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Government agencies and other authorities often communicate earthquake risks using maps de-
rived from geographic information systems. Yet, little is known about the effects of these maps on
risk perceptions. While mental models research and other approaches are available to inform risk
communication text design, similar empirically derived guidance is lacking for visual risk com-
munications, such as maps, which are likely to trump text in their impact and appeal. This paper
reviews the empirical research that might inform such guidance. Research on graphs, spatial and
visual perception, and map design suggests that graphics increase risk avoidance over numerical
risk representations, and countable visuals, like dots, can increase the accuracy of perceived risks,
but not always. Cartographic design features, such as color, animation, interactivity, and depth
cues, are all candidates to represent risk and uncertainty and to influence risk perception. While
there are robust known effects of color (e.g., red = danger), with some cultural variability, anima-
tion can increase the salience of otherwise obscure features but is not uniformly effective. Depth
cues, dimensionality, and the extent to which a representation depicts versus symbolizes a scene
will influence the viewer’s perspective and perception, depending on the viewer’s familiarity with
the scene; their effects on risk perception remain unclear. The translation and representation of
technical information about risk and uncertainty is critical to risk communication effectiveness.
Our review suggests a handful of candidate criteria for evaluating the effects of risk visualizations,
short of changes in behavior: accuracy, accessibility, retention, and perceived risk and usefulness.
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Introduction

Earthquake decision-making processes rely on ef-
fective communication of risk and uncertainty. What
is effective, however, is likely to vary by the type of de-
cision maker. Business and political decision makers in
private companies and local governments may require
different depictions of risk than technical audiences,
such as engineers and seismologists, some of whom are
well versed in probability theory. Building on research
in human–computer interaction, risk communication,
and spatial analysis and exposure to mapped data,1–3

this review aims to build the foundation for design-
ing and testing alternative ways to communicate risk
and uncertainty for low-probability high-consequence
events, with a focus on advancing what is known about
the effects of spatial information, communication of
risk, and uncertainty in spatial information and how
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these can be tailored effectively for different earth-
quake decision makers.

Natural disasters, such as hurricanes and earth-
quakes, are spatial in nature. For this reason, geo-
graphic information science (GISc) tools are often
included in software designed for natural hazard pre-
vention and mitigation decisions. Construction of risk
in the mind of the perceiver depends, at least in part,
on the representation of the underlying hazard,4 which
suggests that the design of the user interface for natural
hazard mitigation software will influence risk percep-
tions and decision-making processes. There is, how-
ever, little empirical research on the effects of carto-
graphic spatial representations and other visualizations
on risk perception and decision making. This paper
reviews the literature on risk visualization design and
human spatial and risk perception to lay the ground
for future research at their intersection.

Methodology
A general search of the expanded Social Science Ci-

tation index for the terms “risk visualization” produced
no results. In contrast, searching for “visual∗ and risk”
produced over 8000 publications. Selecting only those
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that included the terms communication and percep-
tion reduced the findings to 13 studies, of which only
seven were relevant.5–11 For this reason, we searched
multiple databases and the internet using a wide vari-
ety of search terms, tools, and citation tracking.

Studies of visual representation of risk to date have
focused on statistical graphics9,10,12,13 and symbols,
such as warning symbols,14 although recent work on
the effects of video footage is a notable exception.8,15,16

Rarely has research on cartographic representations of
risk included tests of their effects on risk perceptions
and decisions. To develop a general framework for such
tests, we draw on research by MacEachren and Tver-
sky in addition to risk communication research. We also
look at visualization research by Pang and colleagues
on visualizing uncertainty in geographic information
systems (GIS),17 and a review of visualization in the
social sciences.18

Structure
The following section reviews pertinent background

knowledge on risk, including definitions of risk—how
risk assessment, risk perception, risk communication,
and risk visualization are related—and the increasing
significance of GIS and visualization for natural dis-
asters. The subsequent sections discuss findings from
past research on risk visualization and perceived risks
and propose a framework for evaluating risk visualiza-
tions. In the last section of the paper, we propose future
research directions for risk visualization.

