Deterring Plagiarism with the Use of Plagiarism-Detection Soft-

ware. PS: Political Science and Politics, 34(04):835–839, 2002. 4

[8] J. Bull, C. Collins, E. Coughlin, S. Developer, D. Sharp, and

P. Square. Technical review of plagiarism detection software re-

port. CAA University of Luton http://online. northumbria. ac.

uk/faculties/art/information studies/Imri/Jiscpas/docs/jisc/luton.pdf.

3

63

[9] T. Caudell and D. Newman. An adaptive resonance architecture to

define normality and detect novelties in time series and databases. Proc.

IEEE World Congress on Neural Networks, pages 166–176, 1993. 26

[10] M. Cebrián, M. Alfonseca, and A. Ortega. Automatic Generation of

Benchmarks for Plagiarism Detection Tools using Grammatical Evo-

lution. In Proceedings of the 9th annual conference on Genetic and

Evolutionary Computation. ACM Press New York, NY, USA, 2007,

arXiv:cs.NE/0703134. 22, 50, 60, 61

[11] X. Chen, B. Francia, M. Li, B. McKinnon, and A. Seker. Shared infor-

mation and program plagiarism detection. Information Theory, IEEE

Transactions on, 50(7):1545–1551, 2004. 9, 17

[12] R. Cilibrasi and PMB Vitani. Clustering by Compression. Information

Theory, IEEE Transactions on, 51(4):1523–1545, 2005. 16

[13] J. Clare. Computer plagiarism threatens the value of degrees. Daily

Telegraph, 3(7):2000, 2000. 3

[14] F. Culwin, A. MacLeod, and T. Lancaster. Source Code Plagiarism in

UK HE Computing Schools, Issues, Attitudes and Tools. South Bank

University Technical Report SBUCISM-01-02, 2001. 3, 10, 13

[15] F. Culwin and J. Naylor. Pragmatic Anti-Plagiarism. Proceedings 3rd

All Ireland, 1995. 11

64

[16] P. Cunningham and A.N. Mikoyan. Using CBR Techniques to Detect

Plagiarism in Computing Assignments. Trinity College, Dept. of Com-

puter Science, 1993. 11

[17] L. Davies and U. Gather. The Identification of Multiple Outliers. Jour-

nal of the American Statistical Association, 88(423):782–792, 1993. 36

[18] MAF Figueiredo and AK Jain. Unsupervised learning of finite mixture

models. Pattern Analysis and Machine Intelligence, IEEE Transactions

on, 24(3):381–396, 2002. 28

[19] Manuel Freire. An Approach to the Visualization of Adaptive Hyperme-

dia Structures and other Small-World Networks based on Hierarchically

Clustered Graphs. PhD thesis, September 2007. 46

[20] J. Giles. Preprint analysis quantifies scientific plagiarism. Nature 444,

pages 524–525, 2006. 3

[21] D. Gitchell and N. Tran. Sim: a utility for detecting similarity in com-

puter programs. Technical Symposium on Computer Science Education,

pages 266–270, 1999. 9

[22] D. Grune and M.H. Vakgroep. Detecting copied submissions in com-

puter science workshops. Informatica Faculteit Wiskunde & Informat-

ica, Vrije Universiteit, 1989. 9

[23] F.R. Hampel. The Breakdown Points of the Mean Combined with Some

Rejection Rules. Technometrics, 27(2):95–107, 1985. 35

65

[24] J.K. Harris. Plagiarism in computer science courses. Proceedings of the

conference on Ethics in the computer age, pages 133–135, 1994. 3

[25] G. Hertel, S. Niedner, and S. Herrmann. Motivation of software devel-

opers in Open Source projects: an Internet-based survey of contributors

to the Linux kernel. Research Policy, 32(7):1159–1177, 2003. 12

[26] V. Hodge and J. Austin. A Survey of Outlier Detection Methodologies.

Artificial Intelligence Review, 22(2):85–126, 2004. 26

[27] R. Irving. Plagiarism Detection: Experiences and Issues. JISC Fifth

Information Strategies Conference, Focus on Access and Security, 2000.

