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Abstract We study a single server queue with two different arriving streams,
a tagged arrival process and a background arrival process. The tagged traffic
is assumed to be an Interrupted Poisson Process (IPP) and the background
traffic is Poisson. The service time is exponentially distributed and customers
are served in a FIFO manner. We obtain numerically the PDF of the inter–
departure time of the IPP tagged arrival process, from which we calculate its
jitter, defined as a percentile of the inter–departure time. Numerical results of
the 95th percentile and the squared coefficient of variation of the tagged inter-
departure time are given as a function of the arrival rate of the background
traffic.

Keywords queueing · multi–class · jitter · percentile

1 Introduction

The Next Generation Network (NGN) is an evolution of the vertically separate
integrated networks, whereby a single IP-based network will carry all services.
The IP network will run over different transport technologies, such as wireless
networks, optical networks, Ethernet, and SONET/SDH, which should be able
to provide quality–of–service (QoS) assurances. QoS is expressed in terms of
the one way end–to–end delay, jitter, and packet loss.

Jitter is a well understood concept, but there is no agreed upon statistic
for measuring it. In view of this, various metrics have been proposed in the
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literature. One commonly used metric is based on the one way end–to–end
delay of the individual packets. Specifically, if we consider the differences of
the end–to–end delay of successive packets, then jitter can be defined using
a statistic, such as, the running average of differences over a fixed number of
packets, and a percentile value x such that 95% of the time these differences
are less than x. Jitter has also been expressed as the difference between the
end–to–end delay of a packet and the end–to–end propagation delay, and it
is known as the delay variation. An alternative metric for jitter is based on
the inter–arrival times of the successive packets at the destination, and it is
typically defined as a percentile, such as the 95th percentile, of the inter–arrival
time. This latter definition is the one used in this paper. Note that the 95th
percentile is recommended by ITU–T as a simple, and fairly accurate method
for calculating Inter–Packet Delay Variation in real time [12].

In our work, we study how the jitter of a traffic stream is affected by the
presence of another traffic stream. For this, we consider a single queue with
two different arriving processes, a tagged and a background stream, and we
derive the probability density function (PDF) of the inter–departure time of
the tagged traffic.

The problem of characterizing the departure process of a single class of cus-
tomers in a multi–class queue arises in the analysis of non product–form queue-
ing networks and more recently in the characterization of the jitter of a traffic
flow. The exact Laplace transform of the class-dependent inter-departure time
distribution in a multi-class queue, where each arrival process is Poisson and
the service time has a class-dependent general distribution was obtained by
Stanford and Fischer [8]. Dasu [3] considered a two–class single server queueing
system where the tagged arrival process is a generalized phase process [2], the
background arrival process is Poisson, and the service time follows a phase–
type distribution. For this model, he obtained a closed–form expression of the
Laplace transform of the inter–departure time of the tagged traffic. This is a
very complex expression even in the case where the tagged inter–arrival time
follows an Erlang distribution and the service time is exponentially distributed.
For this case, he obtained the second moment by numerical differentiation of
the Laplace transform. To the best of our knowledge, the above two references
are the only ones where exact results have been reported. Several approxi-
mations have also been reported under a variety of assumptions. Whitt [11]
developed two moment approximations of the departure process of a single
class of customers in a multi–class GI/G/m queue. In Kumaran et al. [5], the
tagged and the background arrival processes were assumed to be matrix expo-
nential (ME), and the service time distribution was also an ME. The authors
obtained an approximation for the tagged departure process. In Mitchell et al.
[6], an approximation of the tagged departure process was also obtained for
heavy and light traffic under similar assumptions as the previous paper. The
above references are for continuous–time models. In addition, the problem of
determining the jitter has been also considered in the discrete–time domain
for ATM networks, see for instance Sohraby and Privalov [7].
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In this paper, we consider a single server queue with two different arriv-
ing streams, a tagged arrival process and a background arrival process. The
tagged traffic is assumed to be an Interrupted Poisson Process (IPP) and the
background traffic is Poisson. The service time is exponentially distributed
and customers are served in a FIFO manner. The assumptions are less general
than those considered in Dasu [3], but for this model, we obtain the exact1

PDF of the inter–departure time of successive tagged customers from which we
can easily compute its 95th percentile, or any other percentile. This is done by
analyzing numerically a series of homogeneous, absorbing Markov processes.

The paper is organized as follows. In Section 2, we derive the PDF of
the tagged inter–departure time of the {IPP,M}/M/1 queue. In Section 3 we
present a set of numerical results obtained using our model, and in Section 4,
we conclude our paper.

2 The PDF of the Tagged Inter–Departure Time

Let us consider a single server FIFO queue with two different arriving traf-
fic streams, an IPP tagged arrival process and a Poisson background arrival
process. The tagged and background streams are interspersed and the queue
serves the customers in their order of arrival, without giving priority to either
stream, in an exponentially distributed amount of time that is independent of
the stream to which the customer belongs. The successive service times are
independent and identically distributed.