Perspectives on Risk and Related
Concepts

Risk is generally defined in formal analyses as the
perceived magnitude of loss times the probability of loss
or harm (i.e., adverse consequence) from an event.19

Related formal conceptions of risk include, but are not
limited to, probability of loss, size of credible loss, ex-
pected loss (probability multiplied by the size of loss),
and the variance of the probability distribution over
all possible consequences.20 Some hazard researchers,
such as Cutter21 and Collins,4 define risk as the proba-
bility of hazard and define hazard in terms often used
by risk researchers to define risk as a broad concept that
“incorporates the probability of the event happening,
but also includes the impact or magnitude of the event
on society and the environment, as well as the sociopo-
litical contexts within which these take place.”22 Radke
et al.23 define “risk” as “the potential or likelihood of
an emergency to occur,” but “hazard” as “generally a

reference to physical characteristics that may cause an
emergency.”

In this review, hazard is defined as the underlying
physical events or acts that pose potential harm, similar
to the definition of Radke et al., whereas risk is treated
as a broader construct, incorporating the probability of
realizing the potential adverse consequences or harm
as well as the magnitude of harm.24 Note that both
definitions of risk and the process of defining risk can
be controversial.25

Risk Assessment and Risk Perception
Risk assessment is a formal approach to evaluating

risk19 and generally includes four steps26,27: “hazard
identification, dose–response assessment, exposure as-
sessment, and risk characterization.” GISc is playing
an increasingly important role in assessing the risk of
natural hazards.28

In contrast to formal risk assessments conducted by
risk experts, risk is also assessed intuitively by lay peo-
ple, and these assessments are often called “subjective
risk assessments” or “risk perceptions.” Expert risk esti-
mates tend to differ from subjective risk assessments in
several ways.29,30 Research by Fischhoff, Slovic, Licht-
enstein, and others applies a a psychometric paradigm
to characterize risk perceptions.31,32 This involves at-
titude ratings, such as how dreadful or how familiar a
person rates a risk. The findings suggest characteris-
tics of risks that lay people are more likely to accept
and of risks that they would be more likely to find
unacceptable. This, together with other research,33

demonstrates that risk communication that does not
address recipient’s attitudes and decision needs has an
increased likelihood of failure.

A distinction is often drawn between objective mea-
sures of risk, quantified roughly as Risk = probability
× consequence, and perceived measures of risk, which
include other characteristics of risk. This distinction is
tenuous. From the formal definitions alone, it is evident
that there is no hard and fast distinction between objec-
tive and perceived risk (i.e., what is counted as credible
loss depends on agreed perceptions and expectations
in a community). Risk is, in part, an epistemological
problem. The concept of risk depends on how people
assess probabilities and what they perceive as harmful
consequences. Hence, the distinction between objec-
tive and perceived risk is somewhat nebulous.

Risk Communication
Risk communication became a distinct factor of risk

management in the 1980s, with the purpose of increas-
ing public and risk managers’ knowledge of risk issues
on one hand and stakeholder participation in risk
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management on the other.26 Risk communication
is generally defined as a dialogue among interested
parties—risk experts, policy makers, and affected gen-
eral public.26

Communicating about high-consequence low-
probability risks poses a particular challenge.19 Risk,
by definition, must be related to the perceived and ex-
pected consequences of some hazard. The challenge
lies in the fact that low-probability risks have seldom
been experienced by recipients or been closely re-
lated to their lives. Some natural disasters, such as
earthquakes, are within this high-consequence low-
probability category.

The visual representation of risk (i.e., the visual
communication of risk), like other representations of
risk, is likely to be a variable in the construction of
risk judgments. Risk judgments and choices are of-
ten constructed in response to questions about them
rather than pulled intact from long-term memory.34,35

Thus, understanding how representations of risk af-
fect judgments and decision making is vital to our un-
derstanding of risk management and decision-making
processes.

