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a b s t r a c t

A novel image patch based example-based super-resolution algorithm is proposed for benefitting from
social image data. The proposed algorithm is designed based on matrix-value operator learning techniques
where the image patches are understood as the matrices and the single-image super-resolution is treated
as a problem of learning a matrix-value operator. Taking advantage of the matrix trick, the proposed
algorithm is so fast that it could be trained on social image data. To our knowledge, the proposed algorithm
is the fastest single-image super-resolution algorithm when both training and test time are considered.
Experimental results have shown the efficiency and the competitive performance of the proposed
algorithm to most of state-of-the-art single-image super-resolution algorithms.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Social images from online social platforms, for example, Flickr or
YouTube, provide not only a new opportunity but also a challenge for
various image processing tasks such as example-based super-resolu-
tion [1], visual query suggestion [2,3], saliency detection [4,5], ranking
[6–8], and image classification [9–11] because a large amount of
training images are available. The big size of training set means more
information, however, it is also a huge burden during using all of these
training samples. In this paper, we focus on the problem of example-
based super-resolutionwith the help of a large amount of social image
data, especially the problem of efficiently super-resolving with the
help of a big size of training set.

1.1. Brief review of example-based super-resolution

Example-based super-resolution [1], also named as single-image
super-resolution, is a problem of enhancing the resolution of some
low-resolution images with the help of a set of training image pairs.
Each of training image pairs consists of a low-resolution image and its
corresponding high-resolution image. By learning on these training
image pairs, the priori defining the relation between a low-resolution
image and its high-resolution counterpart could be found. When a
low-resolution image is observed, the learned priori could be applied
on it for generating high-resolution estimation. The process of
example-based super-resolution is summarized in Fig. 1.

Traditional example-based super-resolution algorithms could be
generally divided into two categories according to the different ways of
obtaining priori from training set. The first one belongs to implicit
priori based algorithms where the priori is directly represented by the
given training set. Most K-nearest neighbor based algorithms, such as
Chang et al. [12], Tang et al. [13] and Gao et al. [14], belong to this
category. It is clear that the implicit priori makes the learning process
be omitted, but the K-nearest neighbor searching makes the price of
recovering high-resolution estimation more expensive. The second one
is explicit priori based algorithms. Dictionary [15–17] and regression
function are two popular methods to represent the learned priori.
Dictionary based algorithms such as Yang et al. [18], Lu et al. [19] focus
on representing the priori between low- and high-resolution training
images with the low- and high-resolution dictionary pair. Similarly, the
priori on the relation between low- and high-resolution images is
represented by a regression function which is learned by supervised or
semi-supervised learning methods [20], such as, Ni and Nquyen [21],
Kim and Kwon [22], and Tang et al. [23]. Generally, the training time of
these explicit priori based algorithms is extremely long when the size
of training set is big. Therefore, both of these traditional example-based
super-resolution algorithms are not suitable for applying on a big size
training set.

1.2. Motivation and our contributions

Two basic motivations make us focusing on the problem of super-
resolution with the help of social images. Firstly, social images cover
many image categories which could serve as a training set for super-
resolving almost all kind of natural images. Secondly, huge training set
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is changing the framework of example-based image processing. For
example, Burger et al. [24] have shown that simple image denoising
algorithm is competitive when big training set is available. Therefore,
we discuss the problem of efficiently super-resolving natural images
based on social images in this paper.

To benefit from a huge social image set, the computational
complexity of an example-based super-resolution must be suffi-
ciently low. However, the computational complexity of the tradi-
tional example-based super-resolution algorithms is too high to
apply on a huge training set. To relieve the computational burden,
a novel matrix-value operator based super-resolution algorithm is
proposed based on the work [25]. Comparing with the work [25],
more theoretical analysis and experiments are reported in this
paper. Two main contributions of the novel algorithm can be
summarized as follows:

� Low computational complexity. The computational complexity
of the proposed super-resolution algorithm is only O(N) where
N is the number of training samples. The linear computational
complexity makes the novel algorithm suitable for dealing with
large training set.