The parameters of the tagged IPP are as follows: the arrival rate in the
ON state is λ, and in the OFF state is zero. The transition rate from the
ON state to the OFF state is σ1, and from the OFF state to the ON state
is σ2. We assign the index 1 to the ON state, and 2 to the OFF state. The
rate of the background Poisson process is µ, and the rate of service is θ.
In Figure 1, we show the two possible sequences of the significant queueing
events involving two successive tagged arrivals into the queue. Let ai and ai+1

denote, respectively, the instant of arrival of the first and the second tagged
customer during the observed period. Let Ni and Ni+1 denote the respective
queue lengths at these two instants. Let Ai be the inter–arrival time, Ki the
number of background arrivals occurring between these two tagged arrivals,
and Ki,1 the number of background arrivals occurring between the arrival of
the first tagged customer and its respective departure. Let Wi be the time that
passes between the departure of the first tagged customer and the arrival of
the second tagged customer (only relevant if positive). Let Di be the amount
of time it takes to serve all the customers that were already in the queue at
the moment of arrival of the first tagged customer at ai, and Si the service
time of the first tagged customer. The interpretation of Di+1 depends on the
context. In case 1 (Figure 1a), Di+1 represents the amount of time it takes to
serve all the background customers that have arrived between the two tagged

1 i.e., arbitrary precision
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(a) Case 1: The second observed tagged arrival (ai+1) occurs
before the customer that arrived at ai departs. That is, Ai <
Di + Si.
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(b) Case 2: The second observed tagged arrival (ai+1) occurs
after the customer that arrived at ai has departed. That is,
Ai > Di + Si.

Fig. 1: Order of events with respect to successive arrivals of two tagged cus-
tomers. Queueing events are shown on three simultaneous timescales marked
by capital letters on the left. “T” marks the timescale belonging to the tagged
arrival process, “B” the timescale of the background arrival process, and “S”
the timescale of the service process.

arrivals. Quite clearly, this is the service time of Ki background customers.
In case 2 (Figure 1b), Di+1 is the time it takes to serve all the background
customers that are in the queue at the moment just before the second tagged
arrival at ai+1. Note that at this instant, there can be no tagged customers in
the queue, since the last one has already been served at time ai +Di +Si and
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the next one is just about to arrive. Let Si+1 be the service time of the second
tagged arrival at time ai+1. Finally, let Pi be the time that passes between
the departure of the two tagged customers arriving at ai and ai+1. This is the
inter–departure time, whose PDF we compute in this paper.

The computation of Pi is broken down into a series of absorbing Markovian
processes that are solved sequentially. Our approach to obtaining the PDF of
an arbitrary tagged inter–departure time is to take an arbitrary tagged arrival,
ai, and observe how long it takes for it to receive service and depart (Di +Si).
Then we observe a second tagged arrival, ai+1, following the first one, compute
the time it takes for it to get served and then derive the PDF of the time
between the departure of these two tagged customers. For this, we first need
to obtain the queue length distribution (denoted by Ni) as seen by an arbitrary
tagged arrival; this is done in Section 2.1. We use this queue length distribution
in Section 2.2 to compute the probability that case 2 occurs, that is, the second
tagged customer arrives after the departure of the first one (Figure 1b).

Having obtained these two quantities, we proceed to calculate the inter–
departure time Pi = Wi +Di+1 + Si+1 for case 2, which follows a phase–type
distribution, in Section 2.4. The cumulative distribution function (CDF) of
this phase–type distribution is obtained by analyzing the absorption time of
an absorbing Markov process with a single absorbing state. The initial proba-
bility distribution of this Markov process is determined by the joint probability
distribution of the queue length and the state of the tagged arrival IPP (i.e.,
ON or OFF) at the instant of departure, ai + Di + Si, of the first tagged
customer. This is obtained in Section 2.3.

In case 1, the second tagged customer arrives before the first one departs.
In this case, the inter–departure time Pi = Di+1 + Si+1, where Si+1 is the
service time of the second tagged customer, and Di+1 is the service time of Ki

background customers that arrived between the tagged arrivals (Figure 1a).
The distribution of Ki is obtained in Section 2.5 by modeling the evolution of
the system between the two tagged arrivals.

2.1 The Queue Length Distribution at a Tagged Arrival

In our analysis, we need to know the queue length distribution in the queueing
system under study, at the moment of a tagged arrival, i.e. an arrival from the
IPP stream. The tagged IPP merged with a Poisson process forms a two–state
Markov–Modulated Poisson process (MMPP–2). Let λ1 and λ2 be the rate
of arrivals in state 1 and 2, respectively, of the MMPP–2, and let σ1 and σ2
be the rate of transition from state 1 to state 2 and from state 2 to state 1,
respectively. Then the steady–state probability vector of such a process may
be expressed as:

Π = (Π1, Π2) =

(
σ2

σ1 + σ2
,

σ1
σ1 + σ2

)
(1)

The parameters of the MMPP–2 are set as follows: λ1 = λ + µ; λ2 = µ.
That is, state 1 of the MMPP–2 corresponds to the ON state of the tagged
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IPP, and state 2 of the MMPP–2 corresponds to the OFF state. Naturally,
the background Poisson process is active in both states; hence the µ term.
The queue length distribution at the instant of a tagged arrival was obtained
by analyzing the queueing system as an MMPP–2/M/1 queue, using Neuts’
matrix geometric method [9, Section 10.6].

