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On the Markov Property for Nonlinear Discrete-Time
Systems with Markovian Inputs

Arturo Tejada, Oscar R. Gonzalez and W. Steven Gray

Abstract— The behavior of a general hybrid system in
discrete-time can be represented by a non-linear difference
equation x(k + 1) = Fy(x(k),0(k)), where 0(k) is assumed
to be a finite-state Markov chain. An important step in the
stability analysis of these systems is to establish the Markov
property of (x(k),0(k)). There are, however, no complete
proofs of this property which are simple to understand. This
paper aims to correct this problem by presenting a complete and
explicit proof, which uses only fundamental measure-theoretical
concepts.

I. INTRODUCTION

The last decade has witnessed a steady increase in the
number of applications that combine logical decisions with
continuous-time or discrete-time dynamics. These so-called
hybrid systems have been used in several applications (cf.
[1], [2]). Markovian jump linear systems (MJLS) are, ar-
guably, the most studied sub-class of hybrid systems. Their
simple dynamics, in discrete-time, are given by
where 0(k) represents a finite-state Markov chain. The
stability of these systems has been studied employing the
well known fact that their state, (x(k),0(k)), constitutes
a Markov chain. Specifically, the long-term behavior of a
Markov chain can be studied by analyzing its transition
kernel (see [3] for a thorough discussion of the continuous-
time case). The Markov property of (x(-),6(:)) has been
stated without proof by many authors both in continuous-
time (cf. [4], [5]) and in discrete-time (cf. [6]). There are
some results available for the more general class of systems

x(k+1) = Fr(x(k),0(k)), (1)

where Fj, are measurable functions. However, they either
address the simpler case when 6(k) is an i.i.d. sequence
[71, [8], use heuristic arguments [9], or employ sophisticated
results [10]. To the best of our knowledge, there is no
complete proof of the Markov nature of (x(k),0(k)) for
system (1), when 0(k) is a Markov chain.

This paper aims to correct this problem by presenting a
complete and explicit proof which uses only fundamental
measure-theoretical concepts and follows the probabilistic
approach, i.e., it interprets the process (x(k),0(k)) as a
sequence of random vectors and exploits its properties. The
proof is used subsequently to establish the Markov property
of complex hybrid systems like the ones introduced in [11],
[12], enabling their stability analysis.
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The paper is organized as follows. Section II states and
proves the main result. The proof relies on two supporting
theorems, which are proven in Sections III and IV. Section
V applies the main result to three examples: a Markov jump
linear system, a Jump Linear System (JLS) driven by a Finite
State Machine (FSM) and a Hybrid Jump Linear System
(HJILS). Finally, Section VI provides the conclusions.

II. MAIN RESULT
A. Preliminaries

In the sequel, 2 and ® denote arbitrary sets. Their
elements are denoted, respectively, by w and ¢, and their
various subsets by {w : ---} and {¢ : ---}. The proofs
that follow make frequent use of measurable and Borel
functions. Recall that a function f : 2 — €’ defined between
two measurable spaces, (£2,.%) and (€', .#'), is called an
F |.F'-measurable function if for every B € %, the set
{w : f(w) € B} € Z. In particular, a B(R")/%B(RF)-
measurable function is called a Borel function, where Z(R")
denotes the Borel algebra over R™. The Borel algebra has
the property B(R") = Z(R) @ Z(R"1), for any n > 1,
where ® represents the direct product. When the fields are
obvious from the context, f will simply be called measurable
(or Borel).

Random variables (% /% (R)-measurable functions), ran-
dom vectors (% /% (R"™)-measurable functions), and ran-
dom elements (% /.%#'-measurable functions) are denoted by
lower case bold letters x,y, and z. Throughout the paper,
it is assumed that every random element (including random
variables and vectors) and stochastic process is defined over
the same underlying probability space (2, .%,P).

Finally, let ¢ be any sub o-algebra of .#. A random
element x : Q@ — Q' is called ¥-measurable if for every
B € #', the set {w : x(w) € B} € ¥. As usual, the
smallest o-algebra with respect to which = is measurable is
denoted by o(x).