Technological and environmental risks have an
obvious spatial dimension. Floods, mudslides, and
avalanches as much as toxic spills, explosions, trans-
portation of dangerous goods, or hazardous waste
management are all spatially distributed problems.36

Further, specific evidence from natural disaster re-
search suggests that the construction of risk in the mind
of the perceiver is dependent upon the representation
of the hazard being addressed4,35; for disaster manage-
ment, such representations are usually spatial in some
form. The representations, perhaps as much or more
than the nature of the hazard, affect the perception of
risk and the decision-making process concerning the
risk. Further, some risks are more “accessible” to the
perceiver in that they are salient and loom relatively
larger in the perceiver’s mind than other statistically
comparable risks.37,38

Risk Visualization
While language is one of the oldest communica-

tion tools and is central in risk communication, visual
displays can be more effective than language in some
contexts4,39,40 and can strongly influence risk percep-
tions.15 Risk communication is also a process to bridge
differences between various risk perspectives. The evi-
dence reviewed below suggests that visual representa-
tions affect the way both experts and nonexperts con-
struct or perceive risk. Visual representations of risk
may dominate others, given that vision is the dom-
inant sense.41 For this reason, visual representations

may also elicit stronger affective responses than other
representations.

Cartographic visualization serves a variety of map-
use goals.42 Although all map use transfers information
and promotes visual thinking, map use can vary greatly
in terms of which function is emphasized. Taking into
account different audiences, data, and interaction lev-
els, map-use goals fall into four categories: exploration,
analysis, synthesis, and presentation.42 Visualization
for presentation concerns situations where the infor-
mation is known to the presenter but not to the re-
cipients. However, public presentation is not confined
to predetermined message transfer. It can also prompt
new insights on the recipient’s part through interactive
tools. Indeed, interactivity has become increasingly im-
portant in strategies to achieve all four goals. Whether
interactivity is emphasized or not, MacEachren and
Kraak suggest that the transfer of spatial knowledge rather
than creation of new knowledge should always be the top
priority in presentation strategy.42

Although not built exclusively for data representa-
tion, GIS include an array of features to facilitate the
representation of spatial data. These features can be
described as the “geovisualization” function of GIS.43

They include summary charts and freestanding tables;
two-dimensional and three-dimensional animation de-
signed to support visual exploration of spatio-temporal
data sets; three-dimensional computer modeling; inter-
activity through linking and brushing of multiple views
of the data; and flexible combination of available layers
for representation.43 A study by Collins4 shows greater
perceived vulnerability and intentions to act after use
of a GIS tool to represent risk from a natural haz-
ard compared to reading a brochure about the same
risk.

Perspectives on Visualization of Risk
and Uncertainty

Pang and colleagues review existing uncertainty vi-
sualization techniques and their corresponding appli-
cation situations44 and present new uncertainty visual-
ization techniques for scalar, multivariate, vector, and
tensor data in a variety of applications. This approach
provides a toolbox of uncertainty visualization tech-
niques, most of which remain to be tested for their
effects on users. Pang proposes two approaches to clas-
sifying uncertainty visualization methods.45 The first
is how uncertainty itself is represented, the second
is according to how uncertainty is encoded into the
visualization—that is, whether it is singled out and
mapped as a separate layer or treated as an integral
part of the data set and mapped in a holistic fashion.
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One could view Pang’s two approaches as corre-
sponding to the extrinsic and intrinsic approaches
described by MacEachren and colleagues.42,46,47

Howard and MacEachren divide the existing cohort
of visualization techniques into intrinsic and extrinsic
approaches.48 The intrinsic approach they define as
changing the appearance of an object. The extrinsic
approach they define as the use of “additional symbols
to provide information about an object.” MacEachren
et al.47 propose that the intrinsic approach is more apt
at communicating overall uncertainty, while the ex-
trinsic approach is more suitable for conveying specific
locational uncertainty.