3, 11

[28] E.L. Jones. Metrics based plagiarism monitoring. Proceedings of the

Sixth Annual CCSC Northeastern Conference, Middlebury, Vermont,

pages 1–8, 2001. 11

[29] E.L. Jones. Plagiarism monitoring and detection-towards an open dis-

cussion. Proceedings of the seventh annual consortium for computing

in small colleges central plains conference on The journal of computing

in small colleges, pages 229–236, 2001. 4, 11

[30] M. Joy and M. Luck. Plagiarism in Programming Assignments. IEEE

TRANSACTIONS ON EDUCATION, 42(2):129, 1999. 11, 18

[31] Robert Kincaid and Heidi Lam. Line graph explorer: scalable display

of line graphs using focus+context. In Augusto Celentano, editor, AVI,

pages 404–411. ACM Press, 2006. 47

66

[32] T. Lancaster and F. Culwin. A Comparison of Source Code Plagiarism

Detection Engines. Computer Science Education, 14(2):101–112, 2004.

10

[33] Thomas Lancaster and Fintan Culwin. Towards an error free plagarism

detection process. In ITiCSE ’01: Proceedings of the 6th annual con-

ference on Innovation and technology in computer science education,

pages 57–60, New York, NY, USA, 2001. ACM Press. 9

[34] B. Martin. Plagiarism: a misplaced emphasis. Journal of Information

Ethics, 3(2):36–47, 1994. 4

[35] Rodrigo Meza. DetectaCopias. Available at http://www.dcc.uchile.cl/

˜rmeza/proyectos/detectaCopias/index.html. 11

[36] Donald R. Morrison. Patricia: Practical algorithm to retrieve informa-

tion coded in alphanumeric. J. ACM, 15(4):514–534, 1968. 22

[37] A. NAIRAC. A System for the Analysis of Jet Engine Vibration Data.

Integrated Computer-Aided Engineering, 6(1):53–66, 1999. 26

[38] A. Parker and JO Hamblen. Computer algorithms for plagiarism de-

tection. Education, IEEE Transactions on, 32(2):94–99, 1989. 7

[39] RK Pearson. Outliers in process modeling and identification. Control

Systems Technology, IEEE Transactions on, 10(1):55–63, 2002. 36

[40] J.L. Popyack, N. Herrmann, P. Zoski, B. Char, C. Cera, and R.N.

Lass. Academic dishonesty in a high-tech environment. ACM SIGCSE

Bulletin, 35(1):357–358, 2003. 13

67

[41] L. Prechelt. . Mahpohl, and M. Phlippsen. Jplag: Finding Plagiarisms

among a set of Programs. Technical report, Technical Report 2000-1,

Universitat Karlsruhe, March 2000. 10

[42] L. Prechelt, G. Malpohl, and M. Philippsen. Finding plagiarisms among

a set of programs with JPlag. Journal of Universal Computer Science,

8(11):1016–1038, 2002. 9, 10

[43] R.L. Ribler and M. Abrams. Using Visualization to Detect Plagiarism

in Computer Science Classes. coordinates, 5:6. 13

[44] SJ Roberts. Novelty detection using extreme value statistics. Vision,

Image and Signal Processing, IEE Proceedings-, 146(3):124–129, 1999.

26

[45] S. Saxon. Comparison of plagiarism detection techniques applied to

student code, Part II. Computer Science project, Trinity College, Cam-

bridge, 2000. 11, 17

[46] S. Schleimer, D.S. Wilkerson, and A. Aiken. Winnowing: local al-

gorithms for document fingerprinting. Proceedings of the 2003 ACM

SIGMOD international conference on on Management of data, pages

76–85, 2003. 7, 12

[47] G. Whale. Identification of Program Similarity in Large Populations.

The Computer Journal, 33(2):140, 1990. 9, 46

[48] R.R. Wilcox. Applying contemporary statistical techniques. Academic

Press, 2003. 36

68

[49] M.J. Wise. Detection of similarities in student programs: YAP’ing

may be preferable to plague’ing. ACM SIGCSE Bulletin, 24(1):268–

271, 1992. 3

[50] J. Ziv and A. Lempel. A universal algorithm for sequential data com-

pression. Information Theory, IEEE Transactions on, 23(3):337–343,

1977. 17

69

	Title
	Introduction
	State of the art and motivation
	Design of AC
	Distance integration
	Compression similarity distance
	Token counting similarity distance
	Infrequent substrings similarity distance

	Threshold recommendation and outlier detection
	Discordancy tests
	The Discordancy test choice: the Hampel identifier

	Submission filtering
	Visualization
	Graph representation
	Histogram visualization

	Practical examples
	Artificial submissions
	Real submissions

	Conclusions and further work
	Bibliography

