
Acknowledgements

Apple Computer, Inc.’s Advanced Technology Group provided a supportive and productive environment during the
summer of 1992, enabling me to undertake this analysis along with other concomitant activities. Parts of this research
were also funded by the UK SERC/ESRC/MRC Joint Council Initiative on Cognitive Science and Human Computer
Interaction, and by the Commission of the European Communities ESPRIT-II Project 5365 (VITAL). Special thanks to
Mark L. Miller (Apple Inc.) and those at Apple who provided detailed constructive criticisms or were generally helpful:
Adam Chipkin, Sasha Karasik, Jim Spohrer, Gillian Crampton Smith, Dave Canfield Smith, Ted Kaehler, Jerry Morrison,
and Ruben Kleiman. Mike Brayshaw and Blaine A. Price (Open University) provided valuable comments on several
drafts of this paper. Blaine A. Price posted the trawl request on Usenet and collected the associated replies.

Tales of Debugging
from The Front Lines

Marc Eisenstadt

Paper Submitted to Empirical Studies of Programmers V,1993

Abstract

A worldwide trawl for debugging anecdotes elicited replies from 78 respondents,
including a number of implementors of well-known commercial software. The
stories included descriptions of bugs, bug-fixing strategies, discourses on the
philosophy of programming, and several highly amusing and informative
reminiscences. Experiences included using a steel ruler to debug a COBOL line
printer listing, browsing through a punched card deck to debug an early Fortran
compiler, and struggling in vain to find intermittent bugs on popular commercial
products. An analysis of the anecdotes reveals three primary dimensions of
interest: why the bugs were difficult to find, how the bugs were found, and root
causes of bugs. Half of the difficulties arose from just two sources: (i) large
temporal or spatial chasms between the root cause and the symptom, and (ii)
bugs that rendered debugging tools inapplicable. Techniques for bug-finding
were dominated by reports of data-gathering (e.g. print statements) and hand-
simulation, which together accounted for almost 80% of the reported techniques.
The two biggest causes of bugs were (i) memory overwrites and (ii) vendor-
supplied hardware or software faults, which together accounted for more than
40% of the reported bugs. The paper discusses the implications of these
findings for the design of program debuggers, and explores the possible role of
a large repository/data base of debugging anecdotes.

Eisenstadt: Tales of Debugging, p. 2

Preface

Programmers deserve better debugging tools. There are many excellent
integrated program development environments available commercially, but
professional programmers still have to engage in far more detective work than
they ought to. How do I know? I asked them! This paper summarizes what they
told me. Although the evidence is anecdotal and has been collected by a “pot
luck” worldwide email trawl, it nevertheless provides a first-pass stab at a
broader phenomenology of debugging, particularly from the perspective of
professional programmers.

Introduction

At the first Workshop on the Empirical Studies of Programmers, Bill Curtis asked
“By the way, did anyone study any real programmers?” (Curtis, 1987).
Interestingly, despite the large number of both pre-Curtis and post-Curtis
psychological studies of computer programming and debugging (e.g. Sime et
al., 1973; Gould and Drongowski, 1974; Brooks, 1980; Shneiderman, 1980;
Kahney & Eisenstadt, 1982; Soloway & Iyengar, 1986; Katz & Anderson, 1988;
Vesey, 1989) there is still a surprising shortage of self-reports by programmers
on the phenomenology of debugging–i.e. what it’s like “out there in the trenches”
from the programmer’s perspective. Two exceptions to this are (a) the detailed
account by Knuth of the log book that documented all the errors he encountered
over a ten-year development period working on TEX (Knuth, 1989), and (b) a log
book of the development efforts of a team implementing the Smalltalk-80 virtual
machine (McCullough, 1983). Self-reports and log books like that of Knuth and
McCullough are valuable sources of insight into the nature of software design,
development, and maintenance. Moreover, they can serve as handbooks or
guidelines for others by providing case study remiscences which highlight the
strengths, weaknesses, or even outright dangers of certain approaches.

The work reported here attempts to expand the single-user-log-book approach
of Knuth (who provided a much more detailed analysis than did McCullough) to
investigate the phenomenology of debugging across a large population of
users. The original aim of the study was to inform ongoing research in my
laboratory on the development of program visualization and debugging tools
(Eisenstadt et al., 1990; 1992; 1993), for which it seemed essential to have first-
hand knowledge of the experiences of a large body of professional
programmers. We had our own experiences to draw on, including extensive
work with novice programmers, but it seemed important to look further afield. In
particular, we had been growing increasingly concerned about the problems of
scalability: academic work on program visualization and debugging
environments would remain vulnerable to criticisms of “toy examples only”
unless an attempt was made to address the problems faced by professional
programmers working on very large programming tasks.

Toward this end, I conducted a survey of professional programmers, asking
them to provide stories describing their most difficult bugs involving large pieces
of software. The survey was conducted by electronic mail and

Eisenstadt: Tales of Debugging, p. 3

conferencing/bulletin board facilities with wordwide access (BIX, CompuServe,
Internet Usenet, AppleLink). My contribution is to gather, edit and annotate the
stories, and to categorize them in a way which may help to shed some light on
the nature of the debugging enterprise. In particular, I look at the lessons
learned from the stories, and discuss what they tell us about what is needed in
the design of future debugging tools. I also explore the possible role of a large
repository/data base of debugging anecdotes. The discussion throughout
concentrates on the relationships among three critical dimentsions: (a) why the
bugs were hard to find (c) how the bugs were found, and (c) the root causes of
the bugs.

The Trawl

Raw data

On 3 March, 1992, I posted a request for debugging anecdotes on an electronic
bulletin board called BIX. BIX is The “BYTE Information Exchange” hosted on a
computer network centred in Boston, Massachusetts, and accessed by
approximately 60,000 users, mostly in the USA. BIX has a reputation for strong
technical expertise, and it was for this reason that I chose BIX to start with. The
original message is shown in figure 1.

c.language/tools #2842, from meisenstadt
771 chars, Tue Mar 3 06:09:28 1992
Comment(s).

TITLE: Trawl for debugging anecdotes (w/emphasis on tools side)...

I'm looking for some (serious) anecdotes describing debugging
experiences. In particular, I want to know about particularly thorny
bugs in LARGE pieces of software which caused you lots of headaches. It
would be handy if the large piece of software were written in C or C++,
but this is not absolutely essential. I'd like to know how you cracked
the problem-- what techniques/tools you used: did you 'home in' on the
bug systematically, did the solution suddenly come to you in your sleep,
etc. A VERY brief stream-of-consciousness reply (right now!) would be
much much better than a carefully-worked-out story. I can then get back
to you with further questions if necessary.

Thanks!

-Marc

Figure 1. The original “trawl” request, posted on BIX. c.language is the name of the conference
(major subject category), and “tools” is the name of the topic (minor interest sub-category). BIX has
60,000 members, hundreds of conferences and thousands of topics, each with thousands of
messages and replies. A second message, explaining my motivation, was also posted.

During the ensuing months, similar messages were then posted to AppleLink,
CompuServe, various Usenet newsgroups on Internet, and the Open
University’s own conferencing system (OU CoSy). The trawl request elicited
replies from 78 “informants”, mostly in the USA and UK. The group included
implementors of very well-known commercial C compilers, members of the ANSI
C++ definition group, and other known commercial software developers.

Eisenstadt: Tales of Debugging, p. 4

Figure 2 shows a typical reply to the original request. In that reply, the informant
describes many important facets of his debugging experience: (a) the
background context (MS-DOS 8086 compiler), (b) the symptom (wrong value on
stack); (c) how he approached the problem (single-stepping using assembly-
level debugger); (d) why it was hard (the change happened more quickly at run-
time than he could observe while single-stepping, plus he had the wrong model
of which way the stacks grew, which made it harder to understand the
behaviour); and (e) what the root cause of the problem was (the address below
the stack pointer was being wiped out by the operating system interrupt
handlers, and the pointer was being decremented too late in the compiled
code).

