
A Theory of Aspects as Latent Topics

Pierre F. Baldi ∗ Cristina V. Lopes ∗ Erik J. Linstead ∗ Sushil K. Bajracharya
Bren School of Information and Computer Sciences

University of California, Irvine
{pfbaldi,lopes,elinstea,sbajrach}@ics.uci.edu

Abstract
After more than 10 years, Aspect-Oriented Programming
(AOP) is still a controversial idea. While the concept of
aspects appeals to everyone’s intuitions, concrete AOP so-
lutions often fail to convince researchers and practitioners
alike. This discrepancy results in part from a lack of an ad-
equate theory of aspects, which in turn leads to the develop-
ment of AOP solutions that are useful in limited situations.

We propose a new theory of aspects that can be summa-
rized as follows: concerns are latent topics that can be au-
tomatically extracted using statistical topic modeling tech-
niques adapted to software. Software scattering and tangling
can be measured precisely by the entropies of the underlying
topic-over-files and files-over-topics distributions. Aspects
are latent topics with high scattering entropy.

The theory is validated empirically on both the large
scale, with a study of 4,632 Java projects, and the small
scale, with a study of 5 individual projects. From these anal-
yses, we identify two dozen topics that emerge as general-
purpose aspects across multiple projects, as well as project-
specific topics/concerns. The approach is also shown to pro-
duce results that are compatible with previous methods for
identifying aspects, and also extends them.

Our work provides not only a concrete approach for iden-
tifying aspects at several scales in an unsupervised manner
but, more importantly, a formulation of AOP grounded in
information theory. The understanding of aspects under this
new perspective makes additional progress toward the design
of models and tools that facilitate software development.

Categories and Subject Descriptors I.2.m [Computing
Methodologies]: Artificial Intelligence

General Terms Algorithms, Experimentation

∗ These authors have contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’08, October 19–23, 2008, Nashville, Tennessee, USA.
Copyright c© 2008 ACM 978-1-60558-215-3/08/10. . . $5.00

Keywords Aspect-Oriented Programming, Scattering, Tan-
gling, Topic Models

1. Introduction
Since its inception over a decade ago, Aspect-Oriented Pro-
gramming has attracted substantial attention in both software
research and industry. However, its value proposition is often
a topic of debate and remains largely unproven, from a sci-
entific perspective. Those who see a paradox in the success
of AOP ignore one critical piece of information that has been
put forth several times: AOP, and its instantiation in AspectJ,
have been an experiment (Kiczales et al. 2001; Lopes 2004)
whose empirical validation is to be done over time.

At the most fundamental level, AOP can be associated
with three hypotheses: the first two hypotheses pertain to
AOP in general, while the third one is specific to the AspectJ
implementation. The three hypotheses are:

1 - Complex software must cope with the existence of cross-
cutting concerns; using traditional procedures–or object-
oriented design modularizations, these crosscutting con-
cerns are manifested in the design representations (e.g.
UML diagrams or code) as design elements that are scat-
tered throughout several modules and tangled with other
concerns within those modules.

2 - Excessive scattering and tangling are “bad” for the design
process, in the sense that they slow the implementation
of the artifacts by: (a) forcing the developers to manually
map the conceptual integrity of the crosscutting concerns
to scattered pieces of design representation; (b) inducing
implementation errors that result from shattered concep-
tual integrity; and (c) violating project management deci-
sions related to divisions-of-labor.

3 - By using the alternative composition mechanisms em-
bodied in a language like AspectJ, the crosscutting con-
cerns become modules of the design; these alternative
modularizations are “better” than the traditional ones, in
the sense that they speed up the implementation of the
artifacts by eliminating the above-stated problems.

One of the main reasons why these hypotheses have been
without commonly accepted validation is because the soft-

ware research methods used so far lack the capability to val-
idate or disprove them empirically on a very large scale. The
need for better methods can be seen in two articles published
by reputable industry watchers whose conclusions are the
exact opposites of each other. In 2001, the MIT Technology
Review magazine dubbed AOP as one of the “Ten emerging
technologies that will change the world” (Tristram 2001). In
2005, industry watcher Forrester Research published a report
entitled “Aspect-Oriented Programming Considered Harm-
ful” (Zetie 2005). Given the high stakes at hand, the value of
argumentative and small-scale validation of AOP has been
exhausted. However, recent advances in open source devel-
opment, with the production of large amounts of analyzable
software data, together with recent advances in data mining
techniques, are for the first time creating the conditions nec-
essary for large-scale validation of the AOP hypotheses.

This paper begins to address these questions by develop-
ing and applying a novel set of methods for verifying the
first and most fundamental AOP hypothesis regarding the
existence of scattered and tangled cross-cutting concerns in
software. For people with software development experience,
their existence seems “obvious.” However, intuitions often
prove to be wrong; and when they are right, it is important to
understand why and how they hold in the real world of soft-
ware artifacts. For example, one frequently asked question
is: besides the few prototypical aspects identified and studied
in the research literature, what other aspects are there?, and
what are aspects anyway? Very few studies have been con-
ducted in order to systematically investigate this fundamen-
tal premise of AOP pertaining to the existence of crosscut-
ting concerns. And yet, if this hypothesis proved to be invalid
for software-at-large, the basis of AOP would be severely
undermined.

To this end, this paper makes the following contributions:

• An infrastructure, called Sourcerer (http://sourcerer.
ics.uci.edu), for collecting, pre-processing, analyz-
ing, and searching software projects, in particular open
source projects. This infrastructure enables empirical val-
idation of the first AOP hypothesis on a scale three orders
of magnitude larger than in most previous studies. Cur-
rently, Sourcerer indexes close to 5,000 projects retrieved
from Sourceforge, Tigris, and Apache.

• A method for defining and automatically identifying soft-
ware concerns at multiple scales of software granularity
based on unsupervised statistical machine learning and
topic modeling methods. Data mining techniques have
been applied to software before. These prior applications
used techniques which inject a somewhat circular rea-
soning into the identification of aspects, because they as-
sume too much about what aspects look like in the soft-
ware representations. An unsupervised probabilistic topic
modeling technique is developed and applied here us-
ing Latent Dirichlet Allocation (LDA) (Blei et al. 2003)
adapted to software data. This produces an unbiased set

of latent topics, which assumes very little about what
those topics are supposed to be, so that concerns are la-
tent topics.

• A method for defining and precisely measuring scatter-
ing and tangling at multiple scales of software granu-
larity based on information theory. Scattering and tan-
gling are measured by the entropies of the topic-over-file
and file-over-topics distributions respectively. In partic-
ular, aspects or cross-cutting concerns are latent topics
with high scattering entropy.

• Large-scale experiments providing sound evidence that
crosscutting, with its tangling and scattering effects, ex-
ists in software projects to a substantial degree, validating
the first AOP hypothesis.

The remainder of the paper is organized as follows. Sec-
tion 2 provides a description of the Sourcerer infrastructure.
Section 3 describes our approach for modeling software con-
cerns with probabilistic topic modeling, and provides the
mathematical foundations of the theory. Section 4 presents
the empirical validation of the model proposed here. Sec-
tion 5 compares the proposed approach with previous ap-
proaches for defining, identifying, and quantifying aspects.
Section 6 looks at some of the implications of the results
and Section 7 discusses related work in both software en-
gineering and machine learning and is followed by a brief
conclusion.

2. The Sourcerer Infrastructure
Figure 1 shows the architecture of Sourcerer, an infras-
tructure for collecting, searching, and mining open source
projects. (Bajracharya et al. 2006, 2007). The arrows show
the main flow of information between the various compo-
nents. Information on each system component is given be-
low.

• External Code Repositories: These are the source code
repositories available on the Internet (e.g. Sourceforge).

• Code Crawlers and Automated Downloads: We have sev-
eral kinds of crawlers: some target well-known reposito-
ries, such as Sourceforge, others act as web spiders that
look for arbitrary code available from web servers. An
automated dependency and version management compo-
nent provides managed downloads of these repositories.

• Local Code Repository: The system maintains a local
copy of each significant release of the projects, as well as
project specific meta-data. The scheme conforms to the
project object model as given by the Maven build system.

• Code Database: This is the relational database that stores
the features extracted from the source code, using Post-
gresSQL 8.0.1.

• Parser / Feature Extractor: A specialized parser parses
every source file from a project in the local repository

Figure 1. Architecture of the Sourcerer infrastructure

and extracts entities, fingerprints, keywords and relations.
These features are extracted in multiple passes and stored
in the relational database.

• Text Search Engine (Lucene): The keywords coming out
from the parser, along with information about related
entities, are fed into a text search engine powered by
Lucene 1.9.1 (http://lucene.apache.org).

• Ranker(s): The ranker performs additional non-text rank-
ing of entities. The relations table from the code database
is used to compute ranks for the entities using several
ranking techniques.

• Search Application(s): Search engine and applications
that use the indexed keys, ranked entities, and local repos-
itory provided by the infrastructure to retrieve relevant
software.

Sourcerer is in the process of being expanded with a set
of APIs so that other researchers can use this infrastructure
to conduct validation experiments and develop other experi-
mental tools.

3. Software Concerns as Latent Topics
Identifying scattering and tangling in existing programs has
been the thrust of a line of research in AOP known as as-
pect mining. This line of research has produced several
techniques, including: query tools of varying sophistica-
tion (Griswold et al. 2001; Hannemann and Kiczales 2001),
fan-in and fan-out analyses (Marin et al. 2004; Zhang and
Jacobsen 2007), clone detection (Bruntink et al. 2005), CVS
history analyses (Canfora et al. 2006; Breu and Zimmer-
mann 2006), run-time analyses (Breu 2005; Tonella and
Ceccato 2004), natural language processing (NLP) of source
code (Shepherd et al. 2005b), and supervised machine learn-

ing techniques (Shepherd et al. 2005a). All of these tech-
niques have had some degree of success in small-scale ex-
periments, typically limited to one or a few projects.

These techniques can be seen as attempts to extract
higher-level concerns from source code, specifically those
concerns whose implementations end up scattered in several
modules. As such, these techniques tend to mix two issues
together: (1) concern extraction; (2) quantifying scattering.
To overcome this confusion, here we first develop a statisti-
cal topic modeling technique to identify concerns, and then
apply information theory to precisely measure scattering and
tangling. Specifically, we have adapted Latent Dirichlet Al-
location, which probabilistically models text documents as
mixtures of latent topics, where topics correspond to key
concepts present in the corpus, and documents are viewed
as “bags of words”. A by-product of this approach is the full
distribution of each topic across the modules, and of each
module across the topics. As a result, we propose to measure
scattering and tangling by the entropy of the corresponding
distributions.