The infinitesimal generator of the system is

Q =


Σ − Λ Λ 0 · · ·
Θ Σ − Λ−Θ Λ · · ·
0 Θ Σ − Λ−Θ · · ·
0 0 Θ · · ·
...

...
...

. . .

 , (2)

Σ =

(
−σ1 σ1
σ2 −σ2

)
Λ =

(
λ1 0
0 λ2

)
Θ =

(
θ 0
0 θ

)
. (3)

Let π = (π0, π1, π2, . . .)
T be the stationary distribution matrix returned by

Neuts’ method, where πi = (πi,1, πi,2)T , and πi,j is the time average probability
that the arrival process is in state j and the system contains i customers. Now,
the queue length as seen by a tagged arrival may be expressed as follows:

πa =
1

Π1
π

(
1
0

)
(4)

2.2 The Probability that Case 2 Occurs (Ai > Di + Si)

0
∗
, 2

0
∗
, 1

0, 2

0, 1

1
∗

λ

σ1 σ2

θ

θ

1, 2

1, 1

1
∗

λ

σ1 σ2

θ

θ

2, 2

2, 1

1
∗

λ

σ1 σ2

θ

θ

3, 2

3, 1

1
∗

λ

σ1 σ2

θ

θ

4, 2

4, 1

1
∗

λ

σ1 σ2

θ

θ

5, 2

5, 1

1
∗

λ

σ1 σ2

θ

θ

θ

θ

…

…

Fig. 2: The probability of a case 2 tagged departure.

As shown in Figure 1, we distinguish between cases 1 and 2 depending upon
whether the second tagged customer arrives before or after the first tagged cus-
tomer has departed. This distinction is necessary because the inter–departure
time between two successive tagged departures is structured differently. As
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will be seen later on, it is essential to know with what probability do these
two cases occur. The probability that case 2 occurs is computed by analyzing
the absorption probabilities of the continuous–time absorbing Markov process
shown in Figure 2.

This process depicts the evolution of the system from the moment that a
tagged customer A arrives to the moment that it either departs, or a second
tagged customer B arrives. States (i, j) depict the number of customers i in
the queue which are ahead of customer A, and the state j ∈ {1, 2} of the IPP.
Any background customers that arrive after A are not of interest, since we are
only concerned with the service of the customers that were already present in
the queue at the moment of arrival of A. The initial distribution of this process
is the queue length distribution of the system as seen by customer A upon its
arrival, calculated in the previous section. The IPP has to be in the ON state
(j = 1) in order for a tagged customer to arrive. Consequently, p(i, 2) = 0
for i ≥ 0. The remaining probabilities p(i, 1), i ≥ 0, of the initial distribution
are the queue–length probabilities seen by an arbitrary tagged customer upon
arrival.

The process starts therefore at a state (i, 1) with probability p(i, 1) and
evolves until absorption. There are three absorbing states: (1∗), (0∗, 1), and
(0∗, 2). Let us assume for example that the process is in state (1, 1). This means
that there is one customer (tagged or background) ahead of customer A, which
is in service, and the IPP is in the ON state. There are two possible transitions:
a) the customer in service departs, which shifts the state to (0, 1), and b)
tagged customer B arrives, which shifts the process to the absorbing state
(1∗). Absorbing states (0∗, 1) and (0∗, 2) indicate that the tagged customer
A departed prior to B’s arrival and the state of the IPP at the instant of
departure was 1 (ON) or 2 (OFF), respectively. Absorbing state (1∗) indicates
that the tagged customer A departed after B’s arrival.

Based on this absorbing Markov process, the probability that case 2 occurs
is equal to the sum of the probabilities that the process is absorbed in states
(0∗, 1) and (0∗, 2). Also, from the individual absorbing states we have the state
of the IPP when A departs prior to B’s arrival. The probability that case 1
occurs is the complementary of the probability that case 2 occurs and is also
equal to the probability that the process will be absorbed in state (1∗).

If we arrange the states of this absorbing Markov process so that the tran-
sient states, ordered as follows: (0, 1), (0, 2), (1, 1), (1, 2), . . ., are followed by
the absorbing states (0∗, 1), (0∗, 2), and (1∗), then the infinitesimal generator
of the process is (I is the identity matrix, Σ and Θ are as defined in Eq. 3)

P =

(
Q R
0 I

)
, with (5)

Q =


Σ − ? 0 0 · · ·
Θ Σ − ? 0 · · ·
0 Θ Σ − ? · · ·
0 0 Θ · · ·
...

...
...

. . .

 , R =


Θ Λ
0 Λ
0 Λ
0 Λ
...

...