I had a bug in a compiler for 8086's running MSDOS once that stands out
in my mind. The compiler returned function values on the stack and once
in a while such a value would be wrong. When I looked at the assembly
code, all seemed fine. The value was getting stored at the correct
location of the stack. When I stepped thru it in the assembly-level
debugger and got to that store, sure enough, the effective address was
correct in the stack frame, and the right value was in the register to
be stored. Here's the weird thing --- when I stepped through the store
instruction the value on the stack didn't change. It seems obvious in
retrospect, but it took some hours for me to figure out that the
effective address was below the stack pointer (stacks grow down here),
and the stored value was being wiped out by os interrupt handlers (that
don't switch stacks) about 18 times a second. The stack pointer was
being decremented too late in the compiled code.

Figure 2 A typical debugging anecdote. A representative sample of the raw data is presented in
Appendix A.

A total of 110 messages were generated by 78 different informants. Of those, 50
informants specifically told a story about a nasty bug. A few informants provided
several anecdotes, and in all a total of 59 bug anecdotes were collected. A
second collection of anecdotes, which will be used subsequently for a top-down
analysis by comparing it against the first collection, yielded an additional 58
messages from 47 more informants, of whom 45 told specific debugging stories.
A few representative raw anecdotes are presented in Appendix A. The next
sections presents a detailed summary of the raw data, followed by an analysis
and discussion of the lessons learned.

Condensed data

The stories and discussions which were posted on the various networks made
fascinating reading, but they needed to be digested in some way to make them
more meaningful and accessible. I entered summaries of the incoming data into
a large spreadsheet-cum-database, experimenting with the use of a variety of
different data fields in an attempt to succinctly characterize the data. Table B-1
in Appendix B is an excerpt from that database, selected to show (a) the five
fields (other than ID number) which emerged as persistent and relevant
throughout the study, and (b) all 36 of the anecdotes which contained enough
detail to yield an entry in each field. The relevant entry for the anecdote shown
earlier in Figure 2 can be found in Table B-1 alongside ID "U6".

The contents of Table B-1 is itself the result of several iterations of the analyses
reported in the next sections. The reader may find it useful to browse the

Eisenstadt: Tales of Debugging, p. 5

appendices before proceeding further in order to gain an overview of the style
and content of the informants reports.

Analysis of the anecdotes

Dimensions of analysis: why difficult, how found, and root cause

Although the “root cause” of reported bugs is of a priori interest, in order to fully
characterise the phenomenology of the debugging experiences I needed to look
at more than the causes of the bugs. In particular, it was necessary to say
something about why a bug was hard to find (which might or might not be
related to the underlying cause), and how it was found (which might or might not
be related to the underlying cause and the reason for the difficulty). Thus, three
dimensions became the critical focus for the ensuing analysis:

• Why difficult: This identifies the reason that the debugging experience
itself was tricky or painful, e.g. perhaps the bug rendered the
debugging tools unusable.

• How found: This identifies the diagnostic methodologies or techniques
that were used in resolving the problem, e.g. single-stepping the code
or inserting hand-tailored print statements.

• Underlying cause of bug: This identifies the root cause of the bug
which, when fixed, means that the programmer has either totally
solved the problem or else has gone far enough to regard the problem
as being “in hand”.

We know something about each of these dimensions from previous studies,
although only Knuth’s study really addresses the phenomenology of
“debugging-in-the-large”. Vesey (1989) attempted to address the first dimension
(why difficult) by asking how the time to find a bug depended upon its location in
a program’s structure and its level in a propositional analysis of the program
(answers: location in serial structure has no effect, and level in propositional
structure is inconclusive). Regarding techniques for bug finding (second
dimension), Katz and Anderson (1988) reported a variety of bug-location
strategies among experienced Lisp subjects in a laboratory setting. In particular,
they distinguished among (i) strategies which detected a heuristic mapping
between a bug’s manifestation and its origin, (ii) those which relied on a hand
simulation of execution, and (iii) those which resorted to some kind of causal
reasoning. Goal-driven reasoning (either heuristic mapping or causal
reasoning) was predominant among subjects who were debugging their own
code, whereas data-driven reasoning (typically hand simulation) was
predominant among subjects who were debugging other programmers’ code. In
all cases bug fixing was not particularly problematic, once the bugs were
located. However, that study involved programs which were typically about 10
lines long, and it is worth noting that a whole new set of problems arise for
programming-in-the-large (the informants who mention program size typically
speak of thousands of lines). In particular, the need for a bottom-up data

Eisenstadt: Tales of Debugging, p. 6

gathering phase, which helps the programmer get some approximate notion of
where the bug might be located, becomes apparent.

As far as root causes are concerned (dimension three), two main approaches to
the development of bug taxonomies have been followed: a deep plan analysis
approach (e.g. Johnson et. al., 1983; Spohrer et al., 1985) and a
phenomonelogical account (e.g. Knuth, 1983; du Boulay, 1986). Johnson et.
al., worked on the premise that a large number of bugs could be accounted for
by analysing the high level abstract plans underlying specific programs, and
specifying both the possible fates that a plan component could undergo (e.g.
missing , spurious , misplaced) and the nature of the program constructs
involved (e.g. inputs, outputs, initializations, conditionals). Spohrer et. al. (1985)
refined this analysis by pointing out the critical nature of bug interdependencies
and at problem-dependent goals and plans. An alternative characterization of
bugs was provided by Knuth’s study. In particular, Knuth’s analyses uncovered
the following nine (problem-independent) categories: A= algorithm awry; B=
blunder or botch; D= data structure debacle; F= forgotten function; L= Language
liability, i.e. misuse or misunderstanding of the tools/language/hardware
(“imperfectly knowing the tools”); M= Mismatch between modules (“imperfectly
knowing the specifications”, e.g. interface errors involving functions called with
reversed args); R= Reinforcement of robustness (e.g. handling erroneous input);
S= surprise scenario (bad bugs which forced design change, unforeseen
interactions); T= Trivial typo.

For both approaches (plan analysis vs. phenomenological) the “true” cause of a
bug can really only be resolved by the original programmer, because it is
necessary to understand the programmer’s state of mind at the time the bug was
spawned in order to be able to assess the cause properly. For example, using
the wrong variable could occur because the programmer really misunderstood
the design of the algorithm, (i.e. he or she entered precisely the intended
variable, but the intentions were mistaken, thereby falling into Knuth’s category
“A”), or it could be a lowly typographical error (Knuth’s “T”). The manifestation is
the same, but the root cause is different.

I found it informative to evolve my own categories in a largely bottom-up fashion
after extensive inspection of the data, and then compare them specifically with
the ones provided by Knuth. The comparison is provided in the far right hand
column of Table B-1 (Appendix B) by means of a bracketed label such as “{A}” or
“{L}” following relevant entries. In some cases, there is a straightforward
mapping, but in others it is more subtle. For instance, there is sometimes a one-
to-many mapping between my categories and those of Knuth. The reason is that
Knuth knew his state of mind at the time he committed the errors reported in his
log, whereas I have to rely on my interpretation of the programmer’s anecdote.
Even when the programmer’s state of mind is clearly assessible, the
assignment of blame can be awkward, because a given cause may always have
an even deeper root cause. For example, the apparent root cause of a crash
may be a memory address being overwritten by faulty data, and that faulty data
itself may have been caused by a low level hardware fault (which itself may
have a deeper cause relating to the time when coffee was spilled on the
hardware in question, etc.).

Eisenstadt: Tales of Debugging, p. 7

The criterion I have adopted for identifiying root causes is as follows: when the
programmer is essentially satisfied that several hours or days of bewilderment
have come to an end once a particular culprit is identified, then that culprit is the
root cause, even when deeper causes can be found. I have adopted this
approach (a) because a possible infinite regress is nipped in the bud, (b)
because it is consistent with my emphasis on the phenomenology of debugging,
i.e. what is apparently taking place as far as the front-line programmer is
concerned, (c) it enables me to concentrate on what the programmers reported,
and not try to second-guess them. In practice, the main consequence of this is
that the category “memory cloberred” is identified as the root cause of numerous
other problems, even though the cloberring may itself have been caused by,
say, a faulty array declaration. If the faulty declaration is reported in the
anecdote, then I select that as the root cause, but if some variation of memory
cloberring is deemed to be the culprit, then I accept that as the root cause.