� Novel model for example-based super-resolution. The proposed
algorithm is designed based on representing images as matrices.
And then, a novel matrix-value operator based learning model is
introduced into example-based super-resolution. The novel learning
model enables the computational and memory complexities of the
proposed algorithm heavily reduced.

The rest of this paper is organized as follows. Main algorithm is
introduced in Section 2. Some comments and theoretical analysis on
the main algorithm are reported in Section 3. Experimental results are
shown in Section 4.

2. Main algorithm

Our algorithm is designed based on the idea of representing an
image patch as a matrix. And then, the matrix-value operators are
used to explicitly represent the relation between low- and high-
resolution image patches. Taking advantage of operator learning
techniques, our matrix-based super-resolution algorithm is fast eno-
ugh for applying on a huge training set. The flowchart of our algorithm
is summarized in Fig. 2.

Denote the matrix space as Rd�d, where d40 is an integer. Let low-
resolution image patch space X and high-resolution image patch space
Y be the subsets of Rd�d where d means the size of an image patch.
Denote the training set

Sn ¼ ðx1; y1Þ; ðx2; y2Þ;…; ðxn; ynÞ
� �

DX � Y ; ð1Þ

where ðxi; yiÞ is a pair of low- and high-resolution image patches, and n is
the number of training pairs. The matrix-value operatorA : X↦Y is used
to represent the super-resolution priori containing the training set Sn.

Least square operator regression model is used to learn the
optimal matrix-value operator Â from the training set Sn:

Â ¼ argmin
A

Xn
i ¼ 1

‖yi�Axi‖2F ; ð2Þ

where ‖ � ‖F is Frobenius norm. By restricting the matrix-value operator
A be Hilbert–Schmidt operator, the least square operator regression
model (2) could be thought in Hilbert–Schmidt operator space, that is,

Â ¼ argmin
A

Xn
i ¼ 1

‖yi�Axi‖2F

¼ argmin
A

Xn
i ¼ 1

〈yi; yi〉F�2〈yi;Axi〉Fþ 〈Axi;Axi〉F

¼ argmin
A

Xn
i ¼ 1

‖yiyTi ‖HS�2〈yix
T
i ;A〉HSþ 〈xix

T
i ;AnA〉HS; ð3Þ

where xT is the transpose of the matrix x, 〈�; �〉F is the Frobenius inner
on the matrix space, ‖ � ‖HS is the Hilbert–Schmidt norm on Hilbert-
Schmidt operator space, the 〈�; �〉HS is the Hilbert–Schmidt inner on
Hilbert–Schmidt operator space, and An is the adjoint operator of A.

Denoting FðAÞ ¼ Pn
i ¼ 1 ‖yiyTi ‖HS�2〈yixTi ;A〉HSþ 〈xixTi ;AnA〉HS, the

optimal operator Â satisfies the necessary conditions of the minimum,
that is,

∂
∂AFðÂÞ ¼ 0: ð4Þ

Because FðAÞ ¼ Pn
i ¼ 1 ‖yiyTi ‖HS�2〈yixTi ;A〉HSþ 〈xixTi ;AnA〉HS, there

exists

∂
∂A

Xn
i ¼ 1

‖yiyTi ‖HS�2〈yix
T
i ;A〉HSþ 〈xix

T
i ;AnA〉HS

 !
¼ 0

Fig. 1. The process of example-based super-resolution.

Fig. 2. The flowchart of the matrix-based super-resolution algorithm.
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xix
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; ð5Þ

where x�1 means the inverse matrix of x. Following (5), a close-form
formula is there for representing the optimal matrix-value operator:

Â ¼
Xn
i

yix
T
i

Xn
i ¼ 1

xix
T
i

 !�1

: ð6Þ

An efficient algorithm can be designed based on (6). All details
about the matrix-value regression algorithm for super-resolution
are summarized in Algorithm 1.

Algorithm 1. Matrix-value operator regression for super-resolution.