 , (6)
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Λ =

(
λ
0

)
, Λ̂ =

(
λ 0
0 0

)
, and ? = Λ̂+Θ. (7)

In order to compute the absorption probabilities [9, Section 9.6.2] [4, Sec-
tion 11.2], the number of transient states in the absorbing Markov process has
to be finite. For this reason, it is necessary to truncate the Q and R matrices to
a finite number of states. The absorption probability matrix B = [bij ], where
bij is the probability of absorption in absorbing state j on condition that the
process was started in transient state i, is computed as follows:

B = (I − Q̇)−1Ṙ, (8)

where Q̇ and Ṙ are discretized versions [9, Section 10.1.1] of Q and R, respec-
tively. It is important to note that the matrix (I − Q̇) has a block tridiagonal
structure, so B may be efficiently computed using the Thomas algorithm [1].

2.3 Case 2: The Joint Probability Distribution of the Queue Length and the
State of the IPP at the Instant of Departure of the First Tagged Customer
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Fig. 3: Case 2: The absorbing Markov process for computing the joint distri-
bution of the queue length and the state of the arrival process at the departure
time of the first tagged customer.

In order to compute the queue length distribution Ni+1 at ai+1 in case
2, we need to know the joint distribution of the queue length and the state
of the IPP at the departure of the first tagged customer at ai + Di + Si.
This is achieved using the absorbing Markov process presented in Figure 3.
The model has a three–dimensional state space (i, j, k), where i represents
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the number of customers in the queue immediately before ai plus the tagged
customer arriving at ai, j represents the number of background customers that
have arrived since then, and k is the state of the IPP. Starting from an initial
state (i, 0, k), i ≥ 1, k ∈ {1, 2}, the process keeps track of the evolution of the
system from the instant ai until the first tagged departure, which is assumed
to conform to case 2.

The initial state distribution (i, 0, k), i ≥ 1, k ∈ {1, 2} is determined by the
queue length distribution as seen by customer A at time ai, conditioned on the
fact that its departure conforms to the case 2 assumption. The probabilities
may be obtained by combining the results from the first two Markovian models
(Sections 2.1 and 2.2). The probability of starting in the remaining states
(i, j, k), i ≥ 0, j > 0, k ∈ {1, 2} is zero. The process evolves until tagged
customer A departs, or tagged customer B arrives before A’s departure. Given
we are in, say, state (2, 1, 1), the process can shift to (2, 1, 2) if the IPP state
changes from ON to OFF, or to (1, 1, 1) if a departure occurs, or to (2, 2, 1) if a
background customer arrives. It can also be absorbed in the state represented
by smaller circles marked with “X” (these absorbing states are of no interest
to this analysis and for presentation purposes they are all marked the same),
if tagged customer B arrives before A’s departure. Another set of absorbing
states (0∗, j, k), j ≥ 0, k ∈ {1, 2}, represent the case where A departs prior
to B’s arrival. Absorption in these states can only occur from states (1, j, k),
j ≥ 0, k ∈ {1, 2}.

The states are enumerated in the following way: (1, 0, 1), (1, 0, 2), (2, 0, 1),
(2, 0, 2), (3, 0, 1), (3, 0, 2), . . ., (1, 1, 1), (1, 1, 2), (2, 1, 1), (2, 1, 2), (3, 1, 1), (3, 1, 2),
. . ., (1, 2, 1), (1, 2, 2), (2, 2, 1), (2, 2, 2), (3, 2, 1), (3, 2, 2), . . ., (X), (0∗, 0, 1),
(0∗, 0, 2), (0∗, 1, 1), (0∗, 1, 2), . . . (note that the transient states precede the
absorbing states). The Q and R blocks (see Equation 5) of the infinitesimal
generator matrix of this continuous–time absorbing Markov process are as
follows:

Q =


Σ̃ M̃ 0 0 · · ·
0 Σ̃ M̃ 0 · · ·
0 0 Σ̃ M̃ · · ·
0 0 0 Σ̃ · · ·
...

...
...

...
. . .

 , (9)

R =


Λ̃ Θ̃ 0 0 0 · · ·
Λ̃ 0 Θ̃ 0 0 · · ·
Λ̃ 0 0 Θ̃ 0 · · ·
Λ̃ 0 0 0 Θ̃ · · ·
...

...
...

...
...

. . .

 , (10)

with Λ̃ =


Λ
Λ
Λ
Λ
...

 , Θ̃ =


Θ
0
0
0
...

 , (11)
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Σ̃ =


Σ − ? 0 0 0 · · ·
Θ Σ − ? 0 0 · · ·
0 Θ Σ − ? 0 · · ·
0 0 Θ Σ − ? · · ·
...

...
...

...
. . .

 , (12)

M̃ =


M 0 0 0 · · ·
0 M 0 0 · · ·
0 0 M 0 · · ·
0 0 0 M · · ·
...

...
...

...
. . .