The subsections which follow describe the three dimensions of analysis (why
difficult; how found; root cause) in turn.

Dimension 1: Why difficult

Categories

The reasons that the bug was hard to trap fell into five categories, as described
below:

• cause/effect chasm: Often the symptom is far removed in space
and/or time from the root cause, and this can make the cause hard to
detect. Specific instances can involve timing or synchronization
problems, bugs which are intermittent, inconsistent, or infrequent, and
bugs which materialize “far away” (e.g. thousands of iterations) from
the actual place they are spawned. In this general category I have
also included debugging episodes in which thre are too many
degrees of freedom. As an example of such an episode, consider the
case in which a piece of software which works perfectly in one
environment, yet fails to work in another environment. If many things
have changed (e.g. different hardware, different compiler, different
linker), then there are simply too many degrees of freedom to enable
systematic testing under controlled conditions to isolate the bug. Such
testing can be done, given enough time and resources, but it is
difficult—hence this category.

• tools inapplicaple or hampered: Most programmers have
encountered so-called “Heisenbugs”, named after the Heisenberg
uncertainty principle in physics: the bug goes away when you switch
on the debugging tools! Other variations within this category are: long
run to replicate (i.e. the bug takes a long time to replicate on a fresh
execution, so if switching on the debugging tool significantly slows
down execution, then it can not really be used); stealth bug (i.e. the
error itself consumes the evidence that you need to find the bug, or
even clobbers the debugging tool); context precludes (i.e. some
configuration or memory constraints make it impractical or impossible
to use the debugging tool).

Eisenstadt: Tales of Debugging, p. 8

• WYSIPIG (What you see is probably illusory, guv'nor): I have
coined this expression to reflect the cases in which the programmer
stares at something which simply is not there, or is dramatically
different from what it appears to be. This can range from syntactic
problems (e.g. hallucinating a key word in the code which is actually
not there) to run-time observations (looking at a value on the screen
which is displayed in a different way, e.g. “10” in an octal display being
misinterpreted as meaning 7+3 rather than 7+1). Such observations
lead the programmer on a wild-goose chase, and can be the reason
why certain otherwise simple bugs take a long time to track down.

• faulty assumption/model or mis-directed blame: If you think
that stacks grow up rather than down (as did the informant in Figure 2),
then bugs which are related to this behaviour are going to be hard to
detect. Equally, if you bet your life on the known correct behaviour of a
certain function (which is actually faulty), you are going to spend a lot
of time looking in the wrong place.

• spaghetti (unstructured) code: Informants sometimes reported
that the code “was in a mess” when they were called in to deal with it.
There is, unsurprisingly, a 100% correlation between complaints
about “ugly” code and the assertions that “someone else” wrote the
code.

Results

In this and subsequent sections, I report the frequency of occurrence of the
different categories, not because it supports an a priori hypothesis at some level
of statistical significance, but rather because it gives us a convenient overview of
the nature of the problems that the informants chose to share with us. Knuth
argues that the categories and “raw records” themselves are just as informative
as summary statistics (e.g. showing the frequency of occurrence of particular
error types): “The concept of scale cannot easily be communicated by means of
numerical data alone; I believe that a detailed list gives important insights that
cannot be gained from statistical summaries.” In a similar vein, I am mainly
interested in categorizing the findings, but feel that a count of frequency of
occurrence is of interest as a reflection of what types of problems the population
of informants chose to report.

The frequency of occurence of the different reasons for having difficulty is shown
in Table 3.

Category . Occurrences

cause/effect chasm ... 15

tools inapplicable or hampered... 12

WYSIPIG: What you see is probably illusory, guv'nor 7

faulty assumption/model or mis-directed blame.................................. 6

spaghetti (unstructured) code.. 3

??? (no information) ... 8

Table 3 . Why the bugs were difficult to track down.

Eisenstadt: Tales of Debugging, p. 9

Thus, 53% of the difficulties are attributable to just two sources: (i) large temporal
or spatial chasms between the root cause and the symptom, and (ii) bugs that
rendered debugging tools inapplicable. The high frequency of reports of
cause/effect chasms accords well with the analyses of Vesey (1989) and
Pennington (1987) which argue that the programmer must form a robust mental
model of correct program behaviour in order to detect bugs—the cause/effect
chasm seriously undermines the programmer’s efforts to construct a robust
mental model. The relationship of this finding to the analysis of the other
dimensions is reported below.

Dimension 2: How found

Categories

The informants reported four major bug-catching techniques, as follows:

• gather data: This category refers to cases in which the informant
decided to “find out more”, say by planting print statements or
breakpoints. In fact, a variety of specific data collection techniques
were reported. The important thing that distinguishes these data
collection techniques from the “controlled experiments” category
described below is their bottom-up nature. That is, the informants may
have had a rough idea of what they were looking for, but were not
explicitly testing any hypotheses in a systematic way. Notice that this
category is different both from Katz and Anderson’s (1987) causal
reasoning and from their data-driven hand simulation: it is really a
hybrid of the two, because it is bottom-up, on the one hand, yet can
lead directly to a causal analysis once the data has been gathered.
Here are the six sub-categories reported by the informants:

• step & study: the programmer single-steps through the code,
and studies the behaviour, typically monitoring changes to data
structures

• wrap & profile: tailor-made performance, metric, or other
profiling information is collected by “wrapping” (enclosing) a
suspect function inside a one-off variant of that function which
calls (say) a timer or data-structure printout both before and
after the suspect function.

• print & peruse: print statements are inserted at particular points
in the code, and their output is observed during subsequent
runs of the program

• dump & diff: either a true core dump or else some variation (e.g.
voluminous output of print statements) is saved to two text files
corresponding to two different execution runs; the two files are
then compared using a source-compare (“diff”) utility, which
highlights the difference between the two execution runs

Eisenstadt: Tales of Debugging, p. 10

• conditional break & inspect: a breakpoint is inserted into the
code, typically triggered by some specific behaviour; data
values are then inspected to determine what is happening

• specialist profile tool (MEM or Heap Scramble): there are
several off-the-shelf tools which detect memory leaks and
corrupt or illegal memory references, and the experts who
relied on these also tended to rave about their value.

• “inspeculation”: This name is meant to be a hybrid of “inspection”
(code inspection), “simulation” (hand-simulation), and “speculation”,
which were among a wide variety of techniques mentioned explicitly
or implicitly by informants: cogitation, meditation, observation,
inspection, contemplation, hand-simulation, gestation, rumination,
dedication, inspiration. In other words, they either go away and think
about something else for a while, or else spend a lot of time reading
through the code and thinking about it, possibly hand-simulating an
execution run. “Articulation” (explaining to someone else how the
code works) also fits here. The point is that this family of techniques
does not involve any experimentation or data gathering, but rather
involves “thinking about” the code.

• expert recognized cliché: These are cases where the
programmer called upon a cohort, and the cohort was able to spot the
bug relatively simply. This recognition corresponds to the heuristic
mapping observed by Katz and Anderson. The very nature of my data
gathering excercise invariably requires a cohort (rather than the
informant) to have detect the bug: the informant would not have been
stumped, nor would have bothered telling me about the bug, had he or
she been able to identify the solution quickly in the first place!

• controlled experiments: Informants resorted to specific controlled
experiments when they had a clear idea about what the root cause of
the bug might be.

Results

The frequency of occurrence of the different debugging techniques is shown in
Table 3.

Category . Occurrences

gather data.. 27

inspeculation .. 13

expert recognized cliché.. 5

controlled experiments.. 4

??? (no information) ... 2

Table 3 . Techniques used to track down the bugs.

Techniques for bug-finding are clearly dominated by reports of data-gathering
(e.g. print statements) and hand-simulation, which together account for 78% of
the reported techniques, and highlight the kind of “groping” that the programmer

Eisenstadt: Tales of Debugging, p. 11

is reduced to in difficult debugging situations. Let’s now turn to an analysis of
the root causes of the bugs before we go on to see how the different dimensions
interrelate.