Empirical studies to date do not arrive at defi-
nite conclusions regarding whether including uncer-
tainty visualization is likely to be more helpful for
decision making than excluding it or even whether
including uncertainty visualization could, on the con-
trary, be disruptive to the decision-making process in
some cases.46,49 There is also no definitive evidence
whether, in cases where including uncertainty visu-
alization is helpful, that helpfulness varies by types
of decision makers, since decision-making processes
and information needs may differ substantially be-
tween experts who are versed in probability con-
cepts and novices who are not. When uncertainty
visualization is incorporated, the existing literature
is inconsistent on what the best uncertainty visu-
alization methods are; even though many methods
have been suggested, only a few have been empiri-
cally evaluated. Identifying this as a future research
challenge, MacEachren and colleagues47 call for di-
verting the focus from uncertainty visualization tech-
niques per se to the relationship between uncer-
tain visualization and decision-making outcomes in
order to develop “methods and tools for interact-
ing with uncertainty depictions” and for evaluating
the usability and utility of uncertainty visualization
renderings.

In sum, MacEachren and colleagues47 demonstrate
the need for empirical tests of the effects of carto-
graphic visualization and provide a research design
framework for doing so. Pang et al.44 offer a comple-
mentary view and a rich palette of approaches to repre-
senting uncertainty. MacEachren also emphasizes the
function of visualization in facilitating new insights.46

Although how a hazard is represented is likely to affect
risk perceptions and decisions, not much empirical re-
search has tested this directly. We summarize findings
from prior risk and uncertainty visualization research
in the following sections in order to develop a guide for
future research.

Effects of Risk and Uncertainty
Visualizations

Research on visualizations of risk and uncertainty
has primarily focused on simple statistical graphics,
such as risk “ladders,” confidence intervals, pie charts,
and the like. Such graphics are effective risk communi-
cation aids.12,13 Notably, graphical displays of compar-
ative risk increase risk avoidance relative to presenting
numbers alone. The following paragraphs summarize
the effects of common graphical and symbolic risk vi-
sualizations.

Risk Ladder and Related Formats
The risk ladder has been used most extensively

to describe environmental hazards (e.g., radon or as-
bestos).51–56 Typically, the risk ladder displays a range
of risk magnitudes such that increasing risk is portrayed
higher up on the ladder. In sum, the risk ladder effec-
tively helps people “anchor” a risk to upper- and lower-
bound reference points. Perceived risk is influenced by
the location of risk as much or more than by the actual
numbers.53 The efficiency of the risk ladder (e.g., to
promote behavior change, understand one’s risk) can
be enhanced by the addition of an action standard and
advice relevant to different risk levels.53 Action stan-
dards and advice may influence significantly whether
any actions to avert the risk are taken.56 However,
questions about their use remain.

Stick and Facial Figures
Stick and facial figures have been used most ex-

tensively to aid relative risk judgments. In in-depth
analysis of visual displays of risk, Stone and colleagues
examined how well stick and other visuals (bar graph
or asterisks) communicated low-probability events (e.g.,
tire blowouts and serious gum disease).50 The results
suggest that graphical displays of comparative risk in-
crease risk aversion relative to presenting numbers
alone. However, visual displays did not produce greater
risk aversion for higher probability events.53 In tests of
whether vivid facial displays can promote skin pro-
tective behaviors through fear appeals related to skin
cancer, facial displays (like stick figures) affect perceived
risk, leading people to be risk averse but no more so
than other countable visuals that itemize victims, such
as asterisks.57

Statistical Graphs
The effectiveness of statistical graphs in commu-

nicating risks has been demonstrated in several stud-
ies. For example, willingness-to-pay for risk abatement
is higher for participants given risk information in
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histograms than for those given risk information in nu-
merical form.50 Graphic representations of risks more
effectively increase participants’ risk avoidance than
do numbers by weakening cognitive awareness of the
upper bounds on the probability of adverse outcomes
and by increasing the affective response to them.58