 , (13)

M =

(
µ 0
0 µ

)
, ? = M + Λ̂+Θ. (14)

Σ and Θ are as defined in Eq. 3; Λ and Λ̂ are as defined in Eq. 7. In order to
make Q and R finite, the matrices Λ̃, Θ̃, Σ̃, and M̃ have to be truncated at a
maximum value of i, i.e., the number of customers already in the queue upon
A’s arrival. Q and R should be truncated at the maximum value of j, i.e., the
number of background customers that may arrive after A. If the maximum
value of i is N , and the maximum value of j is K, then, as a result of these
truncations, Λ̃ will have 2N rows and 1 column, Θ̃ 2N rows and 2 columns,
while both of Σ̃ and M̃ 2N rows and 2N columns. Q will have K block rows
and K block columns, R K block rows and 2K + 1 columns.

2.4 The Inter–Departure Time for Case 2
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Fig. 4: Case 2: The absorbing Markov process from which the case 2 inter–
departure time is obtained.

Given the state of the system at ai + Di + Si under the case 2 condition,
the inter–departure time between the two tagged customers under observation



Jitter Analysis of an IPP Tagged Traffic Stream in an {IPP,M}/M/1 Queue 11

follows a phase–type distribution which is the time to absorption in the ab-
sorbing Markov process shown in Figure 4. The process has a two–dimensional
transient state space (i, j), i ≥ 0, j ∈ {0, 1, 2} and a single absorbing state,
0∗. The set of transient states consists of two structural subsets: (i, j), i ≥ 0,
j ∈ {1, 2}, and (i, 0), i ≥ 0. The former models the evolution of the queue
from ai + Di + Si until ai+1, i.e., the arrival of the second tagged customer.
This event is denoted by a transition from the first subset to the second at
rate λ. When the process is in a state belonging to the second subset, only
services may occur, at a uniform rate of θ. The process will get absorbed after
serving all the customers that were present in the queue at the instant of the
transition from the first subset to the second. Obviously, the second subset
represents the behavior of the queue from ai+1 until ai+1 +Di+1 + Si+1.

The initial probability of the absorbing state 0∗ and of the states belonging
to the second structural subset, (i, 0), i ≥ 0, is zero. The initial probability
of being in state (i, j), i ≥ 0, j ∈ {1, 2}, is equal to the probability that at
instant ai+Di+Si, there were exactly i customers in the queue and the arrival
IPP was in state j. We have already computed this probability distribution in
Section 2.3.

The infinitesimal generator matrix of the Markov process shown in Figure
4 is

Q =

(
S R
0 1

)
, with (15)

S =


Σ̌′ M̌ 0 0 · · ·
Ť Σ̌ M̌ 0 · · ·
0 Ť Σ̌ M̌ · · ·
0 0 Ť Σ̌ · · ·
...

...
...

...
. . .

 , R =


T̄
0
0
0
...

 , (16)

Σ̌′ =

−σ1 − λ− µ σ1 λ
σ2 −σ2 − µ 0
0 0 −θ

 , (17)

Σ̌ =

−σ1 − λ− µ− θ σ1 λ
σ2 −σ2 − µ− θ 0
0 0 −θ

 , (18)

M̌ =

µ 0 0
0 µ 0
0 0 0

 , Ť =

 θ 0 0
0 θ 0
0 0 θ

 , and T̄ =

 0
0
θ

 . (19)

The CDF of the time to absorption, which is the CDF of Pi in case 2, is
given by

F
P

(2)
i

(t) = P (P
(2)
i < t) = 1− αeSt1, (20)

where α is the initial distribution on the transient states of the process as
discussed above, ex is the matrix exponential and 1 is a column vector of ones.
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2.5 Case 1: The Distribution of the Number of Background Arrivals Between
Two Successive Tagged Arrivals
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Fig. 5: Case 1: Calculation of the distribution of the number of background
arrivals between the two tagged arrivals.

In case 1, the distribution of the first tagged inter–departure time, Pi, is
determined by Ki, the number of background arrivals occurring between the
first two tagged arrivals. The probability distribution of Ki may be computed
using the absorbing Markov process shown in Figure 5. The state of the process
is given as the triplet (i, j, k), where i ≥ 1 is the queue length immediately
after the first tagged arrival at ai, j ≥ 0 denotes the number of background
arrivals since ai, and k ∈ {1, 2} is the state of the IPP arrival process. For
instance, in state (2, 1, 1), there are 3 customers in the queue, of which one
(tagged or background) is in front of the tagged customer and another one (a
background customer) is behind it. A background arrival will shift the process
to state (2, 2, 1), a change in the IPP state will shift it to (2, 1, 2), and if
a tagged customer arrives, the process will get absorbed in the state marked
with (1). It is also possible for the tagged customer to depart before the second
tagged customer arrives. For instance, if the process is in state (1, 1, 2) and
a departure occurs, it will shift to absorbing state (X2) (the (X1) and (X2)
absorbing states are not used in the analysis, and for presentation purposes
they are all indicated as (X)).