Dimension 3: Root cause

Categories

The bug causes reported by the informants fell into the following nine
categories:

• mem: Memory clobbered or used up. This cause has a variety of
manifestations (e.g. overwriting a reserved portion of memory, and
thereby causing the system to crash) and may even have deeper
causes (e.g. array subscript out of bounds), yet is often singled out by
the informants as being the source of the difficulty. Knuth has an
analagous category, which he calls “D = Data structure debacle”.

• vendor: Vendor’s problem (hardware or software). Some informants
report buggy compilers or faulty logic boards, for which they either
need to develop a workaround or else wait for the vendor to provide
corrective measures.

• des.logic: Unanticipated case (faulty design logic). In such cases,
the algorithm itself has gone awry, because the programmer has not
worked through all the cases correctly. This category encompasses
both those which Knuth labels as “A = algorithm awry” and also those
labelled as “S=surprise scenario”. Knuth’s A-vs.-S distinction can only
be resolved by in-depth introspection, and is too fine-grained for the
purposes of this study.

• init: Wrong initialization; wrong type; definition clash. A programmer
will sometimes make an erroneous type declaration, or re-define the
meaning of some system keyword, or incorrectly initialize a variable. I
refer to all of these as “init” errors, since the program begins with its
variables, data structures, or function definitions in an incorrect starting
state.

• var: Wrong variable or operator. Somehow, the wrong term has been
used. The informant may not provide enough information to deduce
whether this was really due to faulty design logic (des.logic) or
whether it was a trivial lexical error (lex), though in the latter case
trivial typos are normally mentioned explicitly as the root cause.

• lex: Lexical problem, bad parse, or ambiguous syntax. These are
meant to be trivial problems, not due to the algorithm itself, nor to faulty
variables or declarations. This class of errors encompasses Knuth’s
“B=Blunder” and “T=Typo”, which are hard to distinguish in informant’s
reports.

• unsolved: Unknown and still unsolved to this day. Some informants
never solved their problem!

Eisenstadt: Tales of Debugging, p. 12

• lang: Language semantics ambiguous or misunderstood. In one
case, an informant reports that he thought that 256K meant 256000,
which is incorrect, and can be thought of as a semantic confusion. In
another case, an informant reported a mismatch between the way a
manual described some maximum value and the way in which it was
actually dealt with by the compiler.

• behav: End-user's (or programmer's) subtle behaviour. For example,
in one case the bug was caused by an end-user mysteriously
depressing several keys on the keyboard at once, and in another case
the bug involved some mischievous code inserted as a joke. These
are really manifestations of behaviour external to the normal
progamming arena, but still warrant a category in their own right.

Results

Table 3 displayes the frequency of occurrence of the nine underlying causes.

Category . Occurrences

mem : Memory clobbered or used up.. 13

vendor : Vendor’s problem (hardware or software)............................ 9

des.logic : Unanticipated case (faulty design logic) 7

init : Wrong initialization; wrong type; definition clash......................... 6

lex : Lexical problem, bad parse, or ambiguous syntax 4

var : Wrong variable or operator .. 3

unsolved : unknown and still unsolved to this day............................ 3

lang : language semantics ambiguous or misunderstood................... 2

behav : end-user's (or programmer's) subtle behaviour 2

??? (no information) ... 2

Table 3. Underlying causes of the reported bugs.

Table 3 indicates that the biggest culprits were memory overwrites and vendor-
supplied hardware/software problems. Even ignoring vendor-specific
difficulties, one implication of Table 3 is that 37% of the nastiest bugs reported
by professionals could be addressed by (a) memory-analysis tools and (b)
smarter compilers which trapped initialization errors. But what about the
interaction between the cause of the bug, the reason for the debugging difficulty,
and the debugging technique? That is precisely the focus of the next section.

Relating the dimensions

To understand the ways in which the three dimensions of analysis interrelate,
we can place every anecdote precisely in our three-dimensional space. For
expository purposes (and because multi-dimensional diagrams are hard to

Eisenstadt: Tales of Debugging, p. 13

discuss) let’s consider just the following two-dimensional comparisons: (a) root
cause vs. how found, and (b) how found vs. why difficult.

Table 4 compares root causes (row labels) against bug-finding techniques
(column labels). Each cell entry shows the number of anecdotes with the given
attributes. In cases where an anecdote reveals multiple attributes (say, it
belonged partly to column 3 and partly to column 4), it is simply split evenly
across the appropriate cells, hence the fractional entries. Tables 1, 2, and 3,
incidentally, did not use this splitting technique, and correspond to tallies of the
primary (first-reported) categories only.

CAUSE vs.
HOW

gather
da ta

inspeculation exper t
recognized

cl iché

controlled
experiments

???
(no info)

TOTALS

mem 8.50 4.00 1.00 1 3 . 5 0
vendor 4.00 3.00 1.00 3.00 1 1 . 0 0
des. logic 4.00 3.00 7 . 0 0
init 5.00 1.00 6 . 0 0
lex 1.00 2.00 1.00 4 . 0 0
va r 2.00 .50 1.00 3 . 5 0
unsolved 3.00 .50 .50 4 . 0 0
lang 1.00 1.00 2 . 0 0
behav 1.00 1.00 2 . 0 0
??? (no info) 2.00 2 . 0 0
TOTALS 2 9 . 5 0 1 3 . 0 0 6 . 0 0 4 . 5 0 2 . 0 0 5 5 . 0 0

Table 4. Tally of root causes of bugs (rows) vs. how found (columns). Each cell entry (e.g. 8.50)
is a tally of the number of anecdotes reporting that cell’s row label (i.e. root cause) and column label
(i.e. how found). Fractional entries reflect anecdotes which have been divided into multiple
categories, so that an anecdote reporting both a “controlled experiment” and “expert recognized
cliché” scores .50 in each cell. Note that tables 1, 2, and 3 only tallied the primary (first-reported)
category for each dimension.

Of most interest is the relative density of anecdotes in the upper left-hand corner
of the table, suggesting particularly that memory-clobbering errors could usefully
be dealt with by better data-gathering tools. The density of the cell entries is not
greater than that predictable by chance from the row and column totals alone
(X2 ,df:36, = 45.30, ns), suggesting no reliable relationship between root cause
and how found, though the cell densities are nevertheless of a priori interest to
tool developers, as discussed below.

Table 5 compares reasons for difficulty (rows lables) against bug-finding
techniques (column labels). Once again, the need for data-gathering tools is
highlighted, this time for dealing with cause/effect chasms and cases in which
other debugging tools are inapplicable. In this case, the density of certain cell
entries is greater than that predictable by chance from the row and column totals
alone (X2 ,df:20, = 33.50, p. < .05), suggesting in particular that data-gathering
activities are of special relevance when a cause/effect chasm is involved or
when the built-in debugging tools are somehow rendered inapplicable.

Eisenstadt: Tales of Debugging, p. 14

WHY vs.
HOW

gather
da ta

inspeculation exper t
recognized

cl iché

controlled
experiments

???
(no info)

TOTALS

cause/e f fec t
chasm

9.83 3.00 1.50 2.50 1 6 . 8 3

tools
hampered

9.83 2.00 2.00 1 3 . 8 3

WYSIP IG 2.00 2.00 1.50 2.00 7 . 5 0
fau l ty
assumption

2.50 3.00 1.00 6 . 5 0

spaghett i 1.33 1.00 2 . 3 3
??? (no info) 4.00 2.00 2.00 8 . 0 0
TOTALS 2 9 . 5 0 1 3 . 0 0 6 . 0 0 4 . 5 0 2 . 0 0 5 5 . 0 0

Table 5. Tally of why bugs were difficult (rows) vs. how found (columns). Each cell entry (e.g.
9.83) is a tally of the number of anecdotes reporting that cell’s row label (i.e. root cause) and
column label (i.e. how found). Fractional entries reflect anecdotes which have been divided into
multiple categories, so that an anecdote reporting three reasons for difficulty scores .33 in each of
three relevant cells.

A niche of potential interest (and profit) to tool vendors is highlighted by looking
at the relationship among the three dimensions: the most heavily populated cells
are those involving data-gathering, cause-effect chasms and memory or
initialization errors. The implications of this finding are discussed in the next
section.