Some authors hold that the concept of uncertainty
still eludes the general public.49 Simple presentation
of uncertainty may help; graphic representations can
help people understand uncertainty.59,60 However, pre-
senting accurate quantitative information alone is not
sufficient for a statistical graph to stand out as a good
method for conveying information.61

No single graphical format will perform optimally
in all situations. Rather, the effectiveness of a display
will be affected by several factors, such as the display
characteristics (e.g., use of colors, width of lines, or type
and space of legends); conditions of presentation (e.g.,
lighting or time pressure); data complexity (e.g., num-
ber of data points or configuration of the display); the
task (i.e., purpose); use characteristics (e.g., cognitive
styles); and the criterion for choosing the display (e.g.,
speed of performance or accuracy).62

Viewers’ graph comprehension involves three inter-
mingled processes: (1) viewing the graph and identi-
fying salient features of the graph, (2) recognizing the
quantitative information intended to be conveyed by
these graphic features, and (3) associating the quanti-
tative information from the graph with the variables
presented on the graph.63 Risk communicators will
need to take all three into account to use statistical
graphs effectively.

Line Graphs
Line graphs are effective for communicating trends

in data.64–66 In a study of the second phase of graph
comprehension, viewers’ grasp of the information dif-
fered substantially depending on graphic interpreta-
tion cues.61 For example, line-linked-dot graphs con-
vey trend information better than sticks and histograms
because line-linked-dot graphs contain interpretation
cues that help viewers construct the idea of a trend in
their mind. 61

Dots and Related Formats
A few experimental studies have tested the efficacy

of using a field of dots to communicating different prob-
abilities of disease.53,67–69 These studies test how effec-
tive dot or marble visualizations are at conveying low-
probability health risks. The results from these studies
are mixed. Using dots to visualize the low probability
of adverse effects from vaccination could increase par-
ticipants’ willingness to be vaccinated.67 However, dot

visualization methods do not necessarily improve the
accuracy of viewers’ risk perceptions.68 For example,
the use of marbles to visualize differences in breast can-
cer risks between women with or without the BRCA1
mutation may improve the accuracy of some women’s
risk perceptions of breast cancer but may also hinder
others.69

Pie Charts
Pie charts can be effective for conveying propor-

tion.70–73

Histograms
Histograms are widely used to communicate risk.

Although the research linking histograms with percep-
tions of risk is sparse, it appears that people readily
understand and find histograms helpful, and they may
induce risk aversion compared with numbers alone.50

Effects of Commonly Used Visualization
Attributes

As new technologies continue to develop at increas-
ing rates, new visualization techniques emerge contin-
uously.44 Researchers are striving to visualize data of in-
creasing dimensionality.74 Despite the proliferation of
visualization techniques, such techniques are still lim-
ited compared to expressed needs.75 Commonly used
visualization attributes include use of color, interac-
tivity, animation, texture, dimensionality (two dimen-
sional versus three dimensional), and virtual reality.
Perceptual and cognitive effects of these are described
in the following sections.

Color
Widely used in risk communication, color is an im-

portant visual attention guide74 and influences risk per-
ception.14,75 Wogalter and colleagues14 find a risk hi-
erarchy for color: red riskier than yellow, yellow riskier
than green. Color also influences decision-making pro-
cesses.76 Exposure to red can impair performance by
motivating avoidance.77 Appropriate use of color can
greatly increase the effectiveness of visual commu-
nication, while poor use can create confusion.78 To
use color effectively requires a basic understanding of
how people perceive color.78 Color categories tend to-
ward universal foci, although there is some cultural
variability.79