The initial state distribution (i, 0, k), i ≥ 1, k ∈ {1, 2} is the joint distribu-
tion observed immediately after time ai, calculated in Section 2.1. The initial
probability of the remaining states if zero. Of interest are only the absorbing
states (j), j ≥ 0 due to the arrival of the second customer, since for states
(X1) and (X2), the assumption of Ai < Di + Si is not fulfilled.
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The matrices defining the Markov process are as follows, assuming that the
states are enumerated in the order (1, 0, 1), (1, 0, 2), (2, 0, 1), (2, 0, 2), (3, 0, 1),
(3, 0, 2), . . ., (1, 1, 1), (1, 1, 2), (2, 1, 1), (2, 1, 2), (3, 1, 1), (3, 1, 2), . . ., (X1),
(X2), (0), (1), (2), . . .:

Q =


Σ̃ M̃ 0 0 · · ·
0 Σ̃ M̃ 0 · · ·
0 0 Σ̃ M̃ · · ·
0 0 0 Σ̃ · · ·
...

...
...

...
. . .

 , (21)

R =


Θ̃ Λ̃ 0 0 0 · · ·
Θ̃ 0 Λ̃ 0 0 · · ·
Θ̃ 0 0 Λ̃ 0 · · ·
Θ̃ 0 0 0 Λ̃ · · ·
...

...
...

...
...

. . .

 , (22)

with Λ̃ =


Λ
Λ
Λ
Λ
...

 , Θ̃ =


Θ
0
0
0
...

 , (23)

Σ̃ =


Σ − ? 0 0 0 · · ·
Θ Σ − ? 0 0 · · ·
0 Θ Σ − ? 0 · · ·
0 0 Θ Σ − ? · · ·
...

...
...

...
. . .

 , (24)

M̃ =


M 0 0 0 · · ·
0 M 0 0 · · ·
0 0 M 0 · · ·
0 0 0 M · · ·
...

...
...

...
. . .

 , (25)

with Σ, Θ as defined in Eq. 3, M as defined in Eq. 14, Λ and Λ̂ as defined in
Eq. 7, and ? = M + Λ̂+Θ. Again, the infinite matrices need to be truncated.

Given the probability distribution of Ki, one may easily compute the distri-

bution of P
(1)
i as follows. With probability P{Ki = 0}, P (1)

i is the distribution
of the service time of a single customer which is exponentially distributed with

rate θ. With probability P{Ki = k}, P (1)
i is the service time of k+1 customers,

and follows an Erlang(k + 1, θ) distribution. From the CDFs of these Erlang

distributions, the CDF of P
(1)
i may be easily computed:

F
P

(1)
i

(t) =

n∑
k=0

P{Ki = k}FEk+1,θ
(t) (26)
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Let us remind the reader that since P{Ki = k} has only been computed for
a finite set of k values due to the truncation, the summation in the above
formula consists of a finite number of terms as well.

Finally, the distribution of Pi may be computed by taking the weighted
average of the CDFs of the two Pi random variables obtained independently
for cases 1 and 2:

FPi(t) = P{Case 1}F
P

(1)
i

(t) + P{Case 2}F
P

(2)
i

(t) (27)

Due to the fact that FPi(t) is monotonically increasing, numerically solving
the equation FPi(t) = 0.95 to obtain the 95th percentile of the inter–departure
time is fairly straightforward.

2.6 The heavy–traffic model

As the traffic load gets higher, the probability that case 2 occurs decreases,
and the probability that case 1 occurs increases. In the limiting case, therefore,
where the traffic intensity of the queue tends to 1, only case 1 may occur, and in
this case instead of the three–dimensional state space of the absorbing Markov
process in Section 2.5, a similar one with a two–dimensional state space will
suffice (see Figure 6). This greatly simplifies the computation of the CDF of
the inter–departure time.
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Fig. 6: Heavy traffic model: the distribution of the number of background
arrivals between two tagged customers.

3 Numerical Results

In this section, we provide numerical results and also discuss the computational
complexity of the proposed algorithm. The numerical results were obtained
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for the case where the tagged traffic accounts for a small percentage of the
utilization in relation to the background traffic. This is realistic in cases where
we are concerned with a single flow in the presence of multiple flows in an
output port buffer of a router.

Figure 7 shows the 95th percentile of the inter–departure time distribution
of the tagged process as a function of the arrival rate of the background traffic.
The three curves shown therein correspond to three different values of the
squared coefficient of variation, C2, 5, 10, and 20. For each curve, we have
constructed a tagged arrival IPP whose rate of arrival in the ON state is 0.2,
the transition rates between the two states are symmetric, and the squared
coefficient of variation matches the C2 value associated with the curve. It is
easy to see that the mean arrival rate of such a process is 0.1. The service
rate of the queue is set equal to 1.0. Thus the traffic intensity due to the
tagged arrival process is 0.1. The arrival rate of the background traffic was
varied from 0.05 to 0.9, which means that the total traffic intensity due to
both arrival streams was varied from 0.15 to 1.0. The case where the rate of
the background traffic is 0.9 corresponds to full utilization. For this case, we
obtained the results separately, using the heavy traffic model (Section 2.6).
We observe that for C2 equals 10 and 20, the 95th percentile of the inter–
departure time shows an increasing tendency as the rate of the background
traffic increases, whereas for C2 = 5 it decreases.
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Fig. 7: The 95th percentile of the PDF of the inter–departure time as a function
of the arrival rate of the background traffic.