B. Main Result

This subsection states and proves the main theorem, which
is as follows.
Theorem 2.1: Consider the system

w(k+1) = Fi(x(k),0(k), =(0)=z0, (2

where x(k) € R"™, (k) is a discrete-time Markov chain in
R™, & is an integrable random vector independent of 6(k),
and Fj, : R™ xR™ — R"™ are measurable functions for every
k > 0. The process (x(k),@(k)) is a Markov chain.
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The proof of Theorem 2.1 relies on the following three
supporting results. Their proofs are relegated to Sections III
and IV to simplify the presentation of the proof of Theorem
2.1.

Theorem 2.2: Consider system (2) under the conditions of
Theorem 2.1, and let f : R™ — R be any bounded Borel
function. Then, it follows that

E{f(0(k + 1))|z(k),0(k),...,2(0),0(0)}
= E{f(0(k + 1))[a(k),0(k)}.] ()
Theorem 2.3 (Theorem 1, p. 252 in [7] ): Let H be a lin-

ear space of bounded real-valued functions defined on a set
®. Assume that

(i) 'H contains the constant functions.

(ii) If {f.} is a sequence in H and f,, — f uniformly, then
feH.

(iii) If {f,} is a monotone sequence in H and 0 < f,, < M
for all n, then lim,, .. fr, € H.

(iv) H has a subset C with the property: if c;,co € C, then
their product, cqcs, also belongs to C.

Then H contains every bounded function g : & — R which

is measurable with respect to the o-algebra generated by the

sets: {¢:¢(¢) € B}, ceC, B € B(R).

Theorem 2.4: Consider system (2) under the conditions of
Theorem 2.1, and let & = R"” x R™ x R™. If H is the set
of all bounded Borel functions f : & — R such that

E{f(x(k),0(k),8(k + 1))[x(k), 0(k), ..., =(0),6(0)}
= E{f(x(k), 0(k),0(k + 1))[x(k), 0(k)}, )

then H is a linear space that satisfies conditions (i)-(iv) of
Theorem 2.3.

The fundamental step in the proof of Theorem 2.1 is to
establish that the set H of all bounded Borel functions which
satisfy (4) contains every bounded Borel function on ®. This
is proven by combining Theorems 2.3 and 2.4. Theorem 2.2
is used to verify property (iv) in Theorem 2.4.

Proof of Theorem 2.1: First recall from [13, page 564] that
a random process y,, is a Markov chain if and only if for
every bounded, real-valued Borel function, £, it follows that
E{h (Y, )W - Yo} = E{h(Y, 1)y, }. Thus, to show
that (x(k), 0(k)) is a Markov chain, it is sufficient to prove
that for every bounded Borel function h : R" x R™ — R

E{h(z(k +1),0(k +1))|z(k), 8(k),...,z(0),0(0)}
=E{h(x(k+1),0(k+1))|x(k),0(k)}
or, equivalently,
E{h(Fi(x(k),0(k)),O0(k+1))|x(k),0(k),...,x(0),0(0)}
= E{h(Fi(z(k),0(k)), 0(k + 1))|(k), O(k)}.
Let H be the set of all the bounded Borel functions f : & —
R, & = R"™ x R™ x R™, that satisfy the expression
E{f(@(k), O(k), 8(k + 1)[2(k), 0(k), .., (0),6(0)}
= E{f(x(k),0(k),0(k + 1))|z(k),0(k)}. (5)
Equalities and inequalities between random variables/vectors as well as

limits and convergence of sequences of random variables/vectors are taken
in the almost everywhere sense.

It follows from Theorem 2.4 that H satisfies all the con-
ditions of Theorem 2.3. Thus, H contains all the bounded
functions g : ® — R which are measurable with respect to
of, the o-algebra generated by the sets {¢ : c¢(¢) € B},
ceCCH, Be BR).

As will be shown in the proof of Theorem 2.4, the set C is
composed of all bounded, separable functions ¢ : ® — R of
the form c(¢) = ¢1(7y)é2(A), where ¢; : R™ x R™ — R and
¢y : R™ — R are bounded Borel functions, and ¢ = (7, A).