3.1 Latent Dirichlet Allocation
In the LDA model for text, the data consists of a set of
documents. The length of each document is known and each
document is treated as a bag of words. Let D be the total
number of documents, W the total number of distinct words
(vocabulary size), and T the total number of topics present in
the documents. Here, for simplicity, T is assumed to be fixed
beforehand (e.g. T = 125), but we experiment with various
values of T , in order to find a balance between topics that
are overly general and those that are overly project-specific.
However, non-parametric Bayesian and other methods exist
also to try to infer T automatically from the data.

The model assumes that each topic t is associated with a
multinomial distribution φ•t over words w, and each docu-
ment d is associated with a multinomial distribution θ•d over
topics. More precisely, the parameters of the model are given
by two matrices: a T × D matrix Θ = (θtd) of document-
topic distributions, and a W ×T matrix Φ = (φwt) of topic-
word distributions. In generative mode, given a document d
containing Nd words, for each word the corresponding θ•d is
sampled to derive a topic t, and subsequently the correspond-
ing φ•t is sampled to derive a word w. A fully Bayesian
probabilistic model is derived by putting symmetric Dirich-
let priors with hyperparameters α and β over the distribu-
tions θ•d and φ•t. For instance, the prior on θ•d is given by

Dα(θ•d) =
Γ(Tα)

(Γ(α))T

T∏

t=1

θα−1
td

and similarly for φ•t.
The probability of a document can then be obtained in

a straightforward manner by integrating the likelihood over
parameters φ and θ and their Dirichlet distributions. The pos-
terior can be sampled efficiently using Markov Chain Monte
Carlo Methods (Gibbs sampling) and the Θ and Φ parameter
matrices can be estimated by maximum a posteriori (MAP)
or mean posterior estimate (MPE) methods.

LDA has typically been applied to traditional text data,
such as journal articles or emails. To apply LDA to soft-
ware, a particular type of text data, a number of adapta-
tions are required. Source files can be viewed as documents
whose content can be represented as bags of words. A key
step in the application of LDA to software is to identify the
words that will constitute the topic model vocabulary, and
ultimately produce the word-document matrix, which repre-
sents the occurrence of words in individual source files. To
build the word-document matrix, we have developed a com-
prehensive tokenization tool tuned to the Java programming
language that allows us to build the corpus vocabulary from
specified code entities. This tokenizer includes language-
specific heuristics that follow the commonly practiced nam-
ing conventions. For example, the Java class name “Dy-
namicConfigurator” will generate the words “dynamic” and
“configurator.” In the process of indexing projects, Java key-
words and punctuation are ignored. Free text in the source
files, i.e. comments, can either be accounted for, or ignored.
More generally, using Sourcerer we can selectively choose
which structures to account for when harvesting words –
class definitions, method definitions, method calls, method
bodies, etc. For this study we included all class, interface,
method, and field names. Section 4.2 discusses in detail the
experiments that drove vocabulary selection.

Once the topics of a project are identified, the quantifica-
tion of scattering and tangling can be easily derived from the
corresponding distributions, for instance in terms of entropy.
For example, if the distribution of topic t across modules

m0 . . .mn is given by pt = (pt
0 . . . pt

n) then scattering of
topic t can be measured by the entropy

H(pt) = −
j=n∑

j=0

pt
j log pt

j (1)

Likewise, if the distribution of the module m across the
topics t0 . . . tr is given by qm = (qm

0 . . . qm
r) then tangling

in module m can be measured by the entropy

H(qm) = −
j=r∑

j=0

qm
j log qm

j (2)

Note that the entropy of a uniform distribution over M
classes is given by log M . Thus entropies can be normalized
to the [0,1] interval by dividing by log M to enable compar-
ison of entropies derived over different numbers of classes.

3.2 LDA and Software Concerns: A Theory of Aspects
There is a strong conceptual similarity between latent topics
and the concepts of concerns and aspects. So much so, that
we propose to unify the concept of latent topic with the
concept of concern in the domain of software:

A concern is a latent topic.

The distribution of a topic across modules indicates
whether the topic is more or less scattered. A cross cutting
concern is a latent topic that is scattered. This leads to the
following proposal for the definition of an aspect:

An aspect is a latent topic with high scattering entropy.

Conversely, a topic with low entropy is not an aspect.
Note that entropy is a continuous notion and it may not be
necessarily productive to try to define a threshold separating
aspects from non-aspects. This definition of aspects seems
to be in line with the original idea of aspects as emergent
properties of program representations – again, a concept that
maps well to the notion of latent topics.

In short, statistical topic modeling provides a potential
theory for AOP by providing definitions and procedural
means for identifying software concerns and aspects, and
for precisely measuring their degree of scattering and tan-
gling in actual software data. To test this proposal, several
experiments conducted at multiple levels of software granu-
larity are presented and discussed in the following sections.

4. Experimental Results
This section describes a representative subset of results
obtained by applying LDA to software data to extract
concerns and aspects, as well as their scattering and tan-
gling. While space constraints prevent their inclusion, com-
plete results are available from the supplementary materials
page at: http://sourcerer.ics.uci.edu/oopsla08/
results.html.

Table 1. Data Set.
Projects (with source) 4,632
Files 366,287
Packages 47,640
Classes 426,102
Interfaces 47,664
Methods 2,694,339
Fields 1,320,067
LOC 38,700,000

4.1 Data Set
Using Sourcerer, approximately 12,000 distinct projects
were downloaded, primarily from Sourceforge and Apache.
Distributions packaged without source code (binaries only)
were filtered out. Parsing the resulting multi-project repos-
itory yields over 5 million entities organized according to
Table 1. The end result is a repository consisting of 4,632
projects, containing 366,287 source files, with 38.7 million
lines of code, written by 9,250 developers.

4.2 Empirical Vocabulary Selection
Because Sourcerer separately indexes each code entity (eg.
classes, methods, fields) from a given source file, the topic
modeling process has significant flexibility when determin-
ing which words or tokens should be included in the vo-
cabulary when constructing the document-word matrix. For
example, one may choose to represent source file contents
using only tokens derived from class names, or one may
choose to include words originating from class, method, and
field names. While such a decision has no effect on the me-
chanics of LDA, the choice of vocabulary is ultimately mani-
fested in the resulting topics extracted from the code, both in
terms of their specificity and their clarity. To ensure that the
topic models capture the existence of crosscutting concerns
in source code, several vocabulary options were explored.

As a first attempt in our topic modeling analysis, we used
the entire source file texts as bags of words. This resulted
in a huge word-document matrix that was computationally
heavy to process. Furthermore, the quality of the topics was
somewhat mixed. For example, a topic that emerged with
very high entropy was copyright notices. While this is defi-
nitely an important part of software development, and worth
studying, we wanted to focus on code elements, and not on
all other activities that find their way into source code files.

As a second attempt, we constructed source files such that
their content consisted only of class and interface names. For
the full repository this yielded a vocabulary of 49,521 words
across approximately 360,000 documents. Results showed
that this over-constrained vocabulary produced topics that
were both too noisy and too general to be of use in the anal-
ysis, essentially providing a topic model of file names, but
not of file content. To improve the results we augmented
file content to include class, interface, and method names,

producing a vocabulary of 89,232 words for the repository.
With this change the extracted topics provided some insight
into code function, but did not adequately provide insights
about implementation facilitated through member variables
or method calls to other classes. Thus we decided to drasti-
cally expand the modeled vocabulary with this information.

We finally settled on including class and interface names,
method and field signatures, and called method names. This
proved to be the best compromise between computational
overhead and topic quality. This yielded a vocabulary of over
140,000 words and a substantial improvement in the quality
of the extracted topics.

When discussing vocabulary selection it is also important
to note that extracted topics can be further refined by em-
ploying a stop word list to prune common words that con-
tribute little to program understanding. While such stopword
lists are common for natural languages in the information re-
trieval (IR) community, standard lists do not exist for code
search and mining, and must be created manually. As a first
cut we constructed a stopword list consisting of class names
from the Java SDK as well as common English words, be-
lieving that this would focus the topic models on what the
code was doing, rather than how it was doing it. When ex-
amining results, however, it became clear that many cross-
cutting concerns are facilitated through the standard Java
classes. Logging, for example, may be achieved by leverag-
ing the various Java I/O classes. While common, including
the names of such classes substantially improved the inter-
pretability of results when mining code on the large scale.
Thus, we pruned our stopword list to include only com-
mon English words from a standard IR stopword collection,
and also excluded all text found in comments. In conjunc-
tion with class, interface, method, field, and called method
names, SDK class names yield a vocabulary of 141,136
words, and provide the foundation of the scattering and tan-
gling analysis presented below.

4.3 Aspects and Scattering in the Large
Table 2 shows 125 topics identified with the topic modeling
method applied to the full repository described in Table 1,
and ordered by normalized entropy of their scattering among
the files. Due to space constraints we present topics as a list
of the 5 most likely words for each concept; in actuality
each topic is a probability distribution over all words in
the vocabulary, and additional words can be inspected to
assist in interpreting each topic. The entropy was calculated
using Equation 1 in Section 3. Normalized entropy takes
a value between 0 and 1, and represents the uncertainty
associated with the random variable representing a given
topic’s distribution over files. An intuitive interpretation is
that topics with high entropy are more pervasive than those
with lower entropy, with an entropy of 1 representing a topic
with a uniform distribution over all files and an entropy
of 0 representing a topic assigned to only one file. These
results are in line with results obtained using this technique