In Ware’s80 studies of the cognitive effectiveness
of color sequences, map information is divided into
two categories: metric information, which denotes the
quantity (value) of each surface point, and form infor-
mation, which denotes the shape of the surface. When
colors are placed adjacent to one another, the col-
ors tend to interact and thus alter human perception.
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For example, when red and blue are put together, blue
appears greener and red appears more orange, even
though the real colors have not been changed.81 This
is called the simultaneous contrast problem. Color
scale along the spectrum works better for presenting
value information because it can reduce the simulta-
neous contrast problem.80 Scaling based on lightness
or brightness may be helpful in presenting form infor-
mation, but evidence on this is mixed.80

Keller and Keller78 argue that human eyes are not
sensitive to shape (form information), for which reason
contrasting colors can help viewers more easily iden-
tify the edge of shapes. Keller and Keller78 propose a
set of practical guidelines for color use including, for
example, how color could enhance three-dimensional
effects. They also make the point that when trying
to present a phenomenon to an audience, one should
choose the color (as well as other techniques) closest
to the viewers’ experience with that phenomenon, for
example, using blue for water or green for forests.

Brewer82 tests the use of color on maps with re-
gard to how robust differences between colors are and
the degree to which adjacent colors affect perception;
she also provides specific guidelines for use of color on
maps based on her study results83 as well as other de-
sign guidelines.84,85 For example, Brewer (page S26)85

advises use of light-to-dark color for low-to-high values
with a constant hue.

Interactivity
Interactive visualization may amplify the effects of

visual data displays.19 Interactive visualization has the
potential to allow users to tailor displays to reflect
their individual differences. Even with exactly the same
presentation, people’s understandings of presentation
content vary because of differences in interests, expe-
rience, intellectual ability, education, or cultural back-
ground. Interactive exploration tools give the audi-
ence a chance to freely investigate the part that they
are either interested in or about which they still have
questions.

Advantages of interactivity stem from: 1) enabling
active, instead of passive, participation of the audience;
2) tailoring information for individual users; 3) assist-
ing the risk assessment process; and 4) facilitating visu-
alization of possible risks under different hypothesized
conditions (allowing users to ask “what if” questions).86

Interactivity may also help if users are overwhelmed by
the complexity of a visualization.87

However, interactive visualization also poses chal-
lenges. Higher dimensionality in visualizations, which
have become increasingly popular in practice, may
both necessitate and challenge interactivity.88 On one

hand, three-dimensional representation complicates
visual phenomena, thus making interactive exploration
by the viewers more important; on the other hand,
three-dimensional environments also require control
of more degrees of freedom.88 There is also generally
a trade-off between accuracy and interactivity under
current hardware capacity and technology.88 Interac-
tive visualization asks for real-time response, which
often employs fast, but less accurate, algorithms. Vi-
sualization and algorithmic accuracy trade off against
speed. Increasingly larger data sets, coupled with lim-
itations of currently available computer hardware ca-
pacity, can slow retrieval of data at “interactive rates.”88

However, most inaccuracies of fast, although approx-
imate, rendering are largely undetectable, even when
put side-by-side with the more accurate rendering.78

Fast interpolation techniques are helpful when one
simply wants to use animation or interactive explo-
ration to look for anomalies or interesting features in
the data. In pursuit of improved interactivity, one ap-
proach would be to use techniques from geovisualiza-
tion, such as dynamic linking and brushing and the
highlighting of clusters and outliers, with fast interpo-
lation where necessary.

Animation
Animation simulates continuous phenomena

through the display of a discrete collection of images.89

As described by MacEachren et al.,47 animation can
represent uncertainty directly (for example, through
the use of “long duration in color” to represent “high
certainty of classification”) and could represent uncer-
tainty indirectly by animating sequences of different
potential realizations. MacEachren et al.47also consider
animation an effective technique for conveying spatial
and temporal uncertainties and helping viewers distin-
guish between them (e.g., in predictions).