Now, let A € &7 and observe that A must be of the form

A=|Ho:c(9) € By},
0.

for some ¢; € C and B;; € %(R). But the functions ¢;
are Borel, thus {¢ : ci(¢) € By} € Z(R") @ B(R™) ®
Z(R™), and consequently, A € Z(R")@Z(R™)QA(R™).
Moreover, since this is true for every A € &7, it follows that
o C BR") @ BR™) 2 B(R™). Conversely, note that for
every B € Z(R")Q@ZAR™)0AB(R™), B={¢: 1ip(¢) €
[0.5,1.5)} € @, since the indicator function of B, 1;p}(),
belongs to C. This implies that &/ O Z(R") @ B(R™) ®
BR™), so o = BR") @ BR™) @ BR™).

Hence, H contains every bounded Borel function of the
form g : & — R, and each of these functions satisfies (5).
In particular, let h : R™ x R™ — R be any bounded Borel

function and define g(¢) = h(Fi(v), A), & = (7, A). Clearly,
g € 'H, so in (5)
E{g(x(k),0(k),0(k +1))|z(k),0(k), ..., 2(0),0(0)}

= E{g(x(k),0(k), 0(k + 1))\:':( );
which implies that
E{n(Fy.(z(k), 0(k)), 0(k+1))|z(k),0(F), ..., 2(0),0(0)}
= E{h(Fi(x(k),0(k)), 0(k + 1))|(k), 0(F)},

0(k)},

or
E{h(z(k +1),0(k + 1))[z(k), 0(k), ..., =(0),6(0)}
=E{h(x(k+1),0(k+1))|x(k),0(k)}.
Since this is true for every bounded Borel function h :
R™ x R™ — R, we conclude that (x(k),0(k)) is a Markov
chain. m
ITI. PROOF OF THEOREM 2.2

The proof of Theorem 2.2 relies on three items to be
proven about system (2):

Item (i): The o-algebra generated by the joint process
(z(k),0(k)) can be simplified as follows:

o(x(k),0(k),...,x(0),0(0)=0c(8(k),...,0(0),z(0)).

Item (ii): For any integrable random variable &,
E{&|x(k),0(k),...,x(0),0(0)}
= E{£|0(k), ..., 0(0),2(0)}.
Item (iii): E{O(k + 1)|z(k),0(k)} =E{0(k + 1)|0(k)}.

Item (i) is the core of the proof of Theorem 2.2. It estab-
lishes that all the probabilistic information is contained in
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x(0) and 6(i), i = 0, ..., k. That is, no new information can
be obtained by examining the variables x(i), i = 0,...,k,
when z(0) and 6(i), i = 0,...,k, are available. Item (1) is
proven in Subsection A (Theorem 3.4). Its proof makes use
of the binary operator M (defined below) and standard results
on the structure of g-algebras induced by random variables.
Items (ii) and (iii) are proven in Subsection B (Theorems 3.6
and 3.7), after briefly reviewing some properties of expected
values and the basic definitions of independence. Finally, the
proof of Theorem 2.2 is developed in Subsection C.

A. Some Properties of o-Algebras

1) Structure:
Theorem 3.1: [14, Theorem 20.1] Let = (1, . ..
be a vector of random variables x;.

' Tn)

(i) The o-algebra o(x) = o(x1,...,x,) consists exactly
of the sets {w : (w) € B} for B € B(R").
(ii) The random variable y is o(x)-measurable if and only
if there exists a measurable function f : R™ — R such
that y(w) = f(z1(w),. ..,z (w)) for all w € .
2) Combination:
Definition 3.1: Let C and D be two classes of subsets of
Q. The binary operation M combines the classes C and D to
form a new class of subsets of {2 as follows:

CADE{ECQ:E=CnND;CecC,DecD)}.

It follows readily from the definition that M is commutative
and associative. It also follows that if 4" is an algebra (or
o-algebra) in ) then ¥ M € = ¥. The operation M can be
used to combine o-algebras induced by random variables as
described below.