Discussion: Lessons learned

From boasting war stories to on-line repository

What intrigued me the most upon seeing the replies was the way in which
complete strangers, with very little prompting and no incentive, were so
articulate in their reminscences, and so forthcoming with details. These people
clearly enjoyed relating their debugging experiences. Moreover, the depth of
supplied details seemed to be independent of whether I had explicitly posted my
motivation (as I did on BIX and AppleLink) or not (as was the case on Usenet
and CompuServe). Clearly, this is a self-selecting audience of email users and
conference browsers who enjoy electronic “chatting” anyway, and some may
even have felt a “macho” need to tell a good (and hence boastful) war story-- so
much the better! I have no reason to distrust the sources, and the details of
each story certainly have their own self-consistency. It is already widely
accepted that the international computer network community is a gold-mine of
information (see, e.g. BYTE feature article on the Internet, 1992). This collection
of anecdotes suggests that it may also be a rich repository of willing subjects
ready to supply detailed knowledge in a fairly rigorous manner which may then
serve as a resource for others. We are now exploring the idea of developing an
on-line repository which could be used both to receive new anecdotes and to
respond automatically to keyword enquiries. This could be of great benefit to
those with an urgent need to solve complex debugging problems, but only after
an appropriate indexing scheme has evolved. This paper is a first step toward
such a scheme. Note that it is not necessary to develop a definitive taxonomy.
On the contrary, the stories themselves, even when only tangentially related to a
specific bug enquiry, could be sufficient to trigger an insight which leads to the
solution of a debugging problem.

Eisenstadt: Tales of Debugging, p. 15

Comparison with fine-grained study

As part of a series of investigations on the nature of programming and
debugging environments, I have also looked in detail at what it’s like to work
with an apparently “modern” and “friendly” program development environment:
HyperCard. I kept a detailed diary of several lengthy debugging sessions, and
then analysed the problems and difficulties I experienced (Eisenstadt, 1993). In
particular, the “why difficult” dimension was analysed at a more a fine-grained
level of detail, revealing eight fundamental problems. Table 6 overleaf lists each
of those problems (left-hand column), shows which coarse-grained “why difficult”
category they correspond to (middle column), and identifies a possible solution
(right-hand column).

Fine-grained Problem Coarse-grained
“Why difficult”

Category

Proposed Solution

1. The link between an error message
and the offending source code line
has to be deduced by the user
(whereas it could be provided for
free).

Cause/effect chasm;
Tools inapplicable or
hampered (long run
to replicate);

S1: Computable relations should be
computed on request, rather than be
deduced by the user.

2. Performing a routine
debugging/inspecting action
involves dealing with many disruptive
subgoals (e.g. switching modes to
enable specific machine states).

Faulty assumption
(typically about what
“mode” the
debugging tool is in)

S2: Atomic user-goals should be
mapped onto atomic actions.

3. Access to the interpreter (and other
features) in the middle of a break is
disallowed.

Tools inapplicable or
hampered (context
precludes using
debugger)

S3: Allow full functionality at all times.

4. The behaviour of built-in functions
can not be monitored easily.

Tools inapplicable or
hampered (context
precludes using
debugger)

S4: Viewers should be provided for
“players” (any evaluable expression)
rather than just “variables”.

5. There is no meaningful coarse-
grained view of execution.

Tools inapplicable or
hampered

S5: Provide a variety of navigation
tools at different levels of granularity.

6. Traversal of indirect data influences
(data flow) requires too much
detective work.

Cause/effect chasm S6=S1: Computable relations
should be computed on request,
rather than be deduced by the user.

7. Understanding the precise
conditions under which a particular
event happens (control flow logic)
requires too much detective work.

Cause/effect chasm S7=S1: Computable relations
should be computed on request,
rather than be deduced by the user.

8. The “inner state” of an object can be
deceptively different from its
apparent state, requiring extra
detective work to uncover.

WYSYIPIG: what you
see is probably
illusory, guv’nor

S8: Displayable states should be
displayed on request, rather than be
deduced by the user.

Table 6. Relationship between fine-grained problems identified using self-report (left column)
and coarse-grained categories of the current broad survey (middle column). Prospective solutions
to each of the eitht fine-grained problems are also identified (right-hand column).

Although the scope of the two studies was rather different, it is nevertheless
gratifying that most of the problems found in the fine-grained study fell into the
two most popular studies reported in this coarse-grained study of the current
paper (namely, tools hampered and cause/effect chasm).

Eisenstadt: Tales of Debugging, p. 16

Solutions

What programmers really need, of course, are smarter compilers and
debuggers. But the analyses presented throughout this paper suggest that we
can be more precise than simply demanding “smartness” from tool developers.
For one thing, we have identified a niche that really needs attention: the most
heavily populated cell in our three dimensional analysis suggests that a winning
tool would be one which employed some data-gathering or traversal method to
resolved large cause/effect chasms in the case of memory-clobbering errors
(indeed Purify, described below, does precisely this). Secondly, we can
propose solutions to the “why difficult” problems by considering the specific
cases brought to light by the fine-grained study described above. One way or
another, all of the problems mentioned in Table 6 are connected with
“directness” and “navigation”. For example, the need to go through indirect
steps, intermediate subgoals or obtuse lines of reasoning plagues the user
encountering problems 1, 2, 3, 6, 7, and 8, and each of these problems can be
addressed specifically.

The proposed solutions presented in Table 6 are not necessarily easy to
implement, but there are an increasing number of tools appearing both in the
research community and in the marketplace which illustrate aspects of these
solutions. For example, consider the idea of computing and displaying
important relations and states on request, rather than relying on the
programmer’s deductive skills (solutions S1=S6=S7 and S8). The software tool
Purify (Hastings & Joyce, 1992) analyses run-time memory leaks in C programs
on Sun workstations by patching the object code at link time, and pinpoints the
root cause of the leak by traversing many indirect dataflow links back to the
offending source code. Thus, it already solves a much harder dataflow traversal
problem than that required to deal with indirect pointer traversing such as that
reported by several informants. Solution S3 (allowing full functionality at all
times) is effectively provided in many modern Lisp implementations. Solutions
S4 and S5 (viewers and granularity) have been explored at length in (Brayshaw
& Eisenstadt, 1991) and (Eisenstadt et. al., 1993). That leaves S2 (atomic user-
goals should be mapped onto atomic actions), which is increasingly addressed
in commercial debugging tools, but still requires significant research input.

Summary and conclusions

An analysis of the debugging anecdotes collected from a worldwide email trawl
revealed three primary dimensions of interest: why the bugs were difficult to find,
how the bugs were found, and root causes of bugs. Half of the difficulties arose
from just two sources: (i) large temporal or spatial chasms between the root
cause and the symptom, and (ii) bugs that rendered debugging tools
inapplicable. Techniques for bug-finding were dominated by reports of data-
gathering (e.g. print statements) and hand-simulation, which together accounted
for almost 80% of the reported techniques. The two biggest causes of bugs
were (i) memory overwrites and (ii) vendor-supplied hardware or software faults,
which together accounted for more than 40% of the reported bugs. The analysis
pinpoints a winning niche for future tools: data-gathering or traversal methods to
resolved large cause/effect chasms in the case of memory-clobbering errors.
Other specific solutions, all of which emphasize issues of “directness” and

Eisenstadt: Tales of Debugging, p. 17

“navigation” were developed by comparing the current study with a fine-grained
self-report study. The investigation highlights a potential wealth of information
available by worldwide email, and indicates that it may well be possible to
establish an on-line repository for perusal by those with an urgent need to solve
complex debugging problems.

References

Brayshaw, M. & Eisenstadt, M. (1991). A Practical Graphical Tracer for Prolog. International Journal of Man-
Machine Studies, 35(5): 597-631.

Brooks, R. E. (1980). Studying Programmer Behavior Experimentally: the problems of a proper methodology.
Communications of the ACM, 23(4):207-213.

du Boulay, J. B. H. (1986). Some difficulties of learning to program. Journal of Educational Computing
Research, 2(1):57-73.