Table 2. Scattering Results for Full Repository.
Topic Entropy Topic Entropy
’name names folder full qualified’ 0.830006642 ’current time task millis system’ 0.752075685
’object lisp objects unwrap coerce’ 0.81110364 ’vector element size add remove’ 0.750874803
’add param controller section params’ 0.808862952 ’model selection cell object editor’ 0.75081679
’string equals blank virtual slashes’ 0.805664392 ’end start line offset begin’ 0.750695144
’value boolean integer warn poinfo’ 0.802285953 ’reference object string space home’ 0.749890641
’string case length with substring’ 0.801405454 ’element document attribute schema child’ 0.749155948
’string display initialize refresh mask’ 0.798702917 ’char length character string chars’ 0.748791035
’exception illegal argument runtime pointer’ 0.796180398 ’action event performed menu add’ 0.746993332
’string concat jam outdent gethandle’ 0.795911551 ’selected button panel enabled box’ 0.74666193
’string callback annotation dao native’ 0.795584257 ’byte read write bytes short’ 0.746638563
’print println stream main dump’ 0.794642995 ’user group role application permission’ 0.744858387
’create helper console factory creator’ 0.79379934 ’server socket send address client’ 0.743774049
’throwable trace stack print message’ 0.79127469 ’string report definition def resolve’ 0.742770604
’type types java primitive fragment’ 0.790930013 ’status transaction cache open commit’ 0.74106993
’buffer string append length replace’ 0.790911771 ’make not opt condition empty’ 0.740774325
’error log debug string throwable’ 0.790188551 ’connection query execute close driver’ 0.740733329
’code equals object hash blog’ 0.789997428 ’state pos desc initial transition’ 0.740178479
’iterator next has collection abstract’ 0.787162973 ’handle string script app gtk’ 0.739446967
’list add size linked remove’ 0.787161183 ’test suite down concept main’ 0.739314191
’class loader name instance classes’ 0.786804788 ’block rule option options symbol’ 0.736177097
’size clear reset mark use’ 0.786009268 ’generate engine spec provider extension’ 0.736034727
’stream input output read write’ 0.785941016 ’event mouse component focus cursor’ 0.733843031
’index count compare sort comparator’ 0.784745691 ’handler entity string prefix identifier’ 0.733316293
’system string exit main runtime’ 0.784522048 ’table column row count rows’ 0.730981259
’description string factory record name’ 0.783416443 ’view point edit active figure’ 0.730484746
’parse int command string parser’ 0.783176526 ’filter access random channel sample’ 0.729546548
’array list add size abstract’ 0.78180484 ’impl ref operation object unsupported’ 0.728713961
’new for return member instance’ 0.781180287 ’abstract register convert proxy builder’ 0.72374688
’default bean values widget history’ 0.779643822 ’request servlet http response session’ 0.723093293
’instance process post device activity’ 0.775346428 ’string project template link cms’ 0.722859294
’check find all store and’ 0.774424449 ’integer big decimal string value’ 0.722771094
’string url header uri encode’ 0.771714455 ’date format time calendar day’ 0.720240969
’info parameter parameters attr doc’ 0.768179882 ’image graphics width draw height’ 0.71852396
’thread run start stop wait’ 0.767481896 ’mode zip unit units calc’ 0.718489486
’string config password login email’ 0.76717566 ’expression variable function evaluate expr’ 0.717246376
’version position uid serial render’ 0.767144361 ’string copy language modified region’ 0.714682308
’map hash put contains generic’ 0.766980763 ’font label style color border’ 0.712924194
’file path directory exists dir’ 0.766787047 ’graph left right top edge’ 0.709464393
’last first word after before’ 0.765637113 ’target internal lookup drop drag’ 0.709066174
’text area caret length wrap’ 0.765305668 ’logger level logging log settings’ 0.708989244
’form string mapping local forward’ 0.764609549 ’key primary single enabled find’ 0.70555609
’listener change remove add fire’ 0.764262932 ’descriptor feature string wrapper seq’ 0.704315125
’writer reader write buffered read’ 0.763701713 ’method class reflect object call’ 0.703677432
’item resource locale bundle items’ 0.763171752 ’string attribute attributes from element’ 0.70292847
’clone base setup interface default’ 0.762996228 ’visit simple visitor accept plugin’ 0.7006347
’context manager results execution factory’ 0.762984164 ’assert equals test true null’ 0.699647577
’data meta converter idata dbobject’ 0.762827588 ’player game move board score’ 0.689682317
’string source load flag trans’ 0.761916518 ’string sub str val rel’ 0.689211564
’string content xml title track’ 0.761577087 ’search string database order product’ 0.688891143
’message session msg send messages’ 0.760400967 ’tag page out body start’ 0.684469105
’property properties string prop load’ 0.760035593 ’statement result prepared prepare close’ 0.683121859
’configuration validate string flow obj’ 0.760015988 ’color module background world red’ 0.681868614
’entry service string valid complete’ 0.758106581 ’geom transform shape fill stroke’ 0.679129364
’string match pattern sequence regex’ 0.757579105 ’long move literal getn read’ 0.678205098
’string token tokenizer next tokens’ 0.756539834 ’sql object fields persistence jdbc’ 0.676782638
’component container layout size border’ 0.756329833 ’instruction constant stack push pop’ 0.658630273
’icon location control tool bar’ 0.75542027 ’mob environmental can stats room’ 0.649525821
’update select delete insert build’ 0.755399561 ’node scope token nodes scan’ 0.645260254
’double max math min num’ 0.755215107 ’any logic context standard html’ 0.643117635
’number from step back activation’ 0.753931021 ’category range domain axis paint’ 0.641137336
’hashtable elements enumeration has next’ 0.753734287 ’field string security underlying leg’ 0.496411488
’window show frame dialog component’ 0.753499534 ’long address gsl short matrix’ 0.46562778
’tree path parent child root’ 0.753069533

in natural language texts. Most of these latent topics can
be easily recognized and tagged, while a few may seem
obscure. The topics include include:

• manipulating strings: ’string equals blank virtual slashes’,
’string case length with substring’, ’buffer string append
length replace’

• exception handling: ’exception illegal argument runtime
pointer’, ’throwable trace stack print message’

• printing on the screen: ’print println stream main dump’
• logging: ’logger level logging log settings’
• configuration: ’property properties string prop load’,

’configuration validate string flow obj’
• iterating through collections: ’iterator next has collection

abstract’
• manipulating lists: ’list add size linked remove’
• reading/writing from/to streams: ’stream input output

read write’, ’writer reader write buffered read’
• concurrency: ’thread run start stop wait’
• login: ’string config password login email’
• authentication: ’user group role application permission’
• interacting with the file system: ’file path directory exists

dir’
• event handling: ’listener change remove add fire’
• GUIs and GUI events: ’action event performed menu

add’, ’event mouse component focus cursor’, ’text area
caret length wrap’, ’font label style color border’, ’se-
lected button panel enabled box’, ’icon location control
tool bar’, ’component container layout size border’, ’win-
dow show frame dialog component’

• input parsing: ’string match pattern sequence regex’,
’string token tokenizer next tokens’

• traversing trees and graphs: ’tree path parent child root’,
’graph left right top edge’

• timing and date actions: ’current time task millis system’,
’date format time calendar day’

• xml data representations: ’element document attribute
schema child’

• networking: ’server socket send address client’
• data persistentcy: ’connection query execute close driver’,

’table column row count rows’, ’statement result prepared
prepare close’, ’sql object fields persistence jdbc’, ’up-
date select delete insert build’, ’status transaction cache
open commit’

• testing/assertions: ’test suite down concept main’, ’assert
equals test true null’

• web interfacing: ’request servlet http response session’
• the factory pattern: ’create helper console factory creator’

• the visitor pattern: ’visit simple visitor accept plugin’

The first striking observation is that some of these topics
correspond to the aspects that have been used as prototypi-
cal examples for AOP, namely: exception handling, logging,
concurrency, persistency, authentication, GUIs, and even a
couple of well-known design patterns (eg. the visitor pat-
tern). In order to better understand this result, we need to
analyze the meaning of these topics in the context of the en-
tire repository.

The topics are given in latent manner by lists of words
that occur frequently together, in probabilistic terms. The
fact that their entropy is so high tells us that these topics are
pervasive in the large collection of software that was ana-
lyzed. In other words, concerns such as string manipulation,
exception handling, and so on, recur quite frequently in the
366,287 source files of the repository. This result is not sur-
prising, and it attests to the validity of this method: the list
above is a comprehensive list of topics/knowledge that Java
software developers have to master. Some of them are ba-
sic interactions with widely-used classes of the JDK, such
as string, collection, list, and file manipulations, as well as
exception handling – the basic building blocks of Java pro-
grams. Others such as logging, concurrency, and authenti-
cation are not so basic, but have an equally strong scattered
presence.

An essential property of the statistical topic modeling
approach is that it is an unsupervised method, i.e. topics
emerge automatically from the data, without the need for
human supervision or annotation, or for a pre-existing and
possibly biased definition of concerns and aspects. There is
no need for an annotated training set or for using structural
properties such as fan-in/fan-out or any other heuristics.
As the results show, without using any assumptions about
aspects, crosscutting exists on both large and small scales, in
the form of latent topics that interact with each other in the
source files that form the programs.

4.4 Aspects and Scattering in Individual Projects
While validation of the topic modeling approach is essential
on the large scale, to complete the validation it is also im-
portant to analyze individual projects in detail. To this end,
here the topic modeling approach is applied also to 5 in-
dividual open source projects: JHotDraw (www.jhotdraw.
org), Jikes (jikes.sourceforge.net) , PDFBox (www.
pdfbox.org), JNode (www.jnode.org), and CoffeeMud
(coffeemud.zimmers.net). Together these projects repre-
sent a collection of well-known, non-trivial software prod-
ucts of varying size and complexity, spanning a diverse set
of domains from technical drawing to gaming. In this sec-
tion we briefly describe each of the projects considered, and
provide selected results of our aspect analysis.

Tables 3 through 7 present selected topics and their scat-
tering for each of these 5 projects. For each project, a rep-

Table 3. Example JHotDraw Topics.
Topic Entropy
’instance test tear down vault’ 0.813075061
’create factory collections map from’ 0.722463637
’point move box index start’ 0.71436202
’storable read write input output’ 0.650160953
’list next has iterator add’ 0.638290561
’polygon point internal chop count’ 0.46080295
’size selected frame frames dimension’ 0.43364049
’shape geom rectangular rectangle2 hashtable’ 0.353301264
’drag drop target source listener’ 0.352124151
’event component size transform mouse’ 0.338653373

Table 4. Example Jikes Topics.
Topic Entropy
’next has element enumeration elements’ 0.699351996
’buffer check empty char insert’ 0.661522459
’print stream println writer total’ 0.636898546
’hash map iterator next add’ 0.636035451
’type array reference code resolved’ 0.635043332
’cycles end time right begin’ 0.486326254
’field type reflect value unchecked’ 0.4684958
’short switch reference type read’ 0.447104842
’sys lock unlock write socket’ 0.428127362
’offset mask fits forward code’ 0.346995542
’emit assembler gen reference laddr’ 0.266546555

Table 5. Example PDFBox Topics.
Topic Entropy
’file stream print close pddocument’ 0.762635663
’string int date embedded calendar’ 0.759588402
’list size add array cosarray’ 0.756535565
’page box pdpage find node’ 0.674842006
’byte class width code line’ 0.639055832
’font name width kern character’ 0.629830087

resentative sample of high and low entropy topics are listed,
along with their normalized entropy value.