Motion, that is, change over time, is critical for fea-
ture identification—“objects that are virtually invisi-
ble on individual static scenes will pop out of an ani-
mated time series display.”46,90 Motion, like color, is a
key driver of human attention and perception.74 Risk
communication designers should be sensitive to the
speed of animation relative to the complexity of the
changing information and consider adding appropri-
ate sound effects or narrative comments.78 Consider-
able research on animation in visual representations of
scientific and other information has produced mixed
findings regarding effectiveness.91,92 To be effective,
animation should be spatially and temporally contigu-
ous with other information, coherent (without extra-
neous features or effects), and not redundant.93
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Texture
Texture and grain refer generally to the same at-

tribute in spatial representations.47 A study by Tamura
et al.94 identifies discrepancies between human per-
ceptions and how textural features are computerized.
More recent research identifies four reliably percepti-
ble attributes of texture: coarseness, regularity, light-
ness, and contrast.95 Texture or grain is a strong can-
didate for representing uncertainty information using
static methods47 alongside dynamic methods, such as
animation and interactivity.

Dimensionality: Two Dimensionality versus
Three Dimensionality

Some would consider moving from two-dimensional
map rendering to a three-dimensional visual environ-
ment the next step in risk visualization. Adding per-
spective lines to a representation can induce viewers to
take an “insider” perspective on a scene.96,97 However,
although people may adopt differing mental models
after viewing graphics with different perspective lines,
three dimensionality is not necessarily better than two
dimensionality. In fact, two dimensionality and three
dimensionality appear equally accurate and effective
in some regards.96 In tests of their Spatial Framework
model, Bryant and Tversky96 find that viewers do not
need many depth cues to engage an “insider view”
if the situation visualized is the one they are familiar

with. This suggests that when communicating high-
consequence low-probability hazards, which have sel-
dom been experienced by the viewers, diagrams with
relatively weak depth cues may not be sufficient to
induce an inside perspective, but three-dimensional
rendering or modeling will be helpful to achieve this
goal, if desired (MacEachren46 provides a “taxonomy
of depth cues” and related applications). People will
use intrinsic computation when they can only rely on
a representation of a scene from a particular vantage
point without good depth cues.96 It remains to be seen
how use of three-dimensional modeling affects risk per-
ceptions.

As noted above, the study by Collins4 shows that
GIS-based three-dimensional modeling is more ef-
fective than a more traditional text-with-graphics
brochure for risk communication and improving risk
perception. While some studies show that three di-
mensionality is more effective than two dimension-
ality for some purposes, such as navigation98,99 or
responding to integrative questions,100 other studies
find performance decrements with three dimensional-
ity compared to two dimensionality.101–103 Viewers’
preference for three dimensionality may exemplify
previous findings that user preferences do not al-

ways match user success, as has been found in other
contexts.47,102

Smallman et al.104 show that some studies are flawed
in claiming that three-dimensional rendering is faster
than two-dimensional rendering in conveying informa-
tion about the third dimension105–110 in that they do
not control for factors that co-vary with display format,
such as the representation of attributes coding the third
dimension.

Two dimensionality and three dimensionality each
have their distinct advantages. While three dimension-
ality is better than two dimensionality for facilitating
understanding of the shape of simple blocks, two di-
mensionality is better than three dimensionality for fa-
cilitating understanding of the relative position of two
objects.111

Another issue with three-dimensional rendering is
level of detail. In line with previous discussions re-
garding interactivity, the study by Reddy112 proposes
that it is not necessary for computer three-dimensional
graphics to provide a lot of details to viewers, which
is a common practice in many current visualization
projects. His argument is based on the physiology of
the human eye, which is incapable of interpreting a
lot of detail. Reddy112 suggests deleting imperceptible
details from three-dimensional graphics to optimize
rendering performance.