Eisenstadt, M. (1993). Why HyperTalk debugging is more painful than it ought to be. Submitted to British
Computer Society HCI’93, London, September 1993. Also available as: Technical Report No. 103,
Human Cognition Research Laboratory, The Open University, Milton Keynes, UK.

Eisenstadt, M., Domingue, J., Rajan, T., & Motta, E. (1990). Visual Knowledge Engineering. IEEE Transactions
on Software Engineering, 16(10):1164-1177.

Eisenstadt, M., Keane, M., & Rajan, T. (Ed.). (1992). Novice Programming Environments: explorations in
human-computer interaction and artificial intelligence. East Sussex, UK: Lawrence Erlbaum
Associates.

Eisenstadt, M., Price, B. A., & Domingue, J. (1993). Software Visualization As A Pedagogical Tool. Instructional
Science, 21: 335-365.

Gould, J.D., & Drongowski, P. (1974). An exploratory study of computer program debugging. Human Factors,
16 (3): 258-277.

Hastings, R. & Joyce, B. Purify: fast detection of memory leaks and access errors. Proceedings of the Winter
Usenix Conference, January 1992.

Johnson, W. L. (1983). An Effective Bug Classification Scheme Must Take the Programmer into Account. In
Proceedings of The Workshop on High-Level Debugging, . Palo Alto, CA:

Kahney, H. & Eisenstadt, M. (1982). Programmers’ Mental Models of their Programming Tasks: The Interaction
of Real World Knowledge and Programming Knowledge. In Proceedings of The Fourth Annual
Conference of the Cognitive Science Society, (pp. 143-145).

Katz, I. R. & Anderson, J. R. (1988). Debugging: An analysis of bug-location strategies. Human Computer
Interaction, 3(4):351-399.

Knuth, D. E. (1989). The Errors of TeX. Software—Practice and Experience, 19(7):607-685.

McCullough, P. L. (1983). Implementing the Smalltalk-80 System: The Tektronix Experience. In G. Krasner
(Eds.), Smalltalk-80: Bits of History, Words of Advice (pp. 59-78). Reading, MA., USA: Addison-Wesley.

Pennington, N. (1987). Stimulus structures and mental representations in expert comprehension of computer
programs. Cognitive Psychology, 19: 295-341.

Shneiderman, B. (1980). Software Psychology. Cambridge, MA: Winthrop.

Eisenstadt: Tales of Debugging, p. 18

Sime, M. E., Green, T. R. G., & Guest, D. J. (1973). Psychological evaluation of two conditional constructions in
computer languages. International Journal of Man-Machine Studies, 5:123-143.

Soloway, E. & Iyengar, S. (Ed.). (1986). Empirical Studies of Programmers. Norwood, NJ: Ablex.

Spohrer, J. C., Soloway, E., & Pope, E. (1985). A Goal/Plan Analysis of BUggy Pascal Porgrams. Human-
Computer Interaction, 1(2):163-207.

Vesey, I. (1989). Toward a theory of computer progream bugs: an empirical test. International Journal of Man-
Machine Studies, 30:123-46.

Eisenstadt: Tales of Debugging, Appendix A, p. 19

Tales of Debugging from The Front Lines

Appendix A: Selected raw
anecdotes

U 1

Not too exciting, but I'll bet it's awfully typical. I had a program
(roughly 15,000 lines) in C, running on PCs and Unix. It does screen
writes using the curses library. After a long period of development
(mostly on the PCs) I started to see occasional odd characters popping
up on the screen. The problems were not easily reproducible, but they
gave me a queasy feeling. I started cursing the (public domain) curses
library I was using on the PC. I started setting breakpoints and
tracing, but any time I got a reproducible glitch, setting a breakpoint
or inserting a debugging statement "cured" the glitch.

Of course, by now you've probably guessed the problem. I eventually
wrote some routines that put a debugging wrapper around the standard
malloc() and free() calls. The routines do the following: log every
malloc() and free() to a disk file by module and line number, record
the number of bytes requested, insert checking signatures at the
beginning and end of every allocated chunk, and check those signatures
for overwrites at every free() or when explicitly requested to do so

I found all sorts of intriguing things (all in my own code, by the way,
none in the curses library). I sometimes free()ed memory twice (just
trying to make sure, I guess). I sometimes overran malloc()ed buffers
(usually by the infamous single '\0' at the end of a string). All in
all, I think I found about 10 memory allocation/usage errors. I'm not
sure exactly which were responsible for my glitches, but almost any of
them had bad potential. The glitches are gone, now. I can concentrate
on other problems...

U 1 2

The worst bug I've had to pin down comes from an artificial life model
I've been working with. I "inherited" the code - really awful K&R C
code with absolutely no structured programming. Functions are
scattered throughout C files, lots of global variables, no comments,
typical bad code. The whole system is rather small, actually - 4000
lines, so it is possible for me to understand the whole thing.

But at the time of the bug, I hadn't really grokked the whole mess.
The program only crashed after running about 45000 iterations of the
main simulation loop. Running it this long takes about 2 hours and 8
megabytes of core. The crash was a segmentation fault.

Somewhere, somehow, someone was walking over memory. But that
somewhere could have been *anywhere* - writing in one of the many
global arrays, for example.

The bug turned out to be a case of an array of shorts (max value 32k)
that was having certain elements incremented every time they were
"used", the fastest use being about every 1.5 iterations of the

Eisenstadt: Tales of Debugging, Appendix A, p. 20

simulator. So an element of an array would be incremented past 32k,
back down to -32k. This value was then used as an array index.

It points out several things of how C can really shoot you in the
foot. No overflow errors on integer operations, so 32767+1 really is
-32768. No bounds checking on array operations - a[-32768] = 0; is a
perfectly legal operation with really negative effects.

The actual bit of memory being written into eventually hit one of the
malloc() chain data structures (lots of 4k data structs being malloced
and freed), causing stupid Ultrix free() to do the Wrong Thing and
trash the heap.

But of course the actual seg fault was happening several iterations
after the error - the bogus write into memory. It took 3 hours for the
program to crash, so creating test cases took forever. I couldn't use
any of the heavier powered debugging malloc()s, or use watchpoints,
because those slow a program down at least 10 fold, resulting in 30
hours to track a bug. No good.

The way I found it was to first use GNU malloc(), which has some very
simple range checking features built in. That let me catch on to what
was actually generating the SIGSEGV - heap trashing. I then just sort
of zenned the bug, printing out data structures in the program and
looking to see if they looked right. I finally found the negative
number somewhere, then squashed the bug.

It took me 3 days to find.

U 1 9

The following is a true story that happened to me about 8 years ago.

I was working on a small team developing an Ada compiler in an
academic setting. I was responsible for the code generator. One day
I got a bug report from another member of the group that a certain Ada
program of his crashed whenever he compiled it with our compiler, and
it looked like the problem was a stack underflow. (Our target machine
was a Perq Systems PERQ, running a microcoded stack-oriented
instruction set similar to P-Code.) Examination of the disassembled
object code revealed that, indeed, the compiler was generating
(subtly) bad code. There were, however, other binaries that were
purportedly built from the same sources by other members of the group,
and they compiled the program just fine. At first, we suspected a
version control problem, that somehow the version of the compiler that
I had built was constructed using different sources than the others.
We then suspected differences in release levels of the compiler and
linker used on the various machines. After a few quick
investigations, it became clear that something really fishy was going
on, so we began a more systematic investigation. We took a common set
of sources, and built a binary in which we tried every combination of
{ compile compiler, link compiler, compile test program, link test
program, run test program } on each of two machines. It turned out
that the problem appeared if and only if the compiler had been linked
on my machine.

We reported the problem to the hardware maintenance staff, a little
reluctant to blame the hardware, but fairly confident that we had
controlled for every other variable. The hardware people did not seem
too terribly put off by our diagnosis that a problem that might seem
so clearly to be a compiler bug was in fact a hardware problem. A

Eisenstadt: Tales of Debugging, Appendix A, p. 21

technician swapped out the CPU card of my workstation, I relinked the
compiler, and the problem vanished.

U 2 9

I once had a program that only worked properly on Wednesdays.
I had a devil of a time finding what the problem was.
At the end of one cycle it would ask you if you wanted to continue,
and unless you typed a "y" it would quit. (OK, OK, you caught me
it was indeed a game program.) This program would always end the game
even if you typed "y" unless you were playing on a Wednesday.
On Wednesdays it would work correctly.