JHotDraw is a well-known open source GUI framework
for drawing technical and structured graphics. Originally
conceived by Erich Gamma and Thomas Eggenschwiler,
the current version of the software (6.0 beta 1) indexed
by Sourcerer consists of 485 files representing 650 classes,
4,712 methods, and 845 fields across 28,335 lines of code.
Selected topics for JHotDraw are shown in Table 3.

The Jikes project provides an open-source implementa-
tion of a Java virtual machine, allowing researchers to easily
plug in and explore new algorithms for garbage collection,
threading, and optimization. The JikesRVM 2.4.4 code base
considered here consists of 940 files corresponding to 1,149
classes, 9,045 methods, and 4,572 fields with 170,066 lines
of code. Selected topics for Jikes are shown in Table 4.

Table 6. Example JNode Topics
Topic Entropy
’string length append substring tokenizer’ 0.76224123
’map hash equals object value’ 0.726874809
’byte array bytes arraycopy system’ 0.723141514
’stream write output writer array’ 0.723069203
’input read stream reader buffered’ 0.718017023
’graphics color paint icon rectangle’ 0.567084036
’image raster buffered create writable’ 0.548839911
’time date calendar zone simple’ 0.525970475
’zip entry jar plugin deflater’ 0.515858882
’focus event window component listener’ 0.502999404

Table 7. Example CoffeeMud Topics.
Topic Entropy
’environmental mob msg location send’ 0.861222835
’environmental name text vector string’ 0.823602707
’vector element size add remove’ 0.795135882
’mob hash environmental iterator next’ 0.77667159
’string mob currency environmental shop’ 0.600152681
’string channel imc send mud’ 0.591218453
’string vector from xml buffer’ 0.586218656
’string mob gen scr tell’ 0.390775366

PDFBox provides a substantial Java library for creat-
ing, manipulating, and converting portable document format
(PDF) files, and represents an open source project with a
substantial following. In terms of documents, PDFBox 0.7.2
represents the smallest project in the collection with a total
of 370 indexed files. The project is comprised of 384 classes,
2,955 methods, and 1,255 fields with 38,241 lines of code.
Selected topics for PDFBox are shown in Table 5.

JNode provides an open source Java implementation of
an operating system, the goal of which is to be able to install
and run any Java application in an efficient and secure en-
vironment. The largest of the 5 projects, JNode represents a
substantial software product with approximately 6,200 files
consisting of 6,599 classes, 45,792 methods, 20,264 fields
and a substantial 610,000 lines of code. Selected topics for
JNode are shown in Table 6.

Finally, CoffeeMud represents a full Java implementa-
tion of a game engine for text based role-playing or adven-
ture games, including facilities for online play. A substan-
tial project with over 2,900 files, CoffeeMud is composed
of over 2,989 classes containing 29,111 methods and 5,081
fields with 379,710 lines of code. Selected topics for Cof-
feeMud are shown in Table 7.

Taken together, these tables provide further support for
the idea that meaningful software concerns, and their scatter-
ing, can be identified automatically and quantified through
the unsupervised topic modeling approach and the resulting
distributions and associated entropies. The first observation
is that by zooming in on individual projects, we start see-

ing project-specific topics, in addition to the general-purpose
topics seen for the entire repository. For example, in JHot-
Draw we see drawing concerns given by ’point move box in-
dex start’, ’polygon point internal chop count’, ’shape geom
rectangular rectangle2 hashtable’, as well as a strong pres-
ence of GUI given by ’drag drop target source listener’,
’event component size transform mouse’. In Jikes, we see
programming language concerns such as ’field type reflect
value unchecked’, ’offset mask fits forward code’ and ’emit
assembler gen reference laddr’. In PDFBox, we see PDF-
related concerns in ’page box pdpage find node’ and ’font
name width kern character’. In JNode, we see program im-
age concerns in ’image raster buffered create writable’, as
well as Java packaging concerns in ’zip entry jar plugin de-
flater’.

At first sight, CoffeMud does not seem to support the ar-
gument. We include it here in order to illustrate an important
point about this approach. The identification of high-level
concepts based on these sets of keywords often requires do-
main and even project expertise. In the case of CoffeeMud,
the latent topics identified did not seem to make much sense.
In particular, the word ’mob’, which appears repeatedly, is
quite foreign. Further investigations about this project (e.g.
in Wikipedia) indicate that ’mob’ is actually a central con-
cept of this system and of multi-user domains (MUDs) in
general. Mob stands for Mobile Object, which corresponds
to [artificial] players that can move around in the gaming
environment. Given this additional piece of information, we
can then see several project-specific concerns given by ’en-
vironmental mob msg location send’ (mob communication),
’string mob gen scr tell’, as well as a concern that seems
to be related to Instant Messaging, ’string channel imc send
mud’.

A second observation is that the general-purpose con-
cerns tend to have higher entropy than the project-specific
concerns, i.e. they are more scattered. This is, in many ways,
an expected result, but it has important implications for
AOP, discussed in the next section. All projects, except Cof-
feeMud, show this property. CoffeeMud, again, seems to be
different, in that the topic with highest entropy is a project-
specific topic. In inspecting the code, one can see that the
first topic is related to the basic communication mechanisms
provided by the engine. While we have not explored this fur-
ther, it may be that CoffeeMud’s communication facilities,
which in a normal project would appear with words such
as ’socket, send, msg’, for example, wrap around the under-
lying general-purpose communication facility java.net. And
this may drive the entropy up, given that communication is
something that needs to happen at several points of the code.

Figure 2 provides a visual summary of scattering be-
havior for the 5 projects chosen for this analysis. Scatter-
ing curves are produced by sorting the topic entropies of a
project in descending order, and plotting them versus the
number of topics extracted from the project. In addition

to providing a simple means for examining topic scatter-
ing within a single project, one can use such a visualiza-
tion to directly compare scattering across projects. For ex-
ample, from the figure one can see that scattering values
for CoffeeMud are noticeably higher than the remaining
projects. One can also compare the variance of scattering
within projects, noting that the range of values for JNode, for
example, is substantially more concentrated than JHotDraw.
Ultimately these curves provide a graphical representation of
scattering that can be used to drive additional investigation
at the project or multi-project management level.

4.5 Aspects and Tangling in the Large
Using our model it is also mathematically straightforward to
quantify the tangling of concerns in the files by computing
the entropy of the distribution of files over topics (Equation 2
in Section 3). Normalized tangling entropy is again a number
between 0 and 1. Intuitively, a file with a higher entropy
contains code corresponding to a wider variety of topics than
a file with a lower entropy. A maximum normalized entropy
of 1 is assigned to a file whose topic assignment is uniformly
distributed. A minimum entropy of 0 is assigned to a file with
only 1 topic assignment.

Table 8 provides a very small sample of tangling results
for the topic model of the full repository, highlighting 5 files
with high entropy and five files with low entropy.1 Three of
the five files with high entropy correspond to report gen-
eration. In looking at these files, one notices that they in-
clude string manipulation, database access, exception han-
dling, interface design, and a wide variety of other concepts.
The same can be said for the remaining high entropy files,
which constitute an IMAP server (.788) and a music orga-
nizer (.7664), both of which are noticeably complicated in
implementation. At the other end of the spectrum, the low
entropy files correspond to very specific functional mod-
ules, such as handling nested class declaration in an abstract
syntax tree (.3379) and column manipulation database code
(.2275). The table also gives examples of 2 files with a tan-
gling of 0.0. Door.java originates from the CoffeeMud game
engine, and is assigned only to the topic ’mob environmental
can stats room.’ Similarly, FocusLostEvent.java, a specific
event listener for capturing mouse focus, is assigned only to
the topic ’event mouse component focus cursor.’ In inspect-
ing these files, we confirmed that they are quite simple.

4.6 Aspects and Tangling in Individual Projects
As with scattering, the entropy method for quantifying tan-
gling is applicable also at the granularity of a single project.
Table 9 and Table 10 provide sample results for JHotDraw
and Jikes, respectively (we omit the other three projects,
because the results are similar). For each, a select number
of files exhibiting both high and low levels of tangling are
given, together with the corresponding entropy score. For

1 The entire tangling matrix has 366,287 rows, one for each file.

0 10 20 30 40 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Scattering Curves for Selected Projects

N
or

m
al

iz
ed

 E
nt

ro
py

Number of Topics

JNode

CoffeeMud

JHotDraw

PDFBox

Jikes

Figure 2. Scattering Curves for Selected Projects

Table 8. Example Tangling Results for Full Repository.
File Entropy
org/openharmonise/rm/commands/CmdGenerateReport.java 0.8258
it/businesslogic/ireport/gui/ReportQueryDialog.java 0.7885
mail/core/org/columba/mail/imap/IMAPServer.java 0.7881
jRivetFramework/webBoltOns/ReportWriter.java 0.7869
org/lnicholls/galleon/apps/musicOrganizer/MusicOrganizer.java 0.7664
doctorj-5.0.0/org/incava/java/ASTNestedClassDeclaration.java 0.3379
nfop/fo/properties/FontSelectionStrategy.java 0.2275
net/sf/farrago/namespace/jdbc/MedJdbcColumnSet.java 0.2275
com/planet ink/coffee mud/Exits/Door.java 0.0
buoy/event/FocusLostEvent.java 0.0

JHotDraw, two of the files presented, BouncingDrawing and
URLTool, correspond to sample applications bundled with
the software. Because these sample applications exercise
multiple JHotDraw capabilities, it is not surprising that they
are associated with multiple topics, and are thus assigned a
high entropy score. The same is true of SingleFigureEnu-
meratorTest, which represents unit tests to exercise and val-
idate several project features. Like the results for the full
repository, files with low tangling in JHotDraw correspond
to very specific units of functionality, such as exceptions and
handlers for events and GUI interaction. Similar observa-
tions can be made for Jikes, with files implementing complex
functionalities such as debugging and process management
coming in with high entropy scores in the range of .6736-
.6932, while files implementing small or specific function-
alities such as constant definition or timeout exceptions are
measured to have normalized entropy in the range of 0.0-
.0693. Indeed, closer inspection of VM Contstants.java re-
veals it is assigned to only 1 topic: ’bytes default fail con-
stants option’. Full results for all projects are available from

Table 9. Example Tangling Results for JHotDraw.
File Entropy
BouncingDrawing.java 0.6650
SingleFigureEnumeratorTest.java 0.6538
URLTool.java 0.6449
UndoRedoActivity.java 0.1000
CommandCheckBoxMenuItem.java 0.0892
JHotDrawException.java 0.0831

the supplementary materials page, and can be interpreted in
the same manner as the examples presented here.