Lemma 3.1: For any two random variables

O’(ml) M 0'(:132) = O'(.’Bl, 2132).
Proof : Let H € o(x1)Mo(xz). Then H = Hy N Hy, where
Hy € o(x1) and Hy € o(xy). That is, H; = {w : x1(w) €
Bi}and Hy = {w : x2(w) € By} for some By, Bs € B(R).
Thus, it follows that

H=A{w: (r1(w),z2(w)) € By X By} € o(x1,T2),

since By X By € %%(R?). But H is arbitrary, so
o(x1) M o(xe) C o(x1,z2). Conversely, let H = {w :
(1 (w), T2(w)) € By x By} for some By x By € #(R?), and
let H = {w: x1(w) € B1} and Hy = {w : z2(w) € Ba}.
Clearly, H = Hy N Hy € o(x1) M o(x2). Again, H is
arbitrary, which implies that o(x1) A o(x2) 2 o(x1,x2).
Thus, o(x1) Ao(x) = o(x1, x2). =

1,2,

Remark 3.1: Let x1, a2, and x3 be random variables and
let y; = (Y115-- Y1) and Yy = (Yg1, - - -, Ya,,) be vectors
of random variables.

(i) Observe from Theorem 3.1, the definition of M and
Lemma 3.1 that o(x1, ®2, x3) = o(x1) Ao(x2, x3) =
0'(:[:17 (Bg) M 0'(:[:2, (B3).

(ii)) A similar derivation shows that o(y,,y,) =
(Y115 Yin Yais - Yan) = 0(Y1) Mo(ys).

Both arguments can be extended inductively to any finite
number of random variables or random vectors. This remark
plays an important role in the following collection of results.
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3) Simplification of o-algebras:

Theorem 3.2: Let ¢ = (x1,...,x,) be a vector of
random variables, and let f : R™ — R be a measurable
function. If y = f(x) then o(y, ) = o(x).

Proof : First, recall from Theorem 3.1 that o(y,x) is com-
posed of the sets {w : (y(w), z(w)) € B}, B € ZR"T1).
Fix any B € 2(R"™!) and observe that B = B; x Bs,
for some By € #(R) and By € Z(R™), since B(R"T1) =
B(R) ® Z(R™). Then, it follows that
{w: (y(w)z(w)) € B}
={w:y(w) € Bi} N{w: x(w) € B}
={w:zW) € f1(B)N By} €o(x).
The last inclusion above follows from the measurability of
f, which implies that f~1(B;) N By € %(R"). Hence, {w :
(y(w),z(w)) € B} € o(x) and, since B is arbitrary, this
implies that o(y, x) C o(x).

Conversely, note that o(x) is composed of the sets {w :
z(w) € B}, B € #(R™). Also note that y is a random
variable (Theorem 3.1) and that

N ={w:y(w) € Range(f)} = {w: y(w) € R}.
Thus, fix any B € Z(R"™) and observe that
{w:zw) e B} ={w:z(w) e B}N{w:y(w) € R}
— {w: (y(),o(w)) € R x B},
Now, R x B € Z(R"") so {w : (y(w),z(w)) € R
B} € o(y, ). This and the arbitrariness of B yields o(x)
o(y,x). Hence, o(x) =o(y,x). =

This result can be extended to the case when y is a vector-
valued function of x as follows.

Theorem 3.3: Let x = (x1,...,x,) be vector of random
variables and F' : R™ — R™ be a measurable function. If
y = F(x) then o(y,x) = o(x).

4) Proof of Item (i):

Theorem 3.4: Consider system (2) under the conditions of
Theorem 2.1. It follows that

X
c

0(0), 2(0)).
(6)
Proof: Note that (k) = Fy(x(k—1),0(k—1)), k> 1. It
follows from Theorem 3.3 that o (x(k), x(k—1),0(k—1)) =
o(x(k —1),0(k — 1)). Trivially then (6) holds for k& = 1.
Now, suppose it holds up to some fixed K = — 1. Then

o(x(i),0(i),...,x(0),0(0))

=0(0(i)) Mo(x(i),z(i —1),0(i —1),...,2(0),6(0))

=0(0(i)) Mo(x(i),z(i—1),0(i —1))m
o(x(i—2),0(i —2),...,2(0),0(0))

=0(8(i)) mo(x(i—1),0(i—1))m
o(x(i—2),0(i—2),...,2(0),6(0))

=0(0(i)) Ao (x(i— 1),9( 1),...,2(0),6(0))

=0(6(i)) ma(8(i—1),.. (0),93( ))

=0(6(i),...,z(0 )79(0))~

Thus (6) also holds for k£ = 4, and therefore by induction for
all £ > 1.