Figure 8 shows the C2 of the inter–departure time of the tagged process as a
function of the arrival rate of the background traffic, for the same three tagged
arrival processes used in Figure 7. As the rate of arrival of the background traf-
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fic increases, the C2 of the inter–departure times of the tagged process drops.
We have also conducted simulation experiments using an Erlang–4 distribu-
tion as the inter–arrival process of the tagged traffic (the C2 of this process is
less than 1) and observed that as the background traffic arrival rate increases,
the C2 of the inter–departure time of the tagged process increases (which is
consistent with the results shown in Dasu [3]). This trend is in contrast with
the IPP tagged arrival process, where as shown in Figure 8, the C2 decreases.
Finally, we note that if the tagged arrival traffic is Poisson (the C2 of this pro-
cess is 1), then the tagged departure process is also Poisson. Therefore, the C2

of the inter–arrival time does not change as the tagged stream passes through
the queue with Poisson background traffic. Just as in the case of Figure 7, the
data points corresponding to a background arrival rate of 0.9 (full utilization)
were obtained using the heavy traffic model.
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Fig. 8: The squared coefficient of variation (C2) of the PDF of the inter–
departure time as a function of the arrival rate of the background traffic.

Figure 9 shows the 95th percentile of the probability distribution of the
inter–arrival time and the inter–departure time of the tagged arrival process
as a function of the C2 of its inter–arrival time. There are three curves on the
graph. One gives the 95th percentile of the inter–arrival time of the tagged
arrival IPP process (i.e., before it enters the queue), and the other two give
the 95th percentile of the inter–departure time of the tagged arrival process
with two different arrival rates of the background traffic: 0.6 and 0.8.

Note that increasing the rate of background traffic transforms the tagged
stream towards a more Poisson–like traffic stream, as far as the 95th percentile
of the inter–arrival time is concerned. When the arriving tagged stream is
Poisson (C2 = 1), the departing tagged stream is Poisson as well, irrespective
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Fig. 9: The 95th percentile of the PDF of the inter–departure time as a function
of the squared coefficient of variation (C2) of the PDF of the inter–arrival time
of the tagged IPP.

of the rate of background traffic. When the squared coefficient of variation
of the tagged arrival process is in the [2, 8] range, the 95th percentile of the
process is greater than that of and equivalent Poisson process; consequently,
passing the stream through a node with Poisson background traffic decreases
the 95th percentile (i.e., draws it towards the Poisson process). When the C2

value of the arrival process is greater than 9, the 95th percentile of the tagged
inter–arrival time distribution is less than that of the Poisson process. In such
cases, the background traffic has the effect of increasing the 95th percentile of
the inter–arrival time distribution of the tagged process.

All of the results presented in this section have been verified by simulation.

3.1 Computational Complexity

The computational complexity of our method is dominated by the time re-
quired to compute the matrix exponential in Equation 20. Our implementa-
tion uses GNU Octave, which computes the matrix exponential by the means
of a diagonal Padé approximation, the complexity of which is given as O(N3)
by Ward [10]. In our case, N stands for the order of the S matrix being expo-
nentiated, which is proportional to the number of states in Figure 4. In turn,
this is proportional to the maximum queue length that the model can handle
in the Wi time interval of case 2.

Other relatively complex steps include the solutions of the systems of lin-
ear equations presented in Sections 2.3 and 2.5 (see also Equation 8). If the
maximum number of customers in the queue at a tagged arrival is U , and
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the maximum number of background arrivals between two tagged arrivals is
V , then both systems have O(UV ) unknowns. Using Gaussian elimination,
we obtain a time complexity of O

(
(UV )3

)
, which is prohibitively high for

practical problems. In our work we have used Thomas’ algorithm [1], which is
capable of solving systems with block tridiagonal matrices in linear time, and
therefore the time complexity presented by these subproblems is O(UV ). It is
practical to let N = U = V , in which case this can be expressed as O(N2). In
the paper, we chose N so that the probability of the queue length exceeding
N was reasonably small.

Finding a specific percentile of the inter–departure time requires the so-
lution of Equation 27 equated to the percentile value. Doing this numerically
requires O(− logP ) steps, where P is the desired precision of the result, i.e., the
difference between the upper and the lower bound obtained through the bisec-
tion method. For example, setting P = 10−4 would return the percentile to ap-
proximately four fractional decimal digits of accuracy. Since each step requires
the computation of Equation 27, which is a complex task in itself, the overall
running time complexity of our algorithm may be stated as O(−N3 logP ).
In practice, however, our method is substantially faster than simulations that
produce results of comparable accuracy. Only for very high utilizations (above
97.5%) does our model require more time to solve than simulation.