In addition to analyzing tangling of software via the in-
spection of individual files, it is also possible to succinctly
summarize tangling behavior visually. Figures 3 and 4 con-
tain the tangling curves for the the individual projects; Fig-
ure 5 shows the tangling for the entire repository. The curves
are produced by sorting the tangling entropy values for each
file in descending order, and then plotting the values directly.

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Tangling Curve for Selected Projects

Number of Files

N
or

m
al

iz
ed

 E
nt

ro
py

JHotDraw
PDFBox
Jikes

Figure 3. Tangling Curves for the 3 Smaller Projects

0 1000 2000 3000 4000 5000 6000 7000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Tangling Curves for 2 Large Projects

Number of Files

N
or

m
al

iz
ed

 E
nt

ro
py

JNode
CoffeeMud

Figure 4. Tangling Curves for the 2 Larger Projects

Table 10. Example Tangling Results for Jikes.
File Entropy
DebugerThread.java 0.6932
TraceBuffer.java 0.6845
VM Process.java 0.6736
VM Listener.java 0.0693
PPC Disassembler.java 0.0554
VM Contstants.java 0.0

0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Parametric Model of Full Repository Tangling

N
or

m
al

iz
ed

 E
nt

ro
py

Normalized Number of Files

Observed Tangling
Fit Tangling Curve

Figure 5. Fit of Parameterized Model to Full Repository
Tangling Curve

In addition to understanding the high-level “picture” of tan-
gling behavior, such curves are also useful for identifying
areas of interest within tangling, allowing one to focus on
groups of files with particularly high or low tangling.

From the figures one also notices that tangling curves fol-
low an inverted “S” shape, where the S shape is commonly
associated with the sigmoid function:

f(x) =
1

1 + e−x

We discuss this observation next, where we leverage the
functional form of the curves to build a parametric model
for tangling.

4.7 A Parameterized Model of Tangling
When examining Figures 3, 4, and 5 one is immediately
struck by the fact that the tangling curves, without exception,
follow inverse sigmoidal behavior. Such knowledge can be
used to construct a parameterized model of project tangling,
and if the model is accurate, allows the tangling behavior of
software to be characterized using only a few parameters. To
test this hypothesis we constructed a simple two parameter
model of tangling of the form

f(x) = α ∗ ln((1/x) − 1) + β

Table 11. Estimated Parameter Values for Software Tan-
gling

Project α β R-Square
JHotDraw .06703 .4201 .9485
Jikes .08395 .4015 .9556
PdfBox .09231 .5248 .9557
JNode .08843 .3599 .9630
CoffeeMud .1024 .5176 .8985
Full Repository .08564 .3956 .9624
Mean .08662 .43808 .94728
Standard Dev .01163 .06759 .024481

where α and β are the function parameters that are to be fit
to the model.

Using nonlinear optimization with least squares we esti-
mated the tangling parameters for 5 individual projects, as
well as our full repository. Table 11 presents the estimated
parameters, as well as the R-Square values for the fit curves.
From the table we see that the values of α and β are rea-
sonably concentrated across projects. More telling are the
R-Square values, which indicate that, on average, 94.7% of
the variation in software tangling can be explained by the
model. This is demonstrated visually in Figure 5, where the
observed tangling curve of the full repository is compared to
the tangling curve produced by inverted sigmoid model.

5. Comparison to Other Aspect Mining
Techniques

To further validate the approach of identifying aspects
through LDA-based topic modeling, the results obtained for
the JHotDraw project are compared with previous results for
the same project presented in the literature. JHotDraw is a
good choice because it is widely used in the aspect mining
literature and includes robust and verifiable implementations
of various features that makes it suitable for this kind of
analysis (Kellens et al. 2007; Robillard and Murphy 2007;
Ceccato et al. 2005; Zhang and Jacobsen 2007; Canfora and
Cerulo 2005).

Since existing techniques have various underlying as-
sumptions about what aspects or concerns are and how to
mine them, there is not a consistent benchmark of aspects
to be compared, even for the same project. Results differ
from one approach to another. Thus, we collect a handful
of candidate aspects that have been either manually mapped
to the JHotDraw implementation or automatically found by
various aspect mining techniques and compare them in three
ways: (i) whether we can find similar topics in our results,
(ii) whether we observe similar degrees of scattering; and
(iii) whether we observe similar degrees of tangling. For the
last two, we look into scattering and tangling behavior that
has been identified before in JHotDraw.

Figure 6. Concern Mapping for JHotDraw Using our LDA-Based Approach.

To perform these comparisons we inspect the document-
topic matrix for JHotDraw that provides us with the proba-
bility distribution of topics over files. For each latent topic
identified by a set of 5 words, we assign a meaningful con-
cern name. In some cases the terms in the sets of words are
good enough to identify the concerns. For others, we consult
the documentation of JHotDraw and association of the topics
with the files to determine a meaningful name. While nam-
ing these concerns we followed a convention of appending
each one with a more general term, if possible.

Figure 6 shows a portion of the document-topic matrix.
It includes all the latent topics and corresponding concern
names for JHotDraw, except those that were identified as
belonging to testing features. The first row shows the sets
of words (each topic in a column), and the second row
shows the concerns that were identified from the topics.
The first column from the third row onwards is the list
of all the files, with only a portion shown here to save
space. The rest of the cells in the matrix contain numbers
that indicate the probability of a topic (from a column)
belonging to an individual file (in a row). Empty cells denote
zero probability. The last column lists the entropy for each
document that measures the degree of tangling. It is easy
to see that with this representation one can get an intuition
about scattering and tangling.

To observe the degree of scattering one can inspect all the
documents that would be assigned to a particular concern. A
reasonable threshold can be adopted to exclude documents
with lower probabilities. To observe tangling, one can look
across the row to see what other topics also belong to the
same file. Based on probabilities one can make an educated
guess on whether the multiple concerns might be interact-
ing with each other. We now discuss some of the existing
concerns that have been noted in the literature that were also
identified in our results.

• Finding Aspects: Aspects mined from JHotDraw, for the
most part, fall into two categories: project-specific fea-
tures such as those that deal with manipulating figures,
and general-purpose aspects such as design patterns. In
Table 12 we list most of those that were listed by other au-
thors (Robillard and Murphy 2007; Ceccato et al. 2005;
Zhang and Jacobsen 2007; Canfora and Cerulo 2005).
The first column gives the aspects that were mined. The
second column lists the techniques that have been ap-
plied to mine the aspect given in the first column. The
following abbreviations are used for the techniques: IA =
Identifier-analysis, FA = Fan-In Analysis, D = Dynamic
Analysis, M = Manual, and R = Mining Code Revisions.
The third column provides a similar concern that we iden-
tified with our technique (also shown in Figure 6).
This result shows that the automated topic modeling
based approach is equally good in mining identified as-
pects from a well-known and studied sample project.
Among all the aspects that we could find in the stud-

ies we looked at, only the following were not explicitly
identified by our approach: consistent behavior, contract
enforcement, and composite design pattern. The first two
are more of a specification for a concern rather than a
concern itself and could only be detected properly with
a technique that had an earlier assumption about the pro-
gram structure. Our technique does not look for any pre-
specified structure in the source code, so as not to in-
ject bias toward what aspects are. Unless design patterns
manifest themselves with meaningful names, any text
based mining, like ours, will dismiss them.

• Degree of scattering among some common concerns: The
technique in (Zhang and Jacobsen 2007) ranked three
common aspect-candidates in descending order of mea-
sured crosscutting: Persistence > Undo > Figure Selec-
tion. When we rank the corresponding concerns from our
results, one obtains exactly the same ordering: PERSIS-
TENCE (0.65) > UNDO (0.63) > DRAWING (Figure
Selection) (0.46), with the values inside the parenthesis
denoting entropies. While this is just a single result, the
similarity of the results obtained with these two com-
pletely different approaches is striking and attests to the
potential of the topic modeling approach.

• Traces of Tangling: Some notable instances of tangling
that have been discussed in JHotDraw are: tangling of
Undo and Command concerns; tangling of UI (user in-
terface); Storage Management and Writing; tangling of
change notification; and subject registration in Observer
concerns (Robillard and Murphy 2007; Canfora and
Cerulo 2005). We noted similar tangling of concerns
in our results. Figure 6 shows that while looking at the
UNDO concern, tangling of COMMAND, DRAWING,
ITERATION, and VISITOR concerns are likely. Look-
ing at the complete concern map (not shown), concerns
like STORAGE FORMAT, DRAWING and CONTENT
appear likely to be tangled with the PERSISTENCE con-
cern.

The observations above provide confidence that the au-
tomated topic modelling approach for identifying aspects
and quantifying scattering and tangling is consistent with
the results obtained by prior approaches to aspect identifica-
tion. However the topic modelling approach extends the pre-
vious approaches and overcomes some of their conceptual
deficiencies. Most previous approaches introduce a some-
what circular definition of aspects by focusing on specific
program or execution structures (Dynamic Analysis, Fan-
In/Fan-Out, Code Revisions). By saying, for example, that
“an aspect is a program/design element with high fan-in,”
fan-in analysis immediately introduces a circularity related
to the representation of the program/design, and the specific
programming/design technologies used. In our view, soft-
ware concerns exist at a higher-level than the program rep-
resentation, so a good theoretical framework for them must

Table 12. Comparative Analysis of Aspects in JHotDraw. IA = Identifier Analysis, FA = Fan-In Analysis, DA = Dynamic
Analysis, M = Manual, R = Mining Code Revisions

Aspects/Concerns from other techniques Technique used # Concerns identified with our technique
Loading Registers IA IMAGE, Load Register
Manipulating Figures (drawing, moving, connecting) IA, DA DRAWING
Managing Views DA LAYOUT, UI Decorator, UI Dimensions
Adding Text DA TEXT Typing
Add URL to figure DA TOOL Applet URL
Persistence IA, FA, DA, R, M PERSISTENCE Read-Write
Storage Management M STORAGE FORMAT Getting/Setting attributes
Getting and Setting attributes DA DRAWING Figure Attributes
Command Execution FA, M COMMAND menu
Undo operation IA, FA, DA, R UNDO
Iterating over collection IA, ITERATION
Manage Handles DA DRAWING Handle Invocation
Observer IA, FA, R Events, UI Observer
Decorator FA Drawing Figure Decorator, Drawing Line Decorator
Visitor IA VISITOR
Adapter FA Test Adapter
User Interface M Display, UI

exist above concrete programming/design technologies and
tools.