B. On Independence and Expected Values

1) Independence:

Definition 3.2: Let ;, i = 1,...,
algebras of .#. Also, let f; : (Q,.%) —
1,...,n be a set random elements.

(i) The o-algebras €1, ..., %, are independent if for every
choice of sets C; € %; it follows that P(B1N---NB,,) =
P(By)----- P(B,,) for all the possible 2" combinations
formed by taking B; =C; or B; =Q,i=1,2,...,n

(i) The random elements fi,...,f, are independent if
a(f1),...,0(fn) are independent.

(iii) A random variable y and the stochastic process 2 =
{x\} are independent if for every finite integer n > 1

n be a set of sub o-
(U, F#), i =

and every sequence of integers 0 < ¢; < .-+ <
t, < oo it follows that o(y) and o(xy,,...,x;,) are
independent.

Remark 3.2: Let ¢ and 2 be independent sub o-algebras
of #. Clearly, if « and y are, respectively, €-measurable
and Z-measurable random elements, then « and y are
independent.

2) Expected Values:

Lemma 3.2: The following are standard results from the
literature (cf. [13]).

(i) Let £ and y be independent random variables. Then

E{xy} = E{z}E{y}, where xy is the product of x
and y.

(i) Let « = (x1,...,x,) be a vector of random variables.
If x is independent of a random variable y, then so is
each x;. Furthermore, E{zy} = E{x}E{y}.

(iii) Let %#; and %5 be o-algebras such that %, C %,. If
x is an integrable random variable then

E{E{z| 7 }| 72} = E{E{z|7:}|71} = E{z| 71 }.

(iv) For any .%-measurable random element x, E{x|.7% } =
x.

The next theorem extends a basic result for random variables.

It is offered without proof for space limitations.

Theorem 3.5: Let x be a vector of random variables and
let y, z be two random elements such that z is independent
of (x,y), i.e., o(z) is independent from o(z), o(y), and
o(x,y). Then it follows that E{x|yz} = E{z|y}.

Corollary 3.1: Let 0(k) be a discrete-time Markov chain
in R™ and x a second order random vector. If x( is inde-
pendent from @(k), then E{O(k + 1)|0(k),...,0(0),z0} =
E{0(k+1)|0(k),...,0(0)}.

3) Proofs of Items (ii) and (iii):

Theorem 3.6: Consider system (2) under the conditions of
Theorem 2.1. Then, for any integrable random variable &,

E{§|x(k),6(k), ..., (0),0(0)} =E{£|0(K), ..., 0(0),z(0)}.
Proof : Observe that the integrability of & ensures
E{&|x(k),0(k),...,x(0),0(0)} is well defined and

/E{£|:c(k),0(k:),...,m(O),H(O)}dP:/ £ dp,

B B

for every B € o(xz(k),0(k),...,2(0),0(0)). But The-
orem 3.4 shows that o(xz(k),0(k),...,2(0),0(0)) =

o(0(k),...,0(0),x(0)). Thus, for every such B

6(0),z(0)} dP,

/Bﬁsz/BE{gw(k),...,

and the result follows. =
Theorem 3.7: Consider system (2) under the conditions
of Theorem 2.1. Then E{6(k + 1)|x(k),0(k)} = E{O(k +
1)[6(k)}.
Proof : First, note that o(x(k), 8(k)) is comprised of sets of
the form {w : (z(k)(w),0(k)(w)) € H}, H € ZR") ®
Z(R™). Fix any H € B(R™) ® ZB(R™) and observe that
{w:(x(k)(w), 0(k)(w)) € H}
={w:zk)(w) e Hi} N{w: 0(k)(w) € Ha}, (7)
for some H; € #(R"™) and Hy € #(R™). Next, note that
(2) yields
x(k) = Fr_1(x(k —
= Fp1(Fp—2(z(k -

1),6(k - 1))
2),0(k —2)),6(k — 1))