Require:
Training set S¼ fðx1; y1Þ; ðx2; y2Þ;…; ðxn; ynÞg, the zooming
parameter k, the size of image patch d� d, and a test image T.
Matrix-value regression

1: Estimating the optimal matrix operator

Â ¼
Xn
i

yix
T
i

 ! Xn
i ¼ 1

xix
T
i

 !�1

;

Super-resolving
2: Interpolating the test image T with zooming parameter k;
3: Segmenting the interpolation image of the test image into a

set of image patches with the size of d� d

T↦T ¼ ft1; t2;…; tlg;

4: for s¼ 1;2;…; l do
5: Super-resolving the s-th test image patch

τs ¼ Âts ¼
Xn
i

yix
T
i

 ! Xn
i ¼ 1

xixTi

 !�1

ts;

6: end for
Ensure

7: Merge all τs; s¼ 1;2;…; l; to obtain a super-resolution image ~T ;
8: return ~T ;

3. Comments on the main algorithm

3.1. Complexity of Algorithm 1

Because of Eq. (6), the optimal matrix-value operator Â could
be obtained and stored by Algorithm 1 with tiny cost.

First of all, the memory complexity of the optimal matrix-value
operator Â is just dependent on the size of the matrix Â ¼ ðPn

i yi
xTi Þð

Pn
i ¼ 1 xix

T
i Þ�1. It is clear that the size of Â is d� d because

Sn ¼ fðxi; yiÞg � Rd�d. In other word, d2 parameters should be saved for
recording the optimal matrix-value operator Â .

Comparing with traditional example-based super-resolution algo-
rithms, the memory complexity of Algorithm 1 is superior than them.
For K-nearest based searching based algorithms, such as [1,26–28,14],
all training samples should be recorded for recovering high-resolution
estimations. It is clearly a heavy burden when a huge training set is
considered. For dictionary based super-resolution algorithms
[18,19,29], a pair of low- and high-resolution dictionaries should be
recorded. Though the size of the pair of low- and high-resolution
dictionaries is very smaller than the whole training set, more than

Fig. 3. Samples of training (a) and test (b) images.
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Fig. 4. Efficiency of matrix-value regression.
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1000 vectors are generally needed to represent the dictionary pair. For
each vector of the dictionary pair, tens of parameters are needed to
represent the vector. Therefore, the memory complexity of the
dictionary based algorithms is higher than that of our algorithm. For
the regression based super-resolution algorithms, the super-resolution
priori is explicitly represented by a regression function. Generally, the

regression function is represented by a matrix whose number of rows
is the number of all parameters used to represent a low-resolution
image patch, and whose number of columns is the number of all
parameters used to represent a high-resolution image patch because
all training image patches are vectorized. For example, the regression
function is represented by d2 � d2 matrix within the setting that

Fig. 5. Girl: performance of matrix-value regression where the sizes of training sets shift from 10 to 107 with a logarithm step equaling one. (a) #1. (b) #2. (c) #3. (d) #4.
(e) #5. (f) #6.

Fig. 6. Parrot: performance of matrix-value regressionwhere the sizes of training sets shift from 10 to 107 with a logarithm step equaling one. (a) #1. (b) #2. (c) #3. (d) #4. (e) #5. (f) #6.
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ðx; yÞARd�d. Then d4 parameters are needed to record a regression
function. It is clear that the memory complexity of regression based
algorithms is also higher than ours.

Secondly, the computational complexity is also heavily reduced by
using matrix-value operator learning compared with traditional
example-based super-resolution algorithms. According to Eq. (6), the
optimal matrix-value operator Â is calculated by

Pn
i ¼ 1 yix

T
i ,Pn

i ¼ 1 xix
T
i and the inverse matrix of

Pn
i ¼ 1 xix

T
i . It is clear that 2n

matrix additions are needed to calculate
Pn

i ¼ 1 yix
T
i and

Pn
i ¼ 1 xix

T
i ,

and d2 operations are needed to generate the inverse matrix ofPn
i ¼ 1 xix

T
i . Noticing the number of training samples n is much larger

than the size of image patch d, the computational complexity of
training our algorithm is O(n). Therefore, our matrix-value operator
based super-resolution algorithm could be smoothly trained when
social image set is used as a training set. Meanwhile, the computa-
tional complexity of testing is independent of the number of training
samples n, but dependent on the size of image patch d because the
high-resolution image patch is estimated by Âx. When a test low-
resolution image is divided into l test image patches, the computa-
tional complexity of estimating high-resolution image is Oðld2Þ. Thus,
the computational complexity of training and testing our algorithm is
OðnÞþOðld2Þ.