The code for testing if a user has typed "y" or not is not very complex
and I was unable to see what the problem could be. Re-arranging the
code made the problem change symptoms but not go away.

In the end, the problem turned out to be that the program fetched the
time and date from the system and used it to compute a seed for a
random number generator. The system routine returned the day of the
week along with the date. The documentation claimed that the day of
the week was returned in a doubleword, 8 bytes. In actual fact,
Wednesday is 9 characters long, and the system routine actually
expected 12 bytes of space to put the day of the week. Since I was
supplying only 8 bytes, it was writing 4 bytes on top of storage area
intended for another purpose. As it turned out, that space was where a
"y" was supposed to be stored to compare to the users answer. Six days
a week the system would wipe out the "y" with blanks, but on Wednesdays
a "y" would be stored in its correct place.

A 6

Well I had this 3 day bug that nearly killed me. In the end we dont know the
exact cause but have some good ideas.

Essentially I was writing some serial code which would be called from an XFCN.
So I built a piece of code in Think C which would open a serial port, configure
it, ask for a record from a polhemus, parse the record and close the port. I
put this code in a WHILE loop with the test being button down. In this way I
could simulate the action of an XFCN. The code buzzed along returning records,
about 3000 or so then it crashed. So I thought it might be a malloc/free kinda
problem. Checked that then ran it again. Crashed again, on a different
iteration. Now there was no macs bugs being invoked and using the Think C
debugger was even less useful. What the [$#@%], I thought. Being a novice Mac
programmer (2 months to be exact) [Ed: new to Mac, experienced at C],
I started to freak out. So I heard that ANSI code was trouble.
I removed it all and replaced it with Toolbox code. Same thing. It would run
from anywhere from a few hundred to a few thousand iterations then crash.
But occassionally, I would get a Macs bugs error: error number 28. Stack
overflow. Ok so I checked all my optimization parameters, put
prototypes on and made sure I was returning something from a routine when I
was supposed to. Everything looked fine. I was on my 2nd day. I put in lots of
MemError calls, checked every single return value. I made sure there was no
garbage in any allocated buffers. Shut off all weird inits. Increased the
memory size of my app so it would have enough. I was on my third day. The stack
overflow would come from the Mac routine that runs during the VBL which checks
for stack/heap collision. But my routine that was called right before this was
always different. It looked hopeless. Now I did what everyone debugging should
always do. I called in someone else. In my case, it was the big guns: the Mac
programming gurus of the group. It was me and two down and dirty assembly

Eisenstadt: Tales of Debugging, Appendix A, p. 22

hackers giving it a whirl. They showed me all sorts of macs bugs secrets and
we thought we should write some assembly to catch that runaway stack pointer.
Just then, one the aforementioned mac gurus started laughing and said "you know
I tried to do exactly what you are trying to do last year. I wanted to rapidly
open up and close serial ports for my sound app. The program would run for
about 20 minutes and crash. Try this. Write your code so you open the port
once, pass state back to hypercard, read then close when done." Ok so I took
the 15 minutes and did this. Lo and behold we all watched in amazement as the
code ran for tens of thousands of iterations. Though the device manager should
be robust enough to deal with the rapid opening and resetting and closing of
serial ports, it just cant deal. So we worked around it. We are going to leave
it to someone else to find the real cause of the bug.

Eisenstadt: Tales of Debugging, Appendix B, p. 23

Tales of Debugging from The Front Lines

Appendix B: The Condensed Data

Table B-1. The condensed data, showing only those 36 entries for which every field could be
filled. Enries in the left hand column are coded to preserve anonymity. ID “B1a” means BIX
informant number 1 supplying the first of several anecdotes from that informant. ID labels U1-U37
refer to Usenet informants, and A1-A8 refer to AppleLink informants. Entries in the rightmost
column include labels such as {L} and {T} to show the most plausible mapping to the categories
used by Knuth (1983). Knuth’s category labels are: A=Algorithm awry; B=blunder; D=data
structure debacle; F=forgotten function; L=language liability; M=module
mismatch;S=surprise;T=typo. The other category labels used in the table cells are discussed in
the body of the paper.

I D Context Symptom Why difficult How found Cause
category: detail

{Knuth label}

B1a New commercial
software about to
be shipped; Quality
Assurance found
crash

Should be a call to
OS at specific
addres, but it's
missing

mis-directed blame
(compiler)

inspeculation: hand-
replicate compiled
code; inspection of
source; call in expert

init: undeclared variable
'temp' clashes w.
keyword 'temp'
{L}

B 2 Punched card
COBOL
programming

executed an
'unreachable' line!

WYSIPIG (What You
See Is Probably
Illusory, Guv’nor)

inspeculation: visual
inspection (with 15-
inch steel ruler)

lex: ‘.’ was in col 72,
hence regarded as a
comment!
{T}

B1b IBM Series/1
programming

Console prints
“IEW1234
IMMINENT
SYSTEM FAILURE”

faulty assumption (of
cooperative
programmer... turned
out to be practical or
malicious joke)

expert recognized
(after grilling
programmer)

behav: own program
printed this out
intentionally, user forgot
(programmer's behaviour
unpredictable... this was
a practical or malicious
joke)

B 9 VAX Pascal
program for
reading/writing file
of complex records

write OK, but read
yields garbage

tools hampered:
Heisenbug (bug goes
away when
debugging tools
used)

gather data: step &
study, print & peruse

init: read parameters
should have been
declared as VAR (i.e.
pointer rather than
value)
{L}

U 1 15,000 lines of C
code; PCs/Unix;
does screen writes
using curses
library

Odd chars on
screen

tools hampered:
Heisenbug

gather data: wrap &
profile

mem: free() called
multiple times; malloc()
buffers overrun by /0 at
end of string
{D}

U 3 Fileserver
maintenance; C /
Ultrix

open file, then try
to read it, server
claims 'not open'

tools hampered: long
run to replicate:
multiple flakey parts,
so tracing/stepping
slowed by other
failures

gather data:
conditional break &
inspect: bkpt on
memory access
(spec. address)

mem: array of char
maxlength 1024 got
overrun, munging file
pointer structure
{D}

U 6 Compiler for 8086's
running MSDOS

function returned
wrong value

faulty model (thought
stacks grew down);
timing

gather data: step &
study:single-step
assembler, observe
registers

mem: address BELOW
stack pointer being
wiped out by os interrupt
handlers; pointer
decremented too late in
the compiled code

Eisenstadt: Tales of Debugging, Appendix B, p. 24

I D Context Symptom Why difficult How found Cause
category: detail

{Knuth label}

U 9 set covering code
in Fortran
(spaghetti)

anomalous test
results

spaghetti: other
person’s code

gather data: MEM
probe: hand-trace &
debugger trace,
home in via “wolf-
fence”

des.logic: array element
was both a status flag &
a value... '0' was
ambiguous, and mis-
interpreted & therefore
clobbered
{A/F}

U10 PC clone,
debugging memory
resident (‘TSR’)
programs

crash after 20
minutes, but would
not crash when the
debugger was
switched on

tools hampered: a)
long run to replicate
(w. lotsa printout); b)
Heisenbug

inspeculation:
'dedication'/observat
ion

mem: bounds overrun;
TSR wrote above top of
memory into program...
didn't happen under
debugger which
occupied some of that
memory
{D}

U11 called foo(1); but in
definition of foo(X);
assigned X = 2

1 =2 WYSIPIG semantics gather data: print &
peruse

init: famous FORTAN
prob.. redefined 1 to be
2!!!!
{L/M}

U12 Artificial Life; 4000
lines of
unstructured K&R
C code

Crash
(segmentation
fault) after ~45,000
iterations; 2 hours

1) spaghetti: other
person's code; 2)
tools hampered: long
run to replicate
(watchpoints etc.
slowed downx10); 3)
cause effect chasm

gather data: wrap &
profile (GNU malloc()
range-checking);
trace data flow, print
out data structures
looking for oddball (=
a kind of dump & diff)

mem: array of shorts
(max value 32K)
incremented every 1.5
iterations until > 32K,
then this value was used
as an array index!;
bounds checking on
array operation would
have noticed, since
32676+1 -> -32768, ouch
negative array index
{D?/S/L}