; GOk —1),...,0(0),x(0)),

where G is the indicated composition of the functions
Fo, ..., Fr_1. Thus, (7) can be expressed as

{w: (@(k)(w),0(k)(w)) € H}
={w: (0(k)(w),...,0(0)(w),z(0)(w)) € Hy x G~ (H,)}.
Since G is measurable, it follows that
Hy, x GV (H) € BR™) @ --- @ BR™) B(R"),
k+1 copies
which in turn implies that {w : (z(k)(w),0(k)(w)) €
H} € o(0(k),...,0(0),z(0)). But since H is arbitrary,
it follows that o(x(k),0(k)) C o(0(k),...,0(0),x(0)).
This conclusion, Lemma 3.2, Corollary 3.1, and the Markov
property of 8(k) yield
E{0(k + 1)|x(k),0(k)}
= E{E{0(k + 1)|0(K), ..., 0(0), z(0)}|(k), O(k)}
= E{E{6(k + 1)|0(k), ..., 0(0)}|x(k), O(k)}
= E{E{0(k + 1)|9(k)}|w( ), 0(k)}.
Finally, note that E{@(k + 1)|6(k)} is o(0(k))-measurable.
Also note that o(@(k)) C o(x(k),0(k)), so E{O(k +
1)|6(k)} is also o(x(k),O0(k))-measurable. Thus, Lemma
3.2 yields E{E{0(k + 1)|0(k)}x(k),0(k)} = E{6(k +
1)|6(k)}, and the result follows. =

C. Proof of Theorem 2.2

Proof : First, observe that f(@(k + 1)) is an integrable
random variable, so Theorem 3.6 yields

E{f(0(k +1))|x(k),0(k),...,2(0),0(0)}
= E{f(6(k+1))[0(k),...,0(0),z(0)}. ()
Next, note that f(@(k + 1)) is o(@(k + 1))-measurable
(Theorem 3.1), so o (f(O(k+1)),0(k),...,0(0)) C o(O(k+
1),...,6(0)). Furthermore, this and the hypothesis of The-
orem 2.2 imply that x(0) is independent of (f(0(k +
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1)),0(k),...,0(0)). Hence, (8), Theorem 3.5, and the
Markov nature of 0(k) yield

E{f(8(k + 1))l (k),0(k),...,=(0),0(0)}
=E{f(0(k+1))0(k)}. O

From Theorem 3.7, o(x(k),0(k)) C o(6(k),...,0(0),xo).
Thus, the argument in the proof of Theorem 3.7 yields
E{f(0(k +1))|a(k),0(k)} = E{f(O(k + 1))|8(k)}, which
together with (9) confirm identity (3). m

IV. PROOF OF THEOREM 2.4

Proof : Observe that H is a subset of the linear space of
bounded, real-valued functions over ®. Moreover, if f1, fo €
‘H and a1, as € R, it follows that o f1 + an fo satisfies (4).
Thus, H is a subspace of a linear space, which in turn implies
that it is a linear space.

Now, to show (i) in Theorem 2.3, suppose f(¢) = a for
all ¢ € ® and some a € R. Note that f(x(k), 0(k),0(k+1))
is a constant random variable. Also, recall that for any o-
algebra ¢4, E{f|¥} = a (a.e.) [13, page 215], which in turn
implies that f satisfies (4). Since this is true for any a € R,
then H contains all the constant functions.

To show (ii), suppose that { f,,} € H converges uniformly
to f, and let L,, be finite constants such that | f,(¢)| < Ly, for
all ¢ € ®. Next, fix € > 0 and observe from the hypothesis
that there exists N () such that | f,,(¢)—f(¢)| < e forall n >
N (e) and for all ¢ € . In particular, |fy (@) — f(P)| <€
implies that |f(¢)| < Ly + € for every ¢ € ®. Note
that the uniform convergence of {f,} implies that it also
converges pointwise almost everywhere to f. This in turn
shows f is measurable [15, Corollary 2.2.4]. Hence f is a
bounded Borel function.