For the K-nearest neighbors searching based algorithms, the
main computational burden is estimating high-resolution images
because no training process is needed. Given l test image patches,
the computational complexity of testing K-nearest neighbors
searching based algorithms is larger than Oðln d2Þ because the
computational complexity of a naive K-nearest neighbors search-
ing algorithm is Oðnd2Þ. It is clear that the total computational
complexity of K-nearest neighbors searching based algorithms is
much higher than ours because Oðln d2Þ is always larger than
OðnÞþOðld2Þ.

For the dictionary based algorithms, the main computational
burden is learning a dictionary. Because the computational complexity
of learning a dictionary is changing with the dictionary learning
algorithms, a very efficient dictionary learning algorithm K-SVD [15] is
used as an example. According to the results reported in [30,31], the
computational complexity of K-SVD is larger than Oðnð2d2pþK2pþ
3KpþK3ÞÞ where the size of dictionary matrix is d2 � p, and K is the
sparsity of estimations. Generally, there exists pcd2 because of the
redundancy of the learned dictionary. It should be noted that the
training computational complexity of K-SVD is much larger than the
total computational complexity of our algorithm. To our best knowl-
edge, K-SVD is one of most efficient dictionary learning algorithms.

Fig. 7. Words: performance of matrix-value regression with where the sizes of training sets shift from 10 to 107 with a logarithm step equaling one. (a) #1. (b) #2. (c) #3.
(d) #4. (e) #5. (f) #6.

Fig. 8. Tablecloth: performance of matrix-value regression where the sizes of training sets shift from 10 to 107 with a logarithm step equaling one. (a) #1. (b) #2. (c) #3.
(d) #4. (e) #5. (f) #6.
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Thus, it could be inferred that the computational complexity of
dictionary based algorithms is higher than ours.

Similarly, the computational complexity of our algorithm is
much lower than the traditional regression based algorithms. For
most least square regression based algorithms, it is needed to
calculate an inverse matrix of a large matrix when a huge size of
training set is given. For example, the inverse matrix of a larger
kernel matrix with the size of n� n is needed for most of kernel
based algorithms [21,22]. Generally, the computational complexity
of calculating an inverse matrix of n� n is Oðn3Þ. Compared with
the linear complexity of our algorithm, the computational com-
plexity of kernel regression based algorithms is much higher.

3.2. Merits of matrix-value operators

The advantage of low computational and memory complexity is
connected with the trick of representing the image patches as
matrices according to Eq. (6).

Firstly, a novel matrix-value similarity between two matrices
could be found in Eq. (6). For any test image patch x, the high-
resolution estimation ŷ could be generated by the optimal matrix-
value operator Â , which is,

ŷ ¼ Âx

¼
Xn
i ¼ 1

yix
T
i

 ! Xn
i ¼ 1

xixTi

 !�1

x

¼
Xn
i ¼ 1

yi xTi
Xn
i ¼ 1

xix
T
i

 !�1

x

0
@

1
A ð7Þ

In the last line of Eq. (7), the matrix xTi ð
Pn

i ¼ 1 xix
T
i Þ�1x could be

roughly thought as a similarity measure between matrices xi and x.
Denote

Sðxi; xÞ ¼ xTi
Xn
i ¼ 1

xix
T
i

 !�1

x: ð8Þ

Table 1
PSNRs/SSIMs of matrix-value regression algorithm.

Test
image

Girl Parrot Words Tablecloth

#1 32.7710/0.7698 28.0385/0.8711 26.9178/0.8523 26.2253/0.7703
#2 32.8669/0.7743 28.2307/0.8738 27.0930/0.8544 26.4411/0.7805
#3 32.9662/0.7786 28.3503/0.8777 27.1085/0.8549 26.5593/0.7868
#4 32.9508/0.7784 28.3209/0.8778 27.0441/0.8541 26.5552/0.7869
#5 32.9679/0.7790 28.3348/0.8781 27.0701/0.8538 26.5533/0.7864
#6 32.9937/0.7801 28.3704/0.8786 27.1090/0.8543 26.6039/0.7884

Table 2
Comparison of different algorithms.