U14 IBM kernel
development for
AIX v3

once every
~20,000 iterations,
SIGTRAP killed
traced proc

cause/effect chasm:
infrequent; tools
hampered: long run
to replicate;
Heisenbug

gather data: step &
study (problem went
away with new
compiler)

unsolved: it’s never
been solved (new AIX
released, prob went
away)

U15 Port of large
financial planning
package from PC
to Mac

random wrong
answers (only for
large models)

tools hampered: long
run to replicate

gather data: print &
peruse

init: uninitialized
variable, on the PC
version it is set to 0, but
on Mac may be set to
whatever was in that
location previously
{L/F}

U16 binary i/o package strings were
gibberish

cause/effect chasm:
infrequent

expert recognized
cliché & suggested
discriminating test

lang: compiler (MSC)
derived alignment
constraints from base
type rather than full type
{L}

U17 cpu-intensive
nighttime job doing
big citation index
search

job WITHOUT i/o
mysteriously
terminated by
console interrupt

cause/effect chasm:
infrequent; dump
showed nothing

inspeculation:
gestation, thinking
about logic; realizing
it wasn't a fluke

des.logic: if main acct.
idle while bkgnd job has
a file locked, -> os kills
job (hack to avoid
deadlock)
{S/A}

Eisenstadt: Tales of Debugging, Appendix B, p. 25

I D Context Symptom Why difficult How found Cause
category: detail

{Knuth label}

U18 VAX-11 FORTRAN
code

mysterious
behaviour of
FORTRAN code

WYSIPIG lex expert recognized
cliché & suggested
discriminating test

lex: TAB (1 char)
replaced by 8 space (8
chars), pushed identifier
past column 72, so
truncated (cf. entry 49)
{T}

U19 developing code
generator for Ada
compiler on PERQ

user complained of
crash with stack
underflow; other
users ok

cause/effect chasm:
inconsistent, many
degrees of freedom
(HWxcompilerxlinker
xsource=2^^4)

controlled expts:
exhaustively try
every combination,
only happened when
compiler was linked
on specific machine

vendor: hardware fault...
after swapping CPU card
& re-linking compiler,
problem vanished

U20 PC clone, editor
bug

crash ONLY on 486
executing wrong
interrupt number

tools hampered:
Heisenbug

inspeculation:
'inspiration'

vendor: int86() stores
interrupt, then modifies
(ok) BUT 486 instruction
pipeline had ALREADY
read the instruction
{D/S}

U21 code inherited from
others

5 old bugs (new
user didn't even
know it)

spaghetti inspeculation:
reformat code &
visual inspection

des.logic: misc... flaws
in logical flow
{A}

U22a Programming an
embedded system
in PL/M-86

crash.. process
jumped to stack
segment of another
process

faulty assumption
due to 'warning', not
'error' so still
compiled & linked

gather data: step &
study w. hed
debugger

init: allocated 1 byte less
than needed, e.g. char
msg[1]={'h', 'i'} should be
[2]
{D}

U22b implementing
quicksort + print
result in C; testing
with printfs

out of stack space tools hampered: error
cloberred diagnostic
tools!!!

gather data: print'n
'peruse

init: own use of 'write'
redefined system’s
'write' without warning,
so qsort's output &
manual trace's printf()
recursed endlessly
{L}

U23 portable C code
with some
machine-specific
assembler

ran ok EXCEPT on
Vax/Ultrix

faulty assumption
(thought bug in own
code)

a) inspeculation:
hand simulation; (b)
gather data: wrap &
profile -> dump & diff;
step & study

vendor: instruction
present on older Vaxes
only emulated on
MicroVAX-II, emulation
code had a bug in it!

U25 shorthand-to-
English translation
program

disk system
returned wrong
sector, but on
different iterations!

cause/effect chasm:
inconsistent; timing-
sensitive (75µsec!)

gather data: wrap &
profile; canonicalize
(reduce to simplest
replicable case)

des.logic: flip-flop
set/reset side effect w.
timing interaction;
read(A) reads A, then
read(unknown)
continues to return A
{A;S}

U26 Mac NetHack misc. bugs cause/effect chasm:
inconsistent

gather data: 'Heap
scramble' (provokes
bugs) & 'Mr. Bus
error' (tailored tease-
out)

mem: double-indirect
references, middle
pointer ('handle') is
owned by Mac OS,
trouble if unlocked or
invalid handle moved
{D}

Eisenstadt: Tales of Debugging, Appendix B, p. 26

I D Context Symptom Why difficult How found Cause
category: detail

{Knuth label}

U27 IBM 1401 w.
punched cards; 8K
core

dud compiler faulty assumption
(mis-directed blame,
told 'didn't work')

inspeculation: book
('anatomy of
compiler') +
reasoning (lo mem +
h'ware multiply +
multiply SUBR)

mem (prog too big):
mutiply SUBR pushed
compiler beyond 8K...
removing punched cards
for this SUBR cured
problem (because this
model had hardware
multiply)

U28a Modifying SOS
editor under
TOPS10

crashed when
exiting intra-line
alter mode with
<esc>

cause/effect chasm:
intermittent

gather data: dump &
diff

des.logic: different
instruction for <ESC>
vs, <CR> (logic error)
{A}

U29 game playing
program; asked
'want to continue?
(y/n)'

Program worked
when user input
“y”, but only on
Wednesdays, else
always quit!!!

cause/effect chasm inspeculation: re-
arrange code (didn't
help), + ?

mem: documentation
said 8 bytes needed, but
12 really needed, so 6
days a week cloberred
mem with blanks, but on
Wednesday,'y' luckily
matched 9th byte
{D}

U34 large office
management
system

Word Perfect said
'printing', but
nothing happened

cause/effect chasm:
inconsistent; worked
ok on similar setup

1) gather data: wrap
& profile; 2)
controlled
experiments

unsolved: never
debugged!.. failed
precisely with machine A
& printer B & > 1MB code
& not(breakout box) !
{S}

U35 Porting graphics
code to new DG
machine

infinite loop tools hampered:
Heisenbug

controlled
experiment: binary
probe; gather data:
conditional break &
inspect

vendor: when arctan
instruction was on a
page boundary, a
microcode defect
caused jump to 0; since
a content of 0 also
means 'jump to 0', it
resulted in endless loop

U36 TCP/IP network
kernel for MS-DOS

Telnet hangs, but
only with 1 terminal
emulator, and only
at one slow speed

cause/effect chasm:
intermittent; speed-
dependent; tools
hampered: context
precluded using
debugger

gather data: print &
peruse; step & study

des.logic: re-xmit (slow)
packet, test 'already?'-
>neg number; old packet
updated where in data
stream we were
{A}

U37 Porting game
'omega' from Unix
to Atari ST

intermittent
weirdness

tools hampered:
context precluded
using debugger

gather data: wrap &
profile

mem: program deleted
list containing ptrs to
other objects
{D}

A 6 Developing a Mac
sound application,
requires rapid
open/close of
serial ports

crash after ~3000
iterations

cause/effect chasm:
timing problem;
intermittent

gather data: wrap &
profile, controlled
experiments; expert
recognized cliché

unsolved: device mgr
not robust enough to
handle rapid
open/reset/close of
serial ports... root cause
still unknown; used
workaround

A 7 Ampex: Unix
upgraded for real-
time stuff

system crash after
~2 hrs

tools hampered: error
consumed evidence;
long run to replicate

gather data: print &
peruse; step & study
with hardware bus
analyzer.

vendor: custom-tuned
boards-> bad data ->
jump to bad address
{D}

Eisenstadt: Tales of Debugging, Appendix B, p. 27

I D Context Symptom Why difficult How found Cause
category: detail

{Knuth label}

A 8 Kids developing
Hypercard 2.0
apps

Hypercard card
suddenly
disappears

WYSIPIG user-
action

inspeculation: lucky
observation

behav: CMD-Shift-Del
kills card