Set L = Ly + € and observe that |f,,(¢) — f(#)] <
€, n > N(e) implies that |f,(¢)] < L + e for all
¢ € @ and all n > N(e). Next, define the function
g:® — Ras g(¢) = max{Li,...,Ln()-1,L + €}, for
all ¢ € @, and let y, = fn(x(k),0(k),0(k + 1)) and
y = g(x(k),0(k),0(k + 1)). Observe that {y,,} converges
pointwise to f(x(k),0(k),0(k + 1)), that |y, | < vy, and
that E{y} = max{Li,...,Ly(—1,L + €} < oo. Hence,
it follows that for any o-algebra ¢, E{y,,|¢} converges to

E{f(x(k),0(k),0(k+1))|4} [13, page 218]. Thus,
nler;o E{y,|z(k),0(k),...,2(0),0(0)}
= E{f(z(k),0(k),0(k + 1))|z(k), O(F), ..., 2(0),6(0)}.

But {f,} € H. Thus, (4) implies that
nlin;o E{y,|z(k),0(k),...,x(0),0(0)}
= lim E{y,|z(k),0(F)}
n—oo
= E{f(2(k), 0(k),0(k + 1))[(k),
Hence, f € H, and (ii) follows.
To show (iii), let {f,} be a monotone sequence of func-
tions in H such that 0 < f,, < M < oo, and note that
{fn} converges pointwise to a function f, which is in turn

a bounded Borel function. Thus, (iii) follows by using the
same argument as in (ii).

O(k)}

To verify (iv), consider the set C composed of all the
bounded separable functions ¢ : ® — R of the form
c(@p) = é1(y)éa(N), ¢ = (v, A), where é; : R” x R™ — R
and ¢é; : R™ — R are bounded Borel functions.

It is necessary to show that if ¢(¢),d(¢) € C then
c(¢)d(¢) € C, and that C C H. Note that c(¢)d(¢) =
(61(1)d1 (1) (E2(\)da (V). But é3(v)dy () and &(N\)da(A)
are real, bounded Borel functions in, respectively, R™ x R™
and R™. Thus ¢(¢)d(¢) € C.

Finally, to see that C € H, recall from [13, page 216]
that if £ and n are random variables such that E{|£|} < oo,
E{|¢n|} < oo, and 7 is ¥-measurable, then E{&n|¥} =

nE{&|¥}. Thus let c(¢) = é1(y)é2(X) € C, ¢ = (7, A), and

observe from Theorem 2.2 that

E{c((z(k),0(k)),0(k +1))[x(k),0(k), ..., =(0),6(0)}
k))E{c2(8(k +1))|z(k),0(k),...,x(0),60(0)}

=1 (z(k), 6( |2 (k), 0(

=c1(x(k), 0(k))E{e2(0(k + 1))[a(k), B(k)}
=E{¢\(x(k), 0(k))é2(0(k + 1))|z(k), O(k)}
=E{c((z(k),0(k)),0(k + 1))[z(k), O(k)}-

Thus, c satisfies (4). Since this is true for every ¢ € C, then
C € 'H and (iv) follows. This completes the proof. =

V. EXAMPLES

This section applies Theorem 2.1 to three examples: A
Markovian jump linear system, a jump linear system driven
by a finite state machine with a Markovian input, and a
hybrid jump linear system with a Markovian input.

A. Markov Jump Linear System
Consider the jump linear system
xk+1)= Ag(k).%‘(k‘),

where 8(k) € Z;, = {1,...,lp} is a Markov chain 2, A;,i €
Zn are n x n matrices, and x(0) is a second order random
vector independent of O(k). As stated in Section I, it is well
known that (x(k),0(k)) is a Markov chain. However, it is
interesting to note how this example fits in our framework.
Observe that (10) can be written as
lo
w(k+1) =Y Ailggu—iyz(k)

i=1

(10)

2 F(x(k),0(k)), (11)
where 1 is the indicator function. In (11), each summand
is a product of two measurable functions, which shows that F’

is measurable. Since this satisfies the hypothesis of Theorem
2.1, then (x(k),0(k)) is a Markov chain.