Background
0.05 0.30 0.50 0.70

arrival rate

High
accuracy

N 20 38 66 172
P (k ≥ N) 6.842E-13 1.712E-12 8.547E-12 1.83E-12
T 0.147 0.543 2.287 115.619
P95 24.6412 24.5874 24.5031 24.5409

Low
accuracy

N 10 16 30 76
P (k ≥ N) 8.283E-7 1.125E-5 9.545E-6 6.786E-6
T 0.073 0.113 0.313 3.34
P95 24.6411 24.5872 24.5029 24.5408

Table 1: Accuracy and execution time of the numerical computations for a
tagged process with C2 = 10. N denotes the maximum queue length in the
system, T the time, in seconds, required to carry out the computation, and
P95 the computed 95th percentile of the tagged inter–departure time.

Background rate 0.05 0.30 0.50 0.70
T 5267.38 6271.61 8042.32 10187.96
P95 24.6412 24.5927 24.501 24.5408
R95 0.008629 0.008319 0.00838 0.007919

Table 2: Results and execution times of a set of simulation experiments. R95

stands for the radius of the 95% confidence interval of the 95th percentile, P95.
Note that the computed results lie within the confidence intervals.
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Table 1 gives the parameters of two sets of computations carried out for
a tagged traffic stream with a C2 value of 10.0 and background arrival rates
of 0.05, 0.30, 0.50 and 0.70. The maximum queue length allowed in the com-
putation, N , the probability of overflow, P (k ≥ N), i.e., the probability that
the queue length goes beyond the size of the truncated state space, the time
it took to carry out the computation (T ), and the result obtained for the 95th
percentile of the inter–departure time (P95) are reported. In the numerical
solution of the FPi(t) = 0.95 equation, we have set the precision of the result
to 10−4 in all cases. The rows marked with “high accuracy” show the results
of computations in which the state space was large enough so that any further
increase of the number of states would not produce a measurable change in
the 95th percentile of the inter–departure time in the double–precision arith-
metic of our implementation. This was achieved by making sure that the total
probability of reaching a truncated state is on the order of 10−12. In the “low
accuracy” group, we have reduced the state space until a change was seen
in the first 4 fractional decimal digits of the computed 95th percentile. This
typically required the state space to be reduced to less than half of the “high
accuracy” values. The timing values were measured on a PC equipped with
an Intel Q6600 CPU running at 2.4 GHz and 2 GB RAM. Note that even
though the CPU we have used has multiple cores, in order to be able to make
a fair comparison, we did not take advantage of multi–threading in either the
computations or the simulations.

Table 2 presents a set of simulation results corresponding to the computa-
tions shown in Table 1. Again, the squared coefficient of variation of the tagged
arrival process was 10.0 and the rate of background traffic was 0.05, 0.30, 0.50
and 0.70. All of the experiments comprised 1001 batches of 106 tagged de-
partures; results from the first batch were discarded. For each experiment, we
report the time required to complete the simulation on the same hardware
that we used for the computations, the value obtained for the 95th percentile
of the inter–departure time as well as the radius of the 95% confidence interval
of said result.

We note that the computed results lie within the confidence intervals ob-
tained by simulation. However, the computations yielded more accurate results
in a time that was several orders of magnitude less than the time required for
the simulations.

4 Conclusion

We studied a single server queue with two different arriving streams, a tagged
arrival process and a background arrival process. The tagged traffic is assumed
to be an Interrupted Poisson Process (IPP) and the background traffic is
Poisson. The service time is exponentially distributed and customers are served
in a FIFO manner. We obtained numerically the PDF of the inter–departure
time of the IPP tagged process, from which we calculated its jitter, defined as
a percentile of the inter–departure time.
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The numerical procedure requires the solution of a set of infinite Markov
processes with absorbing states which can only be solved by truncating the rate
matrices. The probability of reaching truncated states may be easily computed
in advance. We have also compared results obtained from different levels of
truncation and found that when the state space is large enough (but still
reasonable in all of our experiments), the percentile values do not change at
all in the double–precision floating point arithmetic of our implementation.
Furthermore, this model can also be used to obtain accurate distributions and
percentiles of various other performance metrics, such as the distribution of
the queue length and the end–to–end delay. However, if the utilization of the
queue is very high (above 97.5%), then our model may be rendered impractical
by the fact that the time it takes to obtain accurate results surpasses that of
simulation. For such cases, we have proposed a heavy traffic approximation
based on the behavior of the queue at full utilization.

All of our computed results have been verified through simulation. We
have found that in order to match the accuracy of the computations through
simulation, very long simulation runs are necessary.

We obtained numerical results for the case where the tagged traffic ac-
counts for a small percentage of the utilization in relation to the background
traffic. This is realistic in cases where we are concerned with a single flow in
the presence of multiple flows. In this case, the 95th percentile of the inter–
departure time of the tagged process appears to be unaffected by the presence
of the Poisson background traffic for utilizations up to 0.6. After that, it may
slightly increase or decrease depending upon the C2 of the inter-arrival time
of the tagged process.

Finally, we note that our model can be easily extended to the case of an
MMPP–k tagged arrival processes with an MMPP–k background processes,
at a cost of a proportional increase in the state space.
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