Virtual Reality
Virtual reality has been discussed by many as a fu-

ture direction for risk visualization.88,113,114 Virtual re-
ality with real-time interaction promises to allow users
to immerse themselves in virtual worlds.115 The level of
the sense of immersion should far exceed that evoked
by three-dimensional environments.

Evaluating Risk Visualization Design

To date, visualizations have been evaluated for their
effects on task performance and, in some cases, for
their effects on risk attitudes. Few studies, if any, have
addressed both. For risk communicators, the value of
visualizations of risk and uncertainty is a function of
how they influence perception and cognition to achieve
the risk communication goals. A starting point is that
risk visualizations should support users’ needs. To that
end, Tufte’s116 popular perspective on data usability
and accessibility suggests the following framework:

1. Can viewers see the data?
2. What purposes do users have? Is the purpose

of the visualization served? Do the visualizations
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facilitate seismic risk mitigation decisions? What
effect do they have on such decisions?

3. Can viewers focus on the substance rather than
methodology, graphic decision, the technology
of graphic production, or something else? Does
the visualization facilitate comparisons?

4. Can the viewer see the data at several levels of
detail? Are the visualizations closely integrated
with the statistical and verbal descriptions of a
data set?

Based on the above and the research reviewed in this
paper, we propose the following measures of visualiza-
tion effectiveness for cartographic visualizations of risk
and uncertainty:

1. accuracy and congruence—Does the viewer per-
ceive statistical information accurately from the
visualization? Has the audience perceived the
risk information the presenter intended to con-
vey? To measure this requires comparing per-
ceptions with the data used to create the visual-
ization.

2. accessibility—Does the visualization make the
information more digestible and accessible? This
could be measured in terms of information re-
trieval time. Some visual properties are more eye-
catching than others.97,117–120 Discrimination is
a related concept. Discrimination can refer to
detecting the difference between two perceptual
units46 or detecting the difference between a per-
ceptual unit and its background.118

3. retention—Does the risk visualization technique
increase retention of risk information? How long
does the viewer remember it?

4. change in perceived risk—Does the visualization
change the viewer’s risk perception in the di-
rection intended by the visualization designer?4

This should include measures of both affective
and cognitive responses.

5. subjective measures of quality and usefulness, in
line with Tufte’s recommendations.

Future Research Directions

Abstraction and Perception
This review has focused primarily on visualiza-

tion research in psychology, education, and geography.
Most of that research has focused on statistical graph-
ics to represent risk or uncertainty or on specific visual
attributes of spatial and other representations, such as
color and animation. Remarkably little literature has
examined the effects of cartographic visualizations of

risk and uncertainty on risk attitudes and decisions.
It has been demonstrated repeatedly that graphical
representations of risk can increase risk aversion to a
greater extent than numerical representations of the
same risk.50,58 This effect appears to stem from both
cognitive and affective processing of the representa-
tion. Similar effects should, in theory, result from the
use of maps to visualize risks.

As Brenner121 points out, representations fall on a
description to depiction continuum, suggestive of an
iconic to symbolic continuum that applies more gener-
ally to visual representations.39 Depictions can corre-
spond directly to percepts, judging from the similarity
of the cognitive processes evoked for each. Thus, de-
pictions are likely to drive perceptions much as the
stimuli they depict would. At the other end of this con-
tinuum, symbols may also play an important role; use
of symbols to denote landmarks on a map, for exam-
ple, might cue a change of perspective and hence per-
ception. Better understanding this continuum should
enable risk communicators to use visualizations more
effectively.

Developing a Toolbox of Effective
Visualization Techniques

Further research is needed to design and test alter-
native ways to communicate risk and uncertainty for
low-probability high-consequence events. Additional
testing would be helpful to enrich our knowledge about
perception in relation to visualization techniques, es-
pecially of interactivity, two dimensionality–three di-
mensionality, and animation. Such test results could
lead to a “best practice” visualization toolbox for visu-
alization packages and practices. What we learn about
perception should provide a stronger basis for defaults
in visualization packages in the future.
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