B. Jump Linear System driven by a Finite State Machine

These class of systems has been used to model computer
upsets in digital flight controllers [11]. In such models, the
output of a FSM, which represents a computer algorithm,
selects the operating mode of a linear control system. Thus,
in (10), (k) represents a FSM’s output, which may not
be Markovian in general. Thus, (z(k),0(k)) may not be a
Markov chain as well. To produce a Markov sequence, one
has to include information about the FSM’s input.

2In the sequel, Z; 2 {1,...,1} for any integer [ > 1.
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A FSM can be viewed as a S5-tuple M =
(Zn,2s,Zp,0,w), where Zx is the input symbol set;
Ys = {eo,...,es}, ¢j = [0,...,0, 0,1,0 ,...,0]T, is

~——
j-th position
the FSM’s state set; Zp is the output symbol set; and
0:In xXg — Xg and w : ¥g — Zp are, respectively,
the state transition and the output maps [11]. Let the FSM’s
input sequence be given by N (k), a Markov chain in Zy,
and let z(k) represent the states of the FSM. Then, ¢ is
given by
z(k) = Sna—1z(k — 1),

where S, j € I, are deterministic transition matrices, i.e.,
matrices with a single 1 in each column and zeros in the
other entries. The output sequence, 0(k), is given by 0(k) =
w(z(k)). For simplicity, it will be assumed that w is an
isomorphism such that ww(e;) = 4. With a slight abuse of

notation, the dynamics of 6(k) are derived as follows
In

O(k) = Sn—1)0(k — 1) = Z Sl Nk-1)=10(k — 1)

j=1
2 GOk —1),N(k—1)).
Combining (11) and (12) yields
z(k+1)|  |F(x(k),GOK—-1),N(k-1)))
o) | GOk —-1),N(k—-1))
H(x(k),0(k—1),N(k—1)).
Clearly, H is a measurable function. Furthermore, by defin-
ing y(k) = [£(k+1)T,0(k)]T, the equation above becomes
y(k) = H(y(k — 1), N(k - 1)).
Thus, provided that (1) and 6(0) are independent from

N (k), Theorem 2.1 shows that the process (z(k +
1),0(k), N(k)) is a Markov chain.

C. Hybrid Jump Linear System

12)

lI>

The structure of a HILS is similar to that of jump linear
system driven by a finite state machine, except that the
algorithm is allowed to make decisions based on state vector
information [12]. This is achieved through a measurable
quantization map ¢ : R™ — 7, , which divides R™ in [y,
mutually exclusive subregions R;, defined as

Y(x) =i,when x € R;,i €Ty,
The algorithm gets information about the plant’s state vector
by making v(k) = ¢(x(k)) one of its inputs. Hence, the
evolution of the FSM’s output sequence is given by
O(k) = SN(k-1)w(k-1)0(k — 1)
In ly
=D SN G-n=is(a(i-1)=; 0k — 1)
i=1j=1

£ G(x(k—1),0(k —1),N(k - 1)).

This expression and (11) yield, after introducing an auxiliary
state vector,

z(k+1) F(x(k),G(z(k —1),0(k — 1), N(k — 1)))
za(k+1)|= . x(k)
o(k) Gx(k —1),0(k — 1), N(k — 1))

H(x(k),xza(k),0(k—1),N(k—1)).

(1>

By defining g(k) = [z(k + 1)T,zs(k + 1)T,0(k)]T, the
equation above can be expressed as

g0k) = A@Gk— 1), Nk — 1)).
Thus, provided that «(1), «(0), and 6(0) are independent
from N (k), Theorem 2.1 shows that the process (x(k +
1),x(k),0(k), N(k)) is a Markov chain.

Note that in the last two examples, the random vectors
y(k) and gy(k) represent the internal ‘state’ of the system.
In this sense, y(k) and ¢(k) are equivalent to x(k) in the
first example.

VI. CONCLUSIONS

A complete proof of the Markovian property of the state
of general hybrid systems, (z(k), 0(k)), has been presented.
The proof is based on first principles and gives insight on the
mechanism that produces the Markovianess of (x(k), 8(k)).
Further research is ongoing to determine the kernel functions
of (x(k),0(k)) for particular HILS’s. These functions will
enable the ergodic analysis of their associated HILS, which
is needed to establish their stability properties.
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