Identifier analysis (IA), the closest to our approach, does
not make such assumptions. However, being based on for-
mal concept analysis, it has several limitations. Because the
LDA-based approach models program entities as mixtures of
concepts (topics) which are themselves mixtures of words, it
can capture more subtle statistical relationships among top-
ics, words, and entities, with demonstrated benefits in con-
cern identification.

6. Implications of the Theory
This study is mainly descriptive; it describes empirically
verified properties of real-world software programs, at both
large and small granularity scales. Software research is usu-
ally prescriptive, aiming to provide solutions for perceived
problems. As such, we make a first attempt at laying out the
implications of our observations for the development of pro-
gramming models and the design of software tools. These
comments are intentionally generic, as the goal is not to ad-
vocate any particular solution, but to point out the large re-
search and design space that is still open related to software
concerns. We note that, at this point, the issue of whether
excessive scattering and tangling are “bad” (hypothesis 2 in
the Introduction) is still an open question, although there is
some evidence that it is so (Eaddy et al. 2008).

At first glance, based on the empirical validation of our
machine learning techniques, it would appear that one can
only identify the high-level software concerns, and therefore
the aspects, after the programs are written. This is not nec-
essarily the case, as explained next.

As shown in Section 4.3, the study of a very large reposi-
tory of Java programs shows that there are about two dozen

high-level, highly crosscutting software concerns that are
likely to affect any new Java project. Without any special
new tools, developers can use this knowledge to keep those
crosscutting concerns under a tight control by being careful
with naming and coding conventions. Our results at this very
large scale explain the strong intuitions driving AOP from
the beginning towards aspects such as exception handling,
authentication, persistency, and so forth.

As for project-specific concerns, there is no absolute ref-
erence about what is and what is not crosscutting, as there
are no a-priori aspects; there are only project-specific con-
cerns. According to the theory presented here, crosscutting
is not a binary quantity, but instead a continuous value of
entropy between 0 an 1. Depending on how the developers
specify and design their software, these concerns may be-
come more or less scattered and tangled with each other and
with the general-purpose concerns in the program represen-
tations.2 So, for these, crosscutting can only be measured
after the fact as an emergent property of the representations
and the development process itself. If a concern becomes
scattered, developers can rethink its representation (at what-
ever level they are working) and refactor it.

Our results show that project-specific concerns tend to
be less scattered than the general-purpose ones, possibly
because developers do a good job at modularizing them in
their designs. But, as seen in CoffeeMud and others, it is
also quite possible to scatter them widely.

The technique described in this paper can be integrated
into a wide variety of development tools, such as an IDE,
in order to both track the vocabulary used by the develop-

2 By “program representation” we mean any representation, from formal
specifications to code.

ers, and measure scattering and tangling as the project pro-
gresses. A project whose latent topics look mostly like noise
is likely to have serious problems in terms of vocabulary
choices among developers, which in turn is likely to cause
misunderstandings and, consequently, bugs. A project with
well-identified project-specific topics, but with high levels of
scattering of those topics, is likely to require refactoring, or
at least rethinking.

The results for the entire repository raise some questions
for existing AOP solutions. If all of those software topics are
scattered, AOP solutions should support them all in equal
manner; some of them do. For example, AspectJ, being
so general-purpose, provides support for designing string
and list manipulation as separate modules. That, however,
produces odd designs, with most of the inner core of objects
pulled out from them and programmed in reverse-style; that
is rarely done. But if that would be odd, the question is raised
about the reason for doing that for concerns such as logging
and concurrency. At the very least, that practice, advocated
by AOP from early on, requires a better justification.

More importantly, though, if concerns are topics that have
to be woven/coordinated together in the software represen-
tations, somehow, we can use this knowledge to forge im-
proved development methodologies and tools to support this
inevitable process that underlies software construction. As
such, the work presented here provides a theoretical founda-
tion and a mean for modeling aspects early in the software
development life cycle, and supports work (Clarke and Ba-
niassad 2005; Baniassad et al. 2006) that is fundamentally
grounded on the assumption that crosscutting concerns exist
above the representations, and thus there should be a support
for their early modeling.

To validate our methodology, we focused only on Java
programs, because the vast majority of practical AOP work
has been done in Java. While an argument can be made that
the same theory applies to software written in other pro-
gramming languages and other representations (e.g. UML),
strictly speaking, the results should not be extrapolated at
this point. Further empirical analysis of projects using other
representations must be done in order to find out how well
the proposed definitions of concerns and aspects applies to
them.

7. Related Work
This work builds on a large body of literature and research
in software engineering and data mining.

The concept of software concern has been around for
a long time, taking different names and slightly different
flavors over the years, and leading to the concept of As-
pects, as crosscutting concerns. An early analysis of con-
cerns was conducted by Biggerstaff (Biggerstaff 1989; Big-
gerstaff et al. 1993), who proposed the idea of concept as-
signment in the context of program understanding for reuse.
This work identified the gap between the source code and

the human-level concepts, suggesting the need for tools that
help bridge this gap. The identification of this problem gap
was an important contribution, but the the specific solution
proposed was limited, and focused on C programs: it con-
sisted of an early call for model-driven development which,
the focus being C, was also an early call for OOP. Those pa-
pers did, however, stress the importance of human-defined
identifiers (“natural language tokens”) and other informal in-
formation such that of comments. As such, this early work
continues to be used by more recent work, and is still a major
reference for the theory of aspects.

Most research reports on AOP assessment tend to focus
on the third hypothesis (i.e. AspectJ). These studies have
used analytical argumentation (Kiczales et al. 1997; Hanne-
mann and Kiczales 2002), case-study methodologies (Lip-
pert and Lopes 2000; Kienzle and Guerraoui 2002; Lopes
and Bajracharya 2006; Kulesza et al. 2006), comparative
analyses of very small collections of existing systems(Garcia
et al. 2005; Cacho et al. 2006; Filho et al. 2006), and small
user studies (Murphy et al. 1999; Walker et al. 1999). The
small scale and controlled conditions of these studies make
them prone to subjective interpretations and overfitting. In
any case, the focus of this paper is not AspectJ, or any other
AOP tool in particular, but the concept of aspect itself. Thus
the work most closely related to this paper is the recent work
on software and aspect mining discussed below.

7.1 Topic Modeling of Source Code
Formal concept analysis (FCA) is an unsupervised cluster-
ing algorithm used to group together objects with a shared
set of attributes, and similarly to identify the set of attributes
shared by objects within a cluster (Ganter and Wille 1999).
FCA has been used to identify concepts in software. At-
tributes corresponding to code features of interest are man-
ually defined by the user beforehand. Unlike LDA, FCA
does not operate within a probabilistic framework, but rather
uses lattice theory to construct groups of conceptually sim-
ilar software artifacts. The presence or absence of attributes
alone drives the concept clustering, with no formal models
of uncertainty, likelihood, or prior knowledge being lever-
aged. The result is that an entity belongs to a concept cluster
or it doesn’t, as opposed to LDA, where an entity belongs
to all concepts, but with varying degrees of belief. Identi-
fier analysis (IA) can be used in conjunction with FCA to
attempt to cluster program entities. In this case IA is used to
represent a program entity as a collection of tokens derived
from entity name or text, and it is these tokens that serve
as the attributes upon which the formal concept analysis is
based. Ultimately the concept clusters produced are based
on the sharing of identifier tokens among program entities.
However, unlike the approach presented here, FCA/IA is not
a mixture model. Because the LDA-based approach models
program entities as mixtures of concepts (topics) which are
themselves mixtures of words, we can capture more subtle
statistical relationships among topics, words, and entities.

Moreover, because this mixture model is probabilistic, we
can apply information theory directly to the problem of scat-
tering and tangling quantification.

The idea of modeling source code with topics has been
proposed before. For example, code topic classification has
been explored using support vector machines (Ugurel et al.
2002), but the technique is significantly different from ours.
Firstly, a training set must be manually partitioned into cate-
gories based on project metadata. Topics, consisting of com-
monly occurring keywords, are extracted for each category
and used to form features on which to train the model. The
training and testing set comprise only 100 and 30 projects
respectively. Marcus et al., in the line of Biggerstaff’s work,
use latent semantic analysis (LSA) to locate concepts in
code (Marcus et al. 2004). The goal is to enhance soft-
ware maintainability by easily identifying related pieces of
code in a software product that work together to provide a
specific functionality (concept), but may be described with
different keywords (synonyms, etc). In this sense the work
shares some of our goals, but does not consider the prob-
lem of automatically extracting topic distributions from arbi-
trary amounts of source code. Progress was made in this area
through the application of LSA to software repositories in
order to cluster related software artifacts (Kuhn et al. 2006).
However, new approaches for defining topic scattering and
document tangling were not considered. Latent Dirichlet Al-
location has been previously applied to log traces of pro-
gram execution, providing a framework for statistical debug-
ging (Andrzejewski et al. 2007).

Closely related to our own work is the MUDABlue sys-
tem, which explicitly considers the need for unsupervised
categorization techniques of source code, and develops such
a technique as a basis for software clustering with the aim
of information sharing (Kawaguchi et al. 2004). Unlike our
work, however, MUDABlue utilizes LSA rather than a prob-
abilistic framework. Furthermore, their assessment was also
done at a much smaller scale than ours and considered only
41 projects.

Minto and Murphy have proposed a technique for mining
developer expertise to assist in bug fixes (Minto and Murphy
2007). While expertise is related to the general idea of topics,
the approach is substantially different, relying on author
and file update metadata of the configuration management
system rather than source code directly. Additionally, the
approach is validated on only 3 software projects rather than
the thousands considered in this paper.

Recently, we have applied author-topic models to source
code to extract developer contributions from a subset of files
of the Eclipse 3.0 codebase (Linstead et al. 2007), but this
work did not consider the analysis of crosscutting concerns
as addressed in this paper. We later expanded the scope of
topic modeling techniques to multi-project repositories, as
well as presented a preliminary statistical analysis of a large
software repository (Linstead et al. 2008).