Algorithm Test image: girl

Statistics Computing time

PSNR SSIM Training Recovering

Chang's algorithm 32.3786 0.7453 1601.4 s
Tang's algorithm 32.4827 0.7572 1047.0 s
Yang's algorithm 33.1048 0.7899 Z12 h 28.2 s
Algorithm 1 32.9679 0.7790 72 s 4.2 s

Algorithm Test image: parrot

Statistics Computing time

PSNR SSIM Training Recovering

Chang's algorithm 28.2989 0.8563 885.1 s
Tang's algorithm 28.4388 0.8644 795.6 s
Yang's algorithm 28.7858 0.8774 Z12 h 22.1 s
Algorithm 1 28.3348 0.8781 72 s 2.5 s

Algorithm Test image: words

Statistics Computing time

PSNR SSIM Training Recovering

Chang's algorithm 23.6598 0.8457 298.5 s
Tang's algorithm 23.779 0.8483 226.5 s
Yang's algorithm 24.1268 0.8479 Z12 h 11.3 s
Algorithm 1 26.6039 0.8543 72 s 0.6 s

Algorithm Test image: tablecloth

Statistics Computing time

PSNR SSIM Training Recovering

Chang's algorithm 25.7480 0.7123 467.3 s
Tang's algorithm 25.9348 0.7344 352.7 s
Yang's algorithm 26.0670 0.7454 Z12 h 25.4 s
Algorithm 1 26.6039 0.7884 72 s 0.9 s
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The high-resolution estimation ŷ satisfies

ŷ ¼
Xn
i ¼ 1

yiSðxi; xÞ: ð9Þ

According to Eq. (9), the matrix-value operator Sðxi; xÞ measures
the similarity between test image patch and the i-th training
image patch. Different from traditional real value similarity mea-
sure, Sðxi; xÞ records two-dimensional similarity information
between two matrices. In other words, the matrix-value similarity
measure Sðxi; xÞ records not only the energy of difference between
both matrices, but also the structure of difference. Therefore, the
novel matrix-value similarity measure provides more information
than traditional real value measures.

Secondly, the matrix-value similarity measure implies that a
novel matrix-value feature mapping is used in our algorithm.
Noticing the formula (8), the inverse matrix ðPn

i ¼ 1 xix
T
i Þ�1 impli-

citly defines a matrix-value feature mapping ϕ : Rd�d↦Rd�d. In
fact, the feature mapping ϕ could be generated by eigenvalue
decomposition technique, that is, ϕðxÞ ¼ xM where M satisfies
ðPn

i ¼ 1 xix
T
i Þ�1 ¼MMT . By using ϕ, the similarity measure Sðxi; xÞ

could be represented as Sðxi; xÞ ¼ϕðxiϕðxÞÞ, and the high-resolution
estimation ŷ satisfies

ŷ ¼
Xn
i ¼ 1

yiϕðxiÞϕðxÞ: ð10Þ

Following the idea of Eq. (10), our algorithm could be understood
as a novel matrix-value operator based kernel algorithm.

4. Experiments

4.1. Samples and settings

MIRFLICKR08-25K is used as the training image set. Samples of
the training images and four test images are respectively shown in
Fig. 3(a) and (b). For comparing the performance of different
super-resolution algorithms, three traditional example-based
super-resolution algorithms including Chang's nearest neighbor
embedding algorithm [12], Tang's vector-value regression algo-
rithm [32], and Yang's dictionary-based algorithm [18] are used.
Moreover, the statistical performance of these super-resolution
algorithms is measured by the peak signal-to-noise ratio (PSNR)
and the structural similarity (SSIM).

YCbCr channels are used to represent all of color images, and
only Y channel is used in super-resolution algorithms because it is
more sensitive to human vision.