7.2 Aspect Mining and Modeling
As mentioned before several techniques and methodologies
exist for aspect mining. In general aspect mining consists
of identification, mapping and use of metrics for aspects
(Eaddy et al. 2007). Identification deals with discovering
aspects in existing software. This is done either manually
(Robillard and Murphy 2002; Griswold et al. 2001; Hanne-
mann and Kiczales 2001) or (semi) automatically (Marin
et al. 2004; Zhang and Jacobsen 2007; Kellens et al. 2007).
Mapping deals with associating identified aspects or con-
cerns with the modules in implementation, usually elements
of source code such as classes or methods (Robillard and
Murphy 2002; Eaddy et al. 2008). The task of identifica-
tion and mapping of aspects is explicit when the underlying
aspect-mining method clearly differentiates a concern model
from the implementation. These two tasks seem to get inter-
mixed when there is no such explicit distinction between the
concern model and the implementation. Metrics used in as-
pect mining usually deal with measures of crosscutting, scat-
tering, and tangling. These metrics are used in two different
ways: (1) to measure the precision and accuracy of the aspect
mining technique in capturing crosscutting concerns (Cojo-
car and Şerban 2007); and (2) to derive various conclusions
regarding the effect of crosscutting, by correlating them with
selected quality attributes for software (Eaddy et al. 2008).

Kellens et al. offer a detailed survey of seven different
code-based aspect mining techniques (Kellens et al. 2007).
Since all techniques surveyed are code-centric they do not
bring out the distinction between identification and mapping
tasks during aspect mining. Their comparison framework
implicitly assumes that there exists such a mapping of as-
pects to source code elements. Our work presented in this
paper has focused on automatic discovery of topics in code
with measures of scattering and tangling. Thus, these topics
are possibly aspects manifested in the implementation. We
can use Kellen et al.’s framework to highlight the features
of our approach to compare it against existing approaches.
Our approach can be characterized with the following list of
attributes taken from their framework.

1. Static vs. Dynamic Data: Our approach is based on
static data, no dynamic analysis is required.

2. Token-Based vs. Structural/Behavioral Analysis: The
information used in topic modeling comes from a deep
structural analysis of code, as well as lexical analysis of
the names of entities extracted from the code elements.

3. Granularity: Our approach yields a probabilistic assign-
ment of discovered topics to individual source code files.

4. Tangling and Scattering: Our technique yields precise
measures for both tangling and scattering.

5. User Involvement: No manual input is required from
the user in identification of the topics. However, human

judgement is needed to make sensible interpretation of
the set of words that emerge out as latent topics.

6. Largest System: Our technique has been validated in
systems of varying sizes, and at several scales. Our val-
idation considered 4,632 Java projects, as well as over
individual projects of varying sizes.

7. Empirical Validation: This is possibly the strongest
component of our approach. We have conducted vali-
dation experiments at multiple granularity scales, from
single projects to Internet-scale repositories, several or-
der of magnitude beyond any previous experiments.

8. Preconditions: Our approach makes very little assump-
tions about what an aspect is; it simply relies on the
assumption that developers choose reasonable names
for their software elements. This is true for other ap-
proaches such as ’Identifier Analysis’, ’Method Clus-
tering’,’Language Clues’ and ’Token-based clone detec-
tion’. While working on vocabulary selection we gained
experience in improving topic quality by carefully ex-
panding the vocabulary to include tokens from the JDK
and method calls.

Manual approaches of mining aspects have the advantage
of being controlled, and thus produce a highly accurate iden-
tification and mapping of concerns to the underlying imple-
mentation. This, however, can also be a drawback; the re-
sults and the methodology are prone to subjective interpre-
tation and they are difficult to replicate, especially at large
scale. Manual techniques are highly labor intensive, requir-
ing hundreds of hours to analyze even a single project, which
renders such methods inappropriate for general application.

Recent work in early aspects has employed automated
techniques to mine aspects in non-code artifacts such as
requirements (Duan and Cleland-Huang 2007; Kit et al.
2006). These techniques are similar in nature that they em-
ploy mostly text-mining techniques and bear some resem-
blance with the text-based aspect mining mentioned before.

8. Conclusion
We have presented an operational theory of aspects based on
unsupervised, probabilistic topic modeling and on informa-
tion theory. Our framework aims at providing a solid founda-
tion for understanding what aspects are and where they come
from. It can be summarized in the following sentence: as-
pects are latent topics with high scattering entropy. To iden-
tify latent topics, we use a technique known as Latent Dirich-
let Allocation, a relatively recent statistical data mining tech-
nique that has been used very successfully in topic modeling
for natural language texts. To be able to apply it to software
in a meaningful way, we pre-process the words according
to widely-used naming conventions, and choose to use only
certain words of the source files that we know, by domain
experience, directly contribute to the effective functional in-

formation of software. The result is a model of software con-
cerns that directly maps to the concept of latent topics.

By using this probabilistic technique, we can then eas-
ily measure scattering and tangling by the entropies of the
probability distributions of topics over files in the case of
scattering, and files over topics in the case of tangling.

We have validated our model empirically at two scales:
1) on a very large data set consisting of 4,632 Java projects;
and 2) on 5 Java projects of varying sizes. The results con-
firm the main AOP intuitions about the existence crosscut-
ting concerns, and the possibility of measuring scattering
and tangling. The crosscutting concerns identified at the very
large scale include most of the aspects used as prototypi-
cal examples of crosscutting in the literature. Furthermore,
we compared our results with several other aspect mining
techniques, and found significant agreement, confirming that
our mathematical model of aspects matches and extends the
model that the community has been working with.

Acknowledgments
Work in part supported by National Science Foundation MRI
grant EIA-0321390 and a Microsoft Faculty Research Award
to PB, as well as National Science Foundation grant CCF-
0347902 to CL and CCF-0725370 to CL and PB.

References
David Andrzejewski, Anne Mulhern, Ben Liblit, and Xiaojin Zhu.

Statistical debugging using latent topic models. In Stan Matwin
and Dunja Mladenic, editors, 18th European Conference on Ma-
chine Learning, Warsaw, Poland, September 17–21 2007.

Sushil Bajracharya, Trung Ngo, Erik Linstead, Yimeng Dou, Paul
Rigor, Pierre Baldi, and Cristina Lopes. Sourcerer: a search
engine for open source code supporting structure-based search.
In OOPSLA ’06: Companion to the 21st ACM SIGPLAN Con-
ference on Object-Oriented Programming Systems, Languages,
and Applications, pages 681–682, New York, NY, USA, 2006.
ACM Press. ISBN 1-59593-491-X. doi: http://doi.acm.org/10.
1145/1176617.1176671.

Sushil Bajracharya, Trung Ngo, Erik Linstead, Yimeng Dou, Paul
Rigor, Pierre Baldi, and Cristina Lopes. A study of ranking
schemes in Internet-scale code search. Technical report, UCI
Institute for Software Research, 2007.

Elisa L. A. Baniassad, Paul C. Clements, João Araújo, Ana Mor-
eira, Awais Rashid, and Bedir Tekinerdogan. Discovering early
aspects. IEEE Software, 23(1):61–70, 2006. URL http://doi.

ieeecomputersociety.org/10.1109/MS.2006.8.

Ted J. Biggerstaff. Design recovery for maintenance and reuse.
IEEE Computer, 22(7):36–49, 1989.

Ted J. Biggerstaff, Bharat G. Mitbander, and Dallas Webster. The
concept assignment problem in program understanding. In ICSE
’93: Proceedings of the 15th International Conference on Soft-
ware Engineering, pages 482–498, Los Alamitos, CA, USA,
1993. IEEE Computer Society Press. ISBN 0-89791-588-7.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent
dirichlet allocation. Journal of Machine Learning Research,

3:993–1022, January 2003. URL http://jmlr.csail.mit.

edu/papers/v3/blei03a.html.

Silvia Breu. Extending dynamic aspect mining with static infor-
mation. In SCAM ’05: Proceedings of the Fifth IEEE Inter-
national Workshop on Source Code Analysis and Manipulation
(SCAM’05), pages 57–65, Washington, DC, USA, 2005. IEEE
Computer Society. ISBN 0-7695-2292-0. doi: http://dx.doi.org/
10.1109/SCAM.2005.9.

Silvia Breu and Thomas Zimmermann. Mining aspects from
version history. In ASE ’06: Proceedings of the 21st IEEE
International Conference on Automated Software Engineering
(ASE’06), pages 221–230, Washington, DC, USA, 2006. IEEE
Computer Society. ISBN 0-7695-2579-2.

M. Bruntink, A. van Deursen, R. van Engelen, T. Tourwe. On the
use of clone detection for identifying crosscutting concern code.
IEEE Trans. Softw. Eng., 31(10):804–818, 2005. ISSN 0098-
5589.

Nelio Cacho, Claudio Sant’Anna, Eduardo Figueiredo, Alessandro
Garcia, Thais Batista, and Carlos Lucena. Composing design
patterns: a scalability study of aspect-oriented programming. In
AOSD ’06: Proceedings of the 5th International Conference on
Aspect-Oriented Software Development, pages 109–121, New
York, NY, USA, 2006. ACM Press. ISBN 1-59593-300-X.

Gerardo Canfora and Luigi Cerulo. How crosscutting concerns
evolve in jhotdraw. In STEP ’05: Proceedings of the 13th IEEE
International Workshop on Software Technology and Engineer-
ing Practice, pages 65–73, Washington, DC, USA, 2005. IEEE
Computer Society. ISBN 0-7695-2639-X. doi: http://dx.doi.org/
10.1109/STEP.2005.13.

Gerardo Canfora, Luigi Cerulo, and Massimiliano Di Penta. On the
use of line co-change for identifying crosscutting concern code.
In ICSM ’06: Proceedings of the 22nd IEEE International Con-
ference on Software Maintenance, pages 213–222, Washington,
DC, USA, 2006. IEEE Computer Society. ISBN 0-7695-2354-4.

M. Ceccato, M. Marin, K. Mens, L. Moonen, P. Tonella, and
T. Tourwe. A qualitative comparison of three aspect mining
techniques. In IWPC ’05: Proceedings of the 13th International
Workshop on Program Comprehension, pages 13–22, Washing-
ton, DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-
2254-8. doi: http://dx.doi.org/10.1109/WPC.2005.2.

Siobhàn Clarke and Elisa Baniassad. Aspect-Oriented Analy-
sis and Design. Addison-Wesley Professional, 2005. ISBN
0321246748.

Grigoreta Sofia Cojocar and Gabriela Şerban. On some criteria for
comparing aspect mining techniques. In LATE ’07: Proceedings
of the 3rd Workshop on Linking Aspect Technology and Evolu-
tion, page 7, New York, NY, USA, 2007. ACM. ISBN 1-59593-
655-4. doi: http://doi.acm.org/10.1145/1275672.1275679.

Chuan Duan and Jane Cleland-Huang. A clustering technique
for early detection of dominant and recessive cross-cutting con-
cerns. In EARLYASPECTS ’07: Proceedings of the Early As-
pects at ICSE, page 1, Washington, DC, USA, 2007. IEEE Com-
puter Society. ISBN 0-7695-2957-7. doi: http://dx.doi.org/10.
1109/EARLYASPECTS.2007.1.

Marc Eaddy, Alfred Aho, and Gail C. Murphy. Identifying, assign-
ing, and quantifying crosscutting concerns. In ACoM ’07: Pro-

ceedings of the First International Workshop on Assessment of
Contemporary Modularization Techniques, page 2, Washington,
DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-2967-4.
doi: http://dx.doi.org/10.1109/ACOM.2007.4.

Marc Eaddy, Thomas Zimmermann, Kaitlin D. Sherwood, Vibhav
Garg, Gail C. Murphy, Nachiappan Nagappan, and Alfred Aho.
Do crosscutting concerns cause defects. IEEE Transactions on
Software Engineering 2008.

Fernando Castor Filho, Nelio Cacho, Eduardo Figueiredo, Raquel
Maranhao, Alessandro Garcia, and Cecilia Mary F. Rubira. Ex-
ceptions and aspects: the devil is in the details. In SIGSOFT
’06/FSE-14: Proceedings of the 14th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering,
pages 152–162, New York, NY, USA, 2006. ACM Press. ISBN
1-59593-468-5.

B. Ganter and R. Wille. Formal Concept Analysis: Mathematical
Foundations. Springer-Verlag, 1999.

Alessandro Garcia, Cláudio Sant’Anna, Eduardo Figueiredo, Uirá
Kulesza, Carlos Lucena, and Arndt von Staa. Modularizing
design patterns with aspects: a quantitative study. In AOSD
’05: Proceedings of the 4th International Conference on Aspect-
Oriented Software Development, pages 3–14, New York, NY,
USA, 2005. ACM Press. ISBN 1-59593-042-6.

William G. Griswold, Jimmy J. Yuan, and Yoshikiyo Kato. Ex-
ploiting the map metaphor in a tool for software evolution. In
ICSE ’01: Proceedings of the 23rd International Conference on
Software Engineering, pages 265–274, Washington, DC, USA,
2001. IEEE Computer Society. ISBN 0-7695-1050-7.

J. Hannemann and G. Kiczales. Overcoming the prevalent decom-
position of legacy code. In Workshop Advanced Separation of
Concerns, ICSE’01, 2001.

Jan Hannemann and Gregor Kiczales. Design pattern implemen-
tation in java and aspectj. In OOPSLA ’02: Proceedings of the
17th ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, pages 161–173,
New York, NY, USA, 2002. ACM Press. ISBN 1-58113-471-
1.

Shinji Kawaguchi, Pankaj K. Garg, Makoto Matsushita, and Kat-
suro Inoue. Mudablue: An automatic categorization system for
open source repositories. In APSEC ’04: Proceedings of the 11th
Asia-Pacific Software Engineering Conference (APSEC’04),
pages 184–193, Washington, DC, USA, 2004. IEEE Computer
Society. ISBN 0-7695-2245-9. doi: http://dx.doi.org/10.1109/
APSEC.2004.69.

Andy Kellens, Kim Mens, and Paolo Tonella. A survey of au-
tomated code-level aspect mining techniques. In Transactions
on Aspect-Oriented Software Development IV. Springer Berlin /
Heidelberg, 2007. doi: 10.1007/978-3-540-77042-8 6.

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
oriented programming. In Mehmet Akşit and Satoshi Mat-
suoka, editors, European Conference on Object-Oriented Pro-
gramming, volume 1241 of LNCS, pages 220–242. Springer Ver-
lag, 1997.

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey
Palm, and William G. Griswold. An overview of aspectj. In

ECOOP ’01: Proceedings of the 15th European Conference on
Object-Oriented Programming, pages 327–353, London, UK,
2001. Springer-Verlag. ISBN 3-540-42206-4.

Jorg Kienzle and Rachid Guerraoui. AOP: Does it make sense? the
case of concurrency and failures. In ECOOP ’02: Proceedings
of the 16th European Conference on Object-Oriented Program-
ming, pages 37–61, London, UK, 2002. Springer-Verlag. ISBN
3-540-43759-2.

Lo Kwun Kit, Chan Kwun Man, and Elisa Baniassad. Isolating and
relating concerns in requirements using latent semantic analysis.
SIGPLAN Not., 41(10):383–396, 2006. ISSN 0362-1340. doi:
http://doi.acm.org/10.1145/1167515.1167506.

Adrian Kuhn, Stephane Ducasse, and Tudor Girba. Semantic clus-
tering: Identifying topics in source code. Information and Soft-
ware Technology, 2006.

Uira Kulesza, Claudio Sant’Anna, Alessandro Garcia, Roberta
Coelho, Arndt von Staa, and Carlos Lucena. Quantifying the
effects of aspect-oriented programming: A maintenance study.
In ICSM ’06: Proceedings of the 22nd IEEE International Con-
ference on Software Maintenance, pages 223–233, Washington,
DC, USA, 2006. IEEE Computer Society. ISBN 0-7695-2354-4.

Erik Linstead, Paul Rigor, Sushil Bajracharya, Cristina Lopes, and
Pierre Baldi. Mining eclipse developer contributions via author-
topic models. MSR 2007: Proceedings of the Fourth Interna-
tional Workshop on Mining Software Repositories, 0:30, 2007a.
doi: http://doi.ieeecomputersociety.org/10.1109/MSR.2007.20.

Erik Linstead, Paul Rigor, Sushil Bajracharya, Cristina Lopes, and
Pierre Baldi. Mining internet-scale software repositories. NIPS
2007: Advances in Neural Information Processing Systems 20,
0, 2008.

Martin Lippert and Cristina Videira Lopes. A study on exception
detection and handling using aspect-oriented programming. In
International Conference Software Engineering. ACM Press,
2000.

Cristina Videira Lopes. AOP: A historical perspective (what’s in
a name?). In Robert Filman, Tzilla Elrad, Siobhan Clarke, and
Mehmet Aksit, editors, Aspect-Oriented Software Development,
chapter 5, pages 97–122. Addison Wesley, 2004.

Cristina Videira Lopes and Sushil Krishna Bajracharya. Assess-
ing aspect modularizations using design structure matrix and net
option value. Transactions on Aspect-Oriented Software Devel-
opment, 1:1–35, 2006.

Andrian Marcus, Andrey Sergeyev, Vaclav Rajlich, and Jonathan
Maletic. An information retrieval approach to concept location
in source code. In Proceedings of the 11th Working Conference
on Reverse Engineering (WCRE 2004), pages 214–223, Novem-
ber 2004.

Marius Marin, Arie van Deursen, and Leon Moonen. Identifying
aspects using fan-in analysis. In WCRE ’04: Proceedings of the
11th Working Conference on Reverse Engineering (WCRE’04),
pages 132–141, Washington, DC, USA, 2004. IEEE Computer
Society. ISBN 0-7695-2243-2.

Shawn Minto and Gail C. Murphy. Recommending emergent
teams. In MSR ’07: Proceedings of the Fourth International
Workshop on Mining Software Repositories, page 5, Washing-

ton, DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-
2950-X. doi: http://dx.doi.org/10.1109/MSR.2007.27.

Gail Murphy, Robert Walker, and Elisa Baniassad. Evaluating
emerging software development technologies: Lessons learned
from assessing aspect-oriented programming. IEEE Transac-
tions on Software Engineering, 25(4):435–455, 1999.

Martin P. Robillard and Gail C. Murphy. Representing concerns
in source code. ACM Trans. Softw. Eng. Methodol., 16(1):
3, 2007. ISSN 1049-331X. doi: http://doi.acm.org/10.1145/
1189748.1189751.

M.R. Robillard and G.C. Murphy. Concern graphs: finding and
describing concerns using structural program dependencies. In
ICSE 2002. Proceedings of the 24th International Conference on
Software Engineering, pages 406–416, 2002.

David Shepherd, Jeffrey Palm, Lori Pollock, and Mark Chu-
Carroll. Timna: a framework for automatically combining as-
pect mining analyses. In ASE ’05: Proceedings of the 20th
IEEE/ACM International Conference on Automated Software
Engineering, pages 184–193, New York, NY, USA, 2005a. ACM
Press. ISBN 1-59593-993-4.

David Shepherd, Lori Pollock, and Tom Tourwé. Using
language clues to discover crosscutting concerns. In MACS ’05:
Proceedings of the 2005 Workshop on Modeling and Analysis of
Concerns in Software, pages 1–6, New York, NY, USA, 2005b.
ACM Press. ISBN 1-59593-119-8.

Paolo Tonella and Mariano Ceccato. Aspect mining through the
formal concept analysis of execution traces. In WCRE ’04: Pro-
ceedings of the 11th Working Conference on Reverse Engineer-
ing (WCRE’04), pages 112–121, Washington, DC, USA, 2004.
IEEE Computer Society. ISBN 0-7695-2243-2.

Claire Tristram. Untangling code. MIT Technology Review: Ten
Emerging technologies that will change the world, February
2001.

S. Ugurel, R. Krovetz, and C. L. Giles. What’s the code?: automatic
classification of source code archives. In KDD ’02: Proceed-
ings of the Eighth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 632–638, New
York, NY, USA, 2002. ACM Press. ISBN 1-58113-567-X. doi:
http://doi.acm.org/10.1145/775047.775141.

Robert Walker, Elisa Baniassad, and Gail Murphy. An initial as-
sessment of aspect-oriented programming. In International Con-
ference Software Engineering. IEEE Computer Society Press,
1999.

Carl Zetie. Aspect-oriented programming considered harmful.
Forrester Research, April 2005.

Charles Zhang and Hans-Arno Jacobsen. Efficiently mining cross-
cutting concerns through random walks. In Aspect-Oriented
Software Development (AOSD’07), March 2007.