All low-resolution training samples used in Algorithm 1 are
generated by down-sampling high-resolution images and then up-
sampling them with the same zooming parameter. In all of our
experiments, the zooming parameter is 3. By dividing the low-
resolution training images and their high-resolution counterparts
into d� d image patches, the training set is generated by using

Fig. 9. Super-resolved images: Girl. (a) Chang's algorithm. (b) Tang's algorithm. (c) Yang's algorithm. (d) Algorithm 1.
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social images. For fair comparison, the patch size d sets to be 3. For
other super-resolution algorithms, the low- and high-resolution
image features are generated as their original reporting.

4.2. Results

The performance of matrix-value regression is tested with a big
training set which consists of 4,035,993 image patch pairs gener-
ated according to the settings in Section 4.1.

The efficiency of the matrix-value regression algorithm reported in
Algorithm 1 is firstly tested. The matrix-value regression algorithm is

smoothly and quickly applied without using any accelerated algorithm
even when all of 4,035,993 training pairs are considered. In fact, the
optimal matrix operator is obtained by the matrix-value regression
algorithm in 367.5376 s when a laptop with 2.40 GHz CPU and 2.00G
memory is used. The relation between the number of training
samples and the computing time is summarized in Fig. 4 where the
horizontal and vertical axes represent respectively the logarithms of
the number of training samples and computing time. It shows that it
is linear for the relation between the number of training samples and
the computing time. Therefore, it could be expected that the matrix-
value regression algorithm can be smoothly applied evenwhen bigger
training set is used.

The performance of Algorithm 1 in super-resolution is also tested.
By shifting the number of training samples, a set of matrix-value
operators is generated by using the training sets with different sizes.
The super-resolved images are shown in Figs. 5–8 where the images
from left to right correspond to #1 training set to #6 training set
where the size of training sets gets larger from #1 to #6 training sets.
The corresponding statistical results including PSNRs and SSIMs are
reported in Table 1. All of these results show that the matrix-value
regression algorithm is effective in super-resolving nature images.

Computing time of training algorithms and recovering super-
resolution images is used to compare the efficiency of different
algorithms. Because Chang's and Tang's algorithms are local learning
algorithms, the processes of training algorithms and recovering super-
resolution images cannot be separated. The time from training algo-
rithms to recovering a super-resolution image is used to measure the
efficiency of these algorithms. For Yang's algorithm and Algorithm 1,
the processes of training algorithms and recovering super-resolution
images are independent. The time of training algorithms and

Fig. 10. Super-resolved images: Parrot. (a) Chang's algorithm. (b) Tang's algorithm. (c) Yang's algorithm. (d) Algorithm 1.

Fig. 11. Super-resolved images: Words. (a) Chang's algorithm. (b) Tang's algorithm.
(c) Yang's algorithm. (d) Algorithm 1.
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recovering super-resolution images is separately compared. A training
set with 105 samples is used to test the computing time. The
experimental results are shown in Table 2. Meanwhile, the super-
resolved images are shown in Figs. 9–12, and the PSNRs and SSIMs of
these super-resolved images are also reported in Table 2.

Based on the images shown in Figs. 9–12 the results generated by
Algorithm 1 are cleaner than both local algorithms and slightly wea-
ker than the results of Yang's algorithm. Similarly, PSNRs and SSIMs
reported in Table 2 also support the observations. However, the
computing time of Algorithm 1 is much less than any of these
algorithms according to the results in Table 2. Therefore, the perfor-
mance of Algorithm 1 in super-resolving low-resolution images is
competitive to most of popular super-resolution algorithms, and the
efficiency of Algorithm 1 is much superior than all of other mentioned
algorithms.

5. Conclusion

In this paper, a novel matrix-value operator regression algo-
rithm is proposed for super-resolving images with the help of
social images. The proposed super-resolution algorithm is efficient
in extracting social images information with much less cost of
computation because matrix-value operator regression model is
used to describe the relation between low- and high-resolution
image patches. All of our theoretical and experimental results
show the efficiency and the effectiveness of matrix-value operator
in representing the image-pair information. Therefore, we believe
that the image-pair information of social images will be more effi-
ciently and effectively learned by employing matrix-value operator
regression model